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ABSTRACT. After a brief review of the technique for building the authorised
measures of order k necessary for studying and directly modelling the Generalised
Covariance, the results of applications to some case studies are presented. The
classical structural analysis approach (automatic) is compared to the proposed
direct modelling approach, basically observing, for several real data sets, the results
of test-kriging and the quality of the maps obtained for the two approaches. Finally,
the usefulness of getting both "tools" operating on the same package is stressed.

1. INTRODUCTION

Modelling of the Generalised Covariance (GC) is perhaps the trickiest part
when one is working in the non-stationary field and chooses to apply the approach
‘based on the Intrinsec Random Functions of order k (IRF-k). The technique
developed by the Centre de Geostatique and currently the most used, involves the
automatic recognition of the GC essentially by calculating a specific least squares
regression starting from a pre-established number of elementary model functions of
the GC [Renard, 89]. The selection, carried out on a ranking of the scores, is then
verified using other indicators that help to verify the congruences between the
rankings and hence the robustness of the selection. Further, a test-kriging can be
performed to make a "real” verification of the performances of the different
models.

However, this procedure has always been somewhat controversial, mainly
with regard to its limitation on the role of the operator who simply selects a model
from the set identified by the programme. In reality, even though the number of
elementary models (nugget, linear, cubic, spline) is limited a priori, modelling a GC
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involves identifying: a) the model of the GC (i.e. a combination of elementary
models); then b) the coefficients of that model. And these two phases are not
always perfectly disjoined and consecutive. With the current procedure, it is not the
operator who identifies the type of GC model, nor does he estimate the values of
the coefficients of the model. He simply validates this or that model which the
computer has fully identified on the basis of the code and of the geometrical
parameters given (i.e. shape and dimension of neighbourhood).

The use of the automatic procedure for identifying the covariance model has
always been a subject of discussion between the supporters of the automatic and the
interactive approaches, respectively. In stationary geostatistics, where the use of
both approaches is well consolidated, classical modelling of the mono- and
bi-variate cases normally involves the calculation and visualisation on graphics of a
set of experimental variograms from which the operator identifies and defines the
model variogram. The operator is of course in full control. Automatic modelling
seems to be more efficient and is therefore to be preferred for multi-variate cases
where, for example, it is necessary (or useful) to adopt a linear model, and a whole
series of congruences are needed to be taken into account contemporaneously.

In non-stationary geostatistics, mono-variable applications have been the rule
to date. However, automatic modelling has never been seriously queried nor had
any alternative general techniques been proposed until the authors proposed direct
modelling at IV GEOSTAT [Bruno and Raspa, 1993]. This paper describes the
application of direct modelling of the GC to two case studies, illustrating the value
of its contribution to the identification of the GC.

2. REVIEW OF THE TECHNIQUE

The main difficulty encountered in direct modelling of a GC has to do with
the impossibility of inferring the GC experimentally. In practice, only the variances
of the generalised increments are accessible, and these are estimates not of the GC
but rather of a function of the GC. With an order k>0 and an IRF-k defined in
plan, more than two points are needed in order to construct the generalised
increment Z(A) = o Ao Za, Where the generic measure (i.e. the set of weights M)
must satisfy specific conditions (at least three) for filtering the polynomial terms of
a trend of the order k> 0:

SadeXe =0  1=0k

where x, represents the generic coordinate of the data in the working space. In this
case each experimental measure therefore has several, at least three, distances, hag,
and the bi-univocal link (between the shifting vector and the spatial correlation
function) that is exploited, for example, for modelling the stationary variogram, is
immediately lost.

The proposed direct modelling technique consists in parametrising the
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variances of the increments with a view to identifying those measures that
guarantee a pre-established evolution of that variance as a function of a single
parameter. In particular, evolutions that substantially coincide with the elementary
models were adopted in order to verify whether or not the real GC corresponds to
the adopted models (linear, nugget, etc.).

Having identified the order k in the traditional manner, the authorised
measures for the order k-that ensure a pre-established parametric evolution can be
obtained by resolving the following sort of non-linear systems:

SoraXa =0 =0k (1)
P ZB }\a)\ﬁ fm(haB) = gm(p) m=0,1,3,5

where fm() represents the elementary model functions of the GC being studied, and
gm(p) represents the corresponding functions of the parameter p. The gm() do not
always coincide with the fm() for reasons of congruence, but they always respect the
latter’s behaviour [Bruno and Raspa, 93].

Viewed objectively, therefore, the operator does not identify the GC model
on the basis of a straightforward graphical analysis, even with this technique. In
reality, he verifies whether or not the pre-selected elementary functions clearly
describe the behaviour of the calculated experimental variances. If this behaviour is
respected, he goes on to identify the coefficients of the model thus identified; if the
behaviour is not respected, he tries again using other elementary functions.

The advantage of the technique at this stage is that it adds depth to a
verification of the acceptability of a given model by means of a graphical analysis of
the behaviour of the variance as a function of a given parameter. The calculated
variances correspond, in practice, to different types of increments; but, more
simply, it can be stated that the parameter and hence the evolution of the variances

-are linked to the average size of the increments themselves.

On the other hand, the operator’s contribution is immediate and direct during
the identification of the coefficients of the model, when the values of the intercept
or the angle coefficient of the model function are selected, one by one, as done in
the most classic of stationary structural analyses. '

3. DETAILS REGARDING IMPLEMENTATION

For reasons linked to the numerical solution of non-linear systems, it was
decided to verify pairs of elementary models of the GC, also because only six pairs
are possible. This limitation does not seem to have major practical drawbacks as it
is fairly rare to have to use a GC model with more than two elementary models.

To guarantee that a range of values is obtained for the experimental variances
and hence avoid the risk of having values all bunched around a narrow interval of
values for the parameter, the data needed to construct the increments can be drawn
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from two concentric areas, in a manner quite similar to that adopted for the
classical procedure for identifying the GC. The parameter p is imposed in the
system (1), the solution of which (if it exists) will provide the values for the weights
e Several solutions are generated for a same set of data by adopting different
values for p selected within an interval that has been sampled using two steps: a
longer one to detect the existance of a solution and a shorter one to generate a
range of consistent existing solutions.

Having obtained the measures {\q}, the squares of the increments, Z(A)Z, are
calculated, obtaining what can be considered a first estimate of their experimental
variances. Each experimental value corresponds to a parametric value, whose
function, applied to the system (1), represents the theoretical variance.

The corresponding graphic is a cloud of points for the variances calculated as
a function of the parameter p (Fig. 1a). As it may be difficult to identify a behaviour
and model of the GC, or even to estimate the coefficients using this graphic, it is
necessary to analyse the mean values of the experimental variances over intervals of
value of the parameter p (Fig. 1b).
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This operation is quite similar to the one applied, for example, to the
variograms. In that case, however, the interval is on the step (h) and the measure
(Ae) remains constant ( + 1,-1), whereas in the present case, it is the value of the
parameter that remains constant because one is taking the average of increments
that have several values of distances (hep) and different measures (ro). The
procedure of estimating the theoretical value of the variance by this average value
seems to be practically correct.

4. THE TOP OF AN OIL RESERVOIR

This case study focuses on the characterisation of the top of an oil reservoir
where the stratigraphic level has been explored by means of over 100 drillholes

(Fig. 2).
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hand and the local investigation of the whole surface using an adequate number of
elementary areas on the other hand. In this case, automatic recognition identified
an order k=1 for all the calculation options, namely:

- with or without 50% overlapping of the elementary recognition areas;

~ with or without selection by octants of the information.

The use of a smaller scale, 4000x4000 m, increases the level of local detail
while still guaranteeing a satisfactory density of information with regard to the
whole surface. In this case, an order k=0 is just as valid if not more valid than an
order k=1. .

For neighbourhood sizes greater than 6000x6000 m, k =2 would probably be
more suitable, vice-versa, neighbourohod sizes smaller than 4000x4000 m could
justify the use of an order k=0, but the amount of information per neighbourhood,
in both cases, would prevent consistent quality calculations. Anyhow choice of
working scale is closely linked to the purpose of the analysis. Considering that the
objective in our case was simply to generate a spatial reconstruction of the reservoir
top by kriging, the choice was conditioned by the size of the estimating
neighbourhood: order k and GC had to be identified on elementary areas that were
congruent with the downstream working scale.

In reality, both the sizes proposed above would have been valid since a large
neighbourhood makes it possible to consider a higher number of data items and
hence, in theory, provides greater precision, whereas the need for a globally
coherent model, calling for the use of a higher order k, results in less precision of
the different inferences, from the model of the GC down to the subsequent
estimates.

In this case, direct recognition of the IRF-k was found to be helpful in
choosing between the alternative models of the GC. In fact, with neighbourhood of
6x6 km” and an order k=1, the best model of the GC generated by the automatic
structural recognition procedure was a pure spline model, with coefficients varying
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between 7 and 10x107 as a function of the activated options. The jacknife presented
consistént values, although they were quite similar to those of the models of the GC
ranked next to it. The calculations were made with and without selection by octants.
A cubic and a linear model, respectively, were ranked in second position, whereas a
nugget + spline and a pure cubic model were ranked in third position (Fig. 3).

{’_MODEL;; B0 B1 B3 Bs Jacknife !
1 0.000000 0.000000 0.000000 8.4221e-05 1.259467
2 0.000000 0.000000 3.11016e-08  0.000000 1.313214
7 44.771564 0.000000 0.000000 5.5797e-05 1393335

Processing without selection by octant

MODEL . B0 B1. B3 Bs - Jackn,ifexj
1 0.000000 0.000000 0.000000 1.0541e-04 0.997354 i
3 0.000000 -0.230219 0.000000 0.000000 1.039165 1
2 0.000000 0.000000 3.6634e-08 0.000000 1.123639 |

Processing with selection by octant

Fig.3 - Models of the Generalised Covariance identified automatically.

Summary analysis shows that all the ‘solutions are acceptable in terms of
absolute values of scores, and that the spline is the most frequently present model,
followed by the cubic then by the linear and nugget effect ones. Test-kriging
reverses these evaluations, showing the linear model to have the best performances,
with the lowest variance of estimating error, the most congruent mean square
standardised error (MSSE).

With an elementary area of 4000m x 4000m and keeping the order k=1, the
ranking of the identified models of the GC was as follows: cubic, cubic + spline,
linear + cubic + spline, confirming the trends identified by structural analysis at the
larger scale. But in this case, test-kriging provided results that were globally less
satisfactory. With an order k=0, the classical stationary analysis reveals: a) a clear
trend in the direction of 90 degrees, although its numerical influence on the
experimental variograms did not seem excessively strong; b) a variogram that
tended to be linear although it may have anisotropies, probably linked to the trend
and with evidence of sills in some directions without trends. In this case the results
of test-kriging were comparable to those obtained with the order k=1 and the
linear model with neighbourhoods of 6000m x 6000m.

A solution to the problem of how to identify the GC is, therefore, neither
immediate nor univocal. First of all, although it is clear that the regionalised
variable is studied at a transition scale, the selection of a smaller order k (as
advisable where there is uncertainty) would be pragmatically acceptable but
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difficult to justify both geologically and geostatistically. Further, it is necessary to
choose the selection criterion separately with respect to the working scale (and to
the order k considered). If preference is given to the ranking criterion, there is no
doubt but that the spline model is the one that provides the best performances,
followed by the cubic model. If preference is given to the results of test-kriging, the
linear model seems to provide the best assurances of efficiency. And the above is

true regardless the analysis of the maps of the top generated by applying the

different models.
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Fig.4b - Direct modelling of the Generalised

Fig.4a - Direct modelling of the Generalised Covariance: order k=1, B1=-0.20.

Covariance: order k=0, B1=-0.25.

In this case, direct structural analysis of the IRF-k would seem to be a useful
tool for decision taking. In fact, analysis of the behaviour of the experimental
variances as a function of the parameter -p helps to understand the spatial
variability: it always shows a linear growth at small scales, then stopping and’
keeping constant for larger values of the parameter. This regardless of which order
k is adopted and which calculating modality is pre-selected. Estimating the
coefficient of the linear component of the GC is as easy as for a stationary
variogram: it is close to -0.25 when k=0 and -0.20 when k=1 (Figures 4a and 4b).
Verification by test-kriging confirmed the adequacy of the model in both cases and
the results compare well with the best models identified by means of the automatic

procedure.
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Fig.5- Contour line of the top of the reservoir: a) order k=0, linear GC; b) order k=1, linear
GC; ¢) order k=1, spline GC. :
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Figures 5 a-c present the maps generated on the basis of the orders k=0 and
k=1 with neghbourhood of 6x6km” and, respectively, by means of the linear
models confirmed by direct structural analysis and by means of the spline model
identified by the classical structural analysis.

5. AREGIONAL WATER TABLE

The object of this
case study focused on the =

average piezometrics of Lo o Fig.6 - Locations of
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of about 4,500 km? (Fig. x x|

6). *

Analysis of the
order k, regardless of
which neighbourhood size was adopted, clearly identified an order k=2.
Recognition of the GC for a neighbourhood size of 30x50 km’® generated the
following ranking of models: linear, linear + spline, nugget + spline. But
test-kriging reversed the scale of values by attributing the best performances to the
nugget + spline model. However, whereas the jacknife of the automatic recognition
degenerates rapidly between the best model and the next best one, the
experimental variances of the estimating error generated by applying the one or the
other model did not vary consistently (Fig. 7).

3 0.000000 -7.189630 0.000000 0.000000 0.871668
4 0.000000 -2.735236 0.000000 0.736495 0.633367
8 3.357861 0.000000 0.000000 0.975136 0.616054

Automatic identification and jacknife ranking of first three G.C. models.

b TESTK Prder83 dat

MODEL ND MS.E. MSS.E. M.E.

3 84 34.153957 0.916279 0.409774
4 84 31.698935 0.8966430 0.316807
8 84 31.550737 0.902285 0.312345

Test-kriging characterization of the best three G.C. models.

Fig.7- Characterisation of the models of the Generalised Covariance ideniiﬁed automatically.
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Then, the contribution of information given by direct recognition was verified.

First, it is noteworthy that no linear model was identified and that it is only
with some difficulty that a linear + cubic model could be modelled. A better fitting
was obtained using a nugget component, as for the nugget+cubic and
nugget + spline pairs. The latter seems to be more coherent, at least at the scales
investigated by means of direct analysis (Fig. 8 a,b,c), but this nugget + spline model
does not have the same coefficients as the model that had been automatically

defined.
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Confirmation by test-kriging was again sought but the results obtained for the
three interactively identified cases did not significantly improve the quality of the
estimates although the results were comparable to the best results obtained by
automatic recognition. The three models identified by direct analysis seem to
behave in a manner that is practically equivalent, with only very small variations in
the control parameters between one model and another (Fig. 9).

ESTK - Prder83.dat

ND MS.E.

MSSE.
B1+B3 84 31.597124 0.895402 0.269147
Bo+Bs3 84 32.277241 0.960806 0.245460
Bo+Bs &4 32375854 1.048095 0.358999

Fig.9 - Results of test-kriging on the three GC models identified by direct analysis.
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This substantial equivalence between the models is coherent with the findings
of an analysis of the results of automanc recognition carried out at a larger scale,
with neighbourhoods of 45x50 km? with 50% overlapping. Nine models were
identified within a very small field of values of the jacknife, all of them with good
levels (0.89-0.92). It is seen that the first two positions on the ranking are occupied
by two elementary models, namely the spline and the linear. These models had not
been identified by direct analysis and they had generated the "worst" results during
test-kriging. It is also seen that the results obtained by test-kriging using the models
identified by direct inference are in line with the best obtained by means of
automatic recognition for these large neighbourhoods.

In conclusion, the large body of information in hand for this case study
coupled to the specific spatial variability of the water table assure a good quality of,
the results of the recognition of the GC, regardless of which technique is adopted.
However, the results of direct analysis seem to be more stable and of a higher
average quality. Further, direct analysis seems capable of rejecting immediately
those models which may perhaps be easy to infer automatically but which are less
coherent and efficient in application.

Figure 10 presents the maps of the results obtained using the different
models, confirming the substantial equivalence of the possible choices.

8.0

40.0

Fig.10 - Contour line of the piezometric of the water table for different models of the Generali-
sed Covariance: a) direct analysis, linear + cubic; b) direct analysis, nugget + spline; ¢) au-
tomatic analysis, nugget + spline.

CONCLUSION

The direct recognition of Generalised Covariance has been tested on two case
studies with a relatively large set of data, but still with some problems of modelling
the spatial variability.

The proposed technique for direct recognition of the GC is an interesting
analytical tool that is ugdoubtedly useful as a complement to the classical automatic
technique. In the future, it may become a valid alternative for the identification of
the GC, but further research is required to fully verify the conditions of
applicability and reliabilit§, especially under extreme conditions.
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