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1 - INTRODUCTION TO UNIVERSAL KRIGING

1.1 PRELIMINARY REMARKS

Universul Kriging (UK) forms the link between stationary
geostatistics and the theory of intrinsic random functions (IRF-k)3
it takes over from the stationary geostatistics when the assump-
tions needed for this are clearly too severe, but on the other hand,
it tries to reformulate the problem so that the techniques already
developed for the stationary case can be applied. This is done by
splitting the phenomenon under study into two components - one
structured and the other random, and by treating these two separa-
tely.

This is the natural way to approach the problem. It is
exactly what is done in trend surface analysis. If the phenomenon
under study seems to be too complicated to be treated as is, it
seems natural to decompose it into two "sub-phenomena" with struc-
tural properties which operate at different distance scales. But_
this decomposition is by no means as innocent as it seems at first

glance. The mathematical operations which are used in this, almost
inevitably have no direct link with the physical reality. Of course,
it is possible to imagine cases (e.g. studies on stresses and strains
in blocks, or mapping electric fields) where the physics of the pro-
blem makes it possible to postulate a particular model a priori
but most of the time (and this is particularly true of the earth
sciences) this is simply not the case. Variables such as the depth
of a sedimentary seam, the grade of metal in a deposit or the gene-
ral behaviour observed in gravimetric studies, cannot be described
by deterministic equations. This remark should in no way be taken

as condemning attempts to seek simplifications or generalizations.
But it is nevertheless vital to keep in mind that fermulae -~ even
when rigourously correct -~ are only the expression of one (possi-

bly arbitrary) way of tackling the problem, and consequently




that it is essential to verify the hypotheses by comparing them
with the reality. Here, the realify means the raw data, before
any decomposition or interpretation has been done.

Unfortunately, it is often tempting to attribute a physi-
cal significance %o a model, but this can have disastrous conse-
quences. The danger is all the more serious since the model is
generally chosen for its "good" properties from the mathematical
point of view, and this can lead to the use of methods having no
relation to the reality. It is easy to be carried away by a model
which, though mathematically correct, still has nothing in common
with the actual phenomenon.

the component of the anomaly due to some well-defined phe-

Clearly, there is absolutely no way of measuring
the general behaviour directly. The only way of finding a
representation for it is to choose a model. For example,

is that of the general behaviour. Nor should we say that

the general behaviour is an nth degree surface,

The worst type of confusion between the model and the rea-

As an example of this, consider a field of gravimetry
anomalies. One "general behaviour" could be defined as being

nomenon (e.g. isostasy, or the presence of a mountain range)
which has its own properties (local extrema, gradient, etc..)

we could say that the general behaviour can be described by
an nth degree surface. But then we do not have the right to
say that the local extrema (or the gradient) of this surface

lity is to try to give a physical explanation for each of the para~
meters of the model. Some typical examples of this are "the general
behaviour is an nth degree surface because" or "the mineralization
has a particular number of nested structures because..." which are

then followed by a naturalistic explanation., People who use this

type of reasoning forget that the parameters of the model (degree
of the function, number of elementary variogram models...) are the
result of a choice and that another equally well qualified person



could come to quite different conclusions. However the reality
always remains the same,

In any case, the model should not be identified
with the reality. The grades in a deposit were never allo-
cated at random according to a probability distribution.
Nor was the general behaviour developed by evaluating a
polynomial expression (no matter what the degree) ete,.
The use of a particular formalism (e.g. of random func-
tions in geostatistics) is a constitutive choice which
is neither true nor false of itself. Moreover the appro-
priateness of the choice can only be judged by the compa-
rison with the experimental results.

One interesting but also difficult aspect of Universal
Kriging (U.K.) is to explain these points to the user. Even though
the approach taken is the most natural, several sources of ambi-
guity and indeterminacy arise. Although these may prove to be
instructive in coming to an understanding of non-stationary pheno-
mena, they also pose certain intractable technical probleums.

The presentation of U.,K. and later of the generalized
intrinsic random functions (GIRF) has two principal objedtives 3

a) To analyze the inherent ambiguities, to see how they
arise and what they mean, and to determine their conse-
quences from the practical point of view.

b) To highlight the relationship between U.K. and GIRF,
to show how the theory of the GIRF overcomes the diffi-
culties encountered in U.K. and finally to give an in-
tuitive explanation of this new mathematical tool.

More emphasis will be placed on understanding the physical
gignificance of the problems and on interpreting the results than
on the details of the proofs.




Sy

1.2 EMPIRICAL STATTONARITY AND THE MODEL OF STATIONARITY

1.2.1 Stationarity from the empirical point of view.

At first, the idea of a stationary phenomenon may seem
intuitively clear. Broadly speaking, 2 varisble will be considered
to be stationary if "it behaves in the same way throughout the
whole of the region under considerati on® 3 that is, if it acts as
if there is some sort of force which always pulls the variable
back to its average value. Numerically, a stationary phenomenon
can be said to be "self-regulating" (this should not be taken as
implying or denying the existence of a physical self-regulating

mechanism).,

This apparently simple notion turns out to be fraught
with difficulties...

- This empirical definition can only be true on
average. Except for a variable which always takes
the same value, no phenomenon ever respects this
definition strictly. Ihis behaviour can only be
Ymore or less" verified in practice.

- To be more precise, to test the stationarity of a
variable, we must first choose a certain zone of
investigation (with a fixed size and shape) which
can subsequently be moved throughout the whole of
the region under study. For any given position, the
investigation zone will contain a certain number of
sample points. If, for each such position, the sta-
tistical characteristics of these points are the
same, the variable can be said to be stationary.

- It is clear that stationarity is by no means abso-
lute - not even in the most intuitive sense. It
depends very much on the investigation zone (or
sliding neighbourhood, as it is called), and is,




to a large extent, arbitrary. In particular, the
size selected for the sliding neighbourhood deter-
mines the scale at which the variable can be said
to be stationary.

- The property of stationarity is therefore fundamen-
tally dependent on the scale considered, and it would
be g serious methodological error to try to extrapolate
stationarity to different distance scales (either lar-
ger or smaller) than the one for which it was verified.

it St e e - 450 Bio S Goe @O0

local if it is true at the scale of the sliding neigh-
bourhood, and global if it holds for the whole of the
region under study.

Simplistic Example.

We shall now study a one~dimensional case : the function
y = sin x where x ranges from 0 to (say) 200m. Can y be considered
to be stationary in this interval ?
Fig. 1
In its present form the question is meaningless because
the scale has not been defined.

. 1f the length of the sliding neighbourhood is a multi-
pPle of 2mn, the statistics calculated within these in-
tervals will all be the same, and the stationarity
will be verified exactly.

. As the length of the neighbourhood increases, the
difference between the statistics lessens and so it
would be possible to accept the hypothesis of sta~
tionarity.

. For neighbourhoods of length mn, the statistics vary
considerably, and the hypothesis of stationarity could
not be accepted. In any one of these intervals the curve
could be concave or convex, or could have a point of
inflexion. It could.quite well be represented by a
3rd degree polynomial.



« If the interval becomes much smaller (e.g. m/20,
the curve cen still not be considered as stationary,
but this time can be represented locally by a straight
line, .

It should be remembered that in practice, we do not
need complete stationarity. That is, the histograms of values
within these neighbourhoods do not have to be identical, All that
is required is that the first two moments (i.e. the local mean
and the dispersion around this local mean) are constant.

1.2.2 The Theoretical point of view. Notation.

The constitutive choice made in geostatistics is that
of considering the phenomenon as a realization of a random proeess
(See [1]). The definition of second order stationarity (i.e. the
stationarity of the first two moments) doés not pose any theoreti-

cal problems,

We now define the notation that will be used subse-

quently,

o We shall use small letters to denote deterministic
varisbles - in particular, experimental values. For
example, z(x) represents the value of the function
Z measured at point x.

o Capital letters will be used to denote random varia-
bles and random functions. These gquantities exist only
in the model and not in reality. For example, Z(x) is
a random function used in the model to describe the
phenomenon observed.

o Most of the time the spatial coordinates will be written
as if for a 1-D space : e.g., z(x). It is not difficult
to mentally replace x by a vector when dealing with
2 or 3-D spaces.



o Finally the usual statistical notation will be used
to denote the model :

E[ z(x)] ¢ the mathematical expectation (mean)

of the R.V. Z at the point x.
Var[2(x)] : the variance of the R.V. 2 at point x
p2[2(x)]

Cov [2(x),2(y)] : the centred covariance between the
values of Z at points x and y.

The usual definition of second order stationarity can
now be given :

1¢22.1 The 1st order moment.

If Z(x) is stationary then E[2(x)] is invariant
under translation, that is, it has the same value throughout the
Sspace.

16262:2 The 2nd order moment.

To say that Cov(Z(x),Z(y)) is invariant under
trenslation means that it depends only on the relative position of x
and y and not on their particular location in space. 1t is, there-
fore, a function of only one variable h = y~x and is usually denoted
by c(n).

1.2.3 ILink between the two points of view,

Stationary geostatistics should be used only after the
hypothesis of stationarity has been verified. It is therefore essen-
tial to check whether the experimental data can reasonably be consi-
dered as being a realization of a random function satisfying the
conditions given in the preceding paragraph.
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In practice, we have only one set of data (that is,
only one realization of the random function that we are trying
to model),so it is not possible to develop a model of the R.F.
without making additional assumptions - no more than it would
be possible to find s probabilistic model for roulette given the
result of only one toss.,

The additional assumption made is the following : we
decide to equate empirical stationarity with theoretical statio-
narity. So we consider that the hypothesis of stationarity can be
accepted if the experimental data are statistically stationary.
Without going into the technical detaiis, it should be noted that
this choice should be tested subsequently whenever possible,

« In fact it does not seem reasonable to demand more
from the model than can be observed in the data.
Conversely, it is easy to imagine cases (such as
heterogenous data) where the data are empirically
stationary (second order) but where the use of a
stationary geostatistical model would be quite inap~
propriate.

o In order to test the empirical stationarity, we have
to test that the values calculated over the gliding
neighbourhood do not fluctuate "too much" (see § 2-1).
To be quite rigourous, the permissible limits for
these fluctuations can only be calculated once the
model has been fixed. So we are obliged to be satis-
fied with approximstions. The best we can do is to
check that the final model is internally consistent.

1e2.4 {(onclusion.

It does not seem to be possible to propose a model at
the beginning of a study, which will be valid until the end.

Even in the most favoﬁrable cases a model must be
"alive" and keep changing to fit reality.
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o If the model becomes internally inconsistent or is
not in agreement with the data, it must be modified.

. If this not the case, we can go on to the next step
in the study and to additional checks,

1.3 MODELLING NON-STATIONARY PHENOMENA.

1.3.1 Examples of non-stationary phenomena.

The hypothesis of stationarity is a very strong one
and as such is often at variance with the facts.

1.3.1.1 Non-stationary first order mowment.

The most common cause of non-stationarity
is the presence of a "drift" or trend (i.e. when the mean of the
phenomenon observed in the sliding neighbourhoods is not constant).
For example consider the following sequence of pollution data
which were taken in an urban area over a period of 2 1/2 years.
They show an alternance of high values (in winter) followed by
low ones (in summer).

Fig. 2

It is clear that a stationary model could not
account for this sequence of highs and lows. In fact, an overall
drift corresponding to the seasonal fluctuations is apparent.

But we can still consider (as was done in the stationary case)
that there is a "self-regulating" force which tends to keep the
variable close to the drift, ILooked at from this point of view,
we may be tempted to try to split the raw phenomenon into two
components so as to bring the problem back to the stationary case




(at least partially). This idea, which seems natural enough, mixes
two radically different requirements :

- On one hand, the seasonal component or drift seems
to correspond to a real phenomenon. It would be nice
to attribute a physical significance to the "fluctu-
ations" (i,e, the differences between the measured
value and the drift). This is a naturalistic sort
of requirement,

- On the other hand, to be able to use stationary geo-
statistics, the fluctuations have to be stationary
(of second order) or intrinsie. In contrast to the
preceding one, this is a methodological requirement.

There is no reason why these two viewpoints have to
converge. In order to be able to use this method, the second re-
quirement is the more important but in this case, it is essential
to avoid extrapolating the results obtained without making addi-
tional checks, and also to avoid attributing a physical signifi-
cance to them, A critical review of the results is indispensable

when using these magthematical methods.

163.1.2 Non-Stationary second order moment.

This cause of non-stationarity is not as easy
to visualize as the preceding one was. The figure below - which, as
it happens, is the curve of daily increments from the preceding
exgmple - is fairly level overall., That is, the first moment is
empirically stationary.

Fig. 3

However, the fluctuations around this average
level vary with time. We know that this variability will not affect
the type of estimator used, although it certainly affects their
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quality (i.e. the estimation variance). Depending upon the type
of problem to be solved, we could use methods similar to those
employed in ordinary geostatistics (e.g. related to the propor-
tional effect) or else develop some more specialized techniques
(e.g. related to anamorphosis).

1e3.1.3 No second order moment at all,

This problem led to the development of the
intrinsic hypothesis ([1]). Although it may seem surprising at
first, it is possible to find sets of experimental values which
appear to have an "infinite variance". Of course in practice we
only have a finite number of values in the sliding neighbourhoods
and their variance is always finite.

But the experimental variance sometimes in-
creases without ever reaching a limit, as the size of the sliding
neighbourhoods is increased. In physical terms this means that the
variable has no self-regulating mechanism. Under those circuumstan—
ges it would be foolish to try to use the experimental variance
in a stationary model. The results would be incompatible with
reality.

It is worth noting that the only way of re-
vealing this type of non-stationarity is in "dynamic" studies on
the data (i.e. ones where the working scale is changed). The user
can test for it by comparing the experimental variogram with the
experimental variance,

1.3.2 Modelling the drift.

1.3.2.1 A simplistic example.

Suppose that we want to use least squares to
fit a polynomial curve to the 4 sample values shown below :
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Fig. 4

If we decide to fit a linear curve, the "solu-
tion" obtained is :

Fig. 5

Fitting a parabola gives us :

Fig. 6

Note that this parabola is quite close to
the straight line shown in Fig. 5 in the zone considered. If for
some reason we decided to ignore one of the two points on the left
when fitting the parabola, we would get one of the two parabolas
shown in Fig. 7 :

Fig. 7

The results obtained when using these curves

to extrapolate would clearly diverge rapidly.

Lastly, fitting a cubic curve gives guite

different results :

Fig. 8
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1e3.2.2 Which approach is correct ?

Before going into this question, a few preli-
minery comments must be made. Undoubtedly no one would hesitate in
rejecting the curve shown in Figure 8 since it is quite unrealistic.
However from a mathematical point of view it is just as correct as
the others (and incidentally is statistically a "better" fit). In
rejecting this curve we are introducing a naturslistic argument
into the method.

In the introductory remarks, we noted how
dangerous this can be. It is not difficult to think of cases where
there are physical reasons for requiring the trend to be monotonic
in the zone considered, which would effectively exclude Figure 8,

It is also possible to imagine cases where one or the other of the

two sample points on the left would be suspect - and this would eli-
minate one of the parabolas on Figure 7. But in eliminating curves

in this way we are slowly letting naturalistic considerations slide

in between the fitted curves(which are the end product of a mathema-
tical method, and as such rigourously correct) and the phenomenon which
they are supposed to represent.

1.3.2.3 General Hypotheses of Universal Kriging (U.X.)

The correct way of attacking the problem is to
develop a coherent and viable mathematical model and at least ini-
tially, to consider the results that come from it as the end product
of a mathematical operation. 1y after comparing the results with
the facts can one start to attribute a physical meaning to them.

To start with, the drift of R.F. Z(x) is
defined as the expectation

m(x) = E[Z(x)] (1.1)

In contrast to ordinary (stationary) geoste-
tistics, this function m(x) will not be assumed to be stationary




(i.e. constant). Consequently it is really a function of the loca~-

tion x in space.
The covariance of Z(x) is defined as

cov[ 2(x), z(y) ]

(&
il

E[2(x) 2(y)] - w(x) m(y) (1.2)

To be of any use, universal kriging mst be
able to solve the following two problems :

a) to estimate the drift (i.e. the function m(x))
at any given point.

b) to estimate the value z(x) of the varisble at a
particular point (or alternatively a linear trans-
formation of z(x)).

As in ordinary geostatistics, the idea is to
use linear estimators which will then have a corresponding estima-
tion variance. The optimality criterion chosen is that of minimum

estimation variasnce.

1.3.2.4 Simplifying the hypotheses.

In its present form, the problem of U.K. is
insoluble because it is too vague, The definition of the drift is
quite clear, but it still does not allow us to develop a workable
method. No statistical estimates can be obtained until some addi-
tional hypotheses are made,

These hypotheses follow from the ideas expressed
in paragraph 2.1. The drift will be constrained to be fairly regular
and continuous at the scale considered. By doing this, we are anti-
cipating the possibility of equating this drift to "general beha-
viour" or "trend" ; but for the moment, the constraint is purely
mathematical. The idea behind it is that the drift w(x) can be
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represented locally by the firgt few terms of its development in
terms of the basis functions fx . Iet
L

n(x) = s, £} (2= 0,1,...,%) (1.3)

The number k of functions is known and so are
the functions themselves but the coefficients ap (which are different
in different neighbourhoods) are not. So these will have to be esti-
mated.

Summarizing, we consider the reality z(x) as
a realization of a non-stationary random function Z(x) having the
following properties :

4

2(x) = Y(x) + a, f

B[ 7(x)] = a, £o = n(x) (1.4)
cov[2(x),2(y)] = E[Y(x) ¥(y)] = ny

1+3.3. The Intrinsic Model.

1.3.3+.1 Review of the Intrinsic Hypothesis.

In section 1.3.1.3 we menticned that the intrin-
sic hypothesis had originally been developed to deal with cases where
the second order moment did not exist (See [1], 2.1). A R.F, Z(x) is
said to be intrinsic if its increments Z(x+h) - Z(x) are weakly sta-
tionary (i.e. of order 2). This hypothesis is much less restrictive
than stationarity, and allows us to apply the methods developed in
ordinary geostatistics to a much wider range of phenomenae

The decomposition of Z(x) given in (1.4) is
more closely linked to this than it seems at first. We will show
that the intrinsic model corresponds to a linear drift. The most
striking example of this is the random walk : - g fair coin is



18—

tossed and the outcome of the ith toss is either X, = +1 or Xi = =1,
The cumilative zsum up to the nth toss, Sn = Xﬁ +...+Xh has a mean
of 0, We also know that this R.F. satisfies the intrinsic hypothe-
sis, Even though the mathematical expectation is O, actual regliza~
tions of this always have a local linear drift. (ef. Delfiner [2]).

This shows the close links that exist between
these two types on non-stationarity. In fact, in practice it is
impossible to tell whether a drift observed in the data ought to
be considered as coming from a deterministic model or a random
one. S50 it is hardly surprising to find that one method can be used
to treat the two types of non-stationarity. However, as far as the
model is concerned the user has to decide whether the drift is to
be considered as being random or deterministice. Consequently we
should not be surprised to find that this one method leads to a
certain indeterminacy.

1.3.3.2 The meaning of the intrinsic hypothesis.

There is an important difference between the
intrinsic model and the stationary one : in the intrinsic model,
the object under study is the increments of the R.V. rather than
the R.V. itself. Of course from a pratical point of view, our
attention is still centred on the R.V. z(x) but from a mathemati-
cal standpoint, the random function Z(x) is completely forgotten.

Since the only link between the model and
the reality is through the increments, the model is more general.
The variogram is consequently more general than the covariance
and can therefore take account of a wider rsnge of phenomena. But,
on the other hand, the operational methods which can be used are
more restricted, particularly in so far as the type of estimator
is concerned. This approach makes no distinction between two R, F.
with the same increments (i.e. differing by a constant). The whole
question is to know whether this indeterminacy is troublesome in

practice.
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It is intuitively clear that the relation between
a R.F, and its increments is the same as that between a
function and its derivative., Using the intrinsic model to
study a phenomenon is like studying the derivative of a
curve. This introduces an indeterminacy which is similar
to the additive constant seen in integration.

1.3.3.3 Admissible linear combinations.

Since it is more convenient to express the model
in terms of the R.P. Z(x) rather than its increments, we reform-
late the method accordingly. In the stationary case, we had the
right to work with any linear combination At Zi. (This is the
shortened way of writing & A% Z(xi)). This time, to ensure that
the variance is finite we have to restrict ourselves to linear
combinations of increments ; that is, to linear combinations
At Zs where Z)Xi = 0, Linear combinations of this type are said
to be admissible. This also highlights the manner in which the
field of possible estimators has been restricted in going from
the stationary model to the intrinsic one. As a compensation, the
range of possible applications is much wider because the admissi-
ble linear combinations (A.IL.C.) effectively filter out the cons-

tants.,

It is well kmown in ordinary geostatistics [1]
that the expression for the variance of an A.L.C. xl Z; cen be
obtained by replacing the covariance K in the formlas for the
stationary case by the variogram -y. This gives

S A, =0
* (1.5)
3

2r. 1 _ J
This formula is very important because it simpli-
fies the calculations considerably. In addition to this, it is
interesting since it highlights the similarity between the function

K which operates on the space of all linear combinations and the
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function -y which operates ori the subspace of admissible linear
combinations. This analogy arises again in the presentation of
Generalized Intrinsic Random Functions,

1.4 ORGANIZATION OF THE FOLIOWING CHAPTERS

CHAPTER 2 ¢ Case of an Underlying Stationary Model,

In this Chapter the equations for U.K. are developed
for the case where the covariance of Z(x) exists, without dwelling
on the proofs. Special attention is focused on the following topics :

» Point kriging

. The estimation of the drift and of its coeffi-
cients

o The properties of the U.K. estimators.

CHAPTER 3 : The Case of an Underlying Intrinsic lModel.

The additional problems encountered when the cova-
riance does not exist are treated in this Chapter, without going
back over the development of the equations.

CHAPTER 4 : The Indeterminacy of Universal Xriging-

This Chapter considers the meaning of the indeter-
minacy and then goes on to see to what extent this is irreducible
and how it affects the structural analysis.

A theoretical presentation of U.K. is given in [1],
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CHAPTER 2 - CASE WHERE THE UNDERILYING MODEL

IS STATIONARY

GENERAL PRESENTATION
KRIGING

2.2.1 The equations for U.K. of point values
2,2.1.1 The problem
2¢2.1.2 Universality conditions
2¢2:1s3 Optimglity conditions
2.2.1.4 The U.K. system

2.2,2 Universal Kriging of a Weighted Average
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2 — CASE WHERE THE UNDERLYING MODEL IS STATIONARY

2.1 GENFRAL PRESENTATION

In this chapter we assume that the conditions described
in 1.4 are satisfied ; that is, the behaviour of the R.F. Z(x)
can be split into two components 3

_ e
z(x) = Y(x) + a, £ (2.1)
where Y(x) is a R.F, with mean O and covariance K.

E(Y(x)) = O : (2.2)

E[¥(x) Y(y)] = L (2.3)

The mean E[Z(x)] is, by definition, called the drift of Z.
We suppose that it can be expressed as

E[2(x)] = &, £& (2.4)

where the fX are the basis functions (for 6 = 0 to k fixed) and
where the ap are unknown numerical coefficients.

Onee the decomposition given in (2.4) has been accepted,
two types of problems may be treated :

-~ the estimation of values of z(x) at certain points, or
of average values. In this case, the problem is one of
kriging in the strict sense of the word,

- The estimation of the characteristics of the drift. Here
it is important to distinguish the estimation of the
drift itself from that of its coefficients ap -

In any case, it should be remembered that all linear com-
binations have g finite variance ‘and that there is therefore no
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need, a priori, to impose any conditions on the xi. The covariance
function Kx will be called the underlying covariance model, and
will be assumed to be known and to be stationary. For the time
being, the question of knowing how this model has been determined
will be kept in abeyance.

It should be noted that the U.K. equations do not
necessarily require ny to be stationary. But if this
were not the case, any statistical inference concerning K
would be impossible. Since this is unrealistic, K will be

assumed to be stationary.

2.2 KRIGING .

2.2.1 The Equations for U,K. of point values.

2.2.1.1 The problem.

P T R P e pu—,

We have a certain number of experimental values
of z recorded at the points a (a¢ = 1,...,1), at our disposal. The
problem is to estimate the value Z. at a point x using a linear
combination A% z, of the data values. The estimator must satisfy

two conditions :
1) it must be "universal", i.e. it must be unbiased
no matter what the drift is.

2) it must be optimal, in the sense that the estima~
tion variance is to be minimized.

So, in the model, we are looking for a set of
coefficients A% such that

¥*
A% Zy = %y (estimator of zX) (2.5)
* +
E[ZX] = E[2] (universal) (2.6)

¥
p°[z; - 2] mwinimm (optimal) (2.7)
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2.2.1.2 Universality Conditions.

Replacing Z; in equation (2.6) by its expres-
sion (2.5) and then expanding the expressions for the expectations
of Z; and Z_ using (2.4) gives :

e e
a —
A ag fa = ae fx

or a, (A" fg -th) =0

This equation must be satisfied for all possible values of the
(unknown) coefficients ag . Since any of the 8, coefficients must be
0, we obtain the following set U of universality conditions :

a o€ _
A* £l =l [U] (2.8)

which must hold for all € = Os134009Ke

NOTE : The following equations hold for any linear combinations
5 Z, which satisfy the universality conditions U :

ZX - \* Za (estimation error)
= € _ ,« 4
=Y +a,f -2 (Ya + a, fx) from (2.1)
_ _ aQ ¢ _ ,a of
=Y - A Y, + ap (fX A fa)
=Y, -2 Y (from the condition U)

So for any universal estimator A% Za (i.e. one satisfying U)

we have

2 _ G - 2 _ a0 _ _ 2 2
D[z, - A za] = D[y, - A Ya] = E[Y, - 2 Y]

since the mean of Yk and YOC are, by definition, O,
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2.2.1.3 Optimality Conditions.

From the preceding comment and also froum the
definition of the covariance (2.3), it is clear that the variance
*
of the estimation error Zx - ZX is in the form :

2r * = 120 4B - a
D[z 2 =AT AN K g - 20T K L F K (2.9)

In order to minimige this quadratic form subject
to the constraints (2.8), we introduce a series of ILagrange multi~-
pliers p, (each associated with one of the universality conditions).
We obtain the optimum of (2.9) under these constraints by minimizing
the expression

(L% AP Kpg = 2 A K+ KD + 20, (% el-£)  (2.10)

where the x“ and the ue are all unknown,

Setting the partial derivatives with respect to
by to zero gives us back the universality consitions. Setting the
partial derivatives with respect to A% to zero gives us the optima-
lity conditions :

B e::"r
A Kog +oup T = Koy [o] (2.11)

which must hold for all o = 1,2;¢4.,0

2.2.1.4 The U.K. System.

The whole U.X. system is obtained by grouping
[U] and [0] :

€ —_— 17
AP Ko * Hp o = Ko [0]
A ) (2.12)
A% £, = £ ‘ [u]
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This can be written in matrix form as :

4 B
K | Lo A K x
fé 0 o 44
- -

When the solution of this system is substituted
back into the expression for the estimation variance (2.9), we ob~
tain the kriging variance :

[z, - 2] =% _ - A*K € (2.13)

XX ax ~ e “x
If we assume that the covariance matrix Ka is
always strictly positive definite, we exclude the case of repeated
sampling at the same point since, in this case, two of the rows in
Kq would be identicale If this condition is satisfied it can be
shown that the system (2.12) is non singular, and therefore has a
unique solution if and only if the basis functions are linearly
independent on the set of data points.

Mathematically speaking, this condition can be expres-—
gsed as follows 3

"If there exist a set of coefficients Cp
(€ = 0,1,...k) such thab cp fg = 0 for any sample point
ay then the ¢, must all be zero",

As an example . of linearly dependent functions,
consider the following family :

1y cos a, sin g, 0082 Oy sin2 (o4

It is easy to find a non-zero set of coefficients
(e,g. in order 1, 0, 0, =1, =1) for which the linear com-
bination is identically zero.

This example is extreme because the basis functions

are dependent no matter what sample points are chosen. If
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we take the monomials ¥ as basis functions in B2, these
will be dependent if the sample points are in a straight
line and if the degree of the drift is greater than or
equal to 1. This can gquite easily arise in practice ;
for example if seismic data happen to lie on straight
lines.

If the drift is quadratic, the problem of depend-
ence arises if the data lie on a circle, or along two
straight lines, etc.. Intuitively this means that a
straight line is not enocugh to define a plane ; that a
circle (or two straight lines) is not sufficient for a

quadratic

It is easy to see that the kriging system can
become degenerate if the data are unsuitably laid out relative to
the model proposed for the drift. For example, in 2 dimensions, it
is possible to determine a linear drift (and to solve the system)
if the data lie on two intersecting lines, but this would not be
sufficient if the drift is gquadratic.

iet us suppose that this minor difficulty has
been overcome. Under these circumstances, once a solution to the
kriging system is obtained, it must be unique and therefore is the
right solution. This can be used to show that kriginz is an exact
interpolator., If a point to be estimated coincides with one of the
sample points a, the values A% = 1, W =o0 (B#a) and u = 0 is
a solution to the system and therefore the solution. The best esti-

mator of a known % is then Z  itself (which is reassuring). It is
easy to show that the estimation variance in this case is zero.

2.2.2 Universal Kriging of a Weighted Average.

This case presents no additional difficulties to those
encountered in the preceding section (i.e. kriging point values)
and will therefore not be discussed separately in future chapters.
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3

The problem here is to estimate a quantity of the form jp(dx) Z(x)
where p(dx) is a weighted function and |p(dx) = 1.

The problem can be solved either directly from the
definition or alternatively by invoking the linearity of the
formilae given in the preceding section. Either way there are no
problems deriving the formulae :

Upmx) z(x)]* = 2% g

o7
- 8 - J
with A K“B +u I, p(dx) KaX
oc -
AT E = Jp(dx) £

and the kriging variance is

| jjp(dx) p(dy)KXy - 2% }p(dx) Kog = B Jp(dx) £,

Once the weighting function p has been chosen, this
formalism is quite unambiguous. However p must be chosen carefully.
In mining geostatistics it is always a simple average over a volume
and its wmeaning in physical terms is quite clear. In fields like
contour mapping, geophysics, meteorology etc.. the situation may
be much more complex and p might have to represent a convolution,
for example, or even a linear operator such as a gradient or a
"Laplacian". In any case, putting this formalism into operation
does not introduce any additional indeterminacy, and the final
results will be as meaningful as the function p is. Compared to
what happens when the drift is being estimated, this situation
is very healthy.

2,3 OPTIMAL ESTIMATION OF THE DRIFT.

2.3.1 The problem.

It is important to remember that the drift has been
defined in the model as the mathematical expectation of the
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function Z(x). We have also assumed that the drift can be repre-
sented locally by a function of the form :

n(x) = E[2(x)] = a, £2 (2.4)

Giving this definition a physical meaning is g danger—
ous "extrapolation" which can lead to serious errors in the inter-
pretation of the results. Consequently, in contrast to the estima-
tion of weighted averages, we shall not consider that the estimation
of the drift has any physical significance. However, it is important
from the methodological point of view. In the preceding paragraph,
the covariance ny was assumed to be known. In contrast to what
happens in stationary geostatistics, the covariance function which
is by definition

ny = ElY(x) Y(y)]

has to be calculated from the residuals and not from the raw data
values themselves.

We can now go ahead to develop a method for estimating
the drift. As usual, we are looking for the weighting factors A%
of the linear combination which minimizes the estimation variance,
that is, such that

a . .
ATz, o= M (estimator of mx) (2.14)
E[M;] = m (universality) (2.15)
s . 2% . .
minimize D7[M - mx] (optimality) (2.16)

2.3.2 Universality Conditions.

In equation (2.15), we replace M by the expression
(2.14), then m, and the terms m usirg formula (2.4). This gives

a e
A gp fi f fx

us
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which leads to the same system of universality conditions U as
before @

A% el o £¢ [U] (2.8)

for all C = O,1,oa.,ko

2¢3.3 Optimality Conditions.

Since m is deterministic in the model, the variance
*
when estimating the drift (given by (2.16)) reduces to DZ[M&].
After expanding the expression (2.14) this becomes

D[] = 2% AP Kyg (2.17)

As before, we use lagrange multipliers to optimize
DZ[M;] under the universality conditions (2.8). We therefore mini-

mize

A Bk w0 b (0% £ - £D) (2.18)

of

by differentiating with respect to A% and oo

Setting the partial derivatives with respect to A%
to zero gives the optimality conditions :

£ = 0 [0] (2.19)

4

2.3.4 The System for Estimating the Drift.

Combining the equations [U] and [0] gives us the
complete system of equations for estimating the drift at a point

X 3

£
a

It
O

[o]

(2.20)

>
Q
H
Q ~“o
1
Hy
”o

(U]
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This can be written in matrix form as

- ff “)\B ’- 0 ]
af o
7 —_ —
£f 0 My £f
L ] _ §

When the solution to this system is substituted into
the expression for the variance of M; sy we finglly obtain

Dro¥q
P[M] = - p, £ (2.21)

2.3.5 Remark.

It is interesting to note that the left-hand side of
this system (2.20) is the same as was obtained for universal kri-
ging (2.12). However the right-hand side is different..This me ans
that the remarks about the non singularity of the system which
were made for U.K. also hold in this case (§ 2.2.1.4).

It should also be noted that the question of estimating
the drift (when it is to be used in structural analysis) has not
been completely solveds This problem can well be called the vicious

circle of U.X.

a) For U.K., we need to have done the strucdtural analysis
i.e. to have obtained the ccvariance function.

b) To calculate the experimental covariance function,
we have to subtract the drift m(x) from the raw

phenomenon Z(x).

¢) The "true" drift is unattainable (In fact, this
notion is only meaningful within the model, and
has nothing in common with the experimental drift).

d) Lastly, the optimal estimator of the drift (which
we might wish to substitute for m, in order to
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maeke statistical inferences) can only be obtained
after the covariance function is already known ;
that is, after the inference has been made).

This raises one of the major methodological problems
in U.K., one which sericusly limits the applicability of this method.
This difficulty will be re-examined in a later section. For the mo-
ment we can already say that this is the price that has to be paid
for the model chosen at the outset (2.1). Although this approach
is mathematically rigourous, it places too much emphasis on the
dichotomy "drift vs residual" which is so intuitively appealing.
Some of the advantages of the IRF-k are that they will consciously
reject this approach, and that they treat the study of non-stationary
phenomena from a purely operational point of view.

For the rest of this chapter and in the following one
we shall assume that this obstacle has been overcome, that is, that
the covariance ny is known., This fundamerntal methodological ques-
tion will be treated in chapter 4. For the time being, the implica-
tions of adopting the intrinsic hypothesis (as opposed to stationa-
rity) will be considered.

2.4 ESTIVATING THE COCEFFICIENTS OF THE DRIFT.

2.4.1 The problem,

Suppose that the covariance K is known. We have just
found the system for estimating the drift m at a given point. Now
in the model, the drift is of the form :

- 4
m, = a, £ (2.4)

where the fx are fixed and the coefficients ap are unknown, Cur
new problem consists of estimating these coefficients,
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2.4.2., The system,

Iooking at the system (2.20) for estimating the drift
at a given point x, it 1is clear that the solutions AB and Hp depend
linearly on the fy+ Naturally when a different point x is to be
estimated, the solutions AB and Lp Vary, and are therefore a func-
tion of x. So it would be better to call them Aﬁ(x) and uz(x).

The preceding remark shows that there exist matrices hg and ppg
such that :
A% (x) = AZ f£ and pe(X) = Upg fi (2.22)
3ince we have assumed that the f}f are linearly inde-
pendent, the matrices x% and Loy Bre unique. If we substitute
the expressions in (2.22) back into the system for estimating the
drift (2.20), we obtain the following system :

B ¢S S #€ .
AS fXKaﬁf-{-p,es fxfa-0 )

(2.23)
£l §

]

o S pf
Ks fx fa

which must hold identically for all x. For each term fi , we mst
therefore have 3

¢ _
15 Kap ¥ ite T = 0 J (2.24)
a P 4 ’
2 €L = 5 )

These are the equations that have to be satisfied by
. e o
the coefficients Ap and Lpge

2.4.3 LEstimating the Coefficients ap.
The optimal estimator of the drift can be written as

*_ o _
mi = A (x) za =
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where IVERVES (2.25)

We note that, from the system (2.24)

*
E[ap | = A7 ElZ ] = x? ag o = a,

This holds no matter what the true values of 8., are. Moreover, the
first part of system (2.24) shows that provided E[Ag 1 = ap, the
variance D [AE.] is a minirun.

Summarizing, the quantity Ap defined by 2-25 is the
optimal (linear) universal estimator of the coefficient ap s for

any value of € .
Using the system (2.24) it is easy to show that

: * *
Cov [Ag s Ay ] = = pgg (2.26)

2,5 PROPERTIES OF THE U.K. ESTIMATORS.

From now on we shall assume that the reader understands the
wechanism for finding the universal estimators (i.e. defining the
universality conditicn and ther minimizing a quadratic form (the
variance) under certain constraints). So we shsall not go into the
details of the calculations in the subsequent secticns. In general
these follow from elementary theorems in linear algebra. Details
on this aspect can be found in [1], chapter 4. We shall now focus
our attention on the conclusions that can be drawn from these calcu-
laticns and on the meaning that should be given to them,

2:5.1 Tensorisl Invariarnce.

2.9.1.1 The Problem .

e e 4voe o o o i s e e i

The question is whether the estimation of the
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drift (or, if you prefer, the dichoyomy "drift vs residual"”) depends
on the coordinate system used,

Initially we assume that we are working in a
unique neighbourhood (and not a moving one). The representation
m(x) = a, fi is valid for all the available data, and all the data
are included in the system for estimating the drift (i.e. indices
« and B)

xﬁ K + fe = 0
ag ~ Heta
. (2.20)
o o8 -
A fa = fx |

[Reuunphuiigasing. - JEEpE < L SRR E a AReE Sl R TR Sty

Surpose that a invertible linesr transforma-

tion is applied to the basis functions £ € . Iet B be a non singuler

matrix representing the transformation. Its inverse is B!, Iet Qg =

’e 8 T E: ’e S
ES fX . Hence fX Bs Py

Then

- the %rue drift m(x) can be written as
m(x) = a £8 = o, BrlyS = ar oS (2.27)
e “x e Ps Px s Px °
- 1€
where aé aa BS

- the optiral estimator cof w(x) in the new coordinate

system is :

— 31
m¥?'(x) = A Za

where & v €
A Kaﬁ Trpeg =0

(2.28)

This is just the system (2.20) rewritten in
the terms of the new coordinates. If we replace ¢§ by the expression
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55 fi y we see that

a) ué ¢§ is of the form “E fﬁ ’

b) the equations A'“ ¢g = ¢§ can be written as

Are fé = f§ (vecause the matrix B is non singular).

The system (2.28) then becomes

w 28 _
AP Kop + 0 £y = O
(2.29)
44 X

But this is just the system (2.,20) expressed in terms
of the initial coordinate system. It has a unique solutiocn. Conse-

quently
I
"
T S )
?x *
and ¥, = Mk

So the optimal estimator of the drift remains unchanged
whernn a invertible linear transformation is applied to the basis

functions.

S e . 2 i G U Mg s e e i

From the preceding result it is clear that

7% IEPVAL - R S 4
hp @f =M =M = Apf.

€

ives
< g

Subs tituting for ¢

?
Ay Bl £

* .0
Ay £

and hence 'y P
hyg = Bg &g
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that is, the optimal estimators are transformed in the same way
as the real coefficients (cf. formula (2.27)).

2.5.1.4 Important practical comment.

The results given above were possible only
because the transformation applied to the basis functions was
linesr and non-singular.

In practice it often happens that the region
under study is too large fcr one representation m(x) = ae.fg to be
valid throughout. We therefore have to work in sliding neighbour—
hoods each with a different form for the drift, and with different
coefficients ap » In genersal in each neighbourhood the coordinates

are transforned by a translation, so the basis functions are now
e(x) f (x—x Yo It can be shown that the necessary and sufficient

condition for @e(x) to be of the form Be f where B€ is non-singular,

is that the basis functions ff be "polynomlal exponentlals" (that

is, of the form P(x) e <Ay x>

is a linear form of the components of the vector Xo)e

where P(x) is a polynomial and <A,x >

The polynomial exponentials include the trigo-

nometric functions, and slso the ordinary polynomials which play

an important role in describing the drift. In fact, unless special
physical considerations focus attention on a particular point in
space which would then become the crigin, it would be ncrmal prac-~
tice to use the polynomials ¥ for n < some value m as the basis
functionse This paragraph shows that it is not just for the sake

of convenience that the polynomials were chosen as basis vectors.
There are very strong theoreticzal grounds for this decision. This
situation also resgppears when desgling with the IRF-k.

2.5.2 Comparison with the method of Maximum Likelihood.,

In the case where the set of data is finite and where
the R.F. Z(x) is normally distributed, it can be shown (see [1]
§ 4.2.5) that the optiwal estimator of the drift as defined in
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gsection 2.3 is identical with the maximum likelihocd estimator.

To be more precise, if we assume that the drift is of
the form m= 8, fg at the sample points and if we are looking for
the coefficients ap which maximize the likelihood (i.e. the joint
probability) of the R.V. Za at the sample points, we obtain the
same solution for the A, as was obtained in the formulae (2.24)
and (2.25).

2.5.3 Comparison with least squares.
(et [1], § 4.2.7)

Fitting the drift m(x) = b, f£ by least squares consists
of determining the coefficients by whick minimize the integral»

_ - 42
I= f[z(x) - b, £.]7 dx
S
where S represents the domain where Z(x) has been measured.,

It can be shown that the estimator B, fs obtained in
this way is a universal estimator but that it is, in general, not
optimal., The necessary and sufficient condition for it tc be optimal
is that the (k+1) basis functions fi mist be linear cocmbinations
of the k+1 distinct eigen-functions of the kernel ny considered
as an operator acting on the functions with their support in S.

This condition is fairly complex, since it invclves
the choice of the basis functions fi , the form of the covariance
function X and the geometry of the region where the realization
is known. Fortunately it car be demonstrated that this is satisfied,
for any region S and for any continuous fg s When ny is a pure
nugget effect covariance ; that is, when Z(x) can be split into a
drift plus a comrletely unstructured residual.

As a first approximation, when the distinction between
the drift and the residual is unclear (e.g. very short range for



K. ), the least squares estimator turns out to be quite close to
the optimal estimator., However, when the residual includes a sub-
stantial part of the structure of the phenomenon, the two estima-
tors are significantly different.

2¢5.4. The Additivity Theorem..
(ef [1], § 4.3.2)

We how go baeck to U.K. (§ 2.2.1). In this section we shall
use U to denote the weighting factors which are the solution to (2.12).
Iet 7, denote the U.Z. estvluator. rormila (2.5) then becomes

7. =A% g (2.30)

If the drift m(x) was really known, there would be no
need for the U.K. method, since the residuals Y(x) would be known
and would be stationary. All that would be nee€ded, is to apply the
usual method for simple kriging ([1], § 3.4.1). This would give

*_ o -
Z =g (Za ma) +om (2.31)

where the A% denote the weighting factors for simple kriging.

The additivity theorem which is easy to prove (see [1])
leads to the following relztion

¥* *
2y = ag (2, = M) + M (2.32)
This shows that the U.,X estimator can be obtained by
kriging (in the sense of simple kriging) the optimally estimated
*
residuals Za - Mﬁ as if they were the true residuals, and then
adding the optimal estimator of the drift.

Of course, this proof is essentially based on the fact
that ¥, is the optimal universal estimator of the drift.
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One other remark about the additivity theorem has to
be made. Since x% Za is just the estimator given by simple kriging
(end denoted here for convenience by ZK), the preceding equation

can be rewritten as

(2.33)

where ZD is the correction term for the drift and is equal to
*
M; - xg M& « From this it is easy to show that the variances are

additive

DZ[Zu] = DZ[ZK] + DQ[ZD] (2.34)

This shows that the variance in U.X. is equal to the
simple kriging variance plus the variarce of the correction term,

Since the term DZ[ZD] is clearly either positive
or gero, the U.,K. variance is always greater than or
equal to that of simple kriging. This can be understood
by considering kriging in terms of projections (ef [3]).
In simple kriging, the solution belongs tc the space of
linegr combinations whereas in U.K., the sclution belongs
to that of suthorized linmmr combinations, (i.e. those
satisfying the universality conditions. This new space
is a subspace of the preceding one, and the variasnce cf
the new estimator is necessarily larger than in the

first case,

2.6 KRIGING CONSIDERED AS AN INTERPOLATOR.

2.6.1 The Problem.

The idea behind geostatistics is to treat the available
data as a realization z(x) of a R.F. 2(x) which is known at the sam-
ple points X, s @= 152500090 Provided that certain hypotheses are
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satisfied, this model can be used to determine the covariance K(x,y)
and hence to estimate the value at a point as a linear combination of
the available data. This is done by minimizing the estimation varien-
ce. So the estimator z*(x) is

z%(x) = A% z, = A %(x) z(x)

As can be seen from the form of the kriging system

X

Ft

the weighting factors N depend on the location of the point to be
estimated, and can therefore be written as A% (x). They also depend
on the relative positions of the sample points and on the choice
of the covariance function and the drift functions.

If we consider the estimator as a function of x, the
procedure can be described in the following way :

For a given function z(x) (which is a realization of
Z(x) known at the points Xa)’ we have found an interpolating func-
tion z*(x) = A%(x) z(xa) which has the property of being an exact
interpolator at sample points.

‘he main objective in this section is to study the pro-
perties of the kriging estimator viewed as an interpolator. Firstly
we shall see that it is a linear combination of the functions Kax
and fe(x)- At the same time we shall also find the linear system
satisfied by the coefficients in this linear combination. We shall
call this system, the dual system [ 1] , [ 4].

2.6.,2 The Notgtion to be used.

&

Let z denote the vector whose components are z1,z2,...,zn

Using matrix notation we can write
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z%(x) = 2t A(x)

Now suppose that the kriging matrix is non-gingular.
Let its inverse be
U;V

]
vt LW

Clearly this satisfies

n k n k
n |k | F][U 1V I 10
et I B R e I B e (2.35)
i | i
+ 1 t | i
k Lr° 0 ol Lviiow 0 1 I

(2.36)

I
i
]
|
!

Hence

A(x) = U K, + V £,

If we substitute this expression for A into the equa-
tion for z¥*(x), we find that

z*¥(x) = z¥ U K, + 2% v £ (2.37)

From (2.35) we note that U is symmetric. Put

b = Uz (2-38)
c = V VA (2039)
z¥(x) = bt K, + ot £,

This can be rewritten using Einstein's summation



convention as

z*(g) =bp* K _ + cg £5(x) (2.40)

ox

So z*(x) is a linear combination of K, @end fe(x)- This
can be incorporated into a single matrix equation by adding k zeros
at the end of the vector z. Then

I

>
N
o’

<t

—A-dL-——
il
|
|
i

0 c

<
o

Since A and B can be chosen arbitrarily, we can take
A=YV and B= We This gives

i
i
i
1
" N
i
i
1
i
I
!
i
il
§
l
i

Since we recognize the inverse of the kriging matrix
in the above expression, we also have
X Rk b Z

——— (2.41)
0 c 0

g -

t

|
i
|
|
%

P {

|

By definition this is the dual system [ 4 ]. If we com-
pare this with usual kriging systems we see that the kriging system
uses the values of Kax and fi whereas this one only involves the
experimental values,

From this system we note that

i.e. p* f§=o vl=1, 2,...,k

That is, in the usual notation, b is an admissible 1li-
near combination.
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I should be noted that the dual system cannot be used
to calculate the estimation variance which has no meaning in this
framework, Nor is it possible to obtain the estimation error by
replacing z(x) by z*(x) in this system. Moreover, there is no way
of using this to choose the covariance function K(x,y), at least
without going back to the kriging methodology. This system only
serves to define an interpolator of the form b* K.x * e £8(x)
by defining the set of coefficients which guarantee that it is an
exact interpolator at sample points. This leads to n conditions.
To this we have to add the conditions to ensure that the v* are
AIC's.

2.6.3 Properties of the Estimater.

We shall now go on to study the properties of this esti-

mator.

« We ¥now that in this case

a) ILet z, = 5&8

B
* =
z*(x) = A (x)
that is, A%(x) is of the form b“* K,x * Ce fe(x). Since this takes
the value 1 in x  and O elsewhere, it is easy to show the A%*(x) are

independent since a, A*(x) = 0 implies that a_ x“(xﬂ) = 0 for all
B = 0 for all B.

B = 1y...yn and hence that a
b) We shall now consider the case where z(x) = fe(x)
2*(x) = A%x) £9(x))
but by construction, the 2% satisfy
5 fe(xa) = £8(x)
hence z%(x) = £4(x) = z(x)

that is, the interpolator is exact for the basis functions.
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¢) It can also be shown [ 1] that this interpolator is also
exact for the functions f£(x) = a% x ax where d belongs to the space
orthogonal to the one that is spanmned by the drift functions.

a® ff(xa) =0 Y€ = 150005k

2.,6.4 Examples in 1R1.

A. Iet K(h) =|h3l.This function is not a covariance because
it is positive-definite only if A is an AILC of order 1. (For the de-
finition of an ALC of order n see [g],

In a subsequent chapter we shall see that this function
is a covariance of order {1 and can therefore be used to krige IRF-1.,
We shall see that the system is exactly the same if we replace the
covariance matrix by a generalized covariance matrix.

We cém therefore write

RO : 2 T I
z*¥(x) = b lxxa[ e, +c, X

where b® satisfies

N u* =0 ,Z}baxa=0
We can now assume that with x1 < x2 < ose .<)%1 :

1/ If x=2x,

z¥(x) = boc(:;;—:z;m)3 +¢, +C, X

1 2

2

2x +3b% xx
o o

B S I a _onx 3
= b” x 2 b7 x bxa+c1+c2x

Since b is an AIC of order 1, b x° and 3 v* x° x_

disappear, leaving
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z*(x) = ¢y - % x1:+ (02 - 3 po xﬁ) X

Consequently outside the interval ]x1,xn[ , z*(x) is
g first order polynomial.

3/ 1Inside the interval [Xi’xi+1[

z*¥(x) = X ba(x—-xa)3 + ba(xa—x)3 + c

+ ¢, X
. . 2
asl o>l 2

1

that is, it is a cubic. Since the function K(h) can be differentiated
twice, so is z¥(x). We therefore find that

z*"(x) = 6 v%|x - x_|
In the interval [z, %, [

#(x) =6 ¥ b¥ (x-x) -6 2 b (xx)
z¥" (x A X=X, isi © o

Hence
z¢mx) = 12 L b*

asl

This step follows from the condition X b* = 0. So

s 1]
N %1§ 5 =12 3 b
i+1 a<i

Similarly in the interval [xi+1, Xi+2[

z¥m (x) = 12 & b
at+i+1

Consequently the jump in the 3rd order derivative at the

point X541 is 12 bi+1' The condition.Z}ba = 0 implies that on ave-

rage these jumps have different signs.
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2.6.5 The Effect of certain Linear Operators.

Now that we have an interpolator z¥*, we can carry out
a certain number of operations (such as differentiation, integra-
tion, convolution etc.) provided that these are not prohibited
because of the properties of K(h) and of fe(x). We can ask whether
the interpolator (after being transformed) is the same as the
kriged estimator of the transformed variable.

We shall first consider the case where the operation
is a moving average over a certain volume. Let ZV be the kriged
estimate of the average value of Z over V, Then

(29), = ¢ J z%(x) dx
v
=%giKﬂdx+¥lfQﬂdx

In the usual way let
£ = fe(x) dx and K =+ J K _ dx
v vV : av V ax

¥ _

S0

' N /
(z*)V =D Ky + Ce f

From (2.38) and,(2.39) this can be written

t t
4" U Ky + Z° Vv fv

(z%),

_ ot
=2 (UK, +V £)

The term in brackets is just the values of the weight-
ing factors used to krige the average. So

(z%)y = Zy



This property holds more generally. 1t is due to the
fact that kriging is a linear operator. Consequently, kriging a
variable that is obtained from Z by a linear transformation merely
involves a change in the vector part (i.es the right hand side)
of the kriging system. In this case, Kax is replaced by Ka‘%’=
Cov (za,se(z)) where &5 is the transformation in question. The

property, therefore, holds whenever
Cov (Za,-éﬁ(z)) = &(Cov (Za’ Z))

which is the case for most linear operators such as integration,
differentiation and convolution.

2.6,6 Parallel with the common methods of numerical integra-

tion.
Suppose that we want to calculate

I(f) = % J f (x) ax
v

There are lots of methods in numerical analysis for
calculating I(f) as a linear combination of the (point) values

I,(£) = 2% £(x,)

The weighting factors are often calculated so that
the formula for the numerical integration will be correct over a
vector space of functions D, i.e.

I(f) = In(f) vy feD

One of the most common choices for D is the space of
polynomialg. There are many reasons for this : convenience, the fact
that these methods are well known, or because there is no reason
for choosing another one. |
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The form of z*(x) suggests that it may be more interest-
ing to choose the weighting factors so as to integrate the functions

K, and f (x) exactly. (This would automatically lead to an exact
numerical integration of z*(x)).

This would give us

- - - o
I(Kax) =K = In(Kax) = A" Ky

ov
1(28x) = £ = 1 (£%x)) = A% 28(x )

That is, it leads to a system of n+k equations to de-
termine n unknowns, which in general has no solution.

However in the stationary case with a known mean, the

last k equations disappear, so it can be solved.

In fact, what we really want to do is to integrate z*(x)
numerically in an exact way. Rewmembering the conditions

b® fe(xa) =0,

we see that it is no longer necessary that the error in integrating
K, x be zero. It need only be of the form p, fe(xa).

_ ¢
1/ LK) = I(K, ) =p, £(x)
Writing this in the usual way gives us
APk

{
o T e £ (Xa) = K

2/ Moreover, the fe(x) have been integrated exactly (i.e.
2 elx ) = £D).

It is easy to check that conditions 1/ and 2/ give
the system for kriging a mean value.
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It should be noted that even though this formalism
leads to the same system as kriging does, it does not allow us
to evaluate the error variance since there is no way of interpret-
ing the p, using this method of numerical integration.

2.6.7 The Link between Kriging and Spline Interpolation.

The dual system provides an operational definition
of an interpolating function which is exact over a vector space
of functions and passes through the experimental points. It cen
be shown that this interpolator has some interesting properties
as a function.

To start with, it is a spline function (i.e. an inter-
polating function which minimizes the norm of a suitably chosen
operator in a certain Hilbert space, Conversely, any spline func-
tion can be interpreted as a kriging interpolator. The only pro-
blem with this approach is to choose the appropriate operator and
a suitable Hilbert space. For more details about this see [4], [6 ]
and [ 71, [8 }-
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2.7 COKRIGING

26 7.1 The PrOblem.

Cokriging was developed to treat cases where several
regionalizations are being studied similtaneously. This situation
often arises in practice and can occur in many different ways. For
example, the grades in a polymetallic deposit ; the simultaneous
study of windspeed and pressure in meteorology or of altitude and
gradient in topography. In other cases it mey be necessary to take
into account the accuracy of the data values as well as their actual
values,

No fundamentally new theoretical problems arise in
cokriging (cf. § 2.7.3). But the problems involving the notation
are by no means trivial., From the practical point of view it has
to be used with care, or else it is easy to end up having to solve
very large systems of linear equations which give rise to only a
limited improvement in the precision,

Rather than going into all the details of the Universal
Cokriging which can be found in § 4.5 of [1], we shall limit our-
selves to considering a minor theoretical complication concerning
the singularity of the kriging matrix. The rest of thesection can
be omitted in the first reading.

2.7.2 Notation.

At first it seems wise to use a slightly different system
of notation from that used earlier.

- Instead of a single R.F. Z(x), we now have a family
of R.F, Z;(x) where the index i denotes the variable
under study and takes the values 1,2,...,d. Iet D
denote the set {1,2,...,d} of indices, The d R.F. 23
are supposed to be defined on ®".



56

- Each of these R.F. has a drift mi(x) which is defined
by

mi(x) = E[Zi(x)] (2.42)

This drift can be developed in terms of a family of
basis functions

my(x) = a,(1) £.(x) (2.43)

where the index € goes from O to K, .

Lastly the cross-covariance is defined by
K; 1(x,3) = cov [2; (%), 24(y)] (2.44)

The method described in the preceding sections can now
be re—-applied here. The only difference is that there is an extra
index. The usual properties for kriging (exact interpolation and
the additivity theorem) hold here too.

However, even though it may seem to be of little practi-
cal use now, it is worthwhile considering another way of represent-
ing cokriging. We consider thed values of the R.F. Zi(x) as a sin-
_gle R.P. %(x,i) which is defined on the space E = [R x D.

From this point of view, Z can be considered as a vector
R.F. having Z(xo,1),...,Z(xo,d) as its components. Similarly, Z heas
a drift m(x,i) end a covariance cov [%(x,i), Z(y,J)] which can be
denoted by Kij(x,y). Except for the fact that the space E has no
obvious physical meaning, this change of notation brings us back
to the problem described in the first section § 2.1. Consequently,
cokriging can be considered as an example of U,K. defined on a
rather special space. This point of view will be used in the fol-
lowing section.
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2.7.3 Iinear Independence of the Basis Functions.

Iet S, (i € D) denote the domain within B® where the
ith component of Z(x,i) has been measured. (Intuitively, where we
now the realisation of the ith variable Zi(x)).

The set of sample points of the R.F. Z is therefore a
subset S of B® x D, which is defined by the pairs (x,i) where i ¢ D
end x € Sj. Using this notation (which is just that of U.K.) we
assume that the drift can be expanded as

m(x,1) = a, fe(x,i) (2.45)

where the £t is a family of basis functions defined on E = & x D.
It should be noted that in this presentation there is only 1 variable 3}
i is merely a coordinate in the space E and 2 p does not depend on it.

The reader will recall that the necessary and sufficient
condition for the U.K. matrix to be non-singular (provided that the
matrix of covariances Kij(x,y) is strietly positive definite) is
that : "If there exists a set of coefficients ¢, such that

14

= 0
o

ce f

for all date points «, then the Cy mst necessarily be zmero (cf.
§ 2.2.1.4). In the present case, the necessary and sufficient con-
dition is that 3

If there exist a set of coefficients Cy such that

cp fg(x,i) = 0 (2. 46)

for all couples (x,i) € S, then the c, mst all be zero.

2.,7.4 EXAMPIE : Two random functions.,

In the simple case where D = {1,2}, that is, when there
are only two R.F. Z,(x) and ZZ(X), it is easy to write the equations
in full.
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2.7.4.1 Algebreically independent drifts.

Suppose that there are k, + k, functions fe(x,i)
(appearing in formula (2.45))and that they satisfy

£8(x,2) = 0 for {1 gl<k

1

+1 <l < k1 +k2

(2.47)

fe(x,1) 0 for k

1

Intuitively this means that there is no "inter-
action" between the two drifts. More exactly, there is no (functional)
algebraic relations between them, This is reasonable when dealing with
grades in a polymetallic deposit, or for windspeed and pressure in
meteorology, etcs.

Suppose that S1 = ¢ (intuitively, that the first
R.F, Z (x) has not been measured anywhere). It is clear that because
of the algebralc independence, knowing 2 (x) does not provide any
information about the drift m(x,1) and that cokriging is therefore
impossible,

The set S mentioned in condition (2.46) reduces

to 8, x {2} since S is empty. If we let cp= 0 for k, < e < k, + k,

2
(2.48) and let ¢, take any value for 1 < ¢ < k, , we find tlat be-
A 1

cause of (2. 47),0 f (x,l) 0 for all (x,i) € S. The basis functions
Z(x,l) are not linearly independent on S and the cokriging system

is singular.

Of course, the same thing happens if 32 is
empty.

The implication of this result is quite clear 3
there is no point in accumilating information about one variable
when there is no available information about the other and when
the two are not linked algebraically. Moreover, experience shows
that this conclusion can be extended further. When we want to use
cokriging to estimate the ith R.F., the data for the other R.F.
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Z. (j # i) should be considered as additional information. When
tlale cokriging system is being set up, the stress must be put on
the datae for Z; itself. All the major practical problems in co-
kriging stem from this important but rather vague idea.

2.7+4.2 Algebraically linked drifts.

As an example of this, take the case where
the drift m(x,2) is the derivative of m(x,1). For simplicity, sup-
pose that we are working in (111.

The functions m(x,1) and m(x,2) are now
linked algebraically. To take account of this, we choose the ba-
gis functions such that

fe(x,1) = q)e(x) for 0<l<k
fe(xsz) = % qJe(X) for 0 <fl<k

Suppose that in our 1-D example, the q)f (x)
are monomials of degree ¢ (the importance of these functions was
discussed in § 2.5.1.4). In this case, the basis functions satisfy

4 )
£ (x,1) = xe

_ for 0 <@<k (2.49)
fe(x,z) - _ex? 1 ! =g

Using the same notation as before, it is
clear that even if 82 = ¢ , the drifts can be linearly independent
if the set S is chosen appropriately. However, since fo(x,2) = 0,
if S41is empty, it is possible to find a set of coefficients which
are not all zero (c0 # 0) for which

cefe(x,i) =0 for all (x,i) € S

The drifts are linearly dependent and the
kriging matrix is singular.
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From an intuitive point of view this means that
it is possible to cokrige the derivative given the values of the va-
riable itself, but that the converse is not possible.

2.7.5 Some Comments of a Practical Nature,

The preceding examples may seem 00 abstract and too
adademic, However the question of the independence of the drift
actually arises in practice. Often it occurs in the following
way : the physics of the problem suggests that the basis functions
are linked algebraically (e.g. the gamma log is a convolution of
the uranium grade, the relation between depth and inclination, or
between atmospheric pressure and wind speed). Should this be taken
into account when the cokriging system is béing set up ? Both ans-
wers are possible. It is clear that the choice made will have a
marked effect on universality conditions and that this will have
serious repercussions on the numerical stability of the results.

Over and above the problems of notation, considerations
of this type are in fact the real problem in using cokriging, and
this can only be overcome case by case in practice,
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CHAPTER 3 - THE INTRINSIC HYPOTHESIS

3.1 GENERAL PRESENTATION

In this chapter, the word "intrinsie" will be used in the
narrower sense j that is, it will be taken to mean "intrinsic but
not stationary”.

In this case, only admissible combinations can be used,
because, otherwise, the mean and the variance need not exist. The
definition of these combinations is given in [1]. Going back to
the decomposition proposed in the preceding chapter

2(x) = Y(x) + a, fe(X) (3.1)

we can no longer say that a, fe(x) is the drift of Z(x) since in
the intrinsic model the mathematical expectation of Z(x) may be
infinite.

In reality, when using the intrinsic model, the object
under study is no longer the R.F. Z(x) as it was in the stationa-
ry case. Rather, our attention is focused on a new mathematical
entity — the admissible linear combinations (ALC), that is, ex-
pressions of the form AT Z(xi) where Z)hi = 0. The object of our
study, Z(x), is now seen via an operator and all the new problems
encountered using this formalism are due to the fact that there
is not a 1-1 correspondence between Z(x) and its transformed
values, If Z(x) is known, there are no problems obtaining the
AIC, but the converse is not true. Even if all possible AILC are
known, there is no way of reconstituting Z, which is only known
up to an additive constant,

Consider two R.F. Z1(x) and Zz(x) such that

Z1(X) ='Z2(x) + A

where A is an arbitrary rendom variable., Then for all
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xl such that 7 Ki =0

i i i
A Z1(xi) A ZZ(X:’L) + AT A

1]

i
A Zz(xi)

so any admissible linear combination formed using Z1(x)
always has the same value as the same combination formed
using Zz(x).

Conversely, suppose that At Z1(xi) =t Zz(xi).for
all possible AIC. et Y(x) = 2,(x) - Zy(x). Then A" ¥(x;)
= 0 for all ALC, and in particular for any choice of x,
¥(x) - Y(o) = 0, or ¥(x) = Y(o). Consequently Z,(x) =
Z,(x) + A.

This additive constant is going to play an important role

follows in this chapter. In order to incorporate it into

the overall formalism, we are going to let the first basis func-

o)
tion fx

be unity, and so the additive constant will just be the

coefficient a_ .

in the

o}

Rather than going back over all the calculations given
preceding chapter, we shall limit our attention to the

new problems due to this indeterminacy and their consequences

on the

final results.

3.2 KRIGING

3.2.1 The Problem.

As in the stationary case, we want to find the opti-

mal linear universal estimator :

2. =A% 2 (3.2)
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*
But this time, before attempting to minimize the variance DZ[Zx - Zx]
we must check that Z; - Zx is in fact an ALC. Similarly the universa-
lity condition can no longer be expressed as in equation (2.6) ¢

E[2.] = E[2.]

because, in the present model, Zx is not an AILC and so we cannot
speak about its mean. The universality condition can only be writ-
ten as

*
B[z, - 2,] =0 (3.3)
and then only provided that Z; - Zx is an AIC.

Summarizing, we want to find the set of coefficients N

such that
(1) oz, =A%z | (3.2)
(14) the estimation error Z; - Z, is an AIC (3.4)
(111) B[z, - 2] =0 (universality) (3.3)
(iv) Dz[z; - Zx] is a minimum (optimality) (3.5)

3.2.2 Setting up the System.

The four conditions listed above are going to be consi~-
dered in order.

The estimation error can be written as

a

A Za - Zx
The necessary and sufficienp condition for t@is to be

an ALC is that it must be of the form Al Z(xi) where 3 AT = 0.

That is, Z}Ai - 1 =0, Consequenﬁly the condition for admissibility

is that
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» A% =1 [A] (3.6)

After taking account of [A], the universality conditions

become
a —
E[A" 2, - Z,] =0

Applying the expansion given in (3.1) gives

a, W% £t - £f) =0

which must hold for all possible values of 8y o In fact since f; = 1,
it is clear that the admissibility condition [A] guarantees that this
holds for € = 0., The remaining constraints for € > 1 are then

A g = £l [U] for €21 (3.7)
a x
¥*
Finally, because of [A], the variance DZ[Zx - %] is
calculated in the same way as before except that the variogramme
for Z, -y, takes the place of the covariance function K. Thus

2ro* _ 5 7 = _ 4% ,B a -
D[z, - 2. ] = = A" A Yog ¥ 2N Yox = Yxx (3.8)

As in the stationary case, we use Lagrange multipliers
to minimize €3.8) subject to the constraints [A] and [U]. Since the
conditions [A] and [U] can both be written as :

v ¢ 2% gl = gl (3.9)

the sought-after solution for A% and o minimizes the expression :

(-2% AP F 20y =Y t 2, W28 - 2B a0 (3.10)

YaB ax

However it should be remembered that the condition for
¢ = 0 is fundamentally different from those for € » 1. In what fol-
lows, the parameter Ho will have a very special status (ef infra).
But for the moment, it is simpler to write all the conditions in
the same way,
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3.2.3 Solving the System.

The UK system is obtained in the same way as for the
stationary case. This gives :

AP v tm, L= vy [0]
2% fz = £ [a] (3.11)
4 -
N = £f (U] &> 1

When the solution to this is substituted into the expres—

sion for the estimation variance (3.8), we obtain
- = - e
D[z - 2,] = A%y = b, £ (3.12)

which, incidentally, can be deduced from the formula for the sta-
tionary case (2.13) by replacing K by -y and on noting that Yoy = O¢

3.2.4 Comments.

The properties which held in the stationary case are
also true here, vig.
- the necessary and sufficient condition for the

system to be non-singular is that the basis func-
tion be linearly independent over the data points

(ef § 2.2.1.4).
- kriging is an exact interpolator (cf § 2.2.1.4)-
- the linearity of the expressions obtained makes it

possible to go from kriging point values to kriging
weighted averages as was done earlier in section

2:2.20
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3.3 OPTIMAL ESTIMATION OF THE DRIFT

3.3.1 The Problem.

In contrast to the stationary case, the decomposition

Z(x) = Y(x) + a, fi (3.1)

goes further than is possible with the intrinsic model. In fact,

the formalism being developed in this chapter deals only with ALC,
or if you prefer, with increments and combinations of increments

of Z. We therefore systematically filter out the additive constants,

in particular the term a,

So right from the outset it must be said that the term
a8, which appears in the decomposition (3.1) cannot be estimated.
This spotlights the difficulties which were raised in § 1.1, of
trying to reconcile the methodological requirements with the intui-
tive ones of the naturalist. In practice, it is shocking having to
renounce estimating the additive term, particularly when the avail-
able data Za are not subject to any incertitude of this sort. How-
ever the criticism is attenuated in some respects by the fact that this
does not cause any trouble as far as kriging is concerned. It only
becomes a problem when we try to get more out of the results than
is permissible from the theoretical point of view.

We will see later that this indeterminacy can be partly
removed, but only at the price of an additional arbitrary hypothesis.
This shows that there are two types of properties : those which are
fundamentally linked to the methodology and can be called inherent
properties, and those which are due to arbitrary choices made by
the user. This distinction will be developed further in the theory
of the IRF-k.
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3.3.2 Setting up the System.

The preceding remarks lead to the conclusion that it
is impossible to estimate the drift ae'fﬁ itself. This is also
confirmed by looking at the formulae obtained in the stationary
case and noting that the estimation obtained has > A% = 1 and
is therefore not an AIC.

However we can still estimate the increment in the
drift between any two points., Let Y, be an arbitrary point and
let

2'(z) = z(x) - z(y,)

The R.F. Z'(x) is an ALC and therefore has a mean.
Its drift is

m'(x) = E[2'(x)] = a, (f§ - f§ ) = a, ¢£ (3.14)
0

P _ ol _ 0 _y . .
where ¢ = f2 fyo - Note that the term in a, has disappeared
from the formula.

In addition, Z'(x) has a covariance

cov[z'(x), 2'(y)] = (3.15)

- + +
ny nyo Yyyo

This brings us back to the situation in Chapter 2,
except that the estimator of the drift m_has to be an ALC of
the Z (from condition [A]). So we have to find an estimator satis-
fying the following conditions :

=%z (3.16)
»a%=0 [A] (3.17)

Because of [A], the formula (3.16) can be written as
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— 0
M o=2* 2z, (3.18)
We then want the estimator to be universal ; that is

E[A% z¢;]=m;c==a\‘Z cpfc (2= 1)

?
When A% Za is expanded, this becomes

)\aaeq;cel=a£cp£ (€= 1)

which leads to the universality conditions

A 9l = ¢ (£ > 1) [u] (3.19)
Lastly we want to minimize the variance D2[M;[*] which

is equal to

pP(m ] = p[a% z.] = A% AP [- Yap * Yoy * Yoy ]

Now since 3 A* = 0, it is easy to show that

Dz[M;*] = - 2% APy (3.20)

o

The system of equations can be found using Lagrange
maltipliers :

- 2P Yog * Mo * wf 9f = 0 (£ 20) [0]
> Al = 0 [4] (3.21)
a = of
A Cpé = 9y (£=21) [v]
If 4 L _ gt vl ofl g
we replace Py by fx fy and let us denote Ho — M fy Y bg s
this system becomes :
- AP fu +tp £ = 0 [0]
chB Ho e tg
Z A = 0 [A] (3.22)
L - ¢ _ 5t
A% £ = £ oo (£=21) [u]
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These equations make it possible to estimate the incre-

ment m'(x) = m(x) - m(y.). It is easy to show that the variance of
Tx o . 0
EX = A Za is equal to

] = -, L5 - 2] (3.23)

3.4 ESTIMATING THE COEFFICIENTS OF THE DRIFT

3.4.,1 Preliminary Remark.,

The system for estimating the drift was rather unsatis-
factory in that it was not possible to estimate the drift itself.
This was because one of the components of the drift, a9 could not
be estimated. We now wish to check that a, is the only such compo-
nent and that the others can be estimated without any additional
problems,

3.4.2 Setting up the System.

As in the stationary case (cf § 2.4.2) the form of the
system shows that the solutions for A% and Lp are linear combina-
tions of a family of functions in x. In the present case, these
functions are the differences fi - f§o (for 2 > 1).

So there are two unique matrices xg and pg which
satisfy

¢ ?
A =G (g - fyo)

€= 1 (3.24)
s >0

I

(£f - £8 )

g = HPgf ‘Tx Yo
It is easy to obtain the equations that the A\§ and

the pp  satisfy (by substituting the results (3.24) into (3.21)

and identifying the various functions in x, as was done in § 2.4.2).
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%

This gives :

B s _
)\e ”{aB + Hog fa 0 )
2 1 § (3.25)
o .S s °
Ay L9 = & s20

3.4.3 Estimating the coefficients age

If the objective is to estimate the coefficients of
m*(x), the problem is exactly analogous to the stationary case,
and it is easy to show (as in § 2.4.3) that
¥ o
Ap=2n, 12, (3.26)
is the optimal universal estimator of the coefficient ap for 0 > 1.

All the coefficients of m'(x) = a, (f£ - f;
0

this method since a, does not appear in the expression for m*(x).

) can be estimated using

But in fact we are interested in the drift m(x) itself
and not in its increments m'(x). Now

m(x) = 2, fg £ >0

and the case € = 0 is not taken into account in equation (3.25) . It
is always possible to "complete" the equation by adding the index

€ = 0. The system will definitely be non-singular and will thus pro-
duce a set of coefficients xg « Unfortunately, if we let

oy =%z (3.27)

(o} a

then A: is not an AILC. Consequently, in the model we have no right

to talk about its mean and even less about its variance. So it is
*

meaningless to call A, the estimator of a_ . However we will see

o
later the meaning that can be attributed to this variable,
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3,5 SEVERAL PROPERTIES AND THE CONCLUDING REMARKS

3.5.1 Generalization of the rsults in the stationary case.

Except for the difficulties involving the term Ao »
all the properties found for the stationary case also hold here,
In particular this is true for

- the tensorial invariance (see § 2.5.1)

- the additivity theorem (see § 2.5.4)

There are no new theoretical problems in developing
the equations for cokriging for the case where only the variogram
exists.

3.5.2 Conclusion.

In this chapter we have stressed the insoluble problems
of indeterminacy in the estimation of the coefficient a, when the
intrinsic hypothesis (in the narrower sense) holds. In many ways,
this indeterminacy is the price that has to be paid in order to be
able to develop the UK equatiors under a less restrictive hypothe-
sis than the stationary one.

However, from the practical point of view, this is dis-
turbing, even if it affects only the estimation of the drift and
not the UK itself. The drift (taken in the intuitive sense) is just
as well defined at sample points as are the sample values themsel-
ves ; in any case, a user would be appalled to have to accept that
the "trend" or the "general tendency" is only known up to an addi-
tive constant,

This difficulty comes from the fact that the mathemati-
cal definition of the drift that has been given here (which is, of
course, the thing being estimated) is not identical with the intul-

B e
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4 -~ THE INDETERMINACY IN UNIVERSAL KRIGING

4,1 PRELIMINARY REMARK

In the last two chapters we touched on two problems which
have to be solved if universal kriging is to be put into practice.

- Up till now we have always assumed that the covarilance
function (or the variogram) was known. In section 2.3.5
we discussed the apparently intractable problem of struc-
tural analysis.

In addition to this, in chapter 3, we raised another
problem : in the intrinsic case, even if the drift could
be estimated before y, it would be known only up to an
additive constant. We can ask what consequences this
would have on the calculation of the experimental vario-
gram.

In any case the "real® drift (the one in the model)
will never be known. We need to know if substituting an
estimate for the real drift is going to cause any addi-
tional problems.

~ When the intrinsic hypothesis holds, the estimation of the
drift is subject to an unsurmountable problem of indeter-
minacy. What meaning can be attributed to this ? Or, in
other words, does this indeterminacy cast any light on
the relationship between the mathematically defined drift
and its intuitive equivalent ? The drift in the model has
the advantage of being rigourously defined, but does not
necessarily correspond to anything real ;3 the user's con-
cept of drift is clearly related to reality but cannot be
used as a rigourous formalism.
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In this chapter we intend to treat the second point first,
and then to extend the mesning of the universality conditions. Af-
terwards we shall develop a possible method of structural analysis,
which will highlight the inherent indeterminacy in the model and
the consequences of this indeterminacy on the estimators found in
the preceding two chapters.

4,2 THE MEANING OF THE INDETERMINACY IN THE DRIFT

4.2.1 Preliminary Remark.

In section 2,1 we defined the drift as being the mean
of 2(x)

m(x) = E[Z(x)] (4.1)
In addition we assumed that it could be expanded in the form
- m(x) = a .
(x) = a, ££ (4.2)

These two steps have totally different objectives 3

- The definition is there to provide a rigourous mean—
ing to the idea of a drift and to allow us to use it
in the theory. It is neither true nor false. It is
merely a choice which may prove to be fruitful or
otherwise, What is more, it is certainly not the
only possible one,

- The hypothesis (4.2) is designed to bring the definition
(4.1) closer to our intuitive idea of a drift (which is
generally associated with the idea of regularity, of
trend, of low frequency, etc..), by constraining it
to be regular. But this time the hypothesis can be
rejected experimentally (e.g. if the basis functions
fg are badly chosen, or if there are not enough of
them, etc..).
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In other words, if we want to develop a new presenta-
tion for the drift, we cen change the definition (4.1), provided
that this turns out to be more useful, but we will always need
some sort of condition like (4.2) if we want the new drift to be
closely related to our intuitive ideas.

4.2.2 Hypothesis of & random drift.

The preceding remark suggests an idea for a new model.
This time the R.F. Z(x) is split into two components :

z(x) = Y(x) + M(x) (4.3)

where E[Y(x)] = 0 and M(x) is itself a random function,

In the first instance, we shall not worry about the
practical problems of fitting a model of this type. We shall limit
ourselves to the theoretical consequencés of this choice. In fact,
nothing prevents us from considering the drift as a realization of
a random process. Lhis choice may turn out to be unproductive but
it cannot be proved to be true or false., In any case, to maintain
the link with the intuitive idea of a drift, we need to introduce
a regularity condition of the form :

M(x) = &, £2 (4.4)

where the A@ are random variables this time, This condition embodies
the ides that the decomposition into components (4.3) is not arbitra-
ry. On the contrary, the components Y(x) and M(x) incorporate struc-
tures which operate at significantly different scales.,

To complete the model we let

E[Y(x) Y(y)] = K(x,¥)
E[m(x) u(y)] = D(x,y) (4.5)
E[Y(x) n(y)] = R(x,y)



We assume that the functions D and R vary slowly enough

in space so that each can be expressed by the sum of the first few
terms of its development in terms of the basis functions £f . Iet

D(x,y) = Dog f§ f; )
4.

R(x,y) = Rpg fﬁ f;

In fact, the first of these approximations follows
from (4.4), if we put Dy, = E[Ap A ]. The second is a
slightly stronger type of regularity condition.

Naturally, these hypotheses have an influence on the
form of the functions D and R, but the value of the coefficients
Des and Res is still unknown, as is the distribution of the random

variables Ae o

4,2.%3 Estimation of a Random Drift.

Suppose that we want to estimate the drift M(x) by a

linear combination of the data :
3% - a = o o
w(x) =A%z, =AY + A% M (4.7)
The mean of the square of the error is equal to
E[w(x) - W(x)]2 = B[A® ¥_ + A% M- ]

We expand this using equation (4.5) and then apply the

spproximation (4.6) where possible. This gives :

B[M(x) - M(x)]% = A% AP Ko + 2 A° £8 B, (AP fg - £3)
(4.8)

+ Dp (% £ - 2D (WP 25 - £3)



-]

This expression cannot be minimized for arbitrary
velues of A* because the coefficients Rfs and D?s are not known.
The minimization can only be done by adding constiraints which
effectively eliminate the unknown coefficients. These constraints
are just

@« o€ _ £8
A® gL = £8 (4.9)
that is, the usual universality conditions.
Given these conditions, the expression (4.8) becomes

E[M*(x) - M(x)]% = A& AP Kog (4.10)

Applying these conditions to the formula for the mean
gives .
E[M*(x) - M(x)] = 0 (4.11)

So, the system for estimating a random drift is exactly
the same as in chapter 2, Given the hypothesis (4.6), a random drift
can be treated in exactly the same way as a deterministic (functional)
drift.

4,2.4 Estimating a moving average.

Tn this section, we shall not go into the details of the
development Which is not difficult (see [1], § 4.4.3). We shall con-
centrate on trying to understand the results.

4.2.4.1 Setting up the system.

Let Z be an intrinsic random function having ¥y
for its variogram. Iet Z have a zero drift ; that is, Z)A; = 0=
E[A" 2(x,)] = O.

Iet p be a very regular weighting function
with its sum equal to 1. Suppose that its range is large compared
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to the zone under study. We define

M(x)

i

z * P = |al(x+y) p(y) @
P me Py (4.12)

Y(x) = 2(x) - ¥M(x)

M(x) is a weighted average of Z(x) and, as such, can be
estimated by UK. We know that the UK equations do not present any
problems of indeterminacy (see § 2.3.2 and 3.2.4). This can also
be proved directly from the decomposition

72(x) = Y(x) + M(x) (4.13)

where M(x) is a random drift. The function p satisfies the required
regularity conditions (from their definition) so we can apply the
results from the preceding section.

In particular, the mndom function Y is an ALC with a
stationary covariance function ny = K(x~y). Applying the formulae
for calculating a regularized variogram and taking account of the
regularity of p, it is easy to show that ny is of the form 3

K., = + P

- ¢ p0
- Ty es Tx Iy (4.14)

The expression to be minimized in order to estimate M(x)
is equal to A% AB KaB' After applying the universality conditions,
this can be written as

a LB = _ 20 ,B
AT Ky K(o) = A% A Yop (4.15)
Summarizing, the system for estimating M(x) is
- B ¢ -
A ‘Y(xﬁ+p,e fx 0
x o ’ (4,16)
A fa = fx

The corresponding variance is
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p?[u} - 4] = k(o) - u, £l (4.17)

X

4.2.4.2 Comparison with kriging.

We have seen that M(x) can be estimated direct-
ly by UK, since it is a weighted average of 72(x). The UK system is
then :

B = -
=AM Yeg *Bo T I v(y) p(y-x + x ) dy 18)

20N 1

There is no universality condition here because
7 has been assumed to satisfy the intrinsic hypothesis with zero
mean.

Comparing the two systeus (4.16) and (4.18)
is particularly instructive :

- The second point of view does not involve any
simplifying approximations. The system (4.18)
is true for any weighting function p. But if
this function p satisfies the hypothesis stated
in § 4.2.4.1 (in particular if it has a large
range), then the values of y for large distan-
ces will be needed to estimate M(x) since y(y)
appears in the right hand side of the system.
In general the variogram values are known
reasonably accurately only for short distances.
Consequently, although the system (4.18) is
quite satisfactory from the theoretical point
of view, it turms out to be impracticable.

~ In contrast to this, we only need the values
of vy, (i.e. the variogram values for short
distances) for the random drift model. Consi-
dering the data which is actually available,
this is probably a better estimator of a
large moving average. Conseguently the system




(4.16) requires certain simplifying hypothe-
ses but nevertheless allows us to make the

estimates under more reasonable conditions
from a practical point of view.

4.2.4.3 Properties of the system.

Going back to the system (4.16) for estimating
a random drift M(x) :

£l

Y

0
(4.16)

o of I 4
A fa = fx

This system does not depend upon the weighting

function p. It is therefore the same as that for estimating M;-=
A% Za . S0 this estimator will be the same for all moving averages
provided that the weighting function p satisfies the conditions
listed in § 4.2.4.1. However the variance (4.17) of this estimator
does depend upon p, since the term K(o) appears in the formla.

Even if there is no "real" drift (i.e. in the
model) the optimal estimator of the drift is still meaningful : it
gives an estimate of a large-scale moving average. But it does this
without specifying precisely which average is being considered since
they all lead to the same estimator.

It can be proved that the variance of this
estimator increases as the zone for the mo-
ving average enlarges.

If we put

- ¢ Y 4
M(x) = A, £2 3 Mx(x) = A, £
then it is easy to show that Aj = }\z z, where the A are solutions

of the system :



]
o

B /4
pat Yog ¥ B g ey
(4.19)

a4 L8 —
)\.2 fa bt 6

™~ 8

(this result can be obtained in exactly the same way as was used
in 2.4 and 3.4)

This ultimately leads to

Cov[Ap = A,y A = AT = g (6 # 0 or

s £ 0) (4.20)

e’

2 *
D[4, - A/]

Moo *+ k(o)

Except for p 00 2 the Lagrange*multlpllers
represent the covariances between (AE - Ae) and (A AS)
variance of A - AO is the only one which depends on the weighting
function pe.

4,2.5. The- Constant 2, .

Consider tle R.F,
Z(x) = Y1(x) + m1(x)
where m1(x) is a drift ( either random or deterministic) and where
the covariance of Y1 does not exist. Let p be a weighting function
which is resonably regular and has a large enough range, (Its sum
is taken as 1).
7z(x) can be expressed in the form :

2(x) = ¥(x) + M(x)

where
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e
and M(x) can be expanded as A& s S

Given this new decomposition, Y has a covariance because
it is an ALC. So by construction, we can apply the formalae from sec-
tlon 4.2.4. The optimal estimator of the random drift M is M*(x) =
A fe where AB xe Z and the xe are the solutlons of the system
(4.19) In partlcular, this gives an estimator A wmhich does not
depend on the function p.

Now the system (4.19) is no other than the one obtained
for the intrinsic hypothesis with a deterministic drift after the
addition of the equations for € = O.(see (3.25)). We can now jus-
tify the manipulations carried out there, which lead to a non-admis-

sible estimator. Lastly, the expression Az f£ gives an estimate of

the true drift after correction for a certain moving average. lts

variance depends on the choice of the moving average. But since the

estimator itself does not depend on this, it is reasonable to esti-
*

mate all the terms Ap using this set of equations (4.19).

4.3 INDETERMINACY IN THE UNDERLYING VARIOGRAM.

4,%3.,1 The Problem.

In the preceding two chapters we assumed that the vario-
gram (or the covariance function) was known. ‘the methodological pro-
blems involving the estimation of the variogram have already been
raised in section 2.%3.5 but in reality the problem is more funda-
mental., The variogram which appears in the system for the esti-
mators is the variogram of the true residuals of Z(x) (i.e. the
variogram of Z(x) - E[Z(x)]. This will be called the underlying
variogram in the following sections, Clearly, there is no way of

calculating this from the experimantal values since the true values
of E[Z(x)] are unknown. However if we know how to estimate the drift




M(x), then the estimated residuals Z(x) = M*(x) can be calculated,
and hence the variogram. The question is to know what is the rela=-
tion between the underlying variogram end the variogram of resi-

duals. We then need to know how to get from one to the other given

only a single realigzation.

In this section, we shall concentrate more on under-
standing the results than on the details of the proofs.

4.%3.2 The nature of the indeterminacy.

Consider a R.F, Z(x) = Y(x) + a, fi where a , f£ is a
deterministic (functional) drift, Iet oy, be its covariance func-
tion., Iet M(x) be a very regular random function which is indepen-
dent of Y and which has a covariance function ny that can be expan-
ded as follows

_ P s
Kky - Kes fx fy

. Then Z'(x) = Z(x) + M(x) has an underlying covariance
Oy ¢
[ ] _ e s
Oxy = ny + Kfs fx fy

and a drift

4 _ ¢

a, o + M(x) = (a, + Be) £y
The ae are fixed unknown coefficients. The BE are ran-

dom variables having a coveriance matrix Kes‘

Since only one realization of the R.F. Z' is available,
there is no way of estimating the distribution of the B, . All we
have are the numerical values so it would be futile to consider
them as random varisbles with an unknown distribution. Consequently
there is no way of calculating the ng from the experimental values ;
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nor is there any way of separating the a, and the B. So the By
mist also be treated as numbers. But then the covariance of Z2'(x)
in the model is Oxy and not G;y' Consequently, given only one
realization of 2'(x)there is no way of choosing between the two

covariances.

4.3.3 The form of the indeterminacy and its conseguences.

In the case where an underlying covarience exists, it
can be shown that any function ¢ satisfying

=6, *+ Ty £t £S (4.21)

Taf ~ “op o« °B
where Tfs is an arbitrary symmetric matrix, is an admissible cova-
riance (see [1], § 4.6.3 for proof).

The indeterminacy is fundamental. 1t means that a parti-
cular set of experimental results could come from any one of a wide
range of underlying models and that it is impossible to choose among
them unless additional hypotheses are made.

Moreover, it can be shown that the estimates obtained
are not affected by this indeterminacy. The supplementary hypo-
thesis made to circumvent this problem only influences the estima~

tion varience.

The equation (4.21) can be adapted for the case where
there is only an underlying variogram. This then provides the fol=-
lowing problem in structural analysis. Given the available numerical
values, how can we fit the essential parameters for the underlying
model ? Secondly, which additional hypotheses would allow us to
resolve the problems of indeterminacy ?
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4.,3.4 The Variogram of Residuals.

We now put ourselves in the usual situation of a real
case study. Not only is the variogram of residuals unknown but so
are the optimal estimates of the residuals since we would need to
know the underlying variogram to find these,

So, in practice, the only thing that we can use is a
universal estimator of the drift (but unfortunately not the optimal

one).
Iet this estimator be
= A% o8
Me(x) = A, £ (4.22)
We can then calculate the (non-optimal) estimated resi-
duals
R¥(x) = 2(x) - M*(x)
(4.23)
- PN
= Z(x) A, £

It should be noted that the awkward problem of estima-
ting A, does not arise since this term disappears when the vario-
gram of residuals is being calculated.

Of course the form of the variogram depends on the type
of estimator chosen for the drift. However the relationship between
this variogram and the underlying one can be established quite gene-
rally.

Iet S be the set of sample points (i.e. the points where
it is possible to evalugte the residuals experimentally). Let k(x)
be the indicator function for S (i.e. k(x) =1 if x e S ; k(x) =0
if x £ S). Lastly let

K(h) = J k(x) k(x+h) dx
S
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be the measure of the intersection between S and S after a trans—
lation of h. The experimental variogram of residuals is then

2 y*(n) = —— j k(x) k(x+h) [R*(x+h) - R*(x)]? dx (4.24)
K(h) g

(This formula merely shows how to evaluate an experi-
mental variogram when the data are in a continuous 1-D space).The
problem is to know whether this experimental variogram is an esti-
mator of the underlying variogram y, or not., To test this, we see
whether its mean is y. We substitute the expression for the resi-
duals (4.23) into (4.24) and then take the square. This leads to
a 3-term expression @

B2 yx(h)] = T - 2 T, + T, (4.25)
where T = ;{-(—;-l—)- [ k(x) k(x+h) E[Z(x+h)-z(x)]2 dx
S
7, = =t [ k(x) k(x+h) B[ (2(x+h)-2(x)) (£ %xm)-24(x)) ax
K(x) 5
T, = ~L [ k(x) k(x+h) [£8(x+h)-£8 (x) ][ £3 (x+n)~£5(x) ]
K(n) 5

* ¥*
Cov[A, ,AS] dx

The term T, is just 2 y(h). The other two terms can be
expressed in terms of y if we take account of the form of the esti-
mator of the drift. They represent an unavoidable bias. The mesn of

the experimental variogram of residual is therefore not equal to the

underlying variogram,

This situation is not caused by the fact that a non?
optimal estimator of the drift is being used, since it is easy to
show that even if this was available (which is unrealistie) equation
(4.25) would be

E[2y*(n)] =T, - T, (4.26)
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where T2 is always positive.

4.3.5 Practiéal aspects of the Bias and the Indeterminacy.

Applying equation (4.25) to the common variogram models
shows the importance of the bias term. In fact, the variogram of
residuals bears no resemblance to the underlying variogram. The
figures below show this for several simple cases :

4 underlying variogram

A Guadratic Frend |

|| underlying variogram:|

i
f
§
i
] — A ||
. T
' N | Ksphérica))
Biased variogram
=
uadratic h'eml\
Underlying variogn
¥ =h

I

This effect is particularly treacherous since an unsus-
pecting user could easily equate the variogram of residuals with the
underlying variogram and thereby come to the entirely false conclu=-
sion that the residuals were independent. The real nature of the
phenomenon under study would be completely hidden.

y

For simplicity's sake, suppose that the data set that
we are working with, is discrete and on a regular grid. Suppose
that the variogram of residuals y*(h) has been calculated for a
great many sliding neighbourhoods, for the integer values of h
from 1 to N, The average value I'(h) of all these variograms could
reasonably be considered as being equal to E[y*(h)], and we there-
fore Ilmow the relation between I'(h) and the underlying y(h). Since
the distance h must be an integer, the relation (4.26) can be writ-

ten as
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b) Once the underlying variogram has been selected,
we can go on to find one optimal variogram of
residuals for this model from the experimantal
values. The optimal theoretical variogram of
residuals can then be obtained using equation
(4.26).

- ‘The test proposed in b) is very important since the
first step is numerically unstable, The existing charts of the
theoretical variograms of residuals show how similar these are.
It is therefore difficult to make a choice between them,

The choice made by the user is decisive here as it
was for the estimation of 850 The user knows that whole classes
of underlying variograms give rise to the same variogram of resi-
duals. It is up to him to decide which model from these classes -
should be tested. Fortunately, the choice only affects the variance
of the estimators and not their values. The only way to make this
choice is to use arguments based upon a knowledge of the physics

of the phenomenon,
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