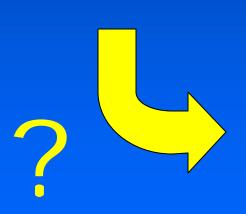
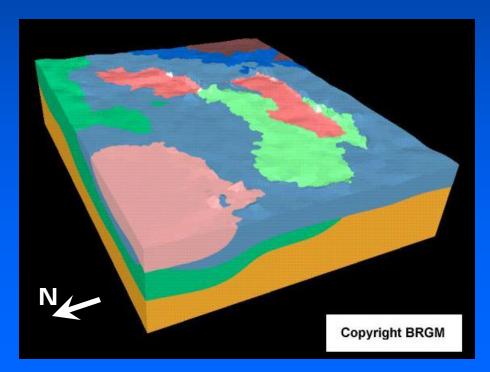
MODÉLISATION GÉOLOGIQUE 3D ET CARACTÉRISATION DES INCERTITUDES PAR LA MÉTHODE DU CHAMP DE POTENTIEL

Christophe Aug Centre de Géostatistique

Jury


Rapporteur: J.-L. Mallet Rapporteur: A. Parriaux Examinateur: J.-P. Brun Examinateur: J.-P. Chilès Examinateur: G. Courrioux Examinateur: Ch. Lajaunie

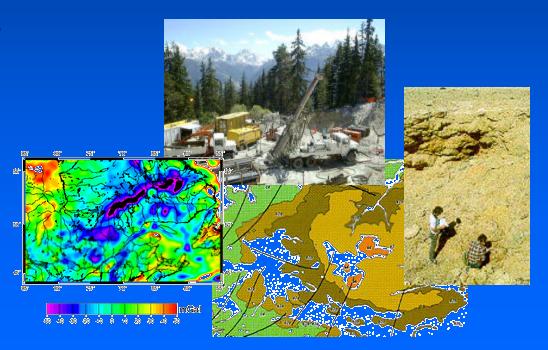


PONT-DE MONTVERT Post-permian units Porphyritic granite Signaux granite: Borne Complex Finiels facies Laubies adamellite

Cartographie géologique

Comment interpoler une surface géologique?

Il nous faut:


- > intégrer des données
- > choisir une approche
- respecter des règles

□ II <u>ne</u> faut <u>pas</u> :

> oublier qu'il s'agit d'une interprétation...

Les données

- interfaces (contours, intersections dans les forages...)
- directions structurales
- failles
- géophysique

Approches géostatistiques

- Les surfaces d'élévation: z=f(x,y) (Ex. MNT)
 - > faciles à utiliser, adaptées pour multicouches.
 - visualisation 3D, mais modélisation 2D
 - ⇒ certains objets ne peuvent être reconstruits.

- Les surfaces implicites: $V_0 = f(x,y,z)$
 - ⇒ Une surface est définie par une isovaleur particulière d'un champ scalaire dans l'espace 3D (champ de potentiel).

Deux étapes:

- Phase d'interpolation: exprimer $f \rightarrow calculer f(x,y,z)$.
- Phase de représentation: expliciter les surfaces isovaleurs \rightarrow dessiner les surfaces V_0 .

Les règles

La pile stratigraphique

- Les relations
 - « erode »
 - « onlap »

L'Editeur Géologique

- Outil développé au BRGM.
- Approche implicite: méthode du champ de potentiel (Lajaunie et al., 1997).
- Construction automatique de modèles géologiques volumiques.
- Méthode adaptée aux besoins et aux spécificités de la cartographie géologique:
 - modélisation de différents types d'objets géologiques (bassins sédimentaires, séries métamorphiques, intrusions granitiques...)
 - intégration de plusieurs types de données (MNT, carte géologique, données structurales, sondages, géophysique...)
- Nombreux exemples d'études sur http://www.3dweg.brgm.fr

Objectifs de la thèse

- <u>Cadre</u>: Thèse sous la direction de Jean-Paul Chilès, en partenariat avec le BRGM.
 Projet de recherche en modélisation 3D des corps géologiques.
- <u>Editeur Géologique</u>: Développer dans cet outil des techniques géostatistiques permettant de construire des modèles géologiques plausibles.
- Axes de recherche:
 - Caractérisation des incertitudes affectant les modèles construits.
 - Traitement des sondages incomplets.

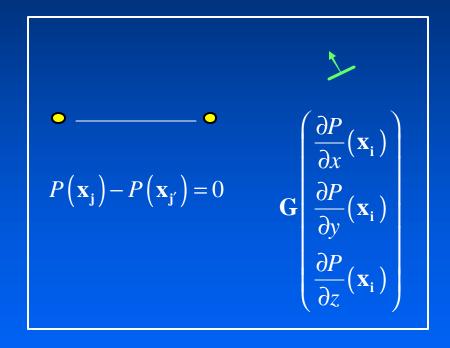

Plan

- Présentation de la méthode du champ de potentiel
- Caractérisation de la covariance du potentiel
 - Inférence à partir des données de gradient
 - Illustrations par les données du Limousin
- Détermination des incertitudes :
 - sur la position des interfaces
 - sur les paramètres du modèle
- Autres problèmes :
 - Gestion de plusieurs formations et des failles
 - Traitement des fins de sondages

La méthode du champ de potentiel

Deux types de données:

- points de passage (x, y, z) sur les interfaces géologiques ;
- données ponctuelles d'orientation: vecteurs normaux aux lignes iso valeurs (azimut, pendage, polarité).

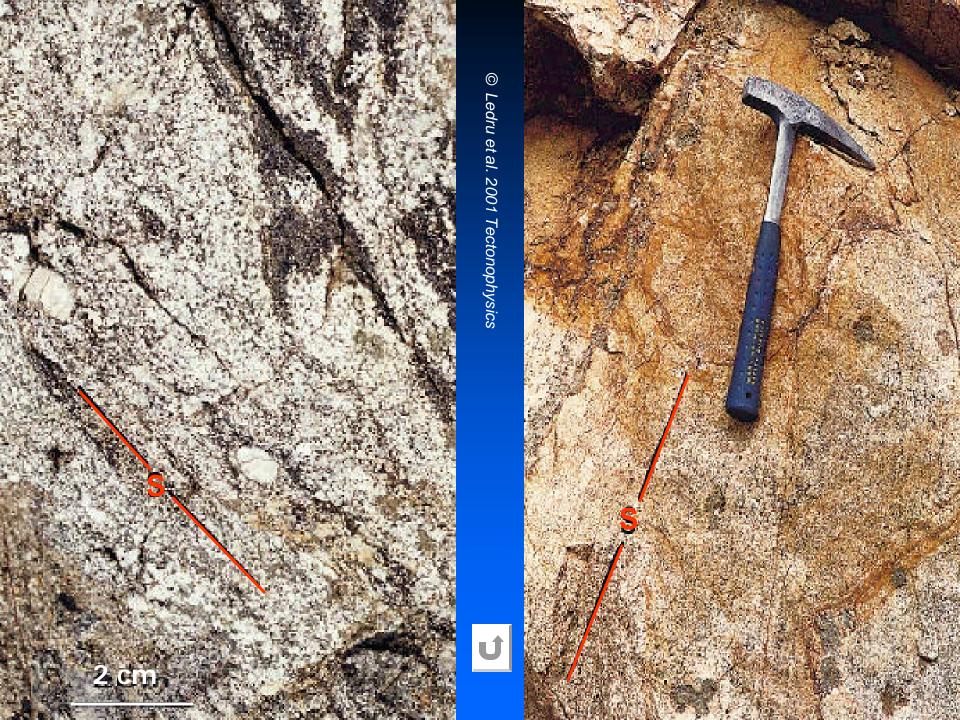


Les interfaces sont interpolées en 3D en assimilant les points à des potentiels (on travaille en fait sur des incréments) et les orientations à des gradients du potentiel.

Le cadre de la géostatistique

- Multivariable
- Deux types de données:
 - Potentiel (incréments)
 - Gradients
- Non-stationnaireDérive polynomiale
- → Cokrigeage universel (dual)

Fonction Aléatoire P: potentiel

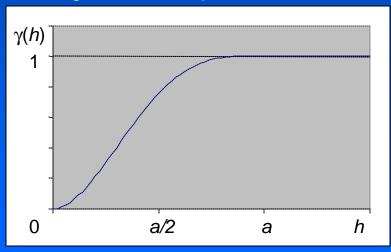

⇒ Choisir une covariance

Caractérisation de la variabilité spatiale du potentiel

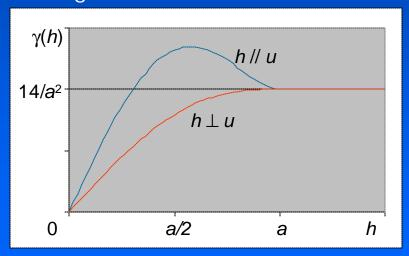
⇒ Inférence à partir des données d'orientation

Le choix de la covariance

- Jusqu'à présent: modèle « conventionnel »
- Modèle de covariance par défaut
 - ⇒ Cubique isotrope, portée arbitrairement prise égale à la taille du champ, variance du gradient unité, effet de pépite du gradient de 0.01
- Problème: incréments de potentiel nuls !
- Solution: exploiter les données d'orientation
 - Mesures angulaires d'orientation des plans de litage (stratification, schistosité, foliation).
 - <u>Illustration</u> (photos de foliations dans des granites)
 - Dans le cas d'étude Limousin: foliations cartographiques.
 - ⇒ X, Y, (Z), Azimut, Pendage, Polarité


Covariance du potentiel et covariance du gradient

Lien algébrique:


$$K_{G_u}(\mathbf{h}) = -\frac{\partial^2 K_P(\mathbf{h})}{\partial h_u^2} \qquad r = \sqrt{h_x^2 + h_y^2 + h_z^2}$$

$$K_P(h) = C(r) \implies K_{G_u}(h) = -\left(\frac{C''(r)}{r^2}h_u^2 + C'(r)\left(\frac{1}{r} - \frac{h_u^2}{r^3}\right)\right)$$

Variogramme du potentiel Z

Variogramme de la dérivée ∂Z/∂u

Calcul des variogrammes expérimentaux dans différentes directions.

Ajustement I

- Paliers variant avec la direction.
- Anisotropie zonale: le variogramme ne dépend que de certaines composantes du vecteur h.
 - ⇒ Schéma gigogne.

$$\Gamma_{P}(h) = \Gamma_{3} \left(\sqrt{h_{x}^{2} + h_{y}^{2} + h_{z}^{2}} \right) + \Gamma_{2} \left(\sqrt{h_{x}^{2} + h_{y}^{2}} \right) + \Gamma_{1} \left(h_{y} \right)$$

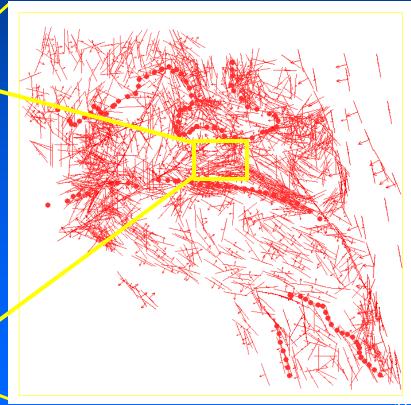
- Ajustement manuel:
 - Structure 3D ajustée sur G_z.
 - Structure 2D ajustée sur G_x.
 - (Structure 1D ajustée sur G_y.)

Ajustement II

- 3 paramètres à déterminer pour chaque variogramme de composante de gradient: portée, palier, effet de pépite.
- Ajustement automatique: détermination des paramètres optimaux en minimisant une fonction d'erreur.

$$\mathbf{c}^{2}(\mathbf{a}) = \sum_{i=1}^{N} \left[\frac{\mathbf{g}_{i} - \mathbf{g}(h_{i}; \mathbf{a})}{\mathbf{S}_{i}} \right]^{2}$$

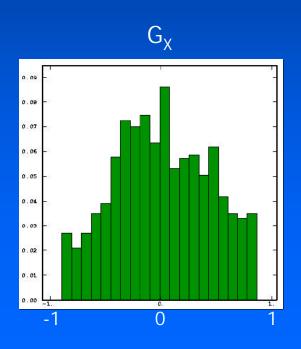
- Méthode de régression non-linéaire (Levenberg-Marquardt): méthode à gradient adaptatif
 - ⇒ Chaîne de traitement entièrement automatique.

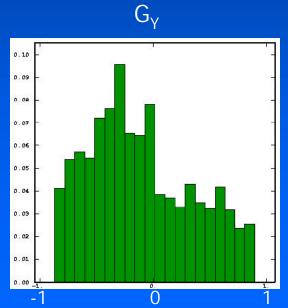

Caractérisation de la variabilité spatiale du potentiel

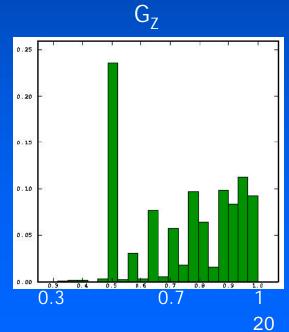
⇒ I llustrations par des données du Limousin

Présentation des données

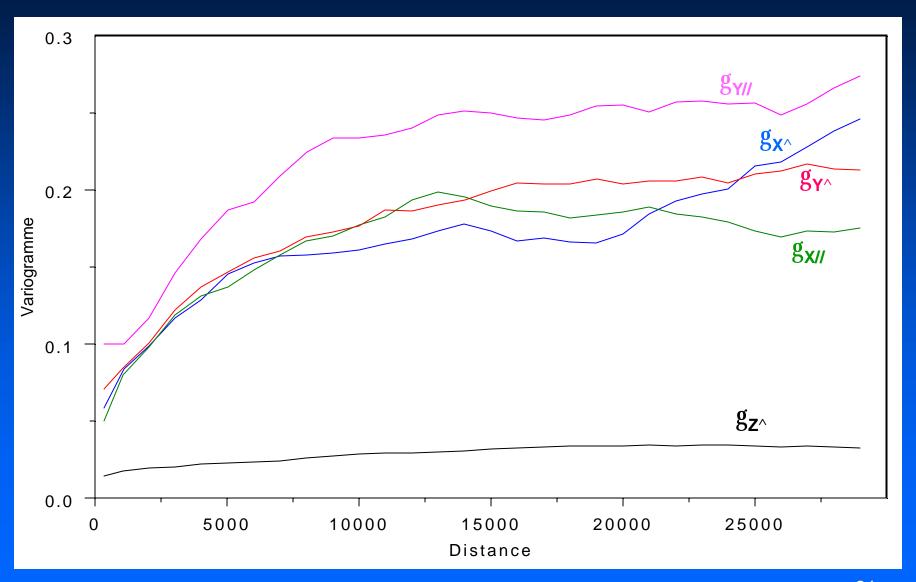
Taille ≈ 70 × 70 km 1485 données de foliation (roches métamorphiques) 128 points (carte géologique) tous situés sur la surface topographique

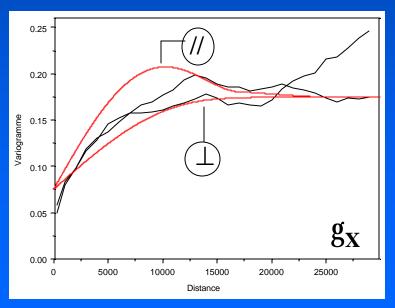


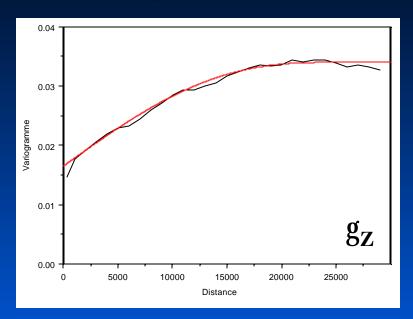


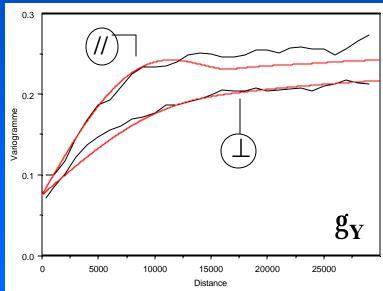

Étude exploratoire

N=1485


	Min	Max	Moy	Var
G_{x}	-0.8913	0.8659	0.0108	0.1876
G _y	-0.8659	0.8932	-0.1104	0.2076
G_z	0.3168	1.0000	0.7491	0.0314




Variogrammes expérimentaux



Ajustement des variogrammes

Struct.	Portée (en m)	Effet pépite	Palier
3D	25000	0.0165	0.0175
auto	26707	0.0166	0.0179
2D	17000	0.0750	0.0825
Auto	8560	0.0707	0.0733
1D	55000	0.0750	0.0500
auto	/	/	/

Synthèse de l'étude variographique

- Belle structuration des variogrammes.
- Effet de pépite relativement important.
- □ Portée de l'ordre de la dizaine de kilomètres.
- Palier de la composante verticale bien inférieur à ceux des composantes horizontales.
- Ajustement facile pour la composante verticale, plus délicat pour les composantes horizontales.

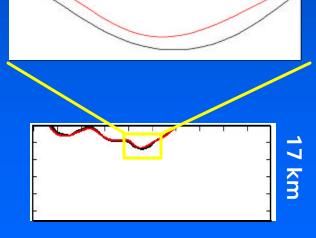
I mpact du modèle sur les surfaces

Calcul du potentiel en tout point de la grille, puis tracé de l'isopotentielle passant par les points de données.

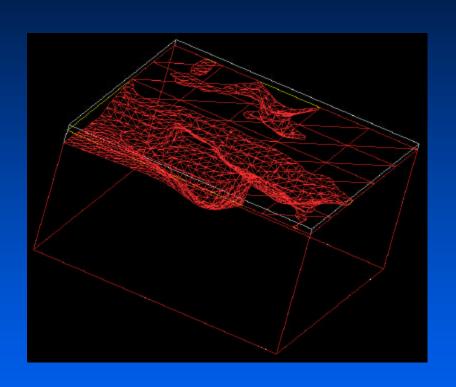
Topographie – altitude constante Z=500

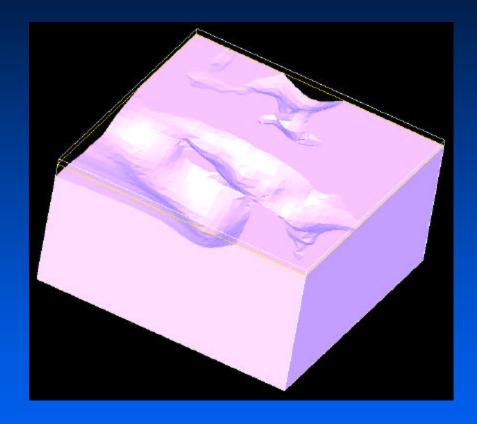
Coupe 1

128 points sur l'interface considérée


Comparaison

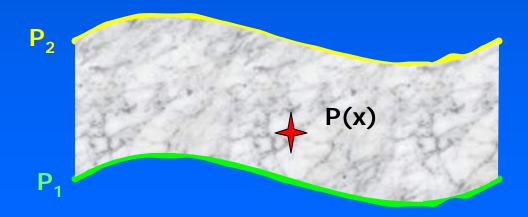
Modèle par défaut Modèle ajusté


C1


Différence de 450 m

Représentation 3D

Algorithme Marching Cubes:

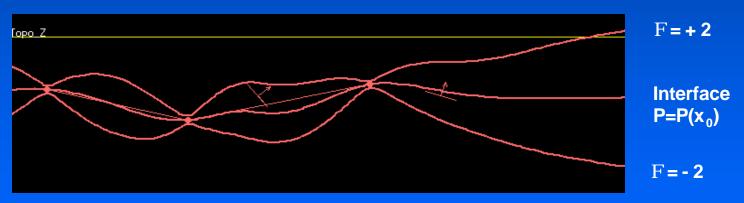

- Evaluation du potentiel en tous nœuds d'un maillage de cube
- Détermination de l'éventualité de rencontre de la surface et d'un cube
- Construction de l'intersection surface/cube si nécessaire, toutes les solutions des différentes configurations sont répertoriées

La détermination des incertitudes sur la position des des interfaces

Probabilité d'appartenance d'un point à une formation

- ullet Calcul des variances σ^2_{CK} des incréments de potentiel.
- Probabilité pour un point donné x d'appartenir à une formation:

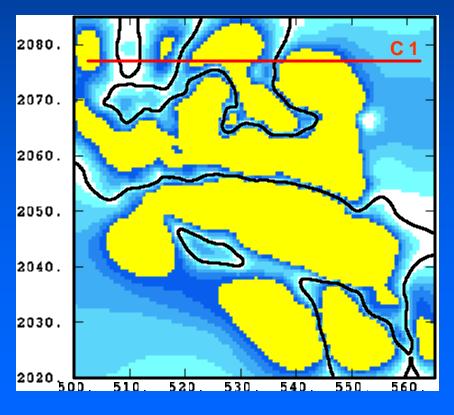
$$\Pr\{P_1 < P(\mathbf{x}) \le P_2\} = G\left(\frac{P_2 - P^*(\mathbf{x})}{\mathbf{s}_{CK}(\mathbf{x})}\right) - G\left(\frac{P_1 - P^*(\mathbf{x})}{\mathbf{s}_{CK}(\mathbf{x})}\right)$$

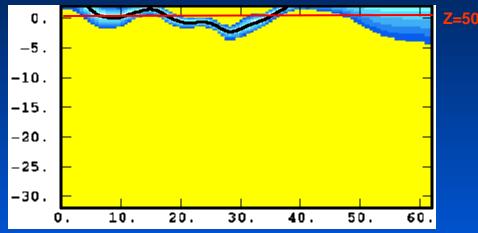

Le « potentiel réduit »

Calcul du "potentiel réduit" $\Phi : x_0$ étant un point de l'interface

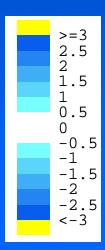
$$\Phi(\mathbf{x}) = \frac{P^*(\mathbf{x}) - P^*(\mathbf{x}_0)}{\mathbf{S}_{CK}(\mathbf{x})}$$

Hyp. gaussienne: l'interface estimée est comprise dans 95% des cas entre les courbes Φ =-2 et Φ =+2.


Exemple dans une coupe: 3 données d'interface et 2 données d'orientation.



- Cartographie de l'incertitude du toit de l'unité géologique.
 - \rightarrow Carte du "potentiel réduit" (iso- Φ).


Cartographie de l'incertitude sur la position des interfaces

Coupe 1

La détermination des incertitudes sur les paramètres du modèle

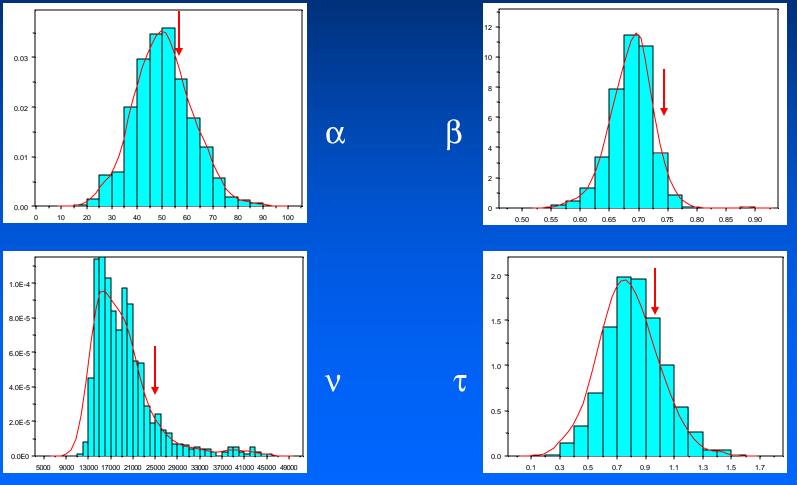
Incertitudes sur le modèle de covariance

Utilisation d'une approche bayésienne pour inférer les paramètres ? du modèle:

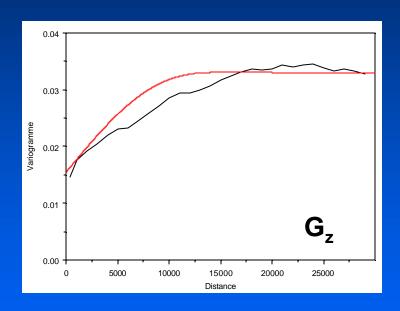
$$q = (s^2, b, n)$$

$$E[Z(x)] = \mathbf{b}^{t} f(x)$$

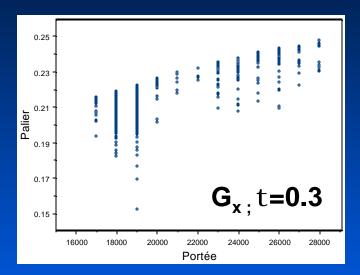
$$Cov[Z(x), Z(x')] = \mathbf{s}^{2} \Sigma_{n}(x, x')$$

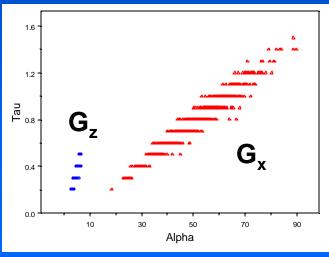

- Loi a posteriori: $p(q|z) \propto p(z|q)p(q)$
- Loi a priori: p(q)?
- Fonction de vraisemblance:

$$p(z|q) \propto (s^2)^{-n/2} |\Sigma_n|^{-1/2} \exp \left\{ \frac{-1}{2s^2} (z - Fb)^t \Sigma_n^{-1} (z - Fb) \right\}$$


⇒ Simulations selon la loi a posteriori

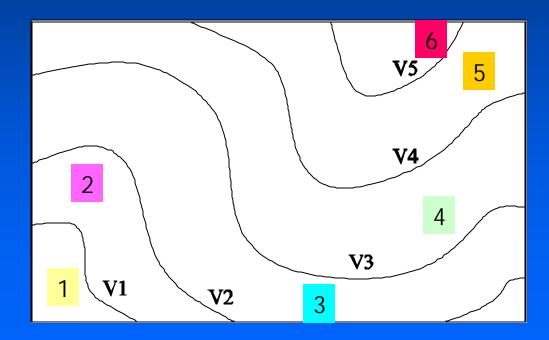
Résultats de l'approche bayésienne l Limousin G_z


Histogrammes et densités des paramètres a posteriori



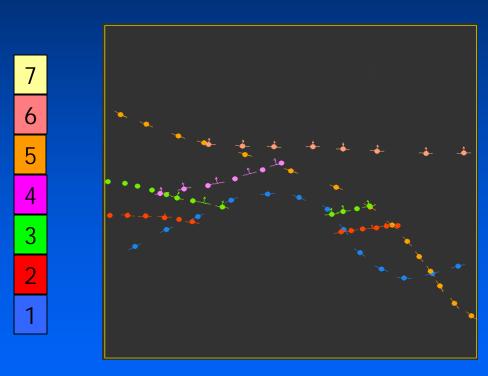
Résultats de l'approche bayésienne I I

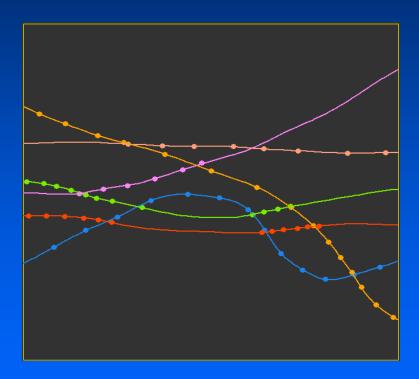
Variogramme et relations entre paramètres



Autres problèmes: la gestion de plusieurs formations et des failles

Le cas de formations subparallèles


⇒ Utilisation d'un seul champ de potentiel.


654321

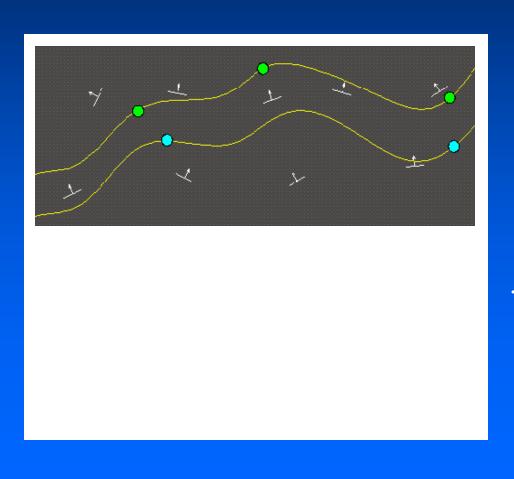
Le cas de formations nonparallèles I

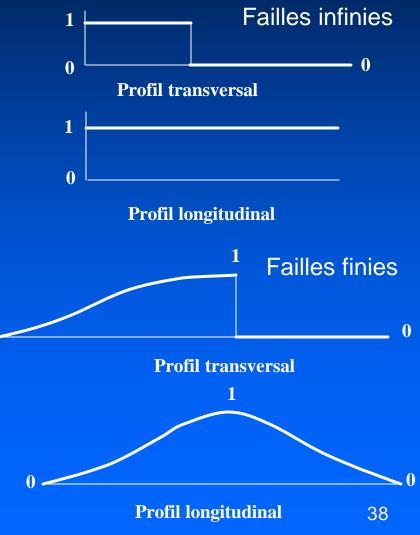
⇒ Nécessité d'utiliser plusieurs champs de potentiel.



Sans prise en compte des relations ⇒ problème de croisements

Le cas de formations nonparallèles I I


⇒ Utilisation de plusieurs champs de potentiel en exploitant les règles « erode » et « onlap ».



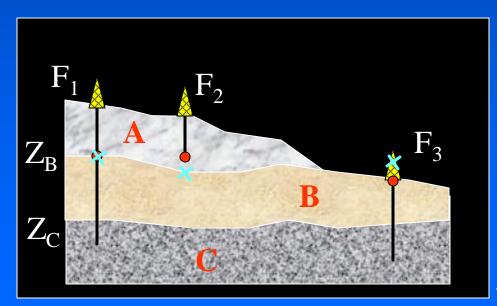
On peut alors remplir les volumes créés à travers le modèle.

Les discontinuités

Prise en compte des failles: des fonctions de dérive discontinues sont ajoutées aux équations de cokrigeage

Autres problèmes: le traitement des fins de sondages

Les données d'inégalité


Modéliser une interface géologique à partir de données exactes et de données d'inégalité.

- Données « dures »: incertitude attachée à la mesure de la valeur considérée comme négligeable.
- Données « souples »: contraintes accompagnées d'une information sur l'incertitude. Données d'inégalité.

$$Z_{B} = Z(F_{1})$$

$$Z_{B} < Z_{fin}(F_{2})$$

$$Z_{B} > Z_{deb}(F_{3})$$

Comment prendre en compte les contraintes d'inégalité?

Principe:

Remplacer les données souples par des données dures respectant:

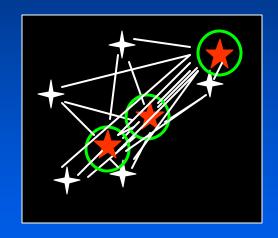
- la structure spatiale
- les inégalités

Algorithme de validation des contraintes: simulations de vecteurs gaussiens tronqués par une approche MCMC (échantillonneur de Gibbs) (Freulon, de Fouquet, 1993)

$$Z_i = Z_i^{KS} + \boldsymbol{s}_i^{KS} U_i$$

- Valable pour le krigeage simple.
- Reste robuste pour le cokrigeage ordinaire ou universel dans le cadre des applications.

L'échantillonneur de Gibbs

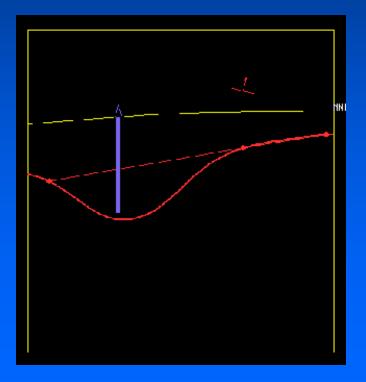

Geman et Geman, 1984

Objectif: remplacer l'inégalité par l'espérance conditionnelle de la valeur compte tenu de l'ensemble des données.

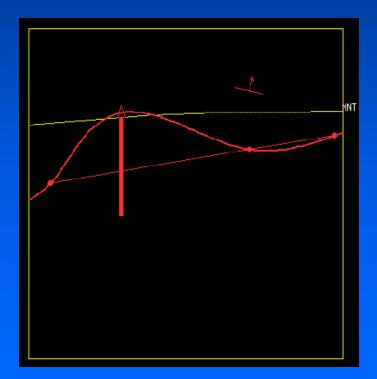
<u>Initialisation</u>: tirage au sort d'une valeur dans l'intervalle.

Cycle de p itérations:

- i) Choix d'un site
- ii) Relaxation du site
- iii) Itérations sur l'ensemble des sites

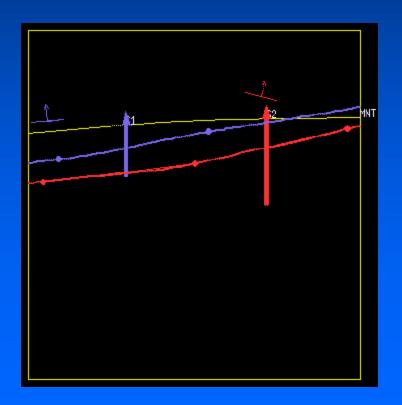

Itérations sur p cycles \rightarrow 1 simulation pour chaque site Monte - Carlo: N simulations de p cycles

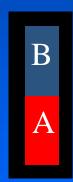
Cas d'une seule passe


Passe uniquement composée de B: différence de potentiel positive

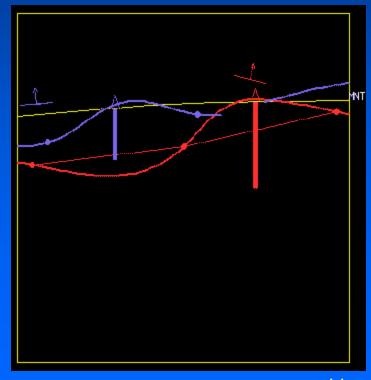
Passe uniquement composée de A: différence de potentiel négative

Pile stratigraphique

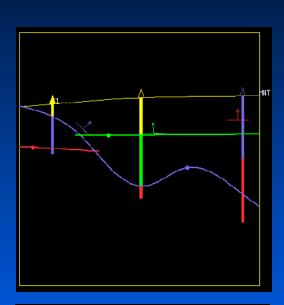




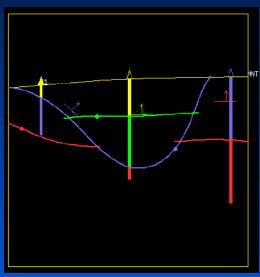
Cas de deux interfaces

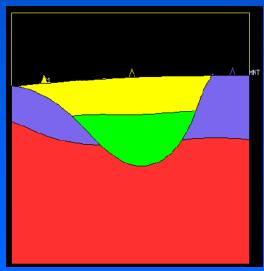

B en onlap A érodante

Sans validation



Avec validation


Le cas de lacunes



C en onlap B érodante A en onlap

Pile stratigraphique

S A N S

Conclusion I

« Editeur Géologique »: modeleur utilisant la méthode du champ de potentiel afin de construire des modèles géologiques 3D géométriquement cohérents et respectant les données d'origine diverse.

Apports principaux de la thèse:

- Mise en place d'une procédure d'inférence des paramètres du modèle de covariance
 - Meilleure prise en compte de la structure spatiale grâce à la modélisation des variogrammes des données d'orientation.
 - Procédure entièrement automatique: on fournit en entrée le fichier des données et les paramètres du modèle sont mis à jour dans le logiciel.

Conclusion I I

Apports principaux de la thèse:

- Quantification de l'incertitude affectant les modèles géologiques construits
 - Cartographie des incertitudes sur la position des interfaces en profondeur et détermination de la variance de la cote.
 - L'approche bayésienne permet de déterminer les incertitudes sur les paramètres du modèle de covariance.
- Traitement automatique des sondages incomplets.
 - Testé dans une approche multicouche
 - Résultats encourageants sur données synthétiques

Perspectives

A préciser:

- □ Etude d'un cas réel de traitement des inégalités .
- Impact sur le cokrigeage de l'utilisation de vecteurs normés à la place des gradients réels.

Développements ultérieurs:

- Mise en place d'un voisinage glissant à la place d'un voisinage unique.
- Meilleure prise en compte des réseaux de failles.
- Meilleure intégration de la géophysique.
- Simulations conditionnelles.

. . .