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ABSTRACT 
 
 
The aim of the CATEFA project is to combine information on demersal fish stock 
abundance from acoustic and bottom trawl surveys. While acoustic data are 
collected continuously while the research ship is underway, it is likely that 
combining two sources of information on the same variable should improve 
abundance estimation. A variety of geostatistical models are compared, contrasted 
and the output described. In this study, twenty scientific surveys from three areas 
(the North Sea, the Irish Sea and the Barents Sea) are analysed. These 3 zones 
have diverse species assemblages and hydrographic environments. Nevertheless 
we manage to find models relevant to most of these different situations. 
Unfortunately, however, we show that this enhancement can increase the variance 
of the estimation because of the inherently high variability of acoustic recordings. 
The purpose of this paper is to compare the results of three geostatistical models 
(i.e. co-kriging, model with orthogonal residuals, kriging with external drift) in 
terms of precision, details of maps, variance local and global of the estimation’s 
errors and cross validation.  
The role of the acoustic in each model and the precision it brings, is then 
discussed. 
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Introduction 
 
Bottom trawl surveys are commonly used in the assessment of demersal fish 
abundance.  It is now routine to collect simultaneous acoustic survey data while 
carrying out a bottom trawl survey. The aim of the EU-framework 5 project 
CATEFA is to evaluate how the acoustic recordings could improve the estimation 
provided by catches.  But what criteria can be used to decide if a model is better 
than an other? For example, a model combining acoustic and trawl can bring more 
details than a model using only trawl data, while the variance of the two 
estimations can be similar. Qualitative comparisons like the pattern of the 
interpolated map, statistical summaries of the models errors, or confronting the 
output to the expert judgement are possible solutions.  
In a geostatistical context, this paper discusses the results of three different 
models: two of them using both acoustic and trawl data and the third using only 
the catches.  The aim is to appraise if the acoustic recording bring important 
improvement in the estimations or if the models with and without acoustic are 
equivalent to assess fish abundance. 
 

Materials 

The data 
 
Eighteen scientific surveys have been used for the exploration of the data: six 
surveys from the Barents Sea (between 1997 and 2002), three surveys from the 
Irish Sea (between 2000 and 2002) and nine from the North Sea (three English, 
two French and four Scottish surveys between 1999 and 2003). Nevertheless, only 
nine of them corresponding to the assumptions required by the models (see 
further), were used for the modelisation: four in the Barents Sea, two in the Irish 
Sea and three in the North Sea.  
 
In the Barents Sea, we have been using the Norwegian demersal surveys 
combining acoustic and bottom trawl carried out by the Institute of Marine 
Research (Bergen).  Sampling follows a regular grid with a haul every 20 n.mi. 
(Fig. 1.a) The number of hauls varied between 200 and 300, while between 5000 
and 7000 data are collected between the stations.  The surveys 1997, 1998, 2000 
and 2001 have been used. However, large concentrations of fish tend to occur 
where the surface temperature is below zero (the polar front effect). Since outliers 
typically have  a large impact on the results, this part of the data needs particular 
attention. As a first step we have chosen to exclude trawl stations with surface 
temperature below zero from the analysis. 
 
The Northern Irish Bottom Trawl Surveys carried out by DARDNI  (Belfast) are 
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used in the Irish Sea. These surveys are mostly small (20 or 30 hauls and 170-230 
recordings between stations). They follow a random sampling design stratified by 
depth and stratum: sand/gravel (Fig. 1.b). Nine strata have been differentiated in 
all. The two surveys : winters 2000 and 2002 have been used. 
 
In the North Sea, the surveys rise from the ICES co-ordinated International 
Bottom Trawl Surveys (IBTS). They follow a random design stratified by ICES 
rectangle (Fig. 1.c). Trawls and acoustic data are only taken in daylight hours. 
Each survey comprises between 60 and 80 hauls and between 400 and 1000 
acoustic data. Only three FRS’s surveys (1999, 2002 and 2003) were able to be 
used. 
 
In the Irish and the North Sea, because no correlation between acoustic and trawl 
data could be seen, some very large values have been removed from the datasets 
for the modelisation (one to five data maximum per survey). Some very large 
school of fish, about 100 or 1000 times larger than the average of the data, have a 
random distribution which often hide the behaviour of the lower values. 
 
The acoustic back-scattering energies were converted to Nautical Area Scattering 
Coefficient - NASC (MacLennan et al., 2002) and expressed in m2·n.mi-2. The 
integration threshold was set at -70dB. NASC values were available both during 
and between trawl stations. For the on station NASC, integration was carried out 
for the whole trawling period. In general the tows were standardised within each 
survey series. For each survey series, the NASC values between trawl stations 
were available at fixed Elementary Sampling Distance Units (ESDU). As the 
ESDUs were different from tow average lengths, between station NASC values 
were converted (i.e. regularized) to produce ESDU as close to the tow average 
lengths as possible for each survey series, namely, 3 n.mi in the Irish Sea, 1 n.mi. 
in the Barents Sea, and 2 n.mi in the North Sea.  
Vertically, the acoustic of the forty first meters above the bottom was integrated 
in the Barents Sea and the five first meters for the rest of the datasets. 
 
This kind of sampling design, often called “double sampling”, in which an 
auxiliary variable is available on a larger sample than the variable of interest, is 
detailed in Cochran (1977). 
 
To get variables with comparable units, the fish catches are turned into an 
equivalent acoustic energy, i.e. the acoustic energy that the fish caught in the 
trawl should have generated. Because fish characteristics influence this 
transformation, two groups of fish have been used: demersal (bottom) fish and 
pelagic (mid water) fish. For each group of fish, the equivalent NASC of the 
corresponding fish in the net is provided. The trawl variable will refer 
alternatively to the demersal or the pelagic equivalent NASC depending on which 
of these two variables happen to get larger correlation with the acoustic variable. 
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(a) 

 
 

 
 

(b) (c) 
 
Figure 1. Study areas (a) the combined acoustic and bottom trawl surveys for cod and haddock in 
the Barents Sea, (b) the Northern Irish Bottom Trawl Surveys, in the Irish Sea and (c) the 
International Bottom Trawl surveys in North Sea – IBTS. Solid squares represent stations. Lines 
represent between stations recordings. 
 
 

Discrepancy between variances 
 
Skew distributions are difficult to sample and, the experimental variance of a 
given number of samples from a skew distribution may vary considerably around 
the true value especially when the number of samples is low (low with regards to 
the actual variance). In skew distributions, few very large but also very rare 
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values, generate high variance.  Larger is the number of observations, larger is the 
probability to meet them.   
 
We observe (Table 1) that the ratio 2k  between the variance of the underway 
acoustic observations (few thousands data) and that of on station observations 
(few hundreds data) diverges from 1. 
 

( )
( )

2 var

var

underway acousticdata
k

onstationacoustic data
=  

 
To persuade that this phenomenon is general to the “double sampling” of skew 
distributions and are in no way particular to the data used in this study, we have 
simulated 500 sets of 7000 lognormal data (independently) from which 500 
subsets of 300 points have been taken randomly (7000 corresponds to the number 
of underway samples and 300 to the number of stations in Norway 2000). The 
variance and the mean of the simulated lognormal distribution are equal to the 
mean and the variance of the acoustic underway in 2000 (m = 54 and 

2σ = 122826). In 80% cases, the ratio 2k  between the empirical variance of the 
main 7000 samples and the empirical variance of the 300 subsamples is greater 
than 1 (Figure 2). The value 1.35 observed in 2000 (represented by a vertical thick 
line) is among the most possible, it is below the mean simulated ratio (=1.82). 
When a large value is taken, the variance of the subsample becomes extreme 
because of the small number of samples. 
 
So the observed discrepancy between the experimental variances can be 
interpreted as a sampling problem: double  sampling or heterotopic sampling in 
geostatistical terms  (the set of station is very small compared to the set of samples 
of the acoustic variable) of skewness distributions. 
 
With the aim of using the acoustic recordings between stations to improve the 
catch estimation, this difference of variance between the two level of samples is 
very central. 
First, the high variance of the acoustic underways informs about the variance 
which could probably be observed if the catch variable was known as well as the 
acoustic variable.  In other words, the underway acoustic variance is larger but 
also more realistic than the on-station variance. 
In addition, the estimation variance is generally larger when the variability of the 
data increases. 
 
Then, if we want to compare the real performance between a model which only 
uses an on-station variable and a model which uses underways, it is necessary to 
rescale the variable to correct this effect. The variables have to be normalized. 
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Figure 2. Histogram of ratio between the empirical variances of the main sample (7000 points) 
and the subsample (300 points) for 500 draws of a lognormal distribution with the mean and the 
variance of the acoustic for the 2001 survey. The dotted vertical line is equal to 1 and the second 
one (=1.35) is equal to the observed ratio, and the third one (=1.82) is the average of the 
distribution. 
 
 
Table 1 Ratio between the variance of the underway acoustic observations and the variance of the 

on station acoustic observations 
 

Survey Year Number of data 
underway 

Number of data 
on station 

2k  

Norway 1997 5209 176 1.33 
 1998 5135 198 1.83 
 2000 7680 302 1.35 
 2001 7666 300 3.55 

Ireland 2000 110 37 0.3 
 2002 176 41 0.23 

Scotland 1999 468 44 4.6 
 2002 430 47 33.0 
 2003 303 46 0.7 

 
 

Methods 
 
The first part of the methods gives details about the models used, and a second 
part describes tools to compare them. The models theory is not really required for 
the second part but is present here for a more precise understanding of the 
approach.  
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Models description 
 
Three geostatistical models are compared. 
 
Basically, the following random functions are used: 

( )T x  Trawl variable, i-e demersal or pelagic equivalent NASC. It is the Target 
variable, the variable to assess. 

( )iT x  Trawl variable at sampling locations { }ix stations∈  
( )A x  Acoustic variable, the Auxiliary variable. 
( )iA x  Acoustic variable at sampling locations { }ix stations underways∈ +   

 

§ Ordinary kriging  
 
In this model, the acoustic is not used. Only the catch data observed at different 
location are employed in the model. 
 

0( ) ( )K

stations

neighbourhood

T
i iT x T xλ

∈

= ∑  

 
Knowing the covariance function of the trawl variable, the kriging weights  T

iλ  
are chosen to insure no bias and to minimize the estimation variance.  
 
This basic model, where acoustic is not taken into account, is presented to be 
compared to the other models and to evaluate the improvement provides by the  
addition of the acoustic. 
 
 

§ Heterotopic Cokriging 
 
The cokriging estimator is a linear combination of data from different variables 
located at different samples points, like acoustic and catch (Wackernagel, 1998).    
 

0( ) ( ) ( )CK
i i

stations stations
underways

neighbourhood
neighbourhood

T A
i iT x T x A xλ λ

∈ +
∈

= +∑ ∑  
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As for kriging, the cokriging weights  T
iλ  and A

iλ are chosen to insure no bias and 
to minimize the estimation variance.  
This estimator is interesting for this study because it allow assessing the catch 
with every sample available.  However the spatial structure of each variable and 
the cross structure are needed.  
 
The heterotopic cokriging is, in fact, difficult to use in practice. Structure and 
cross structures between the variables are required, which are often unstable 
because of the skew distributions and the choice of the neighbourhood is also a 
delicate point. Some simplifications are then welcome (Matheron 1979). 
 
The Markov-type model (or model with orthogonal residual) is a simplification of 
the classical cokriging (e.g. Rivoirard, 2001).  In this model, the catch variable is 
supposed be factorized with the two orthogonal factors, the acoustic A(x) and a 
residual R(x) : 
 

[ ]
( ) ( ) ( )

with  cov ( ), ( ) 0

T x A x R x

A x R x h x h

α= +

+ = ∀ ∀
 

 
This assumption is equivalent to verify that the structure of the catch variable is 
proportional to the cross structure acoustic-catch (Bouleau and Bez, 2004). 
 
Thanks to be spatial independence between A(x) et R(x), the cokriging of the 
target variable reduces to the sum of two simple krigings: 
 

0 0 0

0

0

( ) ( ) ( )

( ) ( )

where  
( ) ( )

CK K K

K
i

stations
underways

neighbourhood

K
i

stations

neighbourhood

A
i

R
i

T x A x R x

A x A x

R x R x

α

λ

λ

+
∈

∈

= +

=

=









∑

∑
 

 
The cokriging variance is: 
 

2
0 0 0( ) ( ) ( )CK K K

T A Rx x xσ α σ σ= +  

 
The variance discrepancy above mention renders comparisons between cokriging 
(or its simplification) and kriging tricky.  Variance rescaling is necessary, so that 
finally we have: 
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2

0 0 02
( ) ( ) ( )CK K K

T A Rx x x
k

α
σ σ σ= +  

 
It is equivalent to standardize the variables.  
 
Four surveys from the Barents Sea (1997, 1998, 2000, 2001) and three from the 
North Sea (Scotland 1999, 2002 and 2003) honour the Markov-type model 
assumptions. In the Irish Sea, an ordinary cokriging with no simplification was 
applied, as the cross structure was not proportional the acoustic structure (surveys 
2000 and 2002). 
 

§ Kriging with external drift 
 
In this model, the catch estimation is forced to follow spatially the  shape given by 
the acoustic. The model with external drift is in fact quite similar to the previous  
model, except that the a parameter can change from point to point in the map. 
 
In this model, the estimation is made in two steps: 
 

1. the ordinary kriging of the acoustic underways: 
 

0( ) ( )K
i

stations
underways

neighbourhood

A
iA x A xλ

+
∈

= ∑  

 
2. the kriging of the catch with the acoustic estimation with external drift: 
 

0 0 0( ) ( ) with  ( ) ( )K
i

stations

neighbourhood

T K K
iT x T x E T x A xλ α β

∈

=   = + ∑  

 
In practice it is similar to an ordinary kriging with just one additional constraint 
on the weights T

iλ .  
 
As the optimisation problem has more constraints, the estimation variance is 
necessarily larger than for an ordinary kriging.  The comparison of the estimation 
variance is then not always the good way to find the best model. A model can 
have intrinsically a larger error variance but also have more suitable other kind of 
features. 
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Models comparison 
 
Classical statistical tests are difficult to compute in geostatistics because the 
distributions of the variable (normal, lognormal, gamma…) are often specified 
and the autocorrelation between the data are generally high, at least for short 
distances (Chiles and Delphiner 1999).  
Here we describe some classical tools to compare models outputs in such 
circumstances.  If the data distribution is specified, more criteria like confidence 
intervals or statistical tests can be taken into account. 
 
A model has to be as robust as possible to different configuration of data. Often 
this property is tested by bootstrapping.  The parameters are calculated 
independently on few subsamples and the values obtained are then compared. If 
the values of the parameters change very little from a subsample to an other, the 
model is said robust. Because of the correlation between the data, cut out by 
subsample is difficult in Geostatistics. Removing data can slant the model.  
Nevertheless, several surveys are available for different years and different area. 
We have considered that a robust model is a model which can be applied, i-e the 
assumption required have been verified, for most of the surveys. The parameters 
change obviously a lot from a survey to an other, because of the radical 
differences between the areas.  We have then chosen models (the cokriging or the 
Markov-type model and the kriging with external drift) which are relevant for a 
lot of surveys. 
 
In the following four sections we are using Barents sea output to illustrate the 
method. A summary of all results will be given after all. 
 
 

§ Comparison of estimated maps 

 
First, a natural way is to compare the pattern of the estimated maps from each 
model. The comparison is more visual than quant itative. The pattern can be 
described, for example, by the regularity of the isolines for different levels.  The 
figure 2 shows an example for the Norwegian survey 2001. The isolines of the 
cokriging estimation have more details than the kriging map. The additional 
acoustic information makes the estimation less smooth. The maximum and the 
minimum estimated by kriging are also less contrasted than with cokriging.  
 
Nevertheless these added details make not necessarily a more accurate model 
display if the related estimation variance is high. Here, the map seems to be more 
realistic because less smoothed, this improvement have to be linked with a 
variance decrease to conclude. 
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Figure 3. Estimation maps obtained by the Markov-type model (left) and a simple mo del using 
only the catch information available on station in a compatible model (right).  The map on the left 
hand side is very more detailed.  To compare the models, the grey scales are identical. 
 
 

§ Local variance 
 
The local variance of kriging or cokriging indicates the spatial evolution of the 
variance model. As kriging and cokriging are exact interpolation, the variance is 
necessarily zero at samples points. The evolution of the variance away from the 
samples locations inform about the accuracy of the model.  The kriging variance 
can be deduced from the model of variogram (or covariance) chosen and the 
points locations. 
 
The variance of cokriging is necessarily below the variance of kriging, with 
consistent models. If the additional variable brings no accuracy, their weights will 
be zero and the cokriging variance will be then equal to the kriging variance. In 
the same way, the kriging with external drift variance is always greater than a 
kriging variance, because of the constraint of shape imposed to the expectation. 
 
The comparison of the variance maps allows quantifying the effect of the use of 
the use an auxiliary variable. The kriging variance depends of the geometry 
between the points locations. Here, the auxiliary variable being more densely 
sampled, the variance of the combining models is systematically lower. 
 
It is interesting to see here than even if the variance of cokriging is globally lower 
than the kriging’s one, the variance tends locally to increase more quickly 
between the transects (cf figure 4). 
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Figure 4. Estimation of the error variance obtained by the Markov-type model (left) and a simple 
model using only the catch information available on station in a compatible model (right).   
 
 

§ Global estimation variance 
 
The global estimation variance 2

Eσ  quantifies the variance of the error performed 
when estimating the mean density over a given area by the arithmetic mean mE 
(Rivoirard and Al. 2000) 
 
The global estimation variance is given by the covariance function by computing 
three terms depending only of the geometry of the estimation pattern: the shape of 
the sampled field, the relative locations of the samples and finally the position of 
the samples in the field (Petitgas, 1991).   
For a given spatial structure, the global estimation variance the efficiency of a 
sampling scheme. We will use it to estimate the improvement brought by the 
acoustic. 

 
If mE  is an estimation of the mean, and σE the estimation variance, the coefficient 
of variation (CV) gives a measure of the relative uncertainty of the mean provided 
by the model (Rivoirard 2000).  The CVs obtained with different models, i-e 
under different hypotheses, can be  used to compare various models providing 
different estimates. 
Assuming independence between samples, we get:  

iidCV E

Em m n

σ σ
= =   with σ the standard deviation of the data, m the average, for 

   n samples independent and identically distributed. 
 

In case of kriging or cokriging we get: geoCV E

Em
σ

=  .  
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When data are correlated, the information is redundant. It is like if fewer data 
were available. The comparison between CViid and CVgeo allows to appraise if 
this loss of information is balanced by the gain of accuracy in the estimation when 
using explicitly the spatial structures. 
 
 

§ Cross validation and analysis of the kriging errors 
 
Cross validation (also called leave-one-out- method) is a common approach to 
compare different models.   
Each sample value is removed from the data set, and an estimation at that location 
is assessed using the n-1 other values.  The difference between the data value and 
the estimated value ( *( ) ( )i iT x T x− ) represents the kriging error and gives an 
indication of how the model is able to re-estimate the data. The estimation 
provides also an kriging variance: 2 ( )K ixσ . We can then calculate the standardized 

errors: * 2( ( ) ( ))/ ( )i i K iT x T x xσ− . 
 
In a heterotopic case, the cross validation allows to verify the estimated values 
only for the locations where all the variables are available, here on stations where 
both acoustic and catch are collected. 
 
An analysis of the kriging errors have then been inspected, as the spatial 
distribution (fig. 5), the histogram (fig. 6), the scatterplot between the estimation 
and the true values (fig. 8), or between the estimation and the errors (fig. 9). This 
type of analysis helps to detect erroneous data or some phenomena of 
discontinuity or a lack of stationarity which have to be taken into account.  
Some dependence between the errors and the values or between the errors and the 
estimations can then be detected. The map and the histogram of the standardized 
errors allow indicating some zones where points are poorly estimated. The 
inevitable scatterplot between the estimated and the real values shows the 
adequacy of the assessment and an eventual bias (fig. 7). 
The variogram of the errors have even been calculated to detect spatial 
dependence (fig.10). The results of two models can be confronted by a cross plot 
(fig.11). 
All theses methods allows also comparing properties of estimators performed 
under different models with different assumptions.  
 
The average of the ratio between the cross validation error and the kriging 
standard deviation provides a good quantity to compare models with taking into 
account the error predicted by the kriging.  
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( )2*

2
1

( ) ( )1
. . . 1

( )

n
i i

i K i

T x T x
m s s e

n xσ=

−
= ∑ ;  

 
Closer to one it is, better is the predictive capacity of the model. Other indices like 
the error average or the root-mean-squared error appraise the model quality. 
 
 
 
 

 
Figure 5. Proportional representation of the absolute value of the standardized errors for two 
models. Left: the cokriging (Markov-type model) combined acoustic and catch, and right: the only 
catch model (kriging). 
 
 
 
 

 
Figure 6. Histograms of the standardized errors for the two models with acoustic (left) and 
without (right), for the survey Norway 2001. 
 



 
 
 
 

15 

 
Figure 7. Scatterplot between the true values and the estimated values by cross validation. Left: 
combined model and right: only -catch model, Norway 2001. 
 
 

 
Figure 8. Scatterplot between the true values and the standardized errors obtained by cross 
validation. Left: combined model, right: only catch model, Norway 2001. 
 
 

 
Figure 9. Scatterplot between the estimated values and the standardized errors obtained by cross 
validation. Left: combined model, right: only catch model, Norway 2001. 
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Figure 10. Variogram of the standardized errors obtained by cross validation. Left: combined 
model, right: only catch model, Norway 2001. 
 
 

 
Figure 11. Crossplot between the estimated values by cokriging (combined model) and by kriging 
(only catch model), Norway 2001. 
 
 

General Results 
 
The addition of the acoustic provides an improvement of the details in the 
estimation maps for all the surveys tested. The combined model are always less 
smooth than the model using only the catch. 
 
The local and global variances are often less with the combined model. It 
indicates that the gain of details is joined with an increase of precision.  
The cross validation errors seem to have similar behaviour of the different 
models. The acoustic provides less flat estimations in particularly for the 
Norwegian and Irish surveys. 
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As expected, cokriging gives most of the time better results than the kriging with 
external drift (Table 2), except for Scottish data. The disappointed results 
obtained in Scotland are probably due to the sensitivity of the model to the 
outliers which are more numerous when more data are used (like for the 
combined model).  
 
Most of the quality indices indicate the combined model (with cokriging) superior 
to the model using only the catch variable for Norwegian data (Table 2). In 
Ireland, even if the cross validation indicates similar results between the models, 
the global variance and the CV are less for cokriging than for kriging suggesting 
that the acoustic brings precision. 
 
These differences in the models outputs between the countries can be attributable 
to the diverse surveys designs.   Because of the present of autocorrelation, 
geostatistical tools are more efficient in a regular design than a random stratified 
design context.   
The dissimilar depth and trawl geometry between the three sites can also have an 
important impact on the correlation acoustic-catch, and then on the combined 
model effectiveness. Deeper is the water column, larger is the acoustic cone at the 
bottom and farer is the trawl from the vessel. The difference between the size of 
the trawl opening and the acoustic cone diameter can explain the divergences 
observed.  The species, the environment and the stock abundance can also affect 
the acoustic-catch link.  
Finally, the number of samples collected on-stations and between stations is 
perhaps the very reason why the combined acoustic-catch model works better for 
the Norwegian surveys.  As a matter of fact, models need a lot of data, especially 
when data distributions are so skew. 
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Table 2. Results of some performance indices for each models tested: the kriging using 
only the catch data, the cokriging (of Markov-type model) and the kriging with external 

drift which combined acoustic and trawl. 
2
Eσ  is the global variance estimation, CV is the 

geostatistical coefficient of variation, *( , )Z Zρ represents the correlation between the 
estimated values (by cross validation) and the real values, RMS is the root-mean-squared 
errors of cross-validation and then m.s.s.e is explain above. 

 

Country Year Model 2
Eσ  CViid CVgeo 

*( , )Z Zρ
 

RMS m.s.s.e 

Norway 1997 Kriging 27.14 0.128 0.074 0.16 120.9 1.86 
  Cokriging 15.48    0.062 0.51 101.7 1.76 
  Kriging with ED    0.06 141.2 1.86 
 1998 Kriging 5.63 0.084 0.058 0.09 47.9 1.71 
  Cokriging 3.47  0.046 0.29 44.7 1.81 
  Kriging with ED    0.14 47.9 1.36 
 2000 Kriging 11.61 0.424 0.629 0.06 40.1 1.82 
  Cokriging 0.48  0.118 0.38 36.3 0.73 
  Kriging with ED    0.29 38.1 0.53 
 2001 Kriging 8.82 0.07 0.059 0.34 56.6 1.23 
  Cokriging 7.63  0.107 0.41 54.9 0.84 
  Kriging with ED    0.38 60.7 1.04 

Scotland 1999 Kriging 0.512 0.515 0.515 0.061 4.7 1.03 
  Cokriging 2.460  15.48 0.041 10.6 0.13 
  Kriging with ED    -0.34 4.8 1.03 
 2002 Kriging 13.99 0.159 0.125 0.247 37.65 0.93 
  Cokriging 21.90  0.093 0.228 45.57 0.45 
  Kriging with ED    0.504 31.85 0.979 
 2003 Kriging 5.46 0.165 0.118 0.595 17.86 1.15 
  Cokriging 4.31  0.086 0.615 17.11 1.03 
  Kriging with ED    0.627 16.97 0.048 

Ireland 2000 Kriging 2.23 1.48 0.112 0.594 15.02 1.16 
  Cokriging 2.04  0.107 0.614 15.57 1.43 
  Kriging with ED    0.514 33.49 1.56 
 2002 Kriging 3.99 1.85 0.182 0.528 17.97 1.91 
  Cokriging 2.34  0.139 0.540 17.70 1.80 
  Kriging with ED    0.543 18.18 1.95 
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