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Isofactorial Models for Granulodensimetric Data'

M. Armstrong® and G. Matheron® -

Existing isofactorial models developed for disjunctive kriging using a cutoff grade on one variable
are extended to the bivariate case which arises when dealing with granulo-densimetric data, such
as are obtained from coal washing or mineral processing.

KEY WORDS: bivariate isofactorial models, disjunctive kriging, granulodensimetric data, coal
washing, mineral processing.

NEED FOR ACCURATE PREDICTIONS

Widespread acceptance of kriging in the mining industry is due to its ability to
provide accurate estimates of reserves. Linear geostatistics and kriging give
reliable estimates of grades of blocks whereas nonlinear geostatistics (disjunc-
tive kriging, multi-Gaussian kriging, etc.) can be used to estimate the percent-
age of selective mining units with a grade above a certain cutoff. These predic-
tions are of great help to mine planners who have to maximize profits in an
increasingly competitive world.

Although a good deal of theoretical research and practical testing has been
done on these subjects, the problem of predicting recovery per block, after
initial separation of saleable material from waste, generally has been neglected.
Taking coal as an example, many sophisticated mathematical models and com-
puter programs have been developed to aid mine planning (e.g., by simulating
exploitation block by block) but these generally stop at entry to the wash plant.
A different set of methods and models are used to predict results of the sepa-
ration of the run-of mine material into coal and waste. However, the problem
of predicting recovery and recovered ash and sulfur levels for blocks of coal in
situ has attracted little attention. As the majority of coal mines have to treat
their coal (by crushing and washing it) to reduce its ash and sulfur levels, pre-
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dictions of recovery after washing would be a tremendous aid in decision-mak-
ing.

The importance of crushing and washing procedures can be seen from Ta-
ble 1, which presents percentage recovery as a function of density of liquid
used for separation for two size fractions.

(Note: gravity methods commonly used for separating *‘coal’” from waste
rely on the difference in density between the two. However, flotation methods
used for separating fines depend on surface properties of the particles rather
than their densities; these are outside the scope of this article).

Any attempt at predicting block recoveries and recovered quality must take
into account both size and density. One unfortunate limitation of work to date
on this subject (Armstrong, 1980, 1984; Kim, Barua, and Baafi, 1982 is that
only one aspect was taken into account.

The aim of this paper is to present some simple bivariate models which
may prove useful in coal washing and mineral processing contexts where re-
covery estimates depend on two factors. As disjunctive kriging can be used to
predict recovered reserves when selection depends on one factor (grade of the
block), it seems natural to try to develop a suitable isofactorial distributional
model. Models presented here are only for discrete distributions. The reasons
for not considering continuous distributions at the outset are first that reversi-
bility conditions found for the discrete case are fairly complicated and would
be worse in the continuous case, and second that data collection procedures for
size and density distributions give rise to data which are grouped into a rela-
tively small number of classes; this effectively hides the continuous nature of
the data. We do envisage extending these results to the continuous case later.

Matheron (1973, 1975a,b, 1980, 1984, 1985a,b) has presented univariate
isofactorial models related to several discrete distributions. Bivariate isofacto-
rial models presented here are a natural extension of this work, particularly of
Matheron (1975b and 1985a). However, as often happens when results for the
univariate (i.e., one-dimensional) case are being extended to the bivariate case,
new problems are encountered. Whereas conditions for having an ergodic dis-

Table 1. Percentage Coal Recovered as a
Function of Liquid Density

1-1.5cm (%) 10 cm (%)
<l.3 20 17
<1.35 40 37
<l.4 48 51
<1.45 55 60
<l1.5 60 65
< 1.55 63 69

<1.6 65 71
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tribution were fairly simple for the univariate case, they become much more
complicated here and are replaced by an assumption of reversibility of the pro-
cess. Second, conditions used in the univariate case to guarantee polynomial
factors relied on existence of an ordering relation for the degree of polynomials
x". The lack of an ordering relation in two dimensions means that no natural

Mn_om

way of ordering polynomial terms x"y" exists, and hence that the argument used
for the univariate case cannot be transposed to the bivariate case.

We now go on to describe the discrete bivariate stochastic process which
is the basis for our models.

DISCRETE BIVARIATE PROCESS

Consider a discrete bivariate process. Suppose that possible states for the
first variable are denoted by i and by j for the second. Suppose, as is usual for
Markov chains, that the only possible transitions are to neighboring states (i.e.,
i = i+l,i—=i—-1,j = j+1,j — j—1). So eight transitions each with its
associated probability are possible

a; =Pr(i = i+l,j—j)

if
b, =Pr(i—=i—1.j—=))
¢c; =Pr(i—i j—j+1)
d; =Pr(i =>i.j—>j—1)
e; = Pr(i = i+l.j—j+1)
fi=Pri =i+l j—>j-1)
gy =Pr(i—i=1l,j—=j=-1

h, =Pr(i = i-1,j—j+1) (1)

HOW TO FIND ISOFACTORIAL MODELS

Three main steps in finding isofactorial models with polynomial factors
are:
1. Working out implications for transition probabilities of assumptions of re-
versibility of the process.
2. Finding limiting distributions for processes with polynomial factors.
3. Finding an isofactorial representation of these distributions and, if possible.
determining the recurrence relation between factors.

The approach follows the methodology used by Matheron (1975b, 1980)
for univariate distributions. Readers who are not familiar with these papers may
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find it useful to consult them or their English translations (Armstrong and Math-
eron, 1986). Following this approach, we first find the infinitesimal generator
A for the process

(A‘p) = - (G,J. + bij +oe s+ hij) P + i Piv1,j
+ by ein v e T e o (2)

As with the univariate case, several different types of processes arise. If
all a; and b;; (for a fixed value of j) are strictly positive, then for that j, i can
vary from —oo to oo. This case will not be treated here because it seems to be
of little practical importance and, more importantly, because no models with
polynomial factors in the univariate equivalent of this case existed. If by, = 0
and b; > Ofori =1,2,... and ifa; > 0fori=0,1,2,.. ., varies
from O to +oo (infinite case). For this to be internally consistent, ho; and gy,
also must be zero, or else a nonzero probability of i being negative exists. A
similar argument applied to the other index shows that f;; and g,, must be zero
also. If by; = O for all j (and also hy; and g;) and if ay; = 0 (and also ey; and
Jni), then i can take values 0, 1, . . ., N (finite case).

As the same reasoning can be applied to the other index j, three cases
would seem to be possible

1. ie{0,1,..., x}
jel0,1,..., o=}

2. ie{0,1,..., o}
je{0,1,...,N} orvice versa

3. ie{0,1,...,N,)
jel0,2,...,N,}

ASSUMPTION OF REVERSIBILITY

In the univariate case, Matheron developed a condition for the process to
be ergodic which also guaranteed its reversibility. This equivalence between
reversibility and the existence of a limiting distribution no longer holds in two
dimensions. But, for simplicity, the process will be assumed to be reversible.
Reasonably one may ask whether this assumption is acceptable for size distri-
butions. As far as time-dependent processes (e.g., for grinding circuits or ag-
glomeration of particles) are concerned, the answer almost certainly is no.
However, if the process is location-dependent, the assumption seems reasonable
because moving in space does not have the same connotations of *‘forward and
backward’’ as it would for a time parameter.

If w; ; denotes the limiting probability of being in state i, j, reversibility
implies that
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biy\jWivij = ay Wy

dijo1y Wiji1 = C Wy
i+ 1j+1 Wit1j+1 = €4 Wy
hi+l.j-—l Wit j-1 = f;j Wi 3)
Hence for a fixed value of j
a;
Wit1, = ij
bi+| J
a; Q- j Qg
= b . b wOj
br+l J i 1.Jj
Varying j leads to
a1 j Qo; Coi—1 Coo
W = J..._i_..._wm 4)
Y b b d d
ij 1.j Yy 0l

CONDITIONS FOR POLYNOMIAL FACTORS

In the univariate case, necessary and sufficient conditions for polynomial
factors (given that the process is reversible) were that (1) polynomials belong
to L*(R,w); that is, L w; i” < oo, and (2) Ai" is a polynomial of degree n in i
for each n.

When we try to rewrite the second condition for bivariate distributions, we

A

run into problems because no natural ordering for terms i"j” is known. In the
univariate case, term " is of greater order than ' but is j" of greater order
than "' j”*'? Terms could be ordered according to the sum of their powers,
but this soon becomes unwieldy. So whereas for the univariate case we were
able to deduce the form of transition probabilities, this is no longer easy. Instead
we assume that transition probabilities are linear because this led to suitable

univariate models, that is
a_,-j =ao +a|i + bz]

b =b0+b|l+b2_]

i

etc. As the probability of going ‘‘backward’’ fromi = 0 (orj = 0)toi = —1
(or j = —1) must be zero, by = 0 = b, and b, > 0.

Taking account of all these ‘‘boundary’” conditions leads to the following
equations

a; = ag + a,i + ai a, > 0

b, = b,i b, > 0

g



748 Armstrong and Matheron
Cy = Cp + Cli + Czj Cp > 0
d. = d,j dy > 0

e; = ey + ei+ eyj e > 0

fi =1 f2>0
hb,:h]l h|>0
gijzo

From reversibility, (Eq. 3)

_ Sirrget Wi+t 0

“)lj

€

The probability of going from (i,j) to (i + 1, j + 1) must be the same
passing either by (i + 1, j)orby (i,j + ).
For the first pathway, '

[co+c 0+ 1)+ crjl (ag + ai + ay))

YT b+
whereas for the second
[ag + ai +a,(j+ 1] (cg + ci +cu))
T T e G+ Gy
Because this is true identically for all i,/

ag = (ay/c)/cy
a, = (ay/c)) * ¢, = ¢
a, = (ar/c))/cy e =6 (3

A similar argument applied to transition from (ij)to (i + |,j — 1) either
going diagonally or via (i, j ~ 1), leads to the condition

h =f—-*~*~;'l"dj' (6)
Consequently the system of transition probabilities reduces to
a; = ay + ai + qj a, >0
b; = bi b >0

y

_ ¢4 , . _
c,-j——a—+cz+q g =—"2>0
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d; = dj d >0
fi=4 f =0
cfbi
N
’ ad
Because ¢, = (¢ ay/a) > 0, a and ¢ are of the same sign. So three cases

to be considered, a and ¢ both positive, both zero, or both negative.

In the univariate case, an isofactorial model with a quadratic expression
for transition probabilities also was established. Probably a similar bivariate
model also exists. However, as equations resulting from reversibility conditions
are complicated, this possibility has not been pursued yet.

We now consider three cases (a and ¢ both positive, both zero and both
negative) in detail and show that. as could be guessed by analogy with the
univariate case, these have the multivariate negative binomial (or negative mul-
tinomial), Poisson, and multinomial distributions as their limiting distributions.
So we see that the two variables i and j both have either an infinite number of
states or a finite number. The mixed case (7 infinite and j finite) does not seem
Lo arise.

BIVARIATE DISTRIBUTIONS

a > 0, ¢ > 0 Negative Multinomial Distribution
In this case

a; = ay + ai + aj etc. ay > 0,a >0

ij

From (4), the limiting distribution (for j fixed) is

a, + ai\ fa, + aj + a ag + af + (n — Na
W, = Coe Wo,
/ b 2b nb ‘
b a a

(a "T(v + n)
=\ w0 W
b/ T (v)n!

where v = [(ay/a) + j].
Applying the same reasoning to the second index gives

a\" [\ L a CT T(y +n+m)
Wo = | =] |5 |l — - == ¥ (7
a d b d] T (y)n'm!

where vy = ay/a = ¢y/c.

—“u ) )
—+j+(n—1
_a -

Way

n
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This is a negative multinomial distribution.

a = 0 = ¢ Poisson Distribution

The limiting distribution (for j fixed) is

n
_ (%) Yo
W TG ) h
n mn
_ (%" (20" W
Wem =
b d/ n!m!

225w, wee = 1 = e — (ay/h) — (co/d)

n m

n _—aolb m —cold
_ (%) € ()" e
Wom = (b) n! (d) m! ®

This bivariate distribution is of no further interest because it can be split
into two independent Poisson distributions which can be treated separately.

and (varying j)

Because

Hence

a < 0, ¢ < 0 Multinomial Distribution

Because all transition probabilities must be positive, only a finite number
of states (i=0, 1, ..., N) exist. Transition probabilities therefore can be
rewritten as

a; =a(N —i—j)
where a; = 0 when i + j = N. The range of possible states (i, j) is illustrated
(Figure 1).

The limiting distribution (for fixed j) is

(a>”N—j—n+ - (N—-))

n!

an =

b

W= (& (\'NN-D-- - (N-m—n+]
= \p) \d nim! oo

n m N—m-—n
3
b d b d ntm! (N —m — n)! (9)

This 1s the multinomial distribution.

n<N-j and
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Fig. 1. Range of possible states (i, j) for N
the process with g < 0, ¢ < 0. v

POINT-POINT DISTRIBUTION

In previous work on isofactorial models, the objective was to find an iso-
factorial representation for the bivariate, point-point (or block-block), distri-
bution for the case where point grades had a specified univariate distribution.
In the case being considered here, the ‘‘marginal’’ distribution of point data is
already a bivariate distribution and so the corresponding point-point (or block-
block) distribution is quadrivariate. Clearly, this is going to lead to mathemat-
ical and notational problems.

In the next section, we see how the stochastic process associated with the
negative multinomial distribution can be developed and factorized.

NEGATIVE MULTINOMIAL PROCESS

Using the same notation as before

a; = altay/a) + i + j]

=a(y +i+])
b. = b

i i

¢, =c(y +i1+7)

d; = d
We now use the same line of reasoning employing generating functions as
was developed for the univariate case (Matheron, 1975b). In many cases, the

generating functions involve a variable ¢, Because stochastic processes origi-
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*

nally developed from time series, the variable will be called ‘‘time,”” even
though our assumption of reversibility would exclude many time-dependent
processes.

The probability generating function for this distribution is

noy N ¥
I WymS|185 = 22 (ﬁ) E) 1 - a_¢c Ty +n+ m sisy
b d b d n'm!T'(y)

_<,_£_£’®_Eﬂ 9%”
b d b d (10)

Let G,-j (51, $2, 1) be the conditional probability generating function; that is

Gy(5), 52, 1) = 20 20 Wy (0)shsh
k 1]

where w;;.,(1) denotes the stationary probability of going from state (7, j ) to (k,
/) in time t. If A denotes the infinitesimal generator, then
G,

TJ (51, 52, 1) = AGy; (17)

We now suppose that b;(s;, s, 1) is of the form
Gij(sla 52, 1) = {Vilsy, 52)}i {Vis, 52)}1- {H/(s), s} (12)

A simple and intuitive way of seeing what this equation represents is to
consider the process as a bivariate birth and death process concerning two types
of bacteria (Type I and II). At the outset, Type I has i and Type II has j indi-
viduals. Descendants of any one of the / Type I bacteria after a time ¢ can be
described (probablistically) by the generating function U(s,, ;). This is raised
to the power i to give the progeny of all i Type I bacteria after time r; similarly
for [V (s,, 5,)). The other term [H,(s,, 5,)]" accounts for the progeny of bacteria
which were generated spontaneously in that time. For more details on gener-
ating functions applied to birth and death processes, see Feller (1968, Chap.
XI).

Return to Eq. 11 which can be rewritten as

1 9G;

1,
bG; ar Gy

Substituting (12) for G;; gives
yoH idU joV
ot

jav _ B ~
aa T vaty (v+i+){alU-=1+cV -1}

+ bi[(L/U) — 1] + dj[(1/V) — 1] (13)

At time ¢t = 0,
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H()(Sl, Sz) = l
Uy(s), 52) = 54
Volsy. $2) = 53

From this, equating terms, we obtain

la—li— (U-DH+cV-1> (14)
H o = ¢

l—arg=a(U— D+ oV -1+ bl(I/U)Y — 1] (15
U at

1 oV

—— =qaU = 1) + cV - 1) +d/V) — 1] (16)
V ar

The solution to the first of these equations is

!

H(s,, s) =exp {— So alU, — 1) + c(V, = 1) dr}

Putting F.(s,. $2) = [H/(s,. 5,)]”" and substracting (14) from (15) gives
g

Because Uy(s,, s2) Fi(s,, s-) = s,. the general solution to this equation 1s

!

Ulsy. s2) Fiis;. s2) = s,e” + b S e~ NI F (8. $2) dT

0

Similarly
i

V:(Slﬂ S:) F{(S|, 52) — 52(,—11.' + d S e—d(r—r) FT(S|’ 52) dr

4

Taking Laplace transforms of these two equations gives

~ 5 .
- + F 17
UF(») b bty (v) (17)

- 55 ()’ .
VF(v) = — + F(v) (18)

d+v d+v

where UF (v) is the Laplace transform of U, F,.
Morecover from (14)

—(dF/0t) — [la(U — 1) + c(V — DIF (19)
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On taking Laplace transforms and substituting results given in (17) and
(18) into (19), we obtain

I_F()_as,+cs2_[a+cF
” I’_.b-l--u d+ v I,b-i-u d+ v @)

_ b +v)d+v)—as|(d+ v) — cs(b + v)
F) =
vQ(v)

‘Q(v)=v2+v(b+d—a—c)+bd—ad—cb
= +b—a)+d—0))—-®b—-—a)d-c) — ac

where

We already have seen that for the bivariate distribution to be ergodic, b
must be greater than a and d greater than ¢. Consequently, this quadratic equa-
tion Q(») = 0 has two real positive roots C, and C,. After some simple but
tedious algebra

1 — (as,/b) — (cs,/d) " By(sy, 57) + B\(sy, 55)

Flv) = h
W)= T < @ b+ C | vt G eEE
b—C)d—-Cyl as, cs, |
B = [ - - =
oo %) = e G -C) L b-GC d-G
b-C)d-Cf as, csy |
B = | - -
o) = -y | b-¢ d-a.

On inverting the Laplace transform,

1 — (a/b)s, — (c/d)s,

I = (a/b) — (c/d) + Bo(si, 52) €Y + By(sy, 52) €7

Fr(sla 52) =

(20)

Expressions for UF(v) and VF(») can be found by substitution into (17)
and (18).

o =

_ 1 = (a/b)s, — (c/d)s, 4 bB, N bB,

1 = (a/b) — (c/d) bG-Chr+Cy) (B-C)+C)
Hence,

1 = (a/b)s, — (c/d)s, . bBye™ < N bBe™

UF
o 1 — (a/b) — (c/d) c - C,y c — C

21)
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Similarly for V, F,,

1 — (a/b)s, — (c/d)s, N dBe N I

1 — (a/b) — (c/d) d— G, d- C (22)

V.F, =

Having now obtained expressions for functions U, (s, s.), V,(s, s,), and
H, (s, 5,), which together make up G;; (s, 5,, 1), we proceed to find an expres-
sion for the quadrivariate equivalent of the point-point distribution. The gen-
erating function G(s,, 55, 7,, 7») of this process can be deduced from the gen-
erating function for the bivariate negative binomial process

f_a_ ey [ _an _em\’
b d b d

by substituting generating functions U,, V,, and H, in appropriate places. This

gives
l E . E H i [ — aTIU . CTQV -
b d b d

Replacing H, by F, ' gives

[_a_<y
b d
On substituting formulas for F, UF, and VF we obtain an explicit expres-

SiOI] for G(Sl, $2, T1a 72)

[K(E, DK (s, 52) K(71, 7)) = (1 = K(L, 1) rolofsy, 52) Lo(7y, 72) €=

] ar, T, o
F-yr - 22
ST i

— (1 = K(1, 1)) r\L(sy, 5) L\(7}, 72) ‘?_C”]M{ where

as, CS5
KGs,$)=1————
(sy, $2) b d
Ly(s ) l as) CS»H
51, S - -
! b—C, d-C,
as, CS»
Li(s,, 5,) l

KA. (b~ C)d = Cy _
K(sy, 5) G(Cy — ) B

o =

L _kubve-cvd-cy_
l K(s. 55) C\(Cy — C)) B
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Having obtained the expression for G (s, s,, 7(, 72), we proceed to see
whether this can be expanded into an isofactorial form. This is done in two
steps. We rewrite the expression for G(s,, s,, 7/, 7,) in a form suitable for a
negative binomial expansion

G(si, 82, 1, 1) = {1 — p(xp + x))} 77
where p = 1 — K(1, 1)
_ rola(sis $2) Lo(71, 7)) e
K(sy, s5) K(1), 12)

riLy(s,, s>) Ll(Tla 5) e
K(sy, 83) K(7\, 1)

X, =

Expanding this gives

k. _n—k

STy +
Z__(_'}’____n) Coxbx"
0

G(Sh 82, Ty T?.) = o F(’Y)fl'

1
P k
The generating function is not our final objective. We want the quadrivar-
iate distribution with probability p;;.;, in an isofactorial form. For discrete uni-
variate marginal distributions p (i), an isofactorial representation of the bivariate

point—point distribution p (i, k) is of the form

p@@m§nmnmmmmw

Similarly, when the point distribution is a bivariate p (i, j) isofactonal
representation for the quadrivariate distribution is

pl, jik, 1) = 2 Tox,0, ) x.k, Y p, j)pk, D)

What we need are factors x,(i, j ) and coeflicients 7,,. The generating func-
tion G(s|, §;, 7}, T») gives the generating function for factors as well as eigen-
values of the infinitesimal generator A which allow us to find 7,,. Eigenvalues
appear in the exponential term

e—[kCn +(n—RC1r

So they are
[kCO + (n - k)C]J

We obtain the generating function of factors by considering term xfx| %

The generating function G, ;(s,, s,) of the factors comes from regrouping all

terms in s, and s, which occurred in x§x ~*. This gives

[K(1, D]* [Ly(s,, 52)]k [L(sy, Sz)]"_k
[K(s), 5" "

Gn, k(sl E) Sz) =
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This function has been normalized so that factor x,, (0, 0) will be equal
to 1. This normation will not be valid if b = d; the index r, is zero and ¢, =
C,.

This generating function easily is shown to satisfy equation

AG = —\G
for A = kC, + (n — k)C,, and also that
AG = [a(s, — 1) + c(s, — D] [aG + 5,(3G/0s)) + 5:(0G/0s,)]

+ b1 — 5,) (3G/3s,) + d(1 — s5,) (9G/ds>)

CONCLUSION

Results presented in this paper show that bivariate isofactorial models can
be developed. We hope that this will stimulate interest in problems of predicting
recovery and recovered grades after the initial separation. This could be a con-
siderable aid to mine planners.
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