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Disjunctive Kriging Revisited: Part IT'

M. Armstrong” and G. Matheron®

In order 10 find distributions other than infinitely divisible distributions which are suitable for
disjunctive kriging, infinitesimal generators are used. In addition to distributions developed in
Part 1, this leads to development of suituble models for the beta (B}, hypergeometric, and binomial
distributions.

KEY WORDS: Nonlinear geostatistics, disjunctive kriging, beta distribution, hypergeometric
distribution, binomial distribution, i1sofactorial.

INTRODUCTION

In the decade since the first paper on non-linear geostatistics appeared (Math-
eron, 1976), geostatisticians have had time to test the method and_find its
strengths and weaknesses. One problem to date has been that, in its present
form, disjunctive kriging always has been associated with a transformation to
a normal distribution, which is unsuited for use with data like uranium, which
has a large peak of zero values, with discrete variables, or with grouped data
as is found in size or density distributions. So a real need exists for new types
of disjunctive kriging, particularly for *‘discrete disjunctive kriging.”’

The first note on disjunctive kriging (Matherson, 1973) gives the theory
behind the method and shows how it can be used for data having one of the
following distributions: normal distribution, gamma (), Poisson, or negative
binomial. More importantly, general conditions for finding distributions suit-
able for disjunctive kriging are presented. These are that the joint distribution
f(x, ¥) can be expressed in an isofactorial form; that is

fo, vy = 20 T, (0 x.() gx) g(»)

n=0
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where g() is the marginal distribution, 7,, are constants, and x, () are factors
which, for simplicity, must be polynomials. A recent translation of this work
is presented in a previous paper (Armstrong and Matheron, 1986).

One unfortunate limitation of this method for finding distributions suitable
for disjunctive kriging was that it could be applied only to infinitely divisible
distributions. This limitation can be overcome by using a different approach
(infinitesimal generators). This was developed first for continuous distributions
(Matheron, 1975a) and afterward for discrete distributions (Matheron, 1975b).
The objective of this paper is to present an updated translation of those parts of
these two research notes which are relevant directly to alternative types of dis-
junctive kriging.

THE INFINITESIMAL GENERATOR METHOD APPLIED TO
CONTINUOUS DISTRIBUTIONS

In Part I, four distributions (normal, vy, Poisson, and negative binomial)
were shown to have required isofactorial properties together with polynomial
factors. Unfortunately, the method used for finding suitable models could be
used only with infinitely divisible distributions.

Here, infinitesimal generators and the theory of semigroups are used to
find other suitable models. In this section, the method is applied to continuous
distributions; the discrete case is treated in the following section. In both cases,
we give only an outline of the proof. Readers who wish to fill out the proof
may find it helpful to consult a text on functional analysis (such as, Brezis,
1983), for the Hille-Yosida theorem in particular.

Let g(x) be the marginal distribution. Working in the space LR, g), we
want to find a function a(x) so as to write the differential operator Af associated
with the stochastic process in the form

P A
Af = af" + gdx(ag)

where f' = df/dx.

Given this function a(x), we can show that operator A4 i1s a negative Her-
mitian operator (in the sense that the scalar product {Af, f) = —(\/c_zf ’
J;f "y € 0. (See Appendix A.) The evolution equation

o, 1af df
) A--—[aggﬂ (D

a g ox

is a type of heat equation.
Now, provided that A is closed and dense in L*(R, g), a semigroup P, =
e' with A as its infinitesimal operator exists, and because we are dealing with
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a heat equation, this is a diffusion semigroup. Because | gAf, = 0, the density
g is the ergodic limit of P,(x; dy) as t = .

The next step is to see whether the eigenfunctions associated with operator
A include a series x, which forms an orthonormal basis for L (R, g). If this is
the case

— —Ant
Pan =€ ' Xu

where A, is the eigenvalue corresponding to x,,.
Consequently for any function f € L* (R, g)

Pf=2e™0f %)X

The bivariate distribution F,(dx, dv) = g(x) P,(dx, dy) dx can be written,
therefore, in an isofactorial form

Fi(dx, dv) = 23 e ™M'x,(x) x,(¥) gx) g(») dx dy.

In other words, the Markov process associated with this semigroup is an
isofactorial model.
A few examples should help clarity this approach.

Gaussian Process on the Whole Line
This corresponds to the case a(x) = | and g(x) = (1/vam) e ™", Here

Af =" — xf’

which clearly is equal to (1/g) (d/dx)(gf ). The orthogonal polynomials relative
to the normal distribution are Hermite polynomials H, (x). Moreover, because
AH, = —nH,, eigenvalues are A, = n and so the bivanate distribution F,
(dx, dy) is £ p"H, (x) H,(v) g(x} g(y) dx dy where the correlation coefficient p

equals e ',

¥ Process on R™
This time a(x) = x and g(x) = [I/T(a)] x*~ ' ¢™*. Consequently,
Af = xf" + (e — 0 f’
The Laguerre polynomials

"= — L k
> (=1 n(n 1) (n —k + Ix
k=1 ala + 1) - (a+ k—1)k!

L(~n,a,x)=1
are eigenfunctions associated with eigenvalue —\, = —n. Letting [, denote the
normed polynomial, the representation for the bivariate distribution is

- Z e-nll"(x) [”(y) x* ! ya—l e XY
B o) T{a)

1



732 Armstrong and Matheron

—NOTE—

The definition given here for Laguerre polynomials 1s not the same as in
earlier notes. They differ by a multiplicative factor (—1)"(a¢ + n — D(a + n
— 2) » » - «. The new definition is used because it simplifies considerably the
form of the recurrence relation used to obtain Laguerre polynomials from the
preceding two polynomials. ’

p Process on (0, 1)
In this case, a(x) = x(1 — x) and
T(o + B) x* ' (1 — x)B~!
(x) = O0=x=<1
8 Ie) T(B)
The expression for the operator A is

Af = x( —0)f" + [a — (a + B) x]f"

The orthogonal polynomials are Jacobi polynomials

Frn,ao+8+n—-1,a;x)

s i(—l)kn!(a+B+n+k—2)!(a—l)!xk
B i =k (@ +B+n—2D(ax+k—DE

which are associated with eigenvalues
-\, =-—nn+a+p -1
If x,, denotes the normed polynomia‘l
F(dx, dy) = 2" =Dy (x) x,, () g(x) g(y) dx dy
The form of normed factors is rather curious

(D' T +B8+2n—1)
1+ --- + X
Nae + )TN+ B8 +n—-1)

The family of polynomials can be expressed in another way

"

d
l—a 1 — -8 = a+n—1 1 — B+n—1
S U A [x (1 = x) ]

In this case, the constant needed to normalize polynomials is

IN'a + B T(x« + R)T(B + n)
FNa) (AT +B+2rn—-1)
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One more 1mportant difference between this distribution and the preceding
two is that we no longer have
7"” — p” — ()‘-ﬂ:’
Instead

T — e~n(u +B+n—1¥

INFINITESIMAL GENERATOR METHOD APPLIED TO
DISCRETE DISTRIBUTIONS

In the preceding section, isofactorial models with polynomial factors were
found for continucus distributions from Markov processes where the infinites-
imal generator was local. In this section, similar models are obtained for dis-
crete distributions. The local nature of infinitesimal generator A is replaced by
a condition limiting possible transitions to adjoining states, that isi = i + | or
i > i — |. Consequently

(Af)i = —(a; + b)f; + a.fi\ + bif; |

where q; is the probability of transition i — i + 1 and b, is the probability of
transition i = i — 1.

Three different types of processes can be distinguished, depending on val-
ues of a; and b,

1. If a; and b; are strictly positive for i = 0, 1, £2, ..., i can vary from
—oo to +oo. This case will not be treated here (reasons for this choice will
become apparent in the next paragraph.)

2. Ifby=0and b; > Ofori=1,2,...,anda, > O forall i, { varies from
0 to oo (infinite case).

3.Iftby=0anday =0.andifb; > O0fori=1,...,Nanda, > 0 fori =
O,...,N—1,ivaries from 0 to N (finite case).

In addition to this, the process must be ergodic, so a probability W = {w;}
must exist such that '

—(a; + bw; + a;_ywi_y + by Wiy =0
On rewriting
bi\ Wiy — apw; = biw; — a;_ w;_,
and clearly

by Wipy = a;w; ' (2)
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If a; and b; are strictly positive, eq. 2 is true provided that q;w; and b, w;
tend to O as i tends to —oo. However, in the two cases of interest to us (finite
and infinite cases), we have b, = O and so eq. 2 is true. No additional hy-
potheses are required. Therefore, the limiting distribution (if it exists) is defined

by
W, = =" —— Wo (3)

and the condition for its existence is that L w, < oo.
Condition (2) also means that the process is reversible, because w; P; (1) =
w; P; (1), where P, (1) is the probability of going from i to j in time ¢.
Condition for Polynomial Factors
Because the process is reversible, polynomial factors exist if and only if
I. Polynomials belong to L*(B, W); that is
E(") = 22 wi" < o

II. For each n, A7 is a polynomial of degree n in i (where n = 0, 1,
2,...,coorn=20,1,..., N as the case may be).

Taking condition II first
A = aq; [+ D" = i") + bl — 1) = i"]
So forn =1 |

A =

i a; — b,-
and this must be a 1st degree polynomial in i. Forn = 2
A7 = a;[2i + 1] + b;[-2i + 1]

and this must be a 2nd degree polynomial in i.
These two conditions are satisfied if

a; — b; is linear  and
a; + b; is quadratic
that is, if a; and b, are of the form
a; = ag + ai +7°
0 Y 4)
b; = by + Bi +

Moreover, b, = 0 because we are not concermed with cases where i goes
from —oo to o0. If g, and b, are of this form, condition (2) is satisfied for all n.
Condition I is satisfied also in the infinite case. (Obviously it is for the
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finite one). In the case where a; and b; are both strictly positive, i.e., where i
varies from —oo to + oo, we find that E[i"] = oo for sufficiently large # and
consequently that no models with polynomial factors exist. This is the reason
that this case has not been considered.

Linear Models: y = 0

Here

a, = aqy, + ol

Now ay must be strictly positive or else the process stops; similarly, so
must 3. Three cases must be considered: @ > 0, & = 0, « < 0 which lead,
respectively, to the negative binomial, Poisson, and binomial distributions. (This
progression is hardly surprising when limit relations between different distri-
butions are remembered).

Case o« > 0: Negative Binomial Distribution

From eq. 3, clearly

W = E"{@ N @H_]]E@
g o \o o | n!
Putting p = a/8, v = gyl

1
2 w,s" = —ps)y "W, s<-
p
Therefore, the limiting distribution W exists iff p < [; that is, if o« < 3.
In that case, the generating function is

v

q
Gls) = ——
(1 = ps)

where g = 1 — p. Because G(s) can be differentiated as many times as is
desired, the polynomials belong to L2(R, W). Provided a < B, an isofactorial
model therefore exists with polynomial factors and with the negative binomial

I'(v + n) p"
W, = ¢ ——02 b
"9 Ty n

as i1ts marginal distribution.
Polynomials have to be determined explicitly. To do this, we need eigen-
values of operator A that can be found by finding the coefficient of /" in the
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expression for A
A = (ag + ad) [+ )" = i") = Bi[i" — (@ — 1)']
= n(a — R)i" + polynomial of degree < n.
Consequently
A, = —n( —a) = —nfq

So if x, (i) denotes the normed factor of degree n, the bivariate distribution
F.(0)is
ij

F;() = W;W, ZO 0" % (B) Xu () (5)

n=

where p = ™",
Moreover,
Fy() = W;P; O

where P;;(1) is the translation matrix which is the resolution of the second Kol-
mogorov equation

d
thij(t) = —(g; + b)) Py() + a;_\Py;_ () + bj s\ Py (1) (6)

Putting
bi(s, 1) = 25 Py(1)s’
J

Equation 5 then becomes
(0G/3D + (1 — s)(as — B)(3b/ds) = —ay(l — 5)
with G;(s, 0) = s'. Integrating this gives

[ =ps = o0l = 9T g ”
Gi(s, 1) = [1 — ps — pp(l — s)] [1 - ps — pp(l — S)]

Bivariate generating functions in terms of s and ¢ (¢ is implicit) can be
deduced from eq. 6

G(s, 0) = Z F,-J-sjai
i

= 2. W,o'G,(s, )

q ’
B [(1 — ps)(1 — po) — pp(1 — s)(1 — 0)]

This can be expanded in terms of p as
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_ q "o Te +mp” 1 -5"U - o)
Gmﬂ)_Ll—pﬂU—pw}g T@)nl (1= p9)"(1 = po)’

From eq. 5 we also have
G(s, 0) = 2 p" 2 Wix, (D)s' 2 Wix, (j)o”
n i J

Because p = e varies from 0 to o, we can equate terms in these two

expansions. This shows that the generating function of x, ()W, is

. P /I‘(v + n)p" (1 — 5"
Z X,,(I)W,'S =dq F(V) n! (l o ps)n-!—u

Polynomial x,, (i) can be deduced from this to be

[””*”ﬁTQ§ _pGTe it R =) G —k D)
T'(v) n! A:O( L + i) pt

Case o = 0: Poisson Distribution

Ifaa =y = by, =0in4), then g, = a, and b, = Bi where 3 > 0. From
(3), the limiting distribution still exists and is a Poisson distribution with pa-
rameter 6 = (a,/B). The corresponding stochastic process describes a queuing
process with an infinite number of servers, when arrival times follow a Poisson
distribution with parameter a, and the service time distribution is exponential
with parameter 8. The infinitesimal generator is

(Af); = ao(fic — f) — b:fi = fiz )

Consequently, eigenvalue A, associated with polynomial factor x,, (of de-
gree n) is A, = —np.
So bivariate distribution F; (1) = W,P(f) can be written as

Fy= W, 20 0"X,(0) xa () (M)

where p = ¢ %
Using Kolmogorov's second equation
ZPU(’)SJ = -p+ pp)j e -t =9
J
and hence the generating function for the bivariate distribution is deduced

G(s, 0) = 2. Fys’o’
i
e Z W:,-PUO"S]
4

— e*()(l — ) =0l —a)+p(l —5)(1 —a)
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We now compare this with the expression for the generating function ob-
tained from eq. 7
Gis, 0) = 2 p" 2 Wix, ()" 22 Wix, (j)s’
n i J

Identifying coefficients of terms in p” gives

2L Wixa(i)s' = ,’% (1 — 9"
0’1 d"
= (—])" T X -w
(=D ‘\/n! 6"

8" d" (6’
W. N = (=" |— s -8
:Xn(l) ( ) J’: den (t' € )
) = (_1)" B_HE d" g -8
Xolt) = nt 6 48" \it ©

Case o < 0: Binomial Distribution

Consequently

Therefore

If « is negative, a; = ay + o would become negative for sufficiently large
values of i. As {i} therefore must be finite, a; must be zero for some value of
i = N, and the process is restrained to interval (0, N). We therefore have

a;=aN —i) b, =bi
From eq. 3, the limiting distribution is a binomial distribution with parameters
p and N where

p=a+b

The infinitesimal generator is
Af); = alN — D) [fino — fi] = bilfi = fi-1]
and so the eigenvalue associated with ¥, is
A, = —n(a + b)
Consequently, the bivariate distribution is
Fyt) = WiW; 2 0" %) x(J) @®)

where p = e—(u+[))c and I’V, — (?l)p’(l _ p)N——i.
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The expression for 72 P (1) s/ also can be obtained directly to be

[g(1 —p) + (p + oq)sl'lg + pp + p(1 — p)s)V ™"

where g = | — p.
Consequently

G(s, 0) = 2 W,P,(t)s’ o'

= (g + ps)(g + pa) + ppg(1 — s)(1 — o))"

Expanding this in powers of p gives

o N{ (1 — (1 — &) w
g

.\ — Y JV N
G(s, 0) = (g + ps)" (g + po) ‘%‘J p n (g + ps)(qg + po)

Another expression for G(s, o) can be obtained directly from eq. 8. Iden-
tifying terms in the two expressions gives

. N
2 Wix,(iys' = (;) g’ (1 =)' (g + ps)¥ "

n! Ny | d" (41 )+ 5
= — (= — -8 s
N! n) P dq" a4 '

Consequently,

! N d" | /N - .
W.x, @) = % (‘n‘> r'q a7 KT> (0 -q' QN*'W

L ’ n!p'q 1 d" v NG
x, (1) = NUN —m) (1 — q),' qN—,'dqn [q (1 (1) ]

Case v # 0: Hypergeometric Distribution

Hence

In this case

a;, = ay + ai + v/}

b,‘ = Bl + 'Yiz
where v # 0. In the infinite case ¥ > 0, a, > 0, and g;,, b, > O fori = 1,
2, .. .. a limiting distribution W may be obtained provided that certain con-

ditions are satisfied, but even then polynomials of degree n need not belong to
L*(R, W) when n becomes large. Consequently, no polynomial factors exist.
However, in the finite case, a solution exists. Suppose 0 < i < N. Then,
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changing notation slightly, we have
a;=N—-i)la+ N —i)]
b, = i[b + «i]

wherea + vy > 0,a+ Ny >0, b+v>0,b+ Ny > 0.
From (3), the limiting distribution is of the form

(3+N)---<9+N—n+1>
NN =D (N=n+ 1)\ Y

(3) )
1+=) -+ (n+-
Y Y
Putting (a/y) + N = « and (b/y) = [ gives
=(—N)-'-(—N+n-—1)(-oz)(-oz+1)--'(—oz+n—l)

w

n

W, y BB+ DB +n—1 0
Because L W, = 1
T+ MNMTEB +N)
T I@) T + B+ N)
Hence

w oo (N B + N)T(a@ + N)
" \n)TB+mTa+p+N)"°
Polynomial factors still have to be found explicitly, but as this is much

more complicated than in preceding cases, it will be left until it is needed for
practical applications.

@=1) " (@—n+1)

CONCLUSION

Isofactorial models presented in this paper and its predecessor permit dis-
junctive kriging when data are not normally distributed. Continuous distribu-
tions such as v and 3 distributions may be useful for modeling long-tailed dis-
tributions, thus obviating need for an anamorphosis as used in traditional
gaussian distinctive kriging. Discrete isofactorial models have a wide range of
potential uses with discrete data or grouped data. Only experience will show
how useful they really are in practice.

Before concluding, potential users should note two limitations in work pre-
sented in this paper. The first is of a numerical nature. Whereas isofactorial
models with polynomial factors are good to have, these are of little practical
interest unless polynomials can be calculated quickly and efficiently. Some sort
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of recurrence relation is needed therefore. These exist and can be found in any
standard reference on orthogonal polynomials.

The second limitation concerns ‘‘change of support.’” One great advantage
of the normal distribution is that it facilitated models of change of support,
which are needed for point-block models and block-block models. In this work,
nothing has been said about how these can be developed for isofactorial models.
Interested readers can consult some recent work (Matheron, 1982, 1984, and

1985).

APPENDIX A
We want to show that operator A defined by
fd 1d

Af=af"+ga(ag):ga

(agf’)

is a negative Hermitian operation; that is
(Af.f> = ~(Naf', Naf ) <0

Suppose that the marginal density g(x) is sufficiently regular and is con-
centrated on the (possibly infinite) interval [b, c]. Let a(x) be a strictly positive
function on this interval and let a(b) = a(c) = 0. Moreover we suppose that
product a(x) g(x) is differentiable in this interval.

If fis twice differentiable on [b, ¢] and if function ¢ is differentiable on
the interval, then using integration by parts we can show that

, ') d
a(x) f"(x) + —— — la(x) gx)]{ e(x) g(x) dx
b glxy dx

= —S S @' (0 alx) glx) dx

2

The result then follows.
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