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a b s t r a c t

We present a novel method for detecting circles on digital images. This transform is called the circlet

transform and can be seen as an extension of classical 1D wavelets to 2D; each basic element is a circle

convolved by a 1D oscillating function. In comparison with other circle-detector methods, mainly the

Hough transform, the circlet transform takes into account the finite frequency aspect of the data; a

circular shape is not restricted to a circle but has a certain width. The transform operates directly on

image gradient and does not need further binary segmentation. The implementation is efficient as it

consists of a few fast Fourier transforms. The circlet transform is coupled with a soft-thresholding

process and applied to a series of real images from different fields: ophthalmology, astronomy

and oceanography. The results show the effectiveness of the method to deal with real images with

blurry edges.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The detection of circular structures is a key factor in a number
of computer vision applications, especially in medical imaging
and robotics. The objective is to derive automatic inspections or to
extract features from an image or from a sequence of images
(Mallat, 1996; Davies, 1997). More specific references related to
circle detection can be found in Lam and Yuen (1996), Ayala-
Ramirez et al. (2006). Within the deterministic approaches, the
geometric hashing techniques try to match geometrical features
against a database (Iivarinen et al., 1997). The Hough transform
(HT) is a widely used alternative method to find parametrized
shapes in digital images (Duda and Hart, 1972; Ballard, 1981). For
a review, we refer to Maı̂tre (1985), Leavers (1993), Illingworth
and Kitttler (1988), Song and Lyu (2005). The HT is known to be
robust against noise, but the classical implementation requires
massive computation and memory. More importantly, it does not
take into account the width of the contours. The band-limited
aspect of the data is a key element that should be considered
(Kiryati and Bruckstein, 1991).
ll rights reserved.
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In this introduction, we select a particular example in the
medical imaging domain to motivate the development of a new
transform. Other applications in different fields are later intro-
duced. In the eye fundus image (Fig. 1, left), one could distinguish
between the optic disk with a circular shape (A), the retinal blood
vessels (B) and exudates (C). Glaucoma neuropathy refers to
damages of the optic nerves and can lead to loss of vision. In that
context, the evaluation of the size of the optic disk is of first
importance (Montgomery, 1993). The particular eye (Fig. 1) shows
hard exudates with a possible large risk of macular edema. The
objective is to detect the optic disk that should not be mistaken
for exudates nor for vessels.

In order to emphasize the contrast in the eye image f(x,y)
where (x,y) denotes the spatial coordinates, the processing is
usually performed on the image gradient jrf j (Fig. 1, right). It
appears that the contrast at the exudates and along the blood
vessels are larger than the contrast around the optic disk. With
the multi-scale aspect, the width of the contours is taken into
account in the wavelet and curvelet transforms, not in the
classical HT. A wavelet analysis (Daubechies, 1992; Mallat, 1996)
first reveals the positions of the exudates with their irregular
shapes (Fig. 2, left). Classical 2D wavelets or oscillatory functions
are indeed very useful to detect point singularities. Vessels are
rather associated to relatively smooth curves. For that, curvelets
are well suited for the detection (Candes and Donoho, 2004;
Candes et al., 2005) (Fig. 2, right). Curvelets can be seen as an
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Fig. 1. Retinography image (left) and associated image gradient maps (right), with (A) optic disk, (B) retinal blood vessels, and (C) exudates. Local gradient values are higher

around (B) and (C). Only the optic disk has a circular shape.
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Fig. 2. Reconstructed image after Meyer wavelet (left) and curvelet (right) transforms. In each case, only coefficients with values higher than 40% of the maximum value

are selected. Other coefficients are set to zero.
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extension of wavelets where the elements used for the decom-
position are elongated along one axis and oscillating in the
perpendicular direction. We refer to Ma and Plonka (2010) for a
review on curvelet applications. Both the wavelet and curvelet
analysis do not reveal the optic disk. The circlet transform
proposed here has been designed to detect objects with circular
shapes. As for wavelets and curvelets, it preserves the multi-scale
aspect. However, it also has the possibility to follow global
structures as for the HT.

The objective of the new transform for detecting circular
shapes should address the following issues: (1) the user should be
able to specify a range of radii for the selection; (2) the
segmentation part should be avoided for more robustness; (3)
the circular shape should be an annulus of a certain width in order
to handle non-perfectly circular shapes. This is also a way to
take into account the band-limited aspect of the data; (4) the
transform should be perfectly invertible: if all coefficients
are selected, then the inverted image should be the same as the
original image; (5) the transform should be fast enough to enable
iterative processes such as the soft-thresholding technique for
reducing the number of key elements needed to represent the
circular structures in the image (Donoho, 1995).

The outline of the paper is the following. We first describe
the circlet transform. We then present the algorithm used to
select only a few representative circlet coefficients. We show
applications in three different fields: ophthalmology, moon
exploration and coastal oceanography, on mainly real images.
The applications range from the detection of a single and clear
circular shape to the finding of a series of circular shapes with
more diffuse contours. Finally, we discuss the current limitations
of the method and what could be improved, in particular to
remove some spurious detections.
2. The circlet transform

In the proposed approach, there is no need for binary image
segmentation. The method consists of decomposing any image
into ‘‘circles’’ with different radii and a certain width, via a series
of fast Fourier transforms (FFTs). These circles are called circlets as
they can be seen as the convolution of a circle with a 1D
oscillatory function, possibly a wavelet, in the same way as
wavelets relate to waves. However, the strategy for computing the
circlet coefficients is rather different from the classical approach
used for wavelet decomposition. Usually, wavelet coefficients are
obtained via a series of cascaded convolutions and down-
sampling (Daubechies, 1992). As explained below, the circlet

decomposition is formulated in the Fourier domain with the
definition of specific filters, following a similar approach as the
one proposed by Candes et al. (2005) for curvelets.
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Fig. 3. Representation of a single circlet (left) and its 2D Fourier transform (right). By construction, it is well-localized in the Fourier domain.
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Fig. 4. Representation of the reference circlet (left) and other circlets corresponding to a different radius (middle) and to a different frequency content (right). Artifacts

visible on the image in the middle are due to an abrupt truncation in the shape of Fk filters (Fig. 5).
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Fig. 5. Representation of a single filter Fk for k¼2 determining the frequency

content of the circlet.
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2.1. General framework

The circlet elements are characterized by a central position
(x0,y0), a radius r0 and a central frequency content f0 (Fig. 3). This
finite frequency f0 provides a certain width to the circlet in the
spatial domain. This is the main difference with the Hough
transform, beyond the implementation aspects. All circlet ele-
ments cmðx,yÞ can be deduced from a reference circlet cref(x,y),
either by a shift or by modifying the radius or the central
frequency content of the circlet (Fig. 4, Eq. (1)). The parameters
m¼ ðx0,y0,r0,f0Þ fully characterize each circlet. Formally, the circlet

function can be written as

cmðx,yÞ ¼O½2pf0ðr�r0Þ�, ð1Þ

where r¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�x0Þ

2
þðy�y0Þ

2
q

. O is typically an oscillatory func-
tion, possibly a wavelet function, designed to detect disconti-
nuities (Daubechies, 1992). From a practical point of view, cm will
be explicitly defined in the 2D Fourier domain.
2.2. The circlet decomposition

The forward and inverse transform is similar in essence to the
curvelet transform (Candes and Donoho, 2004; Candes et al.,
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2005). The objective is to decompose any 2D image f(x,y) into a
sum of basic functions cm:

f ðx,yÞ ¼
X
m

Am � cmðx,yÞ: ð2Þ

For curvelets, the basic elements have elongated shapes,
similar to the representation of local plane waves (Candes et al.,
2005). For circlets, the basic functions are circular. The circlet

construction uses the properties of a tight frame, so that the
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Fig. 6. Simple input image (left), image reconstructed after selection of all coefficients

and image after selection of 0.01% of coefficients with the highest amplitudes.
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Fig. 7. Images of eye fundus. For detection, r
associated amplitudes Am are obtained by a scalar product

Am ¼/f ,cmS¼
ZZ

dx dyf ðx,yÞ � cmðx,yÞ: ð3Þ

From a practical point of view, the circlet coefficients are
defined in the Fourier domain, using Parseval’s theorem

Am ¼/f̂ ,ĉmS¼
ZZ

do1 do2 f̂ ðo1,o2Þ � ĉ
�

mðo1,o2Þ, ð4Þ
ordinate
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adius range varies from 30 to 80 pixels.
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where f̂ denotes the 2D Fourier transform of f and f* the conjugate
of f. With this formulation, the circlet transform is constructed in
the 2D Fourier domain. The key step consists of defining
ĉ
�

mðo1,o2Þ, the Fourier transform of cm. This is obtained by
developing appropriate filters to ensure that the basic functions
cmðx,yÞ have circular shapes.

2.3. Definition of filters

The filter construction is obtained in a two-step process: first
we derive 1D filters Fk and then 2D filters Gk. Both filters Fk and Gk

are defined in the frequency domain and form a partition of it: for
all o and ðo1,o2Þ, we haveX

k

jFkðoÞj2 ¼ 1, ð5Þ

X
k

jGkðo1,o2Þj
2 ¼ 1: ð6Þ

This condition is important to ensure a perfect reconstruction
scheme (Candes et al., 2005). First define ok ¼ pðk�1Þ=ðN�1Þ
where N is the number of filters. For jo7okjrp=ðN�1Þ,
FkðoÞ ¼ cosðo7okÞ, otherwise Fk¼0. Note that the Fk filters are
symmetric (Fig. 5). One can easily check that the Fk filters form a
partition of the 1D frequency domain. The Gk filters are defined
from the Fk filters by introducing a phase delay in order to create a
200 400 600 800 1000 1200 1400

200

400

600

800

2

4

6

8

200 400 600 800 1000 1200 1400

200

400

600

800

2

4

6

8

Fig. 8. Images of an eye fundus (top) and associated gradient maps (bottom). Blood ves

varies from 30 to 80 pixels.
circular shape in the space domain,

Gkðo1,o2Þ ¼ eijojr0 � FkðjojÞ, ð7Þ

where o¼ ðo1,o2Þ and joj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

1þo2
2

q
. Once the filters Gk are

defined, Eq. (8) provides an explicit formulation for the Fourier
transform of a circlet

ĉmðoÞ ¼ ei/o,xcS � GkðoÞ, ð8Þ

where xc¼(x0,y0) is the central position and where r0 determines
the radius of the circlet. By definition, /,S denotes the scalar

product. We thus have m¼ ðxc ,r0,kÞ. The index k controls the
frequency content of the circlet (Fig. 4). With Eqs. (5) and (7), it is
also easy to see that for any given r0 values, the Gk filters also form
a partition of the 2D frequency domain. By using polar
coordinates, we show in Appendix A that the 2D inverse Fourier
transform of Gk is circular, meaning that the basis functions cmðx,yÞ

have circular shapes.
2.4. Practical implementation

The forward circlet transform consists of (1) a 2D Fourier
transform of the original image f(x,y) to obtain f̂ ðo1,o2Þ; (2) for all
filters and for all selected r0 values, a multiplication of f̂ by Gk; (3)
the inverse Fourier transform of the product that provides all the
circlet coefficients related to scale k and radius r0.
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sels and exudates (see Fig. 1) have large gradients. For the detection, radius range
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The inverse transform follows the same rule. First apply a 2D
Fourier transform for all scales and selected radii, multiply by the
conjugate of Gk and sum all results. The final image is obtained by
applying a 2D inverse Fourier transform. Because of the condition on
Gk (Eq. (6)), we have a perfect reconstruction scheme if all circlet

coefficients are preserved. For more details on the forward and
inverse transforms, we refer to the curvelet transform (Candes et al.,
2005). The main difference with the circlet construction is the choice
of the filters Gk. From a practical point of view, we rather select a
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Fig. 10. Zoom from the previous figure, where only circlets considered as artifacts are re

are tangent to arc lines due to the combination of the sun shadow and the topography

100 200 300 400 500

100

200

300

400

500

1

2

3

4

5

Fig. 9. Satellite image from the moon (left), with the first 13 sele
single scale (i.e. single Fk filter) and a series of radii, with expected
values from rmin40 to rmax to potentially emphasize circular forms
with some specific spatial sizes.
3. Applications

We first indicate how to choose the key circlet coefficients and
then present applications to different fields.
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cted circlets (right). Radius range varies from 25 to 60 pixels.



H. Chauris et al. / Computers & Geosciences 37 (2011) 331–342 337
3.1. Selection of representative circlets

Fig. 6 illustrates a very simple example. The input image consists
of rectangular and circular shapes. The coefficients with the highest
absolute amplitudes are associated with circular shapes. The
selection of these coefficients leads to an image freed from the
rectangles. In the circlet domain, the coordinates of the coefficients
directly indicate the centers of circles and their associated radii.

For more complicated cases where the contours are diffuse, we
apply the following strategy. As a pre-processing step, perform a
spatial gradient (discrete Laplacian operator) to the original image
in order to emphasize the discontinuities in the data. In the case
of satellite images, they classically suffer from missing informa-
tion due to the presence of clouds. We then interpolate the data
by a geostatistical filtering method (kriging) that provides results
spatially consistent with the original data (Wackernagel, 2003).
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Fig. 12. Synthetic SST map. Radius ra
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Fig. 11. Other satellite image from the moon (left), with the first 16
For the detection of a single circular structure, we simply select
the highest circlet coefficient. For more circles, we used the soft-
thresholding approach in an iterative process (Donoho, 1995).
First, we select the highest coefficient. The circlet transform is
redundant, meaning that the number of coefficients is larger than
the size of the input data. The next coefficients with high values
have approximately the same radius and central positions. For
that reason, we set to zero all coefficients associated to the same
radius and spatially close to the selected coefficient. By close, we
mean a distance lower than half of the radius. It does not prevent
from selecting a coefficient with a different radius around the
same central position. We then recompose/decompose the image
to obtain new coefficients. The operation is repeated until the
number of key coefficients specified by the user is reached. The
combination of reconstruction and decomposition is not necessa-
rily needed. It is used here because the transform is redundant,
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selected circlets (right). Radius range varies from 15 to 75 pixels.
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different combinations of coefficients may represent the same
image. This iterative approach is feasible with the use of FFTs.

For the different applications, we specify the radius ranges in
the caption of the figures.

3.2. Ophthalmology

The motivations have been presented in the introduction part.
In the first example (Fig. 7), the optic disk is clearly defined and
the algorithm easily detects it. In Fig. 7 (bottom), the bright zone
within the optic disk is not selected as the minimum radius is set
to 30 px.
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Fig. 13. Synthetic SST map (top) and its gradient (bo
In a slightly more complicated example with the presence of
exudates (Fig. 8), the algorithm is still able to detect the optic disk.
Its circular shape compensates for a lower value of the gradient.
We conclude on this example the ability for the circlet transform
to detect at least a single circle.

3.3. Astronomy

Counting craters is a method for estimating the age of a
planet’s surface (Kerr, 2006). We selected two zones from the
Moon image and detected a number of craters in a specified
radius range (Figs. 9 and 11). The soft-thresholding process as
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proposed here allows to remove circles with the same radii
and slightly different positions. Within the specified range, the
craters are indeed well detected (Fig. 9, right). However, some
spurious events are also selected (Fig. 10). These are due to the
combination of the shallow sun and the topography. We indicate
in the discussion part how the artifacts could be removed.

The application on a second moon image leads to similar
conclusions (Fig. 11). On the crater on the bottom left side, the shape
is rather elliptic. In that case, two significant circlets were detected.

3.4. Oceanography

In coastal oceanography, the detection of eddies with a sub-
mesoscale structure (20–100 km) is a key element for a better
understanding of the surface circulation. On remote sensing
images, tracers such as the sea–surface temperature (SST) or the
chlorophyll maps, are used to reveal the ocean circulation. The
underlying assumption is a strong correlation between the tracer
and the velocity field (Sugimura et al., 1984; Borisov and Monin,
1989; Essen, 1995). The eddies are generally detected either on
spatial or temporal gradient maps (Aleksanin and Aleksanina,
2001; Yang et al., 2000). We refer to Castellani (2005), Fernandes
and Nascimento (2006), Hai et al. (2008); D’Alimonte (2009) for a
more complete review. Classically, the Hough transform and
several other circle or ellipse fitting algorithms are applied to
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Fig. 14. Remote sensing SST image in the Gulf of Lion, North Western Mediterranean Sea
determine the radius and the central position of eddies on binary
edge maps (Peckinpaugh and Holyer, 1994; Fernandes and
Nascimento, 2006).

The main difficulty for detecting eddies is certainly due to the
weak and blurry contours. We apply the circlet transform on both
synthetic and satellite images.

In the first example, the main circular feature is extracted from
an SST image computed from a model in a turbulent flow (Fig. 12).
Two circlets limit the spiral shape. On a larger image, the soft-
thresholding process coupled with the circlet transform is able to
detect a series of turbulent structures (Fig. 13). Further refine-
ments are indicated in the discussion part.

Remote sensing images are usually more blurry (Figs. 14–16).
The circlet transform is able to detect the main eddy on SST
images. For the chlorophyll map, the first four circlet elements are
related to spiral features: the chlorophyll filament is trapped in a
cyclonic eddy (Fig. 16). The user has to specify the number of
selected circlets. A broader selection simply consists of resuming
the iterative thresholding process.
4. Discussion

Through a series of applications on synthetic and real images,
we have shown the capability for the circlet transform to detect
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(top), and image gradient maps (bottom). Radius range varies from 10 to 20 pixels.
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Fig. 15. Remove sensing SST image (top) and its gradient (bottom), still in the Gulf of Lion. Radius range varies from 10 to 20 pixels.
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Fig. 16. Gradient image of the chlorophyll map (left), with the first four more significant circular structures (right). For the selection, the radius range varies from 5 to 20

pixels. The spiral shape on the bottom left is detected by two circlets.
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circular shapes. The applications are certainly not restricted to the
fields presented here. The width of the circlet is important to
handle blurry and weak contrasts. The user may easily change the
shape of the 1D wavelet under the condition that Eq. (5) is
satisfied. The flexibility also comes from the possibility to specify
radius ranges.

The large redundancy of the transform is due to the selection
of many radii. With the soft-thresholding approach presented
here, this is not really an issue, except for applications on very
large images. In practice, these images could be split into smaller
images. The size of the overlapping zone should be twice the
maximum specified radius to avoid edge effects.

We have observed some spurious detections (e.g. Fig. 10).
The first possibility would be to measure the local coherency
along arcs for the selected circlets. This would remove artifacts
related to the shadow on the moon image. The other possibility
would be to detect circular structures on a sequence of images
and track them. Applications in coastal oceanography would be
interesting, in particular for remote sensing images with
weak contrasts (Ma et al., 2006). Other investigations could deal
with the multi-scale approach provided by circlets. Currently, we
have selected a single scale and various radii. The same analysis
could be repeated for different scales. This could deliver a
more robust approach if circular shapes are stable at different
scales.
5. Conclusion

We have presented a flexible method for detecting disconti-
nuities with circular shapes on 2D images. The key property of the
transform is certainly the finite frequency aspect of the basis
functions. The transform is efficient due to its implementation in
the Fourier domain. Combined with a soft-thresholding algorithm,
it appears to successfully detect circular structures on a series of
images from different fields. The next step is to track these
structures on a sequence of images. This is also potentially a way
to remove some spurious detections.
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Appendix A. Circular shapes

We aim at proving that with the definition of Eq. (7), the
circlets have circular shapes. In other terms, the functions Gk

expressed in polar coordinates ðr,yÞ should not depend on y. By
definition, we have ðx,yÞ ¼ ðrcosy,rsinyÞ. The inverse Fourier
transform of Gk is

Gkðx,yÞ ¼
1

ð2pÞ2

ZZ
do1 do2e�io1xe�io2yeijojr0 � FkðjojÞ: ðA:1Þ

In polar coordinates, Gk is expressed as

Gkðr,yÞ ¼
1

ð2pÞ2

ZZ
do1do2e�io1rcosye�io2rsinyeijojr0 � FkðjojÞ: ðA:2Þ
We apply a second change of variables from ðo1,o2Þ to ðjoj,aÞ,
where ðo1,o2Þ ¼ ðjojcosa,jojsinaÞ, leading to

Gkðr,yÞ ¼
1

ð2pÞ2

ZZ
djojdajoje�ijojrðcosycosaþ sinycosaÞeijojr0 � FkðjojÞ,

¼
1

ð2pÞ2

ZZ
djojdajoje�ijojrcosðy�aÞeijojr0 � FkðjojÞ,

¼
1

ð2pÞ2

ZZ
djojdxjoje�ijojrcosxeijojr0 � FkðjojÞ: ðA:3Þ

In Eq. (A.3), we use the change of variables x¼ y�a, where x is
integrated between 0 and 2p. Eq. (A.3) does not depend anymore of
y; in other terms, Gk have circular shapes. As all other circlets can be
deduced from a shift or by changing the radius or the frequency
content of the original circlet, they all have circular shapes.
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