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NEW TYPES OF DISJUNCTIVE KRIGING : PART 1

INTRODUCTION : THE NEED FOR NEW MODELS.

A series of new and more general isofactorial models leading, among
other things, to discrete disjunctive kriging, have been the subject of se-
veral recent articles by Matheron (1983, 1984). In the introduction to
these papers, Matheron mentions two situations where the existing techniques

in non-linear geostatistics cannot be applied.

The first is when the distribution under study has an atom (a peak)
at the origin. A typical example of this is uranium grades which can have
up to 70 or 807 of zero values. Clearly there is no way of establishing
a 1-1 transformation between the real values and the Gaussian anamorphosed
values under these circumstances. While it would be possible to establish
an arbitrary rule to decide which zeroes are less zero than the others,
this solution is rather unsatisfactory. So this is one area where a new

approach-is required.

Another domain where the existing non-linear methods fall down is
when the variables under study are inherently discrete. A classic example

of this.is the stone count in diamonds.

A third type of situation requiring new models (and one not mentioned
by Matheron) is that of data grouped into classes. This occurs in coal
preparation and in general in ore dressing, where the data are arranged in

size and density classes.

The common point between all these problems is the discrete nature
of either the variable itself or of part or all of the data. There is the-
refore a very real need for some sort of "discrete" disjunctive kriging.
The recent work by Matheron presents several models of this type as well
as new models for change of support. However as these articles come after
10 years of work on the subject, they tend to be fairly heavy going. The
present writer found it helpful to go back to Matheron's early unpub-
lished notes to trace the evolution of his ideas. This paper presents an

annotated translation of hitherto unpublished parts of his work, which may



be helpful to other readers. The starting point is the 1973 note N-360,

where disjunctive kriging was first introduced. This note is divided into

the following sections :

0
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Introduction

Equations of Disjunctive Kriging

The representation of the bivariate distributions
Isofactorial models

Hermite Polynomial Models (corresponding to a normal

distribution)

Laguerre Polynomial Models (corresponding to a gamma

distribution)
Models with Polynomial Factors (in general)

A general representation for these types of distributions.

Although the first four sections were published in English at the

first NATO Geostatistics workshop (Matheron, 1976), the rest has languished

in the Centre's archives. Of the remaining three sections, chapters 5 and 6

are the starting point for "discrete disjunctive kriging".

It would be possible to present the translations of just these two

sections and leave the reader to draw the parallels with the usual disjunctivé

kriging based on Hermite polynomials, but this has one serious disadvantage :

the section on the Hermitian case presented in the NATO papers is a very con-

densed version of the French original. Moreover, since chapters 4 and 5 (in

French) follow exactly the same line of reasoning, it seems preferable to

start with the section on Hermite models and then go on to the.other types

of disjunctive kriging.

DISJUNCTIVE KRIGING WITH HERMITE POLYNOMIAL MODELS

To start with, Matheron reviews some of the properties of Hermite

polynomials Hn(x). (Proofs can be found in any text with a chapter on ortho-

gonal polynomials). They are defined by



These form a set of orthogonal polynomials with respect to the normal
distribution; that is,

rH (x) H (%) s
J%n m

The normed polynomials nn(x) = Hn(x)/ n! form an orthogonal basis

. -x2 /2 /o '
for the Hilbert space L2(R, e /V 2m), Matheron then goes on to develop a
factorial representation for the bivariate normal p.d.f. To be more precise,

he shows' that the bivariate normal p.d.f. g(x,y) can be written as

gx,y) =g, (%) gz(y)[ 2 U H () H () ] N GD
o]

where g1(x) and gz(y) are the marginal p.d.f. This result is clearly the key
to disjunctive kriging. -

A simple way of doing this is by finding the Fourier transform of

g(x,y). This is

2 4ry2 2 412
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e =2 (-t et 2 Y e
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Now (-1)" o™ ™ /2 is the Fourier transform of Jlﬁ- e x? /2 , that
is of Hn(x) g1(x). So it follows that dx
g(x,y) = o(x,y) g,(x) g,(y) (2)

where
n

o(x,y) > % H (x) B (y)



So for the normal distribution, the "factors" are the (normed) Hermite
polynomials, and the corresponding Eigen values are pn’ n=0,1... (The eigen
values appear naturally when the theory is developed in terms of projections).
The chapter on the normal distribution also contains three small sections.

The first shows how to find the conditional expectation for a stationary ran-

dom function which can be transformed (by an anamorphosis) to a multivariate

normal distribution ; that is when the joint distribution of the random va-
riables Z(x1),...Z(Xm) have a multivariate normal distribution for any m
sa@ple locations KypeeoX o Since this is rather restrictive, the second sec-—
tion treats the case where only the bivariate distributions are normal. This
is just the usual disjunctive kriging. In the third section, Matheron shows
how to calculate the estimation variance in the preceding two cases. As it is
not always possible to transform a random function to bivariate or multiva-
riate normality, he then goes on to consider the gamma distribution and its

orthogonal polynomials.

DISJUNCTIVE KRIGING WITH LAGUERRE POLYNOMIAL MODELS

The first paragraph of this chapter is devoted to finding a model for
the cdfelation between two random variables Z(x) and Z(x+h), each with a gaﬁma
distribution.

Consider a random measure on\Rn, which is stationary and orthogonal,
and has a gamma distributiﬁn, that is, for all Borel balls B R" with volume
V(B) = V<® ‘

. [e—ku(B)] - e-w(k)

Al

where P(A) = 8 V log (a+)).

Let Z(x) denote the regularization of p corresponding to a specified

compact ball B ; i.e.

Z(x) = Ju(dg) 15 (x+g)

where 1B(.) is the indicator function for the ball B. The transitive covario-

gram of B 1is

K(h) = j‘1B(x) 1B(x+h) dx



—~5-

(For more information on transitive covariograms see Matheron (1970)). Matheron

then shows that

E [e—kz(x)- vZ(x+h)]
= exp {~ 6K(M) W(V) - 0K -KMNW) +v(w) } (3)
This is done by splitting up Z(x) and Z(x+h) into disjoint components.

Z(x)

”(Bx N Bx+h) * “(Bx\ an Bx+h)

Z (x+h)

“(Bx N Bx+h) * p(Bx+h\Bx N Bx+h)

1l

So the random variables X = Z(x) and Y = Z(x+h) can be split into three

components, X1, Y1 and W :

Z (%)

[}
=
+
<

Z(x+h) = W.+ Y

where X1, Y1 and W are three independent gamma variables with parameter values
of 0(K(o) - K(h)) for X and Y, and of 6K(h) for W. Equation (3) follows from
this. '

[e—AZ(x)— vZ(x+h)]

1

—)\(w+x1) - V(W+Y,)
1
Ele

~(A+V)W - AX, - VY
E[e 1 1]

It

exp {- 8 K(h) ¥ (A+v) - 6[K(0) - K(h) ] () + p(v))}

o
So we see that Z(x) and Z(x+h) are correlated gamma variables with para-
meter o = OK(o) ‘= 8 V(B). The correlation coefficient p between Z(x) and Z(x+h)
is p = K(h)/K(0). So the parameter value for W is po, while that for X, and Y

1 1
is a(1-p). For simplicity the scale parameter has been set to 1.

Laguerre Polynomials :

The system- of orthogonal polynomials relative to the gamma distribution

is defined by :

n
4 Xn+d ! e ¥ = (—1)n n! x

dxn

o1 e—x L (x)
n




for a specified parameter value O > 0. It can be shown that these polynomials

are orthogonal. Integration by parts gives

oo

) j Ln(x) Lm(x) XOL_1 e Xdx =6 ¢

nm n
)
where C_ = Eﬁﬂigl . Consequently the normal polynomials £ = I, /»fE form an
n n!T'(a) , n n n
orthogonal basis for the Hilbert space LZ(R+1, TT%T-XG—1 e )

- The next step is to show that the bivariate p.d.f. of two gamma variables

X and Y with the correlation structure defined earlier can be written as

o~-1 a-1

X y ~X~y
YY) Ty Ty ©

where ®(x,y) is, in this case,

L (x) L (y)

C
n

66y = T U *)

This is done by obtaininé the Laplace transform of the Laguerre polynomial

Ln(x), which 1s

oo

0
T 4

n 0o ine -\
- J e e ax
n: a‘ dx

e—)\ XO{'—1 e_x dx

X1 (%)
n

-1)" AT " o+n-~1 —(1+)\)nx ,
( = @) J X e . dx

CORP R
-I‘—(TX.T ET I‘l(OL+n) . (1+>\)0'-+n

A" - (5)
-N"c L
n (1+>\)0L+n . o

-AX-VvY

The bivariate Laplace transform E(e ') can be calculated directly

from the decomposition into XI’ Yf and W.
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v “AX,- Y, - Q)W
E[eAXVY] =E[e 1 1

1 1 1
ey 070 Gy TPXa 7 (e

_ 1 1 [(1+x)(1+v)]-°°‘
(L+Ma (1+v)a (+A+V)

1 —pa

_ AV
0% (140 @ [1 e |

The last term can be expanded as a negative binomial 3 viz

n
AWV “P% T Ipatn) AV
[1 (1+A>(1+v)] "an r(e) - ((1+)\)(1+\))>

Hence
n n
E[ o AX e—vY] _ EEF(pa+n) AV
S n n '
- cu A M 6)
LN (1+0)"
where U = I'(pa+n) I'(o)

n  T'(pa) T (a+n)

Back-transforming equation (6) leads to the factorial representation (4)

and shows that the eigen values are Un' In contrast to the normal distribution

n
where Un = p , here we have
A Y

u =E[T"]

where T is a beta random variable B(pa, (1-p)0) with mean p. So although a

Gaussian anamorphosis transforms the marginal distribution to a normal, the
bivariate distribution is not Gaussian (normal) - but this should have been

obvious from the outset.



For the sake of curiosity, it is worthwhile seeing if there is a

bivariate distribution with
- n
O(x,y) =2 p Qn(x) Qn(y)

which could possibly be transformed to bi-normality.

[NOTE‘: The new bivariate distribution being developed here represents a dif-

fusion—-type process. It is the basis for Matheron's recent work (1983)

on change of support models] .

From (7), the Laplace transform of ¥¢(x,y) is

n
AT v

(um“” Uﬂnmm

- n
- o T'(n+o)
CD()\,\)) = Z .I_lT F(OL)

Remembering the form for the negative binomial evpansion, we see that

| 1 P AV -
d(A,v) = [ (o0 ] o [1 BN

=[1+x+v+ (-pr v ]
~ We now have to check that this Laplacewtransform does correspond to

some distribution (an infinitely divisible one, at that). To do this we consider

the following expansion :

SA,v) = (1-p)° [1 P ]'a
’ (s Q=) (14 (=p)® L T8 T=p)) (+v (1-p))
_ (-0° I' (o+n) ot
T T(a) Zi n!

(x (-pN®™™ (wv (1-p)) ™™

This is the Laplace transform of a mixture of two gamma distributions
with parameter o+n where the parameter n of the gamma distributions varies ac-
cording to a negative binomial distribution with p.d.f.

Pr (N=n) = %%5%%%7 ot (1-p)®




For the sake of curiosity, it 1s worthwhile seeing if there is a

bivariate distribution with

d(x,y) =2 p" 2. &)

which could possibly be transformed to bi-normality.

[NOTE': The new bivariate distribution being developed here represents a dif-
fusion—-type process. It is the basis for Matheron's recent work (1983)

on change of support models} .

From (7), the Laplace transform of &(x,y) is

) . .
o(A,v) = 2 B I (n+0) A" v
n!  T(a) (1407 (14y) 070

Remembering the form for the negative binomial expansion, we see that

' 1 oav T17¢
' PO = [(1+A)(1+v)] o [1 I CEENIEED

=[1+2+v+ U-prv ]

We now have to check that this Laplace transform does correspond to
some distribution (an infinitely divisible one, at that). To do this we consider

the following expansion :

(1-p)* : 0 -0
@()\,\)) = 1 -
(1+n (1=-pN® 1+ (1-pN° [ (+x (1-p)) (1+v (1-—p))]
- (1_p)a I'(o+n) pn
I'(a) n! '(1+>\‘(1—p))°‘+n (1+v (1_p))a+n .

This is the Laplace transform of a mixture of two gamma distributions
with parameter o+n where the parameter n of the gamma distributions varies ac-
cording to a negative binomial distribution with p.d.f.

Pr (N=n) = 'ET(H;_%U o™ (1-p)®



Then the conditional p.d.f. of the gamma variates is of the form

-X
o+n-1 1
X, e dx1
After changing variables to
X =X, (1-p) Y =Y, (1)

this p.d.f. becomes

(,x )a+n—1 - xM1-p dx
e r— e —
-p T-p

Consequently the joint (unconditional) p.d.f. of X and Y is

atn-1

2 Irnte) nmo, o [ x y ~x+y [1-p) dx dy
oy dy = I Ty P (7P (“(1-0‘“)2) e (- T1-0)
o a+n-1
- 1_
B Zo> rI:'(rIl‘.Eg; 3 2}1{:)))2n+(x e~ G 70 g dy (7N

It is not difficult to see that the Laplace transform given earlier

corresponds to this p.d.f.

NOTE : The gamma distribution with o = 1/2 is the square of a normal distribu-

tion. And so in this case (and only in this one) the Gaussian anamorphosis gives

a bivariate normal distribution.

To conclude the chapter on the gamma distribution, Matheron shows that
the Laguerre polynomials can be kriged separately to obtain the disjunctive

kriging estimator.

In summary, this approach led Matheron to look for random functions

~ with the following properties :

a) Z(x) must be stationary. For a given x, there must be a complete
countable set of orthogonal functions Xn~associated with the distri-
bution w(dz) of Z(x). The X, form the basis for the Hilbert space
L2 (R,w).

b) For any two points x and y, the joint p.d.f. of Z(x) and Z(y) must
be of the form

®(z,z") w(dz) w(dz")

where d(z,z") ==Z)Un(x,y) Xn(z) Xn(z').
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The following section is devoted to the search for other models with

’

polynomial factors.

LOOKING FOR OTHER MODELS WITH POLYNOMIAL FACTORS

Several problems arise when one is looking for random functions satis-
fying the conditions listed above. Since the bivariate p.d.f. faB(Z,Z') plays
the same role in disjunctive kriging as the covariance does in ordinary kri-
ging, some sort of generalization of Bochner's theorem is required to charac-—
terize the families of bivariate distributioms which can be associated with
random functions. To be more precise, for a given family F(dz,dz';x1,x2) of
bivariate distributions with X45 X, € r" , what is the condition that gua-

rantees the existence of a R.F. Z(x) on R" having F(dz,dz';x,,x,) as the biva-
2

1
riate distribution of Z(x1), Z(xz). Clearly for all x Gan the marginal pro-

bability w(.) = F(., R, %X, x") must be independent of x.

By analogy with the covariance which must be positive definite, we

could postulate a similar condition. That is, for any x .,xke R" and

120"
fi € LZ(R',wi) (i =1,...,k), we could require that

E[ (ZDf,(z&x))2] 50

[N
o

? ?j\ fi(Z) fj(Z') F(dz, dz';xi, Xj) =0 (8)

But although this condition is necessary, it is hardly sufficient. To

of R. The all or nothing R.F.s 1B (Zz(x))
« .

see this we consider a partition B,

. . ., n
assoclated with a random partition Ak of R :

A = {x:Z2(x) € B }
’ (9)

and

Pr(x € A, x' €A,) =F@B, B ,; x, x")

Condition (8) means that the covariances Ckk,(x,x') = F(Bk, Bk,; x,x")
form the covariance matrix of a vectorial R.F. (Y1(x),...,Yk(x)) but there is
no reason to believe that this vectorial R.F. need necessarily be the indica-

tor function of a random partition.

However this suggests that thefollowing condition should be necessary
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and sufficient : that for every countable partition B, there exists a random

k
partition Ak satisfying (9).

This draws our attention to the following problem. Under what conditions
is a family Ckk,(x,x') the covariance matrix of a random partition. One parti-
cular, simpler case of this is : under what conditions is the function C(x,x")

the covariance of a random set?

This problem is by no means trivial. For example, covariances of the
form exp {—Ix—x'lz} cannot be associated with any random set. (As they have a

second derivative, they have to represent a differentiable R.F.).

Matheron notes that these problems are rather difficult and goes on to
attack the question from a different point of view. When dealing with ordinary
variograms and covariances , the difficulty of testing whether a given function
was positive definite and hence could be used as a covariance, meant that new
covariance models are usually developed by construction from a known regiona-
lized variable. Similarly the easiest way to produce bivariate distributions
with the required properties is by regularizing a stationary orthogonal measure

M oe.g.
I Z(x) = ~[k(X+E) p (d&)
whére k is éiven.
Suppose that the (infinitely divisible) distribution associated with p

is defined by .
B[ D] L D
then

E [ e—AZ(X)—vZ(x+h)]

- e ([ WD) + vkEm)E |
Iﬁ particular if k = 1B , then

E [ e—XZ(X)— \)Z(X+h)]

= exp {[K() - RMW] [ ¥V + ¥M] + K@) YO+v) ]

where K(h) is the transitive covariogram of k. Substituting &())

and p = K(h)/K(o) gives

exp {K(o) PN}

e0uw = oW TP EW T 0P (10
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Models with Polynomial Factors

The next step is to find distributions satisfying (10) and having poly-
nomial factors Xn. In the preceding chapters it was shown that the normal dis-
tribution and the gamma distribution have these properties. Matheron now goes
on to show that the same is true of the Poisson distribution and the negative

binomial. Moreover, these are the only non-trivial distributions which satisfy

(10).

To start with, he shows that if a distribution w(dx) has a set of poly-
nomials Xn which form a basis for the Hilbert space LZGRn,w), the following
properties are equivalent to ensure that the bivariate distribution of X and Y

has a symmetric p.d.f. of the form
®(x,y) w(dx) w(dy)

1) ®(x,y) is of the form Z)Un Xn(x) Xn(y)
2) For all n =2 O E[ Xn|Y] is a polynomial of degree n in y.

Proof : If 1) holds, then

E [anY] = % Up Xp(y) J‘Xp-(x) x" w(dx)
Since ‘[Xp(x) x" w(dx) = O for all p > n,

X
B[N = 3] = R0, <o, >0
- p<n ‘

where < xn, Xp > denotes j‘Xp(x) X" w(dx).

This expression is a polynomial of degree £ n. In fact, it is precisely

n .
of degree n, because < x , Xp > cannot be zero since

n
n n

= < , X > X .
x 2, <X > pCX)

p=o

Conversely, suppose 2) holds. We have to show that the orthogonal poly-

nomials Xn(x) satisfy
E[x G|y] =u X

The space 5; of dimension n+1 made up of polynomials of degree < n

+1

is invariant under the operator E [XIY] . Moreover this operator maps g;+1

e e
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onto itself, since the degree of the polynomials is conserved. Consequently,
this symmetric operator has n+1 orthogonal eigen vectors in.ji+1, which are

just the L k =0, 1,...,n. So 1) follows.

The next step is to look for the conditions under which distributions
of the form (10) have polynomial factors. From the discussion given above, it

is clear that 2) must hold.

From the relation

Ay ny n "
e E[ X:}Y = y] w(dy) = (-1 -5 (A, V)
ov V=0
it is clear that the Laplace transform ¢ must satisfy
k
t-p 3" p_ 2 3
o) — [2OV) = 3 A — o))
AR ] o Pk ak

for all n. For n = 1, this is of the form

p@':a@ + b ‘D‘
1 1
This can always be satisfied by putting a, = 0 and b1 = p. For n = 2,
put & = ew(x) to obtain a differential equation of the form :

¢||=aw;2+bwv+c

If a=b =0, P is a second degree polynomial, which leads to the

bx | B

normal distribution, Ifa = O but b # O, then x() = A e ;s this corres-

ponds to the Poisson distribution.

If a # 0, the quadratic ax? + bx + c can have 0, 1 or 2 real roots.

1f there is one real root O,

il

Yt o= ay - 0)2

The solution is then Y ) % log (1+c)), which corresponds to a

gamma distribution (possibly translated and transposed) .

If the quadratic has no real roots :

P = a [(Wre2 + b2 ]
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and v() =+ log cos (abk +¢) - A - c'

there is no distribution with this as its Laplace transform. Lastly, there

is the case where there are two (different) real roots

P = a@'-a) ('-B)

This gives

pr-a b ea(B—a)A
or
Pro]) = o - Bb ea(B_a)A
) 1-Db ea(B—d)X

Supposing that a(B-@) > 0 , which is permissible since o and B can

always be reversed, the solution is

_—a(B-a) A
boy = Br - 1 1og<b : )

b-1

This corresponds to a negative binomial (at least up to a linear

transformation), if |b| > 1.

So we see that in addition to the gamma and the normal distributions,
two others (the Poisson and the negative binomial) also have the properties

needed for disjunctive kriging, at least for n = 2.

Poisson Distribution

The next step is to check that these properties hold for n > 2 for
the Poisson distribution. Since this is a discrete distribution, the genera-
ting function G(s) will be used instead of Laplace transforms. For the Pois-

son distribution with parameter 6

G(s) = 97D

The bivariate distribution associated with (10) is defined by

2P sn tm
nm

G(s,t)

c(s) P ¢y cse)®

e sl
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Hence

Log G(s,t) = (1-p)[ Log G(s) + Log G(t)] + pLog G(st)

Substituting for G(sS) etc, gives

n

Log G(s,t) (1-p) 6 [s -1+t - 1] + pB [st -1 ]

1

B(t-1) + 6(1 + pt = p)(s-1)

Consequently for a fixed value of n

> p "= e"6 e 8(t-1) (1-0)

= 9?-(1+ot-)n
nm n! P

So the generating function Gn(t) of Y for a fixed value of X = n is

6 (t) = (1 +pPt - o)™ e9(1—p)(t—1)

The conditional moments can be found by‘differentiating k+1 times
and putting t = O.

E [Y(Y—l)..;(Y—k) |n] =0T u. 0% n(n-1) (nk)

So we see that E [Ynlx] is indeed a polynomial of degree n in x.
The eigen value Un associated with the polynomial Xn is Un = pn , as was

the case for the normal.

To complete this section, Matheron gives the expression for the or-

thogonal polynomials associated with the Poisson distribution. These are

4 _ (D % n, x(x-1) 30 Xeo. (x-n+1)
Pn(x) = 1 (1) '6 + (2) T ........ + ( 1) en

and the normed polynomials are

n
(°]
wn(x) Va1 Pn(x)
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Negative Polynomial Distribution

As with the Poisson distribution, it is necessary to show that the

conditions are satisfied for n > 2. The negative binomial has the following

1-0 8
1-0Os
(1-0) 8% o® T (B+n) s” 0<ac<t
ot T(B) | 0< 8

generating function

I

G(s)

I

The corresponding bivariate distribution is defined by

E(sx tY)

G(s,t)

c) '™ ee) P c(st)f

To obtain the conditional distribution of Y for a fixed value of X,

the random variables are split into 3 independent components :

X=X +2
Y = YA y
such that
’ o _ X Y
)P = G H =BG H
G(s)p = E(SZ)

X1 and Z have negative binomial distributions and

_(-0? P T@ o+ p) T((1-p) B + k)

p! T(pp) k! T((1-p) B)

The distribution of Z for a fixed value of X = X1 + Z can be deduced

from

PR(Z = p, X, =1 -~ p)

Pr(z=p|X=mn) = e —
S® L@ [(o8-+p) I((1=p) B +n - p)
P TR ((1-p) B . I'(8 + n)

for O < pg n
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This can be shown to be a binomial distribution with parameters n

and p where the value of p is chosen at random from a beta distribution.

(To see this, let p be a binomial variable with parameters n and
x and let x be a r.v. with a beta distribution with parameters pB and

(1-p)B . The p.d.f. of the beta distribution is

£ = r(g) 0B~1

_ 5 (1-p)B-1
NEO R R

Pr(P

plx) = (2) x° (1-x)"°P
1

Pr(P p) = l Pr(p = plx) f(x) dx

Substituting the éxpressions for Pr(P = p|x) and £(x) into this

equation and integrating gives the required relation).
The generating function of Z given X can be deduced from this :
F(sMx =n) = D¢ (‘;)J & xP (10" P KPETT (1) PR gy

where

co_T®
~ (pB) T((1-p) B)
Reversing the order of integration and summation and noting that
Q) 0f -0 = (- x e s0”
leads to

1 .
E(Szix = n) =C L (1 - X + sx)n XQB (1_X)DB"1 Ldx

Consequently the generating function of Y = Z + Y1 is

. _\(1-p)B
E [sYIX =n] = (?éé&%%> E [szln ]

Differentiating the conditional generating function for Z, p times

and putting s = 1, gives
E[z(z-1) ... (z-p+*1)|X =n]

<P f (x) dx

=nm-1) ... (m-p+ 1) . 8

——



_13_

where fB(x) ié the p.d.f. of a beta distribution. This shows that E[ Zp|X = n]

is a polynomial of degree p inn and hence so is E[ YPIX = n] .

Therefore the negative binomial satisfies the requirements stated
earlier. The explicit expression for the orthogonal polynomials will not
be given here. However it is interesting to note that their eigen values

are given by 1

U= pr £ (x) dx = LCoB8 *p) T(R)
P B F(o®) T8+

CONCLUSION

This shows that the basic theory for disjunctive kriging using distri-
butions other than the normal existed in Matheron's notes as early as 1973.
His subsequent work in 1975 (N-432 and N-449) shows that there are other dis-
tributions with polynomial factors but unlike the four considered here, the
other distributions are not infinitely divisible and hence do not satisfy
equation (10). This work, which will be presented in a subsequent note, was

developed using a different approach - that of infinitesimal generators.
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