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Processing data with a spatial support :
Geostatistics and its methods

Introduction

k= TE— This map answers a simple problem : we

o R RV < ¥ Q—Et ) wanted to draw the isolines from a data set of sea-
' bed depths in the Bay of Biscay. In this case, the

* % data were distributed in an irregular way. We used
[

a classical approach of estimating at the nodes of
N a very fine grid, and the isolines were then drawn
- by a spline type smoothing process.

: Although this example is simple, it contains
"\,«JI the seeds of many a question.

Sea bed depth in the Bay of Biscay

Through the map we want to show a set of structural features of the phenomenon being studied.
Indeed, the variable ”depth” has characteristics which should be taken into account by a good map:
anisotropy (different behaviour according to the directions: the depth does not vary in the same way
depending on whether one is parallel or perpendicular to the coastline), heterogeneities (the ocean bed
structure is not the same off the Spanish and Landaise coasts), trends (slopes), etc... So, to begin
with, these features should be identified and then defined mathematically so as to be able to apply an
estimator which takes them into account. Under the name of variographic analysis (*), this double
work of interrogating the data then modeling their structural properties makes up the initial and
unavoidable step in any solid geostatistical study.

However, one might not wish to stop there.
For example, we might ask for an evaluation of
the ”quality” of this first map. And we must
begin by defining this notion. For, if a depth is a
clearly defined physical unit, which is the same for
everyone, the quality of an estimator is an abstract
idea which is the result of an arbitrary choice —
note that the word ”arbitrary” is not used in a
derogatory sense here.

: Therefore, a quality criterion should be
o |L ‘ agreed upon — a priori . One possible criterion
| is the standard deviation of estimation, which is
shown on this second map. To put it simply,
an estimated value is all the more reliable if its
standard deviation of estimation is small.

Standard deviation of the previous map

It can be shown that this standard deviation depends on the structure adapted to the variable being
studied, but also on the configuration of the sampling data — which is intuitively satisfactory. This

-

(*) We prefer this expression to ”Structural analysis”, which is more common but has another meaning in Geology.



4 Processing data with a spatial support

criterion is very simple to use and moreover forms the cornerstone of geostatistics. It can also be used to
go further and for example ask about the strategy of exploration campaigns, optimal location of further
information, or even about the effect of uncertainty concerning the localization of samples.

These questions still remain simple. However, we can be faced with considerably more complicated
problems: for example, determine probabilities of submarine rises or intervals of confidence on the
bathymetric map or even wonder about the length of an underwater cable lying on the seabed between
two given points... As well as this, we might want to link the parameters coming from the variographic
analysis to geological phenomena and so consider an interpretive analysis of the data. The variographic
analysis can also help compare sampling methods. In the proposed example, the data came from two
sea campaigns which were carried out with two ships and two different types of equipment ; it was up to
determine which equipment was the better suited.

All these questions and many more that can be asked about any phenomenon presenting a structure
in space or in time are raised in geostatistics. The contribution of geostatistics in the processing of data
with a spatial support is always twofold:

e On the one hand it provides data interrogation tools which are directed towards the presentation
of the intrinsic structure of the variables being studied and of their links with their field of definition;

e On the other hand, it provides a theoretical framework which makes it possible to expand
algorithms (estimations, numerical simulations, optimizations), answering problems which can be
met in the study of spatial processes.

Moreover, the introductory example — though oversimple — which we have just given, could have
been taken from many other fields: one of the assets of geostatistics is not to be dependent on any one field
of application. That is why, in what follows, little importance should be given to the choice of vocabulary
which would seem to favour certain applications. Geostatistics is mainly a set of methods, and the name
given to them is immaterial. Should we say ”estimation” as in the mining industry, ”forecast” as for
time series, ”interpolation” as in mapping or ”assimilation” as in meteorology?. .. Should we say ” white
noise” rather than “nugget effect”?... This sort of question will not be considered here.
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Background

The origins of geostatistics are to be found exclusively within the mining industry. New estimation
methods were developed in the early 50s when ”classical” statistics were found to be unsuitable for
studying very disseminated deposits. The word kriging” which was coined in recognition of D.G. Krige
and his work on gold mining in South Africa, remains to remind us of the encounter between a
mathematical technique of regression and the very real problems to be found in gold mining. Even
at the same time, kriging methods were being applied to other minerals such as iron, copper, nickel,
uranium. . .

Two features marked the early years of geostatistics. To begin with, on a practical level,
computation methods were still very elementary. Therefore publications were packed with approximation
formulas, curves, tables, which ended up being a real wealth of information. On a theoretical level, the
formalisms being developed were often put within the framework of a given law of distribution. It was
not so much a question of the gaussian model (*) — unsuited to disseminated variables — as of the
log-normal model which was highly popular in the 50s. So, to sum up, the neologism ” geostatistics” was
perfectly suited for describing this first stage.

However, in the second era of geostatistics, reference to statistical models was dropped. Either
we developed models which did not include the distribution laws (linear geostatistics) or we went back to
reference models via anamorphosis curves. Parallel to this, we tried to broaden the working hypotheses:
this saw the development of non-stationary geostatistics for treating phenomena with a trend, then non-
linear geostatistics for solving the problems of exceeding the threshold or change of support — non
stationary—non linear geostatistics still remains to be done... New formalisms appeared which went
well beyond the classical problems of estimation: simulations (conditional or not), random sets. This
methodological abundance could be put into use immediately because of the amazing improvement in
the computational methods.

It is not easy to talk about “third generation geostatistics” which is currently in full development.
As data processing is becoming more and more easy to handle, geostatistics is developing in many different
directions. This of course can be seen in the fields of application which are no longer restricted to natural
resources (mining, petroleum). But above all, and more fundamental, research is exploring extremely
diverse theoretical paths. It is especially interesting to note that we are reconsidering the distribution
laws. This in no way means going backwards, but, on the contrary, that we have-.at our disposal —
or that we feel the need for — new theoretical tools which go far beyond the possibilities of structural
functions which, up to now, made up the cornerstone of any geostatistical study.

*) »gaussian” means "normal distribution”
):3
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Presentation of geostatistics

Regionalized variable and random function

Any geostatistical study begins with a set of data distributed in space (and/or in time). These
are numerical data. By this we mean that geostatistics is operates on quantities. Qualitative data
cannot be used as such unless they can be coded numerically; otherwise they are used mainly to delimit
the extension of the range of validity of the geostatistical model being applied.

So mathematically, initially we have at our disposal a certain function, usually denoted z(z), defined
in a metric space and taking its values in R (possibly R™ or C). This function is called the regionalized
variable. Measures of mining grades, altitude or bathymetry, atmospheric pressure, pollutant content. . .
are all examples of scalar regionalized variables. The measurement of wind is one example of a 2-D
vectorial regionalized variable or, in other words, a complex regionalized variable.

It is possible to be satisfied with this level of abstraction and carry out a direct theoretical study on the
regionalized variable: this is the purpose of transitive geostatistics which only requires very classical
mathematical tools and which certainly does not impose any restrictive hypotheses on the variable being
studied. The main disadvantage of this approach is that it is largely dependent on the notion of field,
a bounded domain beyond which a regionalized variable is assumed to be zero. It is almost always
impossible in a result to take into consideration what is due to the intrinsic structure of the regionalized
variable and what is due to the geometry of the field. It is for this reason that it is often essential to take
the risk and go beyond just one measure of abstraction.

The step consists in considering the regionalized variable function z(z) as a realization of a certain
random function Z(z). In this case it concerns a freely accepted methodological choice, not an
attempt to get closer to reality. By this choice, we do not intend to decide on the deterministic or
random ”nature” of the phenomenon being studied, but we simply choose a range of tools from which we
expect reasonable efficacy. And, in actual fact, we have at our disposal all the ammunition coming from
probability theory and stochastic procedures.

Let us stress the pragmatic character of this choice. The probabilistic model is not an end in itself,
but a tool that we forge in answer to a problem (estimation, simulation), which, in general, we do not
master. Besides, the fact of using probabilities in no way anticipates the very nature of the phenomenon
being studied — deterministic or random — but constitutes a vital choice which only experience will
prove to be appropriate.

Variography

In the probabilistic models that we intend to apply, the simplest tool for measuring an estimator’s
quality is variance, that is to say the quadratic distance in the probabilized space. In this way, the
quadratic measure of the distance between two values (random) Z(z) and Z(y) of the random function
Z will be given by the function :

Wew) = 5B[26)-26)]

(where the symbol E is the mathematical expectation). The theory enables us to prove that this function
7, called the theoretical variogram is the only tool needed to solve ”linear” problems (estimation
without change of scale, optimization of the sampling network, quality of an estimator).
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Variogram cloud

As for the regionalized variable, it is therefore
natural to examine the mean square deviation between
the data set z(z), 2(y) ... For all pairs of data points,
(=,v), the figure shows the scatter diagram between
the mean square deviation (z(z)— z(y))® and the
distance ||z — y].

This scatter diagram, called a variogram cloud,
is a preliminary tool for examining data, and is com-
prehensive. It makes it possible to show ”abnor-
mal” values, sampling heterogeneities, and possibly
the trends. It introduces information which the user
has in no way treated. It is an entirely objective pic-
ture of the available information.

The variogram cloud is therefore an extremely valuable analytical tool, where ”exploratory geostatis-
tics” which is in full development, finds its roots. However, it gives little synthetic structural information
and remains difficult to model without strong hypotheses. So we prefer to have a more global structural
function, which can express the evolution of the mean square deviation between two samples in terms
of the distance between these two samples. More precisely, we should like to build a function which,
given the samples, makes up, in some way, an experimental version of the theoretical variogram ac-
quired later on by geostatistical algorithms. Of course, this function exists in the variogram cloud, but

in an implicit form which makes it unusable.

)xl)

e ot
lag

Experimental variogram

W

Modeled variogram

In this way, we arrange the data pairs in a net-
work of distance classes. As compared to the var-
iogram cloud, some discretion is introduced, since,
apart from the particular case where the data are on
a regular network, the choice of the distance classes is
partly left up to the user.

The following step consists in calculating, for
each distance class, the mean of the corresponding
square deviation. For each class, we therefore get a
single value, the mean square deviation, and the initial
scatter diagram is now summed up by a function
defined for a small number of distance values.

This set of numeric values is called an exper-
imental variogram.

Although considerably more synthetic than the
variogram cloud and allowing a good structural in-
terpretation of the data, the experimental variogram
cannot be used as such in the theoretical formalisms.
It has to be expressed as an equation, which makes it
possible to give it a value for every possible value of
the variable ” distance”.

The final step in the variographic analysis is
therefore to get ”the best fit” of a known expression
to the experimental variogram.

This function is called a modeled variogram.
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The way to do it is to limit oneself to a reduced set of base models in order to express the
modeled variogram. The bibliography contains formulas for the exponential, spherical and monomial
variograms, without forgetting the nugget effect. This corresponds to data without spatial structure,
hence the geostatistical study goes back to classical statistics.

Let {z;} be the data point set, h any distance and N(k) the number of sample pairs distant from
h — eventually with a certain amount of tolerance. So, to sum up, the variography consists in building
the experimental variogram

L)
TW = g [z + 1) = 2(2:))7]
=1

to fit a mathematical function to it ”as well as possible” and to incorporate the theoretical variogram
(required by the theory) to this modeled variogram.

Of course this approach requires taking precautions, firstly mathematical, for all functions cannot
represent a variogram, and the models proposed should obey a certain number of constraints (positive
or zero values, parity, regularity properties, behaviour at infinity... ). However, the range of models
proposed and the formalism developed in geostatistics safeguard the user from important mathematical
slips.

On the other hand, in what concerns the physical significance of the operations, it is absolutely
necessary to take care. For example, whatever the data set, it is always possible to calculate an
experimental function of the type ¥*(h) above. By construction the result will only depend on the
distance factor h. But that in no way proves that a probabilistic model can be satisfactorily represented,
where the theoretical variogram y(z, y) only depends on the distance ||z — y||. For example, it can quite
easily happen that the experimental variogram cannot be ”reasonably” represented by any admissible
model. Naturally, in this case, it is quite useless to force reality to conform to our models.

The main point of the variographic approach is to ensure the parallel between the numerical
operations performed on the regionalized variable and the theoretical developments concerning the
random function. We can imagine the most excessive operations on a data set, but they will only make
sense within the frame of a consistent model. Conversely, we can imagine purely theoretical developments
at the level of the random function, but they will remain abstract mathematics if we do not know how
to associate a physical interpretation with them. Now this parallel, which is essential for a realistic
practical study, is not evident.

The development of the variogram is an excellent illustration of this problem. In order that the
spatial mean value which leads to building the experimental variogram v4*(h) can be interpreted as an
estimate of the mathematical expectation which appears in the definition of the theoretical variogram,
the probabilistic model which is fitted to the data must have the good properties of stationarity and
ergodicity. We shall come back to this later on, but what is important to note here is that this time
we are talking about properties which can be proved false. Sometimes the numerical manipulations
made on the data show up results which are incompatible with these ”good” models. From then on it
would be useless to pursue mathematical developments, even theoretically correct, which would no longer
have a reasonable physical interpretaton.

These remarks set out to underline to what extent a geostatistical study depends on the quality of
the variography phase. The model, not being an end in itself, but a data tool, it is absolutely necessary
to constantly check the suitability of the model to reality. Therefore, it is perfectly normal during a
study, because of new information to question the validity of the model, to review the situation. The
data should always have the last word in the case of conflict with the model.

A last remark. Even if fitted to the data, the model presents risks. For the domain of validity of
a mathematical expression (for example the equation of a theoretical variogram) is unlimited. Now, the
fitting of a model always takes place on a bounded domain. In this way nothing can be said about the
validity of the model nor the results it leads to, the moment we go beyond the frame in which it was
obtained. No crash barrier exists, so it is up to the user not to go beyond reasonable limits, and to be
careful not to make the model go further than it can. It is not enough to get the mathematics right. One
must also be realistic. So any geostatistical study is associated with the very important notion of scale
which represents the frame of validity of the methods being considered. All the results in a geostatistical
study are subject to its field of validity and work scale.
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Structural analysis

Even before going into the equations for the modeled, the experimental variogram enables us to
display and analyse some of the data properties. The example below (*) illustrates this.

The data being studied are the piezometric levels taken every hour during the rainy season (July-
December) in Korhogo (Ivory Coast). Four piezometers, numbered 3, 4, 33 and 18 respectively, are
studied here. Located on a hillside, they correspond to increasingly deep water tables.

Water table levels in Korhogo

The profile of the piezometric levels is easily understood. At piezometer n® 3, where the water level is
close to the surface, the level reacts to each rainfall. Consequently, the piezometric profile is very erratic
as it rises every time it rains. At piezometer n® 4, the thickness of the land acts as a rain absorber and
so the profile is already less irregular. With piezometer n® 33, this effect is increased and rhe effects of
refilling the ground water level abruptly are wiped out by more important longer term be. aviour. For
piezometer n° 18, where the underground water level is very deep, the violent rain period (on a daily
scale) are barely noticeable: on the other hand, a very significant seasonal trend is observed which is
spread over the entire period being studied, and which corresponds to the water accumulation over the
entire rainy season.

These results are clearly visible when set down in chronological order and are easy to interpret.
From a geostatistical point of view it is important to note that they show up immediately in the time
experimental variograms. The variogram of piezometer n° 3 shows a significant linear increase on a two
week scale. Moreover, it reveals at the origin a discontinuity, a nugget effect which indicates that
there may be big jumps between two adjacent measurements. Piezometer n® 4 gives the same result
although this time the experimental variogram increases more slowly. Compared to piezometer n° 3, this
means that the deviation (mean square) between two separate measures in the same time lapse is less
at piezometer n® 4 than piezometer n® 3 — or rather that the correlation between the two measures is
stronger there. This can also mean that the piezometer n® 4 data show a more marked structure than
those of piezometer n° 3.

The same effect can be seen with piezometer n® 33. Even if there is a nugget effect (discontinuity at
the origin) we can see this time that the experimental variogram has a parabolic shape. This results in
the mean square deviation being weaker at piezometer n® 33 than at piezometer n® 4 up to an interval
of 6-7 days. However, this order is inversed when the intervals are longer, because, at piezometer
n® 33, the contrast between two measures is mainly caused by the seasonal component which has become
predominant. If there is a significant time lapse between two measures, one has to have been taken at
the beginning of the rainy season and the other at the end of it. This being the case, there will be a
big difference between them, whatever the particular rain-falls throughout the season. In geostatistics,

(*) Example due to J.P, Delhomme, cited in Journel 11977}
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this situation represents the case where a stationary model is inadequate. Of course this effect is even
more exaggerated in the case of piezometer n® 18 where the nugget effect has completely disappeared:
the piezometric profile, like the associated variogram, only represents a significant seasonal tendency.

This is a very basic example. The experimental variograms have simple shapes and the essential
differences between the four situations come from their behaviour at the origin. This behaviour shows
the degree of spatial continuity of the phenomenon or its behaviour on very small scales. But other
features of the experimental variogram which are very important for understanding the data, can appear.
This is particularly true of the anisotropy which can be seen when we work in a space having more than
one dimension. It may then happen that the experimental variogram does not have the same behaviour
in all the directions, as some of them are favoured for physical reasons (for example outflow phenomena).
It would then be fatal to average the valves in every direction. Naturally, if we take into account the
anisotropy during the modeling, we increase the number of parameters for the model and give the user
more freedom. But at the same time, new constraints of consistency arise and so fitting the theoretical
variogram can soon become difficult.

The phenomenon of nested structures can also be seen with complex data: the experimental
variogram then displays stacked components having different scales which we can try to particularize
during the modeling stage. Yet again the number of parameters can be considerably increased. This
approach is interesting in that it allows an interpretation of the origins of the data being studied.
The analysis of nested structures, especially in its multivariate expansion, resembles data analysis and
insofar as the different scales are separated, can be compared to a Fourier Analysis. The advantage
of the geostatistical method is that the spatial structure is taken into consideration and we are neither
constrained by the dimension of the work space nor by a condition of regularity of the data grid. Besides
this, if one of the isolated nested phenomena can _be associated to noise, a geostatistical method of
filtering can be proposed and in this case can be compared to signal processing.

Lastly, it should be remembered that the structural analysis can lead to a deadlock, for example
that the test results are incompatible with a model y(z, y) depending only on ||z — y||. This is a typical
attack on the hypothesis of stationarity, that an experienced user recognizes immediately. This condition
is sufficiently important that special attention has been paid to non-stationary geostatistics for a long
time. In this way the intuitive concept of trend can be clearly formalized and included in the estimation _
or simulation computations. However, to avoid giving too many examples here, we shall restrict ourselves
to the case of a stationary variogram.

Modeling

Let us go back once more to the modeling stage. It is an essential step as the theoretical formalism
of geostatistics "feeds on” mathematical expressions, not a set of test values. It is also a vital step since
we abandon the domain of facts (data) for that of speculation. Consequently, this step presents risks,
but it also gives the user the opportunity to include non-numeric data, subjective factors and his own
experience.

In outline, modeling consists in finding a mathematical expression which best fits the few points
of the experimental variogram. So it concerns the classical problem of constructing an interpolation
function. We have seen that there are a certain number of theoretical constraints on the final expression
and that it is preferable to limit the choice of parameters which represent the model.

In practice, the modeling step is mainly interactive. Using high quality graphical techniques here is
particularly advantageous for representing and interrogating the set of (geo)statistical tools — histograms,
scatter diagrams, variogram clouds and deferred correlations, variograms etc... — which interpret the
structure of the variable being studied. A genuine dialogue with the data must be created. And in routine
geostatistics the experimental variogram holds the privileged position of representing the structure that
we want to interpret mathematically.

Influence of the model

Respect for the structure, for example when fitting the variogram model, constitutes what can be
called the “up stream constraints” of modeling. However, the choice of a model effects the application
of the algorithms: the proposed fit is not unimportant for the rest of the study. So there are always, in
variographic analysis, the down stream constraints.



Geostatistics and its methods il

This is an important point. Generally, the experimental variogram leaves a certain amount of freedom
when fitting the parameters of the models and, with no additional constraints, there are no irrefutable
criteria when settling between several plausible models. Statistical tests could be considered, but such
a choice generally means being more specific about the model, which is often impossible in geostatistics
because of the amount of data available. In addition, it is justifiable to direct the methodological choices
in terms of the problem posed. If we go back to the example in the introduction on the bathymetry in
the Bay of Biscay, it is evident that we would not want the same features in the final map, depending
on whether it was intended for a geography book (maps with general features of the region), for a
ship’s captain (security map indicating ocean depths), for a submarine captain (peak diagnosis: height,
location), for fishermen, etc. ..

To sum up, there is not only one real model lurking behind the unwavering data, but rather a choice
of parameters to be fitted which, of course, honor the data, but are also adapted to the problem in hand.
When the result is obtained, the conditions in which the work was done has to be recalled and a field
of validity associated with this result.

As an example of the "down stream” influence of the choice of the model, we show the optimal
weights for a linear estimator at the centre of the circle (*) That is, they are the weights given to each
data value when calculating the estimated value at the centre ; these weights sum to 1. Next to each
point (and they are irregular in this case) is its weight.

In the case of a pure nugget effect model,
all the weights are equal and so are worth %
This is still true of the datum nearest the centre,
which is thus no more significant than the other
11. This can be easily explained: the pure nugget
effect shows that the mean square deviation be-
tween two data is independent of their distance,
that the variable being considered has no spatial
structure. Naturally, this feature is seen at the
estimator level. As it is, we find ourselves in the

situation of classical not spatial statistics .

In the second case, the variogram model still
contains a nugget effect component (which could
be due to a measuring error), but the variable also
shows a linear structure. That means that when
the distance to the point to be estimated increases,
there is a reduction in the information coming
from a measuring point. Indeed, we observe that
the data near the centre to be estimated plays an
important role this time (nearly 40% of the total
weight of the information). As expected, the other
weights tend to decrease when we go further away
from the point to be estimated.

Importance of the nugget effect

The third case is that of a linear model. The variable is strongly structured. The absence of the
nugget effect indicates the continuity of the variable. As there is no longer the risk of having significant
value deviations between close data points, it is clear that an information which is very close to the
estimated point will have a decisive role. And indeed, the point near the centre has nearly 90% of the
total weight, meaning that the other data are less important. Note that the optimal linear estimator
tosses up negative weights. Experience shows that this is frequent for strongly structured variables and
in theory, nothing forbids this. Moreover, nothing prevents the data from having a weight of more than
100%. This point should not be forgotten, and depending on the study, it can prove either beneficial or

(*) The ideas of "linear estimation” and "optimal weights” will be defined in the next two sections.
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disastrous. In topography or bathymetry, that means that it is sometimes possible to obtain an estimator
outside the data values — which is not a bad thing: but that also means that it is possible to obtain a
negative grade in mining estimation. ..

Quality criterion

In the preceding example we spoke about the optimal linear estimator which means that we have
a quality criterion for this type of estimator. Among the geostatistical methods, the variance is chosen
as the criterion.

The word ”variance” is likely to be ambiguous and needs defining. In order to define the quality
criterion theoretically, we shall talk about the variance in relation to the probabilistic model, that
is to say concerning the random function. It therefore concerns a perfectly determined mathematical
concept. Having said that, note that by choosing the variance as the quality criterion, we are making a
completely free choice. The advantages are striking. The theoretical calculation of the variance of any
linear expression of the random function only requires knowing the variogram. So this criterion is not
too demanding in terms of specifying the probabilistic model. However, the choice has its limits, for a
variance is quite a poor tool which, in a distribution law, does not ” consider” the significant characteristics
such as dissymmetries, multimodalities etc. .. Once more, it is essential to be aware of these limits when
choosing the methodology. We should also mention that using more sophisticated tools requires a much
more detailed model and doubtless much less realistic than those that satisfy stationary geostatistics.

The actual mathematical computation is not difficult. Let v and w be any two domains in the work
space and |v| and |w| their measures (areas in RZ, volumes in R®, etc... ). Z(v) is the mean value of
the random function Z over v :

Z(v) = ﬁ/uZ(x)d:c

and Z(w) its mean value over w. These spatial means are random variables as is their difference
Z(v) — Z(w). This difference, called the estimation error, shows the error made (in the probabilistic
model) by estimating Z(v) by Z(w).

We shall always assume that the estimation of Z(v) by Z(w) is unbiased, that is
E[Z(v)-Z(w)] = 0

The extension variance o%(v, w) of the domain v to the domain w is defined as the estimation
error variance and so, taking the unbiasedness hypothesis into consideration, is written

F(vw) = E[(Z0)-Zw)’]

Note that this formula is only a general expression, giving no special significance to the v and w
domains. In practice, v will indeed be a domain — possibly reduced to only one point — on which we
want to estimate the mean value of Z, whereas w will represent the finite set {zo} (2 =1,..., N) of the
N data we want to use for this estimation. So we will have:

_ 1 X
Z(w) = -NZZ(ZQ)

a=1
Be that as it may. If we put

10,0) = i [ [ 2t v ety

[v]lw]

this extension variance can be expressed using only the variogram, by the formula :

op(v,w) = 27(v,w) = F(v,v) — (w, w)
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This basic formula calls for several remarks :

o The extension variance 0%(v, w) is symmetrical in v and w. Because of this choice of criterion, the
quality of the estimation of Z(w) by Z(v) is systematically the same as that of Z(v) by Z(w).

¢ 0%(v,w) is not a conditional variance, in that it does not depend on the particular values of the
data.

e Contrary to this, 0% (v, w) strictly depends on the structural function v, and in particular on its
behaviour at the origin which indicates the degree of continuity of Z.

o The extension variance depends on the geometry of the domain to be estimated — through the term
¥(v,v) —, on the geometry of the sampling data — through ¥(w, w) —, and on their relationship —
through (v, w) —. For most of the variogram models, % (v, w) increases when the distance between
v and w increases; on the other hand, for a totally unstructured variogram, (pure nugget effect),
0% (v, w) no longer depends on this distance.

The formula for the extension variance is all-important because it enables us to calculate the
estimation variance of any linear combination of the data: not only mean values, but also integrals,
convolutions and even derivatives on condition certain precautions are taken with the limits. There are
numerous applications:

o For a given estimation configuration, calculate its variance. This calculation is possible since o% (v, w)
does not depend on the particular values taken by the data. Linear geostatistics therefore makes it
possible to complete classical linear estimations by evaluating their quality. This type of problem is
known as global estimation.

o In the same way, the criterion of the extension variance makes it possible to determine an exploratory
strategy for a domain, to optimize a sampling data system or to search for an optimal location of
additional data while taking into account the spatial structure of the variable under study.

o Likewise, we can use the extension variance for compressing the sampling data: how to remove
samples while ensuring a minimum loss of information.

o Alternatively, we can try and find in a family of linear estimators the one that will lead to the
minimal extension variance. This technique for calculating the optimal linear estimator, called
local estimation or more commonly kriging, is used very often in routine geostatistics. It will be
explained below.

First, beyond the mathematical formulation, we begin by questioning the physical interpretation
of the extension variance or, in.other words, its transcription in terms of the regionalized variable. In
actual fact this transcription can only be established if there are ”good” conditions of stationarity and
ergodicity (*) which we assume to be satisfied here. In these conditions the property of non bias and
the expression of the extension variance are explained as follows:

Let v be a domain (reduced to a point if necessary) on which we want to calculate the mean value
Z(v) of the regionalized variable, and let w be a domain in general composed of a finite number of points,
on which the regionalized variable is known and whose mean z(w) will be taken as the estimator of Z(v).
We assume that the respective geometries and the relative position of v and w are fixed and we shall call
the set composed by these two domains v and w the estimation configuration.

Then, taking into account the assumptions, if we translated the estimation configuration throughout
all the space and if we calculated at each of their locations the experimental estimation error Z(v) — Z(w),
the non bias property shows that this error would be statistically zero and moreover its mean square
value would be equal to the extension variance 0% (v, w).

In practice the situation is a little more complicated, firstly because the work domain is always

" bounded and therefore there is no question of carrying out translations on the entire space, and then
because it is quite rare, except in the case of regularly distributed data, to be able to translate exactly the
estimation configuration. Therefore the interpretation of the non-bias is more intuitive and less precise,
‘and can be expressed in this way: if we perform an estimation with ”approximately” the same estimation

(*) These two vitally important concepts will be described further on, but only briefly, in order to avoid the subtle passage
" from the model (random function) to the reality (regionalized variable) in this short presentation of geostatistics.
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configuration throughout all the regions of the work area, then the errors made will tend to balance out.
There will not be a systematic error at the global results level. And the experimental variance
of the errors made will be of the order of the extension variance.

Kriging |

The most elementary problem posed in estimation is to interpolate at a point z where the function z
is unknown, given its values are known at N points z(21),...,2z(zn). So we try and construct a quantity

N
Z*(:B) = Z P z(xa)

a=1

where the unknowns of the problem are the weights A*(¥).

The aim is for this quantity z*(z) to be as close as possible to the unknown value z(z). If this aim is
interpreted on the probabilistic model level, and considering the choice made of a quality criterion, this
means that we are trying to reduce the variance of the estimation error Z*(z) — Z(z). If we assume that
the stationarity constraints are satisfied, this variance is just a special extension variance which is
written:

N N N
E [(Z*(:c) - Z(z))z] = 22 A y(z,2q) — Z Z AN y(24, 2p)
a=} a=l =1
by simple application of the general formula. It is a quadratic equation, according to the unknown
coeflicients A* which have to be minimized. -

We are dealing with a minimization without constraint, provided that the random function Z is
assumed to have a zero mathematical expectation. However, this is an exceptional case and in most cases
this expectation — assumed constant in the model assuring stationarity — is unknown. Consequently,
in order to ensure that the estimation error Z*(z) — Z(z) will satisfy

E[Z*(x)—-Z(z)] = 0
we are obliged to impose the constraint
N
S =
a=1

This constraint ensures the unbiased behaviour of the kriging estimator. Later we shall find ourselves
in the case where this constraint must be set up (the estimator used in the previous section to examine
the influence of the model was constructed on this assumption). :

Consequently, the kriging problem amounts to minimizing a quadratic form under a linear constraint.
Ultimately we obtain a system of linear equations

N
- ﬁz—:1/\ﬁ7(zarzﬁ) + p = _7(3”30!) Va
N
E/\p = 1
pf=1

The unknowns of the system are the weights A* and the Lagrangian multiplier 4. It suffices, after
solving the system, to substitute the weights into the kriging estimator 2*(z). As for the kriging

variance, that is the minimum value 6% taken by E [(Z (z)—2Z (:c))z] , it simplifies to

.
ok = 3 A%(z,2a) - s

a=1

where the A” and p are the solutions to the kriging system.

(*) A" is the weight associated with the nth point, not the nth power.
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Of course we assume that the kriging system has a unique solution which we always try and find.
This means that the variogram model should not be too pathologically nasty (the periodic variograms
can cause problems... ) and that the kriging configuration is not degenerate. Intuitively this last point
means that the data used comply with the constraints of quality and location. This being so, the system
has a certain number of properties which should be beorne in mind:

e Kriging is a multiple linear regression with correlated residuals.

¢ By construction, kriging is an unbiased estimator, which means that the estimation error has zero
expectation in the probabilistic model. When considering the regionalized variable, that means that
the average error on point estimations is zero over a large area.

¢ Kriging is an exact interpolator, which means that when we krige at a sampling point, the kriging
system will return the sample value as the estimator (and a kriging variance of zero).

o Finally, by linearity and assuming the data set being used is fixed, kriging a linear combination of
point values is identical to the same linear combination applied to the kriging of these point values.
If * represents the operator “kriging estimation” and £ is any linear operator,

{c@y = c(@)

That is why in theory it suffices to present the equations of point kriging. All the other systems
(mean values, convolutions, differentials ...) result from it.

Suitability of the model to reality

The formalisms presented up to now make up the backbone of stationary geostatistics. The steps in
structural analysis, then estimation (global and especially local) give rise to practical difficulties (fitting
the model, choosing a work scale, choosing sampling data with a view to kriging, analysing the results)
which call upon the user’s experience, but do not usually cause theoretical problems. The methodology
of what can be termed ”classical geostatistics” has got into its stride.

However, although theoretically rigorous, this methodology is worthless if the mathematical model
and the reality being studied bear no resemblance. In this case there is a real risk that the mathematical
and computational operations no longer have any physical significance. This risk should never be forgotten
throughout a geostatistical study and even more so when the models being used are more complex.

Consequently, from the very beginning, choosing probabilistic methods can pose problems. How can
we propose a random function model with all its wealth for phenomena that are in general unique 7
In certain cases (time series) we might have several realizations of the process available and therefore a
classical inference may be considered: but especially with earth sciences the phenomenon is unique. What
meaning can we then give to a probability ? For when the calculations are done, a physical meaning
must be given to the results obtained. It is then that the hypotheses of stationarity and ergodicity
intervene.

Stationarity

By this first hypothesis, we assume that the phenomenon being studied presents a certain structural
permanence in its domain and so the observations made in different parts of the space can be considered
as different realizations of the same process which we are trying to model. By this hypothesis,
we have removed the obstacle of a unique realization. However, on the one hand this assumption is
fundamentally refutable, for it is quite possible that no stationary model is compatible with the data:
then non-stationary geostatistics will have to be considered. On the other hand, from a statistical point
of view, we have not yet got out of trouble, since if we now have available several realizations of the
process to be modeled, it is clear thar these realizations are not independent. It should be noted
that in geostatistics this difficulty is usually ignored, insofar as it does not present bias the estimation of
the behaviour at the origin of the variogram.

Ergodicity

A model is ergodic if the inference of its parameters can be realized from any one of its realizations.
This second constraint may not come to mind so clearly when putting it into practice. And yet we have
to assume our models are ergodic, for otherwise it would no longer be justifiable to compare the
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spatial mean values performed on the regionalized variable and the mathematical expectations applied to
the random function. Of course, ” classical” models include this property, but once again, this assumption
can eventually be refuted during a study. In this case, we must have recourse to methods going beyond
"classical” geostatistics.

However, it must be noted that the property of ergodicity, like that of stationarity, is essential for
applying methods of a probabilistic nature. And finally, the developments of ” non-classical” geostatistics,
some of which are mentioned below, always try and produce ”something” stationary and ergodic.The
whole difference between the various methods proposed lies in this ”something”.

Extrapolating the model

There is one final difficulty which arises, however sophisticated the geostatistical method might be.
It is quite normal to remember the limitations of the model for large distances: we know that, even if the
domain of validity of the model is infinite, it would be unreasonable to use the values of the variogram for
distances greater than those chosen for the model in the computations. Moreover, this is only reasonable,
as the model does not always ”look after itself” properly: so we can consider cases where an apparently
”unrealistic” extrapolation would be associated with a seemingly admissible kriging variance. ..

It is easily forgotten that this type of problem also arises for short distances. One of the decisive
features of the structural function is its mathematical behaviour at the origin (differentiability properties).
Now, inevitably, this structural function is fitted from a finite number of data, which therefore does not
permit the passage to infinitesimal distances. This does not proscribe the method but means that when
we fit a variogram model, we add information which is not available in the data. Besides, this
situation, which is irreversible, is a good thing: if initiative played no part at certain stages, geostatistics
would be reduced to a tautological manipulation of data.

This is an example of a situation where experience is decisive, the geostatistician having at his
disposal an unavoidable freedom of choice. As long as we do not have available additional information
which could refute the choice, it is justifiable to orient the model fitting, for example, according to the
type of problem set. Depending on whether we want an aesthetic map or a risk map, a precise one or
one that resembles reality, we will not choose the same variogram. There is nothing dishonest in this,
provided that the part left to discretion in the structural analysis is clearly defined in the final comment
on the results.

The limits of the linear tool

”Linear geostatistics” is easy to use and calls for few prerequisites. However, because the random
function distribution is only taken into account by the variogram, phenomena with very different natures
but having the same structural function will be dealt with in the same way, for example by kriging. This
confusion would be best avoided but it is the price we have to pay for simplicity.

The geostatistician is responsible for evaluating the need for more highly developed methods. So
let us consider kriging as an example, which is the best (meaning minimum variance) linear estimator.
But is the range of linear estimators the ”best” choice? And is the criterion of the minimum variance
sufficient? For a Gaussian random function we know that the regressions are linear ; in such a case we
can easily show that the kriging estimator is associated with the conditional expectation : consequently,
we are assured that kriging is the best possible measurable estimator. But what happens when our
distributions are very far from the Gaussian type? Experience shows that for asymmetrical distributions,
linear estimators are no longer suitable and that even for solving simple point estimation problems, non
linear geostatistical methods should be used.

Likewise we cannot be certain that the variance criterion is always good enough. For example it
does not always "recognize” asymmetries, multimodalities, etc... The symmetry along v and w of the
extension variance 0% (v, w) can justifiably be considered as unsatisfactory. Moreover the variance which
we minimize in kriging is not conditional, so that the weights will be the same whether they are in a
region of weak or strong data values.

These disadvantages exist and should never be lost from view. However, they are probably of little
importance compared with the temptation of applying unrealistic models which have nothing in common
with the data. For example, it would be tempting to use the medians rather than the expectations,
for reasons of robustness. Unfortunately, the slightest calculation involving information from different
supports immediately becomes intricate if we use the medians, and we are led either to make assumptions
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on the model which cannot be proved, or propose ad hoc approximations which falsify the work. The
advantages of the operation have completely evaporated.

In summing up this introduction to linear geostatistics, the geostatistician’s sense of analysis and
initiative are of the utmost importance if he is to bring his study to a satisfactory conclusion. There is
nothing more foreign to the geostatistical spirit than a program of the ”black box” type.

Expansions
The geostatistics mentioned up to now is elementary and its necessary developments are numerous. An incomplete
list is presented below.

These extensions of "basic” geostatistics are of two kinds, depending on whether we are modeling phenomena which
cannot be treated with the "basic” tools (non-stationary geostatistics, multivariate geostatistics) or whether we are
replying to new methodological problems (non-linear geostatistics, random sets, conditional simulations etc. ).

Non-stationary geostatistics

It often happens that no stationary variogram model is compatible with the data being studied. This
can be due to the presence of a trend, in the intuitive sense, having a regular behaviour and at a scale
which is similar to the size of the domain being studied (low frequency phenomena). In that case, the
best course of action is to use classical methods to show up ”"something” stationary in this more complex
phenomenon.

A first approach — a very intuitive one — consists in proposing a dichotomy. We try and describe
the global variable as the sum of two components, one that could be treated using linear geostatistics
methods and the other one considered .as a drift (or trend). This approach is interesting as it is generally
accepted by naturalists. Besides, it is the approach used when examining time series. This doubtless
explains why this approach was formalized first under the naine of universal kriging.

However, this mistakenly simple approach should be handled with care. For there is no reason why
the demands of the naturalist, who requires a physical explanation to the dichotomy, should meet those
of the geostatistician, who wants a stationary component to be present. Moreover, using the variographic
analysis with a view to universal kriging is quite difficult. That is why an alternative approach was
proposed : the theory of intrinsic random functions of order k (IRF-k). This time the approach is to
propose a transformation of the data which goes back to ”something” stationary. This transformation
is similar to a differentiation of order k and so results in filtering out the most regular components of
the phenomena.

The first advantage of this second approach is to permit us to use a much wider range of structural
functions than the family of variograms. These are the generalized covariances. In this way, we are able
to model variables which are much more complex than those in stationary geostatistics. If K denotes the
generalized covariance and f' the family of the basis functions describing the drift we filter, the kriging
in IRF-k — or intrinsic kriging — is written

N :
2*(z) = Zz\"‘z(za)
a=1

where the A“ are the solutions to the equations

N

pZ_:lAp K(zo,zp) + Z;mf’(za) = K(z,za) Vo
;_31 N f!(zp) = f2) vi

In this formula, the unknowns g are Lagrangian parameters. There are as many as there are
basis functions f' to filter. The intrinsic kriging formula is the same as that obtained in kriging with
a variogram, except that the function —y must be replaced by K. Consequently, the characteristics of
intrinsic kriging are like those of kriging with a variogram : linearity, exact interpolation, non-bias, etc. ..

The study of non-stationary phenomena from the IRF-k viewpoint presents numerous advantages :

¢ The automatization of the variographic analysis is much easier than for universal kriging ; in
particular it avoids the biases which are innate in the treatment by dichotomy. However, the former
comments are still true : a blind variographic study is inadvisable.
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e We can easily deduce a dual presentation from the intrinsic kriging system :

N
2 (z) = Z b K(z,z4) + Zc;f'(m)
1

a=1

where the coefficients b and ¢;, which do not depend on the point to be estimated z, are the solutions
of a linear system having the same structure as the intrinsic kriging system. In this way, by storing
these coefficients, it is easy to estimate at as many points as desired extremely rapidly.

¢ The formalism of the IRF-k makes it possible to prove the formal equivalence between splines
and kriging.

Multivariate geostatistics

In practice, being able to treat several variables simultaneously is important. In linear geostatistics
we know how to treat pairs of variables whose joint structure is defined by cross variograms

Te(ey) = 3 BIY() - Y@)Z() - 2()]

where Y and Z denote the two random functions to be studied. When doing the variographic analysis,
we must make sure of the theoretical regularity of the set made up of all the cross variograms and the

univariate variograms. The variography can then prove difficult. ..
Multivariate geostatistics can be applied in many ways.

e Cokriging. This involves a linear estimation of a variable with data provided on other variables
if necessary. Common sense shows that cokriging is of little interest for non-correlated variables
(neither one provides information on the other), or, quite the contrary, if the linear correlation is too
strong, the data is superfluous. That said, there are many applications of cokriging. For example,
we may want to cokrige a signal using noisy data (filtering). Here cokriging seems a generalization
of Signal Processing, but it has the property of not being constrained either by the spatial dimension
or by the lay-out of the data. Note that nothing prevents the noise from being structured or from
having a non zero mean, or even from being correlated to the signal. The figure below gives an

example of filtering by means of cokriging, applied to an image.
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Filtering a noise by cokriging

Processing data that is full of errors of location is another example of using cokriging. This problem
is specially met when treating the results from maritime campaigns. In general, the locations of data
from the same navigation profile are well known relative to each other, but there may well be an
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important imprecision on the relative position of two distinct profiles. Besides, the uncertainty of
the location has an important effect on the variographic analysis. In this way, when two profiles
cross, it may happen that two measurements which are considered to be located at the same point
have different values, which gives an ”apparent” nugget effect to the experimental variogram.
Modeling a regionalized variable where the location is uncertain becomes very difficult in the non-
stationary framework.

e Variables linked by linear equations (especially equations with partial derivatives). Examples
of these problems abound : uranium deposits where the grades and radioactivity (which is
approximately a convolution product of the grade) are treated simultaneously, meteorology where
wind and pressure are linked by equations, environmental flow configurations etc... The equations
should be incorporated firstly on the basis of the global structural model. But the approach of using
the data (cokriging neighborhood) is also strewn with problems because of the links between the
variables.

¢ Kriging analysis. The idea is to reveal basic components with different scales (different frequencies)
in the global structural model, and to consider the variables under study being made up of
superpimposing these components. The next step consists in studying these basic components
separately and hoping to to be able to give them a physical significance. This is a sort of fusion
between data analysis and a Fourier analysis. We are trying to give a precise meaning to the notions
of components and anomalies. However we are asking a lot of the model and consequently the
dialogue with the naturalists and the demands of realism are vital.

o External drift. Here we use two variables having different properties. The variable of interest
is known from a very small number of reliable data, whereas the data on the second variable are
much more numerous and are supposed to give information on the general structure of the variable
of interest. As an example, petroleum can be mentioned, where the few well data are completed
with very rich seismic information. The heterogeneity of the variables and the small number of data
on the variable which interests us make it impossible to cokrige in good conditions. Therefore, we
use the second variable as a guideline which sets out the main shape (drift role) of the variable in
question. This technique will no doubt develop with the multiplication of satellite images which add
to the ground data (in soil science, agronomy, bathymetry etc.)

Simulations

In the introduction, we mentioned the calculation of the length of an underwater cable on the seabed
as a possible utilization of a bathymetric map. Kriging is unsuitable for this sort of problem, because an
estimated map does not give a true picture of the structure of the variable. The estimation procedure
(here simple interpolation), results in a smoothing of the shapes. By minimizing the variance, we get
rid of the high frequency points and fluctuations. In this way, in the example of the underwater cable,
using a kriged map would lead to underestimating the necessary length — probably most considerably.
Let us just mention here that this problem is basically non-linear and so it is not at all surprising to see
that kriging is unsuitable.

So we aim to construct an acceptable image of reality, that is a numeric model giving the structural
characteristics of the variable being simulated. What is more, nothing stops us from making a large
number of these models. They are used to visualize structures, but also to make it possible to solve
problems (for example non-linear) which cannot be solved theoretically. We can also make simulations
of industrial processes (for instance mining) on these numeric models. However, we must nevertheless
note that this technique does not replace an estimation. It can be shown that a point simulation makes
a poor estimator (as compared with the usual criterion) because the variance is double of that of kriging.

An unconditional simulation is a numeric model giving the distribution and the structure
(variogram) of the variable. There are many techniques, one of which is the turning bands method.
The aim is first to produce one dimensional simulations, using techniques like those used in time series
(autoregressive processes, moving averages), then to spread the results obtained in R™ by integration
along all the directions in space. Indeed, geostatistics provides the formulas for passing from R! to R* ,
which are especially simple for n = 3. Note that the turning band method is not basically different from
some reconstruction techniques used in tomography.

There is no reason for the values of an unconditional simulation to be close to those of the data. There
is only a similarity at a statistical level and not on a level with particular values. With conditional
simulations, we ask the numeric models to respect the data values, as well as having the statistical
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likeness. The simulation is thus ”held in place” by the constraints which will be stronger, the more there
are conditioning data. This time we have a model at our disposal which not only resembles statistically
reality but in addition is close to this reality at the neighboring data points.

The interest of conditional simulations is clear for solving the questions we do not know how to
attack on a theoretical level. For example, by using a iarge number of conditional simulations we can
evaluate numerically the confidence intervals of the estimator — something we do not know how to do
theoretically just with linear geostatistics tools. However, we must take care. In conditional simulation the
structural model is very much in demand and care should be taken to see that the conclusions proposed are
significant and not only the result of artefacts (problems of discretization, truncation, etc... ). Besides,
a considerable number of values always have to be simulated. At this stage finding rapid algorithms is
crucial. The domain of conditional simulations is a particularly busy field of research.

As an example of conditional simulation we propose a vertical section of an oil dome. The map
shows depth contours of the roof of the structure obtained by kriging, and the first section represents the
cross section along A-B of this estimated roof. The interval Z* & 20k, can also be seen, where Z* is the
kriged value and ok the kriging standard deviation.

This is a typically non-linear problem. We must estimate the trapped oil volume, that is the volume
between the roof of the structure and the water level which we assume is known. A major difficulty and
theoretically unsolvable one is determining the limits of this volume, or the intersection of the roof of the
structure and the water level.

Let us first examine the shape.which, in "
general, is much more irregular in the conditional -
simulations than in kriging. In order to visualize
this effect, the simulated values are represented by
reference to the interval Z* 4+ 20x.

We note that on simulation 20 the simulated
values can leave this interval. This confirms that,
at least vis-a-vis the minimum variance criterion,
the conditional simulation can prove to be a very
poor estimator.

Incidentally, the example of simulation 26
draws attention to the risks we run if we limit
ourselves to only one simulation. Indeed, we see
the simulated roof goes up on the right side of
the cross section and goes beyond the water level.
In this simulation, the structure which is likely to
contain oil is therefore in two parts, and, if proved
right, would be of prime importance for estimating
the volume. In actual fact, if we observe a large
number of simulations, we realize that this is
rare and consequently it would be unwise to base
an entire study on the very special properties of
simulation 26, even more so as it concerns a zone
simulated in extrapolation and associated with a
very strong theoretical variance.

Simulation of an oil reservoir

Methodological analysis

The discussion on estimation/simulation enables us to end the analysis on the role and importance
of the model in the geostatistical approach. By simulating a given structure conditionally, we can show
the impact of the choice of the structural model, or visualize the effect of a change of parameter (range,
nugget effect, etc... ). At the same time, by kriging from conditioning data, we show the difference of
behaviour between estimation and conditional simulation.

This comparison is not entirely theoretical. It also gives information on the way models react to
certain situations (missing data...) and on the soundness of the results. In this way, it is possibie to
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develop the geostatistician’s experience by non-quantitative data which are very important when making
choices : for example, when deciding between two equally plausible models for the variographic analysis
or when fixing a research program of neighborhood for the kriging analysis.

To illustrate this point, we provide five pages of figures at the end of this document which illustrate
some important notions :

¢ Importance of the range. In a stationary model, the range is the distance beyond which two point
data no longer have a significant correlation. This parameter corresponds to the intuitive idea of
a zone of influence. All things being equal in other respects, the larger the range, the more the
phenomenon will be structured on a large scale. Contrary to this, if the range tends towards 0, there
is a transition towards the nugget effect and total absence of spatial structure.

¢ Figure 1 shows four non-conditional simulations, constructed with a spherical variogram model, for
four increasing values of the range. As expected for ranges 50 and 75 we can see the outline of
important structures on the scale of the domain, and which were completely absent, especially for
range 10. Moreover, although the model used for these simulations is stationary, if we performed a
variographic analysis on the simulations of ranges 50 and 75, we would surely come to the conclusion
of a non-stationary phenomenon — on the scale of the domain.

e Moreover, it is clear that if these simulations were data from which we wish to perform a kriging,
the procedure for locating the neighborhood should not be the same for ranges 10 and 25 on the one
hand, and ranges 50 and 75 on the other. Indeed, in the first case, the absence of any prominent
global structure makes it impossible to commit a serious error of estimation, if the estimator is close
to global mean. Therefore, it is important to use a maximum amount of information when the mean
value will be a suitable estimator: Contrary to this, for the long ranges, the phenomenon shows a
strongly structured global geometry and it is therefore of the utmost importance, in order to make
an estimation, to have well located information, and above all, close to the point to be estimated.
This example illustrates an empirical rule (it is not a theorem and exceptions can be found!). When
a phenomenon has a weak structure, it is usually better to favour the quantity of data (classical
statistics) . When the phenomenon is strongly structured, it is the quality of the data which prevails.

¢ Importance of the type of model. Figure 2 shows four simulations of models having equivalent
practical ranges. The difference between these models is primarily due to the behaviour at the origin.
The spherical and exponential models have a linear behaviour at the origin which corresponds to
a continuous random function. The ”cubic” model is twice differentiable at the origin, which
corresponds to a random function that is once differentiable. Finally, a random function having a
gaussian variogram is indefinitely differentiable.

As the range is quite big in relation to the simulated field, we can see structures take shape on
these four simulations. Rut for models having a linear behaviour, these structures have very rugged
boundaries, especially the exponential model. Already the cubic model has much sharper boundaries
and the zones which take shape have strong structures. In the gaussian case, the isolines are very
smooth and it is likely that a variographic analysis on the scale of half the field would indicate the
presence of a drift which is absent in the underlying model.

e Importance of the nugget effect — figure 3. For a phenomenon with fixed global variance, we
increase the part due to the nugget effect in the model. The effect of destructuration goes without
saying. For a 100% nugget effect, we are dealing with a totally unstructured white noise.

e Figures 4 and 5 have a common presentation. A first figure proposes ”reality”, in fact a non-
conditional simulation made with models having equivalent practical ranges. The difference between
the spherical and the gaussian structures — already mentioned — can be seen again. Then on these
simulations, considered as the reality, we carry out a sampling (the same for the two models). From
this sampling, we perform the kriging in unique neighborhood — using all the data. This result is
completed by the standard deviation map.

e We have already shown that kriging smooths and that a kriged map is more regular than reality.
Naturally this effect is more noticeable for the spherical model as the initial shape was much more
erratic. Contrary to this, the effect on the gaussian model is less noticeable and the kriged map
is very close to reality. This means that in the present circumstances, it would be unimportant to
mistake reality for the kriging estimator. However, it should be noted that there is a significant
number of data points (100) and that the gaussian model might give rise to artefacts if the kriging

- was constrained by too small a number of data.
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Non-linear geostatistics

Simulations are one way of solving non-linear problems. However they run the risk of asking too
much from the model, and making the simulated numerical values say more than is realistic. For this
reason when possible, it is advisable to look for a theoretical approach to non-linear problems. Three
types of questions are treated in non-linear geostatistics.

o Support effect : The basic formula of the extension variance makes it possible to calculate the
variogram of a regularized random function. But this formula is inadequate if we want to construct a
change of support model, a model for the bivariate distribution (Z(z), Z(v)). This is a problem
particularly in mining geostatistics, where the samples and selection units have very different volumes.
It is important to know the distribution of the selection units conditionally to the sample distribution.

o Still taking mining geostatistics as an example, we often make choices (cutoffs, selections) on the
basis of Z* estimators, not of real values Z. Kriging yields a smoothed version of reality and so
clearly it does not have the same distribution. This effect is called information effect. So we must
be able to model the bivariate distribution (Z(z), Z*(z)).

¢ Finally, we are often led to estimate not the values (point or regularized) but the probabilities of
exceeding the threshold. In mining, the notion of cutoff is very important, as for constructing
grade/tonnage curves. This is fundamentally 2 non-linear notion.

It is to answer these questions of non-linear geostatistics that disjunctive kriging was developed.
It is an intermediary tool between linear regression (kriging) and regression (conditional expectation).
Stronger than linear geostatistics, disjunctive kriging needs a modeling of the bivariate distribution
and is no longer satisfied with moments of order 2 (variogram). So we see the notion of distribution
reappear, which was absent from linear geostatistics. And, as in general we do not know how to handle
arbitrary distribution theoretically, an important tool in non-linear geostatistics is the anamorphosis,
a transformation which aims to convert the initial random function to a random function with a known
distribution {generally gaussian).

Finally, let us note that disjunctive kriging demands strict stationarity in order to infer the bivariate
distribution. In this way, even if the range of questions we can tackle theoretically is considerably
enlarged compared to linear geostatistics, nonetheless the range of phenomena we can handle is reduced.
The development of non-linear, non-stationary geostatistics remains an open question.

Perspectives

Geostatistics can choose from a wide range of tools which has grown over the years. However we
should not forget that these tools may prove to be inadequate for modeling the fundamental characteristics
of certain complex phenomena, and that as a result it will be necessary to look for new tools.

In the classical domain which we have considered in this presentation up to now, let us remember
some of the developments in view.

o For instance it is clear thai the cross variogram, which is a pair function by construction, does not
"see” the systematic shifting between variables (which are present in flow phenomena) : meteorology,
pollution, alluvial deposits etc... In this case, there is an answer, at least in the stationary frame,
that is to work in cross covariance rather than in variogram. In this case, the theoretical basis exists.
The practice has to be developed.

o Another field of research : the change of scale. More and more frequently, the use of satellite images
as a means of giving more information at ground level (agriculture, soil science, oceanography etc.)
forces us to work with heterogeneous data representing very different sized domains. This poses
problems of scale conversion, in addition to variables which are often not additive (for example data
of a geometrical kind).

o Another very important domain : modeling spatial/temporal phenomena. We can no longer
merely ”photograph” a regionalized variable, but must describe its evolution in time. Adding another
dimension does not solve the problem, as the evolution obeys other laws or at least is limited by
inequality constraints. Multivariate geostatistics has to develop for the study of variables linked by

_ equations. '
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e Another subject for reflexion : what information does the simultaneous understanding of the law
of distribution and covariance bring on the structure of a variable? (the figure below shows three
examples of realizations of processes having the same covariance (in this case exponential) and

histogram.
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Three simulations with the same distribution
and the same covariance

The first simnulation is a diffusion model.

The second one is an Ambarzumian process
(exponential decrease on a Poisson model). It is
especially interesting, because it is asymmetrical.
It is evident that the distribution of Z(z +h)|Z(z)
— the distribution of Z(z + k) conditionally
to Z(z) — is not identical to the distribution of
Z(z)|Z(x+h). This property is not ”seen” by the
variogram. . .

Lastly, the third example is a mosaic model.
The process is piecewise constant.

A tool that cannot distinguish three such dif-
ferent phenomena is unsuitable. That is why we
must choose stronger methods than geostatistics
of order 2, which confines itself to using mo-
ments. A promising analytical tool is the ?de-
ferred” scatter diagram, a scatter diagram be-
tween the random variable Z(z) and Z(z+h). But
the application of these tools which are consider-
ably more refined than those of linear geostatistics
requires a much better quality data, and especially
very strong conditions of stationarity.

The list is not yet closed as geostatistics is developing by leaps and bounds. We have not mentioned
here random sets which is a vast and promising domain in full expansion. It concerns a section of
geostatistics which bridges the gap with mathematical morphology, by granting more importance to the
geometrical aspect of the data. The mathematical tools applied are set oriented rather than being
numerical. The many different applications not only give images which look more like reality (with, for
example, in stratigraphy the constraints of inclusion), but also approach typically non-linear problems,
as, for example, questions of connexity which are important for flow phenomena (oil wells, propagation
of pollutants). The field of random sets, which will be applied more and more in the future, is also
a more fundamental field of research in what concerns the problem of the inference of models and the
conditioning of simulations.




24 Processing data with a spatial support

Link with other methods

Its very nature makes geostatistics a subject where mathematical methods and fields of application
encounter one another. Some of these methods have led to theoretical innovations (for instance
random sets), but the majority are quite classical and because of this, are used for problems which
are quite different from those encountered in geostatistics. Besides, practitioners of natural sciences
have mathematical tools adapted to their field of study for their particular problems. Consequently,
geostatistics is certainly not an isolated subject. Therefore it is essential to place it in relation to other
similar methods, and eventually to review its fields of application.

On the methodological level, geostatistics proposes a basic choice :
¢ the analysis of the spatial structure of the data
and its application are characterized by three factors :
¢ we work with sampling data which provide us with incomplete knowledge of the field being studied.

o we work in a metric space, but, a priori, of any dimension. In particular, we are not obliged to go
back to R(1 D).

¢ Finally, we do not have to go back to a regular grid. The methods proposed are applicable whatever
the distribution of the data.

These four features of geostatistics will help compare similar methods.

Probabilistic methods

Apart from the transitive methods, geostatistics operates on probabilistic models. As this
formalism is based on a criterion of variance, it is mainly on the first two moments that the work
is carried out. Consequently, in stationary hypothesis, the suitable tool is the covariance function
whose mathematical characteristics are defined by Bochner’s theorem. This theorem, which links the
structural function and its Fourier transform makes it possible to compare geostatistics with the spectral
methods. When the hypotheses of stationarity must be extended, we must resort to a generalization of
Bochner’s theorem, but the technical complications involved do not change this parallel. Consequently,
when teaching the theory of geostatistics, it is also interesting to present the random functions from the
point of view of harmonic analysis, so as to allow for the comparison with the standard methods, for
example in signal processing. In this way, it can be seen that the cokriging of errors is nothing more
than a filtering, and that kriging analysis resembles a frequential analysis. The practical difference
is based on the fact that geostatistics works well in more than one dimension and, above all, it is totally
unnecessary to have regularly spaced data.

Whatever the hypothesis of stationarity, we always go back to the handling of random quantities
having a variance. Consequently, the mathematical frame of work is a L2 space of random variables and
so the minimization of a variance can be presented as a projection of random functions on a Hilbert
space. In this way we have a geometrical presentation of kriging. The characteristics of the kriging are
then an immediate result of the projection theorem : for example the theorem of additivity, proved
in the universal kriging framework is just the standard theorem of the three perpendiculars.

We can finally consider the tie between geostatistics and stochastic processes — or random
function methods. As geostatistics is generally used in spaces having several dimensions, it makes little
use of formalisms such as Markov chains, waiting times, queues, etc... because it does not benefit
from an ordered structure in its domain of work. More general, geostatistics may thus appear less fitted to
the special processing of time series, especially because transferring to R” of tools which are specifically
unidimensional seems to be extremely difficult. However, developments in the geostatistical study of R
could throw new light on this field where, in truth, other methods which are perfectly suitable, already
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exist. In any case, methods such as diffusion processes are already applied in geostatistics, not in the
" geographical” work space, but in the ”state space” taken by the variable (transition of stratigraphic
features for example). Moreover, the turning band simulation method which starts by simulating
unidimensional processes, sometimes makes use of tools from the time series : moving averages,
autoregressive processes, or, more generally, ARIMA processes.

Statistics

If only because of the name geostatistics, we should consider the link between geostatistics and
classical statistics. In fact, this is rather complex.

The first point to be observed is that, historically, geostatistics broke away quite early from the
questions concerning the distribution of the regionalized variable in order to concentrate on the
"spatial structure” aspects. In fact, this break is rather deceptive as we know that the choices made
— that of the linear estimator and the variance as a quality criterion — are optimal in the case of a
gaussian random function and become less suitable as we ”move away” from the gaussian case. In other
words, the underlying distribution is important even if it is not explicitly considered in the formalism of
linear geostatistics. Moreover, by the use of anamorphoses, non-linear geostatistics takes the underlying
distribution into account indirectly. Indeed, current theoretical developments are moving towards an
analysis and modeling of bivariate distributions.

The real problem between statistics and geostatistics probably comes from the role allocated to the
model. For the geostatistician, the probabilistic model is essentially a tool which is forged for the specific
needs of the problem. A ”real” model is not hiding behind the sampling data, any more than there
is a “real live” parameter set to be found. Applied geostatistics should be considered as more than a
mathematical method but as a physical science, where experience counts for more than the model.
That is why statistical inference, or the fitting of the model, is simply taken as an approximation
which we are obliged to do unless we know the regionalized variable exhaustively, and any additional
information which crops up during the study must be used to verify the model. The purely operative
role given to the model for the geostatistician explains that it is not normal to make statistical tests
in order to evaluate the quality of the variographic analysis, the best test being the comparison with
reality. Consequently, a parameter of the model which has no physical significance is at best a step in
the calculations and at worst a parasite presenting artefacts.

This point of view shows up the difficulties in communicating with the world of statistics. The
best-known illustration of the differing points of view is the fitting of the variogram model and more
especially of its behaviour at the origin. It is quite possible to devise statistical tests which measure the
distance of a model from the experimental variogram. The problem is that, quite rightly, several tests
can be considered, they in turn demanding hypotheses on the model and the conclusions can be radically
different. Let us just mention here that this approach is proposed in the Bluepack software program and
indeed the answers are sometimes ambiguous. Now, we have already seen how the model can affect the
results (simulation or estimation). So unless the geostatistician has solid criteria, he will prefer to use his
own experience in making his choices — while free to do so — in terms of the problem in hand. It will
be up to him to correct the model when additional information makes it possible (and ipso facto requires
this. . .).

A truly statistical approach is only possible when there is a underlying model, that is when we work
on a numerical model. Contrary to this, when we work on samples of real variables, the philosophy of a
geostatistical study could, if pushed to the extreme be expressed in the following way : the moment the
algorithms are mathematically correct, there are no right or wrong results, but only suitable or unsuitable
results, a result being meaningless unless accompanied by a list of operating instructions (Iaboratory
conditions in physics).

Other methods

Geostatistics can be used to study geometric forms, especially in its transitive presentation (noh—
probabilistic). What makes it different from methods like image analysis and mathematical
morphology is the use of fragmentary, sampled data. Consequently, it presents an interpolative aspect
which is not present when working on a totally known image. However, this difference is diminishing,
now that satellite images are being used more and more as a complement to ground data. Besides,
geostatistics used to be set apart from mathematical morphology because of the structural tools employed.
Mathematical morphology uses continuous objects whereas geostatistics only uses finite objects (a point
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pair for variograms, several points for generalized covariances). But here too the difference is disappearing
and random set geostatistics closely resembles mathematical morphology.

Kriging without a change of support is an interpolator. Consequently, we can consider its ties with
the methods of numeric interpolation. Contrary to methods such as ”distance inverse”, ”inverse of
the square root of distances” etc..., contrary to the polynomial fitting by least squares, the role of
geostatistics is to take into account the intrinsic structure of the variable to be interpolated and so does
not propose an ”all-round” estimator. For the quasi-totality of natural variables, there is not any "down
stream” constraints, for example on the analytical expression of the estimator. We do not have the same
viewpoint when interpolating a car’s coachwork or the wing of a plane on the one hand, or a pollutant
grade or an atmospheric pressure on the other hand. Geostatistics is bound by ”up stream” constraints.
Therefore, the theorem which expresses the formal equivalence between interpolation using splines, and
kriging (note that ”splines d’ajustement” are like kriging with a nugget effect), is an interesting subject
to examine. Although there are very differing points of view in their utilization , splines and kriging are
one and the same thing. This does not mean however that setting up a kriging given in terms of splines,
or the reverse, is easy!

Kriging analysis resembles a frequential analysis, insofar as it separates a global phenomenon into
components with different scales. However, in its multivariate version, it also resembles data analysis,
because it aims to show the similarities and the differences of the variables being examined simultaneously.
But in kriging analysis it concerns a structural similarity , shown at the cross variogram level, rather
than a statistical similarity. It must be noted that the characterization of a global multivariate model
with a kriging analysis in view, relies on an analysis in ”principal components” performed not on the
regionalized variables but on the parameters of the structural functions.

Finally, we should consider the link between geostatistics and fractals. The fractal or non-
fractal characteristic of modeled random functions in geostatistics (or their realizations) depends on
the behaviour of the variogram at the origin. However, this is not characteristic. Therefore a gaussian
random function on R, having a stationary exponential covariance, will be fractal with a 1,5 dimension
(*), whereas a Markov chain having two states with the same covariance will not (1 dimension). We
should note that here we are talking about a fractal dimension and not an self-similar property.
A stationary random function (non constant...) cannot be self-similar. On the other hand, when the
hypothesis of strict stationarity is removed, geostatistics using IRF-k makes it possible to model the
fractal phenomena just as well as the self-similar phenomena. This said, these properties should be taken
into account with care, exactly like the behaviour of the variogram at the origin, because they cannot be
analysed strictly from a finite number of samples and so proceed from an extrapolation towards infinitely
small scales. For the same reason, we cannot be sure that the fractal characteristic of a random function
is a decisive property, at least as far as simulations go. For, in the end, it is always a finite number of
values that we construct. ..

(*) Hausdorff-Besicovitch dimension
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Fields of application

Geostatistics is mainly a collection of methods and so in theory is not reserved for any particular
domain. In one way this is an advantage insofar as algorithms and practical aspects can be tested on the
most widely diverse variables. However, it is also a handicap : as each subject has its own formalisms,
habits and vocabulary, it is sometimes difficult to promote a course of action considered too vague. That
is why, in the past, geostatistics favoured domains which were receptive to its new methods.

Original fields of application

Geostatistics was first developed in mining. The vocabulary ("nugget effect” referred to as ”white
noise” in other domains) shows this clearly. The circumstances were favourable as it was the mining
world itself (or at least some of its representatives) who were looking for new methods. In the 1950s,
the problems were of a statistical kind (bias correction) ; however, it is interesting to note that once
contact was made, geostatistical research finished by covering all the steps in a mining project : from
prospection to open pit optimization, not forgetting estimation. So the development of non-linear
geostatistics at the beginning of the 70s was warranted at the outset solely because of problems in mining,.
Non-specialists certainly should not perceive mining as a monolithic entity and even a general subject
such as geostatistics should consider different approaches for gold, nickel, uranium or coal mining. In
this way, because of the variety of studies undertaken, geostatistics has been able to develop its resources
considerably, both in its applications as well as in its theoretical development. In spite of the more
difficult international sitnation today, geostatistics is still thriving.

However, despite the seemingly good conditions, a lot of time was necessary before geostatistics was
accepted as a standard tool. Almost twenty years passed by between the first treatise on geostatistics
and the first utilization in routine of geostatistical estimation software programs. Barely less time
was needed before geostatistics was accepted in the oil industry, but now it is a privileged domain
of application. Yet again, communication was one of the reasons for this lapse of time. The oil industry
has its own way of tackling problems and its own vocabulary which are far removed from those of mining
geostatistics. Another difficulty comes from the fact that oil companies have highly developed, consistent
data processing environments to which the “newcomer” — geostatistics — ‘must fit. But once these
difficulties were overcome, the oil industry proved challenging profitable by bringing up a new range of
methodological problems for geostatistics to solve. The first particularity of oil wells comes from the non-
stationary nature of the geological structure under study. The second one is the considerable importance
of the geometric aspect : discontinuities (faults, contacts), heterogeneities of the land, sequential order
of the facies, problems of connectivity. Moreover, quality data are generally very costly and thus rare,
therefore it is important to be able to work on reliable numeric models. Consequently, on the one hand
we had to develop the non-stationary aspect of geostatistics, especially where software programs of
variographic analysis and estimation are concerned, and on the other hand we had to develop set
theory methods to model the geometries. That is why the application of the theory of random sets,
although almost twenty years old, is currently regaining ground. Finally, a study in the oil industry
nearly always has to process dissimilar data : few data from the wells and a great number of geophysical
data. That is why we must also develop the tools of multivariate geostatistics, especially the external
drift which was first used for the integration of seismic data to well mapping.

Other applications
A list of examples will illustrate the wide range of geostatistical case studies.

e Meteorology : analysis and mapping of the geopotential (*). Incidentally, this problem was one
of the very first applications of cokriging in routine. We should note that the problem of mapping

(*) isovalue surface of the atmospheric pressure
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equipotentials is complicated by the constraint of having consistent maps for the different values
of the atmospheric pressure. Besides, these meteorological data had the particularity of being very
heterogeneous, as oceans are obviously sampled much less than the continents. The neighborhood
search was thus a crucial problem.

Meteorology is known to be one of the privileged fields in processing data with a spatial support.
Indeed, under the name of objective analysis, L.S. Gandin (U.R.S.S.) proposed an interpolation
method equivalent to universal kriging in 1965.

Forestry estimation : This field is the second example for which an equivalent estimation method
was proposed independently (B. Matérn, Sweden, 1959). But because of their discrete properties,
the tree counts can be better defined by more suitable models, as, for example, the point processes.

Agriculture, soil science : like forest estimation, these domains currently benefit from aerial data,
especially satellite images. Geostatistics is thus confronted with the problem of heterogeneous data
which is complicated by the quantity of information, and with the problem of change of scale, the
different variables having supports of several orders of different magnitudes.

Material sciences : geostatistics is used for example in fracture statistics and relies on random
set models. The geostatistical study of thin sections resembles the techniques of mathematical
morphology and image analysis.

Geochemistry was the privileged domain of application of multivariate kriging analysis, in order
to give a specific sense to the notion of anomaly and regional.

Geophysics uses geostatistical methods to solve difficult problems, as for example the deconvolu-
tion of gravimetric values, or the filtering of diurnal anomalies of magnetism. Geostatistics is an
original way of approaching the famous ”inverse problem”.

Cartography (mapping) and bathymetry (mapping seabeds) are privileged domains for using
geostatistics : interpolation, compacting data, using chararcteristic data (summets, watersheds,
thalwegs. ..), accounting for measurement errors or uncertainties of localization.

Climatology can take advantage of the multivariate geostatistics approach. In this way rainfall
data can be linked to topography taken as the external drift, or to more geometrical factors such as
the orientation of the dominant wind. These phenomena are naturally asymmetrical and so require
finer tools than simple variograms (bivariate distributions).

Fisheries might not jump to mind as an example : global estimation methods are used for
the evaluation of the fish population which is difficult because of the special sampling conditions
and the fact that the population being studied is a moving one with spatial characteristics varying
throughout the day and the seasons... Let us just mention that a ruling of ICES (*) has suggested
using geostatistics for the estimation of fish populations.

)

Future prospects

We have brought up the subject of using satellite images or thin section data. Generally speaking,
image processing can be treated by using geostatistical tools : filtering a noise, compacting
data, frequential analysis. It is true that today this type of problem is usually studied in signal
processing. Besides, the current geostatistical software may not be suited to the volume of data
encountered in image processing. Contrary to this, the geostatistical tools of fine variographic
analysis should bring more precision in the image representation. The change of support
models should enable the use of images jointly with samples having other origins, and kriging
analysis seems to be a suitable tool to help understand the underlying physical phenomena which
are responsible for the general aspect of an image.

At present the geostatistical study of numeric models is rarely employed, except in academic studies
a posteriori of simulations (conditional or not). It is probable that computational problems would
crop up — possibly in the sense of simplifying the algorithms — tied to the special distribution of the
data in the space. However, the most important will certainly be to take into account the equations
governing these data. A recent study was made in this direction and led to a new development : a
geostatistical study on a complex variable..

If the model is not constructed on an Euclidean space, a new distance measure will have to be
defined, then the notions of stationarity and ergodicity will have to be defined for the probabilistic

™
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model. This is not a trivial question and is already being encountered in the problems concerning
the earth’s surface (meteorology on the scale of hemispheres).

Civil engineering is another domain where development is possible, more precisely in the study of
the stability or the deformation of the soil beneath constructions. However we must consider an
important theoretical difficulty for this type of problem, the modeling of the change of support,
given that the variables being studied (for example compression, penetration resistance, etc...) are
mostly non-additive and consequently do not lend themselves to a linear approach.

The most encouraging prospects are to be found in the environment domain. This is a subject
which is not only of great interest today but which brings up important geostatistical questions.
The common feature of environment data whether, they have natural or human origin (pollutants),
is that their spatial distribution is ruled by physical equations. Flow phenomena obey the partial
differential equations, which simply must be taken into account by the structural model, otherwise
the estimations or simulations will not be credible. Therefore the processing of variables linked
by equations is at the heart of environmental geostatistics. Work carried out up to now shows to
what extent the way of approaching the problem depends on the particular form of the equations
ruling the phenomena.

The equations occur as a consistency constraint on the results but they are also present at the data
level. In this way as initial information we can have both a variable and its gradient (or its Laplace
operator) which must be integrated in a cokriging estimator. Often the gradient data intervene as
boundary conditions, which increases the importance of the geometry of the problem. Finally,
if the boundary conditions concern the behaviour at infinity, the problem becomes more difficult
with questions of approximation, convergence, truncation. ..

The preceding questions lead us to model the evolution of spatial structures in time. Spatio—
temporal models are not limited to the addition of a dimension. We must consider the form of
the equations of evolution, and doubtless also the inequality constraints which restrict the speed
of evolution. This is a domain of research to be explored because of its potential wealth.

A last remark : the term ”environment” should be taken in a wide sense and in particular,
meteorology should once again lead in the methodological developments in geostatistics.
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Three examples

The aim of this brief presentation is to set out some aspects of a geostatlstlcal study, using two real
cases. The third case is an example of interpreting structural functions.

Bathymetric survey on the site of the ”Titanic” (*)

This study was carried out in order to map the seabed in the immediate proximity of the wreck of
the Titanic. The figures proposed show the steps in a real variographic analysis, and the importance of
the choice of the kriging neighborhood.

As is usually the case for marine data, the available information is distributed along the profiles
(Figure 6). The data is very close on the profiles (every 50 metres) whereas the profiles are much more
spaced out . We find ourselves directly presented with an anisotropy, not of the regionalized variable
~— at present we do not have any information on this subject — but of the information. Consequently
at each stage, we shall have to make sure that this situation does not cause artefacts. In particular,
when checking the data, we must ask the ratio of the sampling grid : why precisely this orientation,
why not have made a square grid ? One of the essential conditions for carrying out a good variographic
analysis is indeed to have non—preferential information. The data should have an unbiased statistical
significance. This does not mean that geostatistics can only work on random data, but that qualitative
data a priori should be carefully considered before any statistical processing, either by delimiting the
homogeneous sub-zones or by explicitly incorporating these data in the model.

As it is, the choice of the campaign complied with the constraints unknown to the bathymetric
variable studied. Consequently, no bias was to be expected, a priori. However, when checking the data,
we see that they prefer one direction. Indeed, at the work scale requested, (200 or 300 metres) , we cannot
have information on the bathymetric structure in the direction perpendicular to the profiles. Therefore we
are obliged to restrict ourselves to the variograms in the direction of the profiles and without additional
information we must find an isotropic model. Indeed, we have no elements available for considering any
modeling of an eventual anisotropy.

This situation is typical in geostatistics. Lacking decisive arguments, we fall back on the ” minimum
model”. Any other choice would be arbitrary and the freedom left to choose the parameters would be
misleading. The ”minimum model” is also arbitrary but we run less risks with it and it will be the easiest
to correct in case it is refuted later on . For reasons of prudence and also realism, at each modeling stage
it is wise to adopt a principle of economy : avoid adding hypotheses and parameters which cannot be
verified.

In this way, the variograms are computed in one dimension, in the direction of the profiles. Figure 7
shows these variograms at steps 50, 100 and 500 metres. The last figure regroups these three results and
confirms their consistency. The conclusion drawn is that a stationary model is clearly unacceptable.
Indeed, on the first two figures, we do not see a sill, which seems to indicate that there is no stationarity
until at least 5000 metres. At the 500 metre step, we just might admit a sill phenomenon at about
twenty kilometres, but this sill would be three times the variance of the data which is incompatible with
a stationary model. Naturally, this effect of the variance could be due to a strong anisotropy (and then
the sill in other directions would be very much below the variance), but there is no way of checking this
model. The principle of economy would then suggest finding a non-stationary model, while hoping that
if indeed there is an anisotropy, it will be taken into account by the drift. The variographic analysis is
thus undertaken using IRF-k with the BLUEPACK program.

A first "tentative” approach using default options results with IRF-k, having a linear and spline
generalized covariance. The resulting map, obtained by kriging with neighborhoods of 12 points (default

(*) This example is provided with an authorisation from TAURUS INTERNATIONAL / TITANIC VENTURES. To
preserve confidentiality, the coordinates and depths are nqt specified, nor are the details of the sampling campaign.
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values) is inadmissible — see figure 8. The reason for this is that nothing in this estimation obliges the
program to use data from different profiles. In order to estimate the values next to a given profile, the
kriging neighborhood only uses data from this profile. So on the one hand we work in IRF-1 — with the
data almost aligned — which leads to a quasi-singularity of the kriging system. On the other hand,
seen from the point to be estimated, the data are only distributed at best in a 180° angle — which means
that we are extrapolating. Paradoxically, it is only when we are quite far between two profiles that we
find less inadmissible conditions : the neighborhood contains information on each of the two profiles, the
system is fixed size and the isolines become plausible.

It is possible to constrain the program to use the data belonging to at least n distinct profiles, for
the variographic analysis as well as the kriging. By taking the minimum value n = 3, the program
examines an IRF-2 this time, having a linear generalized covariance. The kriging, carried out with a
default neighborhood of 16 points, is shown in figure 9. We note a definite improvement, especially in the
areas where the profiles are regularly spaced and informed. However, there are anomalies as soon as the
program has trouble finding the data which are well distributed and come from three different profiles.

We shall increase the minimum number of profiles to be used. Trying n = 5, and neighborhoods
having 24 points, the result is a disaster (figure 10). We observe, a posteriori, that this is due to a
generalized covariance model which is too regular (cubic).Therefore, when kriging, the estimation value
is extremely sensitive to the closest data, and so magnifies the slightest fluctuations in the data. In
return, when we are far enough from any datum, the estimator is aligned more to the drift.

From figure 8, it was obvious, a priori, that we would obtain anomalies — and this estimation was
only carried out as an academic example. On the other hand, in figure 10, the disastrous result
teaches us something : it shows that the IRF-2 model is numerically unstable, on account of the
neighborhoods chosen and the intrinsic structure of the data. In such a case the variographic analysis
protects itself by adopting a too regular generalizéd covariance which, linked to a second degree drift
leads to completely erratic estimators.

We must learn from this experience. To impose 3 as the minimum of the number of profiles is
insufficient, according to figure 9. Moreover, we have just seen that a ”"quadratic drift” destabilizes the
estimation. Having seen figure 10 we shall impose a linear drift on the program, everything else being
equal. In these conditions the program examines a linear and cubic model (ﬁgure 11). This model is
quite close to that of figure 8 as regards regularity and degree of drift ; however it is identical to that of
figure 10 in the neighborhood structures.

This time, the result can be considered as satisfactory. Doubtless we should smooth the isolines a
little in order to "rub out” the few irregularities caused locally by the slightly defective neighborhoods.
However the transversal structure which in figures 8 and 9 could have been attributed to artefacts and
which was totally hidden by interference in figure 10 can be clearly seen here. This cafion and its structure
are already known.

In these circumstances it would be advisable to make another fine variographic analysis,
which would determine the structure of the cafion and the rest of the domain. The available data did
not make this possible. At the very most we could have removed the cafion data from the variographic
analysis and propose a structural model for the rest of the domain. The bathymetry would have been
slightly better on most of the map and probably a little less good around the cafion.

The last run on this case study will be used to try to economize computational time. We are looking
for the impact of the number of points in the neighborhood, all the other conditions being identical to
those of the preceding estimation. By taking the default value of 8 points, we obtain figure 12, which,
in comparison with the preceding estimation, is only slightly less good. Now, in the present case, the
kriging system is only 11 x 11, whereas it was 27 x 27 in the preceding computation. For work in routine
— which was not the case here — the time saving would probably justify the minor degradation noticed.

Figure 13 proposes the map of the kriging standard deviations for this last estimation. The
reconnaissance ‘profiles can be seen but not the cafion, which was predictable in theory. This is normal as
we considered a global structural model so the kriging standard deviation only depends on the geometry
of the information and not on the data values. A more precise study would not be satisfied with this
result. . .

The lesson to be learnt from this example is the difficulty in developing a purely automatic procedure
of variographic analysis and estimation. An essential element in a real study is the dialogue between the
geostatistician and the data.
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Moreover, going back to purely statistical quality criteria is likely to shatter many an illusion.
Consequently, in this study, the program would be best suited to figure 10. This is where there was
the most freedom to fit the parameters to the best of its statistical tests. And indeed, representing the
values in the immediate proximity of the data is excellent. Unfortunately, what interests the user is
precisely not what is taking place near the data but elsewhere. So, in order to lead to a good result,
the model must contain more information than what is in the data. This additional information (here
the choice of the neighborhood size and the imposed degree of the drift) shows to what extent the
geostatistician must take responsibility in conducting a practical study.

Simulations of heterogeneous reservoirs

When working with subterranean reservoirs of water, oil or storage, we must have at our disposal a
3-D mapping of the hydrodynamic properties of the reservoir (porosity, permeability, . . .).

These variables can be simulated by using classical geostatistical tools. But there is a problem
when their distribution is no longer homogeneous in the space studied, especially when these variables
differ from one area to another having different types of deposition. This is what we call heterogeneous
reservoirs. The simulation procedure we propose consists first in simulating the geology of the reservoir
in the form of its lithofacies.

The HERESIM software package developed by the IFP(*) and the Centre de Gdstatistique mainly
concerns fluvio-deltaic sedimentary environments. The methodology is based on a geological analysis of
the reservoir which leads to the vertical partitioning of the reservoir into homogeneous stratigraphic
units from the point of view of sedimentology (type and proportion of the facies) and genetics (form
and dimensions of sandstone elements). Each unit is characterized by its deposition, particularly by a
paleo-horizontal surface (surface taken as horizontal at the time of deposition) which will be used as a
reference level and by its proximity to the neighboring units.

The data for these simulations come from wells through the different units making up the reservoir,
and for which the lithofacies series is known, either by core drilling (sampling and analysis of rock
samples), or after examining the different drill logs available (continuous recordings of geophysical
variables along the boreholes). The first stage consists in delimiting the passages of the different units
by the boreholes and to extend these limits to the entire reservoir, then to divide the information of each
well to the step of the simulation grid.

Inside each unit, the lithofacies are sequenced according to the deposition (for e.ample from the
most shale to the most sandstone), and the variables studied are indicators of the lithc acies. Once the
unit is herizontal (compared to its reference level) the well data provide different inforr ‘ation :

e vertical proportion curves which represent the proportions of the lithofacies in a horizontal slice.
These vertical proportion curves sum up the geological sequences of the unit. Figure 14 (1) shows a
vertical proportion curve representing a unit going from mainly sandstone facies at the base to shale
at the top. This vertical distribution is usually non-stationary.

o horizontal proportion curves which represent the proportions of the different facies along any
horizontal section of the reservoir. Horizontally, the stationarity hypothesis is tolerated in most cases
such as the one presented. However, depending on the work scale, and often for deltaic deposits, it
is more appropriate to consider a horizontal non-stationarity.

e Experimental simple and cross variograms of the indicators of the different facies, calculated either
along the boreholes or parallel to the reference level.

Proportion curves are not modeled. Conversely, experimental variograms should be fitted using a
consistent model. Indeed, a single gaussian random variable is examined, each lithofacies fitting to a
value interval of this variable. The thresholds of these intervals are limited by the experimental values of
the proportions of the different lithofacies and consequently expand for each horizontal slice of the unit,
as shown on the vertical proportion curve. They can also differ horizontally in the case of horizontal
non-stationarity.

The spatial structure is fitted for each stratigraphic unit, using a single model with a few parameters
(one for each direction in space) : an example for fitting is shown in figure 14 (2). In this case the method
involves simulating the underlying gaussian variable conditioned by the wells and then converting the
numeric result into a type of facies with the proportion curves.

(*) Institut Francais du Pétrole
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Figure 15 shows a simulation of a vertical cross section, where we can clearly see that each unit
presents proportions and distributions having differeut facies : in particular the second unit (from the
top) has hardly any shale. The horizontal section at this altitude cuts across the four units.

The petrophysical variables (porosity, tensorial components of the permeability, ...) are then also
simulated or simply allocated to each cell making up the reservoir conditionally to the lithofacies type.
They can be used later as input data for a fluid flow simulation program.

This method gives highly satisfactory results. Moreover, it has the advantage of needing few
parameters and of being flexible enough to take into account additional information such as the
distribution of lithofacies using proportion curves.

On the structural analysis of radioactivity—grade

The data studied here come from a borehole campaign made on a uranium deposit (*). Consequently,
on each borehole we have simultaneously at our disposal a chemical analysis (carried out on the cores)
and a continuous recording of the radioactivity, performed by lowering a probe into the borehole.

The cores provide us with vital information on the deposit, by giving us the grade value (the variable
which interests us) as well as enabling the geologist to get a qualitative picture of the mineralization.
However, they have two disadvantages :

e They are costly. Consequently cores cannot be taken from all the boreholes at the final sampling
stage of the closely drilled deposit.

o Their vertical location is imprecise because of the core recovery rate which is never 100%. The
sample comprises fragments which could have-shifted within the core drill, even causing a global
displacement of the sound pieces of the core.

Contrary to this, the radiometric data are economical, numerous and localized with great precision.
However, as sampling the deposit progresses, the percentage of radiometric data becomes large compared
to the chemical analyses. But the radiometry has a major disadvantage: it is an indirect measurement.
Indeed nobody exploits a deposit of radioactivity ... To simplify the matter, we can say that the
radioactivity variable is like a convolution product of the grade, the parameters of the convolution
depending mainly on the drilling conditions (diameter of the hole, presence of mud, casing) and the
geometry of the mineralization. This shows that it is unrealistic to propose a deterministic model for this
convolution.

That is why an essential preliminary stage of investigating uranium deposits — one which was tried
out in mining companies long before geostatistics — lies in fitting a radiometry/grade regression model
which will make it possible, when we have only the radioactivity data, to convert these data into the
variable of interest. Compared to these statistical methods, geostatistics considers the spatial structure,
both of the grade and of the radioactivity. We shall confine ourselves to explaining the effect of convolution
geostatistically and only in the vertical direction, but it is understood that the coregionalization model
makes it possible later to apply the methods of multivariate geostatistics and especially cokriging.

Figure 16(1) shows the normed covariance (the auto-correlation function) along the boreholes of
the grade data. This experimental covariance is very admissible: it was obtained in favorable conditions (a
multitude of regularly spaced data), and the result shows a consistent structure : a stationary model C(k)
is admissible with a linear behaviour at the origin and a range in the order of 1,20 metres. To be more
precise, we note that the variogram which is associated to it by the classical formula y(h) = C(0)—C(h),
does not reach the value C(0) for h = 1,2m. This effect is due to an anisotropy, the grades being
more erratic horizontally than vertically — but this discussion concerns tridimensional modeling which
we shall not consider in this presentation.

Figure 16 (2) shows the auto-correlation function for the radioactivity. In order to make a comparison,
the previous curve has been represented by a dotted line. Once again, we see a pronounced vertical
structure, but there are significant differences between the two curves :

¢ Although a stationary model is still probably admissible this time, we see that the range has still
not been reached at 3 metres. On the scale of several metres, the radicactivity thus presents a more

(*) For confidentiality the units are not cited. We worked on standardized covariances, that is autocorrelation

- functions.
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definite structure than the grade. The "range of influence” is greater for the radioactivity than for
the grade.

¢ The curve shows a concavity at the origin which could be modeled by a parabolic behaviour whereas
the auto-correlation of the grades had a linear behaviour. This is an experimental example of the
relation of regularization which exists between the two variables. The radioactivity presents greater
regularity than the grade at short distances : needless to specify that this was known to uranium
practitioners from experience. ..

o Between 0 and 2,5 metres, the auto-correlation of the radioactivity is always stronger than that of
the grade. The effect of greater regularity of the radioactivity is seen at all these distances.

Figure 16 (3) shows the (vertical) experimental cross variogram between radioactivity and grade. We
might think, a priori, that this tool is hardly suited to structural sampling. Indeed, the cross variogram
is symmetrical by construction, that is to say that, in a given direction it does not take into account the
order of the variables. Now, in uranium deposits, we can have leaching phenomena (*), which means a
systematic displacement of the uranium U(z) compared to its radioactive tracer Ra(z). In this way, the
distribution U(z) knowing Ra(z + h) — usually denoted U(z) | Ra(z + h) — is likely to be appreciably
different from that of U(x + h) | Ra(z), which the cross variogram will not ”see”. It is for this reason
that it would be better to calculate the experimental cross covariance C,, , whose theoretical model
is defined as

Cur.(z,y) = E[U(z).Ra(y)]

or in a stationary case such as here :
Cyro(h) = E [U(x).Ra(.’n + h)]

This function is not necessarily symmetrical along h.

Let us note here the formula linking the cross variogram and the cross covariance :

Yor(h) = Cyna(0)— CUR,(+h)J2rCU,,,(-h)

This expression proves that knowing the cross covariance implies knowing the cross variogram, whereas
the converse is false : this confirms that the cross covariance is a more precise analytical tool than the
cross variogram.

In the circumstances, a preliminary investigation is essential. The cross covariance is very close
to being symmetrical around the axis 2 = 0. This means that on the scale of the deposit there is no
significant systematic shift between the grade and radioactivity measurements, and this whatever caused
the shift. There is no systematic measuring error of the position of the cores in comparison with the
radioactivity recordings and neither has there been a vertical migration of one of the variables compared
to the other one, since the deposit was formed. Consequently, by a purely numeric verification, we are
now in a position to state or confirm a geological conclusion and so reassure the drillers on the quality of
their work.

In the case of the deposit being studied, this first analysis of the cross covariance was no surprise
. to the geologists. However, this same curve presents unexpected properties. We can see that the cross
covariance does not have its maximum along k = 0. In fact the correlation between two measurements, one
of radioactivity and the other of grade, is somewhat better when these measurements are at a distance
of £10cm vertically, than when they are considered to be located at the same place. This means an
uncertainty of relative positioning of the grade and radiometric measurements of precisely +10cm, and
not systematic. In other words, when two radioactivity peaks are only several centimetres apart, it is
misleading to want to allot to one rather than the other a peak of single grades which is opposite them.
And likewise it is misleading to want to ”correlate horizontally” between boreholes at a distance of some
10 metres apart, mineralized parts located on the cores, on account of the inaccuracy on the depth of
these cores. This time, the geologists did not predict these results.

Further work on the deposit proved that these remarks and others have clearly indicated to what
extent- it would be mistaken to consider a geostatistical study as-merely an aesthetic pastime, and the
importance of communication between the different specialists involved.

(*) dilution of the ore, followed by an outflow of the solution.
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Spreading the word

It is not easy to describe development in geostatistical methods. This is partly due to the basic, pluridisciplinary
character of geostatistics which can be used in the most unexpected situations. And then there is the risk of being
dogmatic when defining the limits of "orthodox” geostatistics, handing out good and bad marks, granting or not the
trademark "geostatistics” to a method.

There is neither a French nor an international directory of geostatisticians or research centres at present and it is not
our intention to create one here, but rather to give a few examples to illustrate the state of the art.

Location of geostatistical activities

The origins of geostatistics are to be found in mining where the problems posed by gold deposits
in South Africa encountered the probabilistic formalism developed by French and Soviet schools. At the
beginning of the 70s, an American school, helped by unrivalled computational facilities, developed in its
turn.

Today, we have little information on the progress of geostatistics in the ex-USSR, which seems to
be characterized by a definite division between university and industrial methods. In South Africa,
developments in geostatistics are of an industrial nature, and are carried out by mining companies. In
what concerns teaching and research, two main axes-can be determined, European and North American.
However, it should be noted that the majority of those teaching geostatistics in the U.S.A. received their
initial training in Europe.

The birthplace of geostatistics is to be found in Europe:

¢ The Centre de Géostatistique at the ENSMP has been training specialists for more than twenty five
years. The majority of the senior teaching staff throughout the world have spent time — sometimes a
long time — here. As well as its research activities, which were at the origin of non-linear geostatistics,
non-stationary geostatistics and random sets among others, the Centre gives post-graduate courses
mainly for foreign students, and specialized courses for industrialists. Moreover, research workers
from the Centre are frequently sent abroad to companies or universities. Lastly, the Centre runs
summer schools of introductory courses on geostatistics, as well as training days, which are more
centred on new developments in geostatistics.

These different activities can be found in all the centres offering geostatistics in Europe, such as:

o L’INPL, National Polytechnical Institute of Lorraine,

o Polytechnical Institute of Ziirich,

¢ L’ETSECCP, of Barcelona (Catalonia University)

e Lausanne, Rome, Dublin, Lisbonne, Leeds University ...

As well as this, geostatistics is also taught within the EEC’s ERASMUS program. Besides this,
certain EEC programs may request a specific geostatistics program, for example in the fishing domain
where a European ruling explicitly advocates estimation using geostatistical methods. We can also
mention the many research organisms or company laboratories working with or on geostatistics in
France:

¢ BRGM Orléans,
o Institut Frangais du Pétrole,
o INRA Avignon,
o COGEMA,
¢ IRSID,
o IFREMER,
¢ Oil companies (CFP, SNEA),
¢ ORSTOM ...
Without forgetting the universities of Nancy, Grenoble, Paris VI...
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In industry, the systematic use of geostatistical methods was to be found only in mining companies:
Penaroya, COGEMA (the word ”geostatistics” was coined at the CEA). With the development of non-
stationary geostatistics and random sets, the oil companies incorporated geostatistical algorithms into
their standard software. In other branches of industry routine use of geostatistics is often done bit by
bit. In the field of environment, we look forward to a development such as that known in the mining and
oil fields. Let us finish by mentioning GEOVARIANCES, a company which is completely committed to
providing geostatistical services.

»

The situation is somewhat similar in the USA, in what concerns the industrial development of
geostatistics: mining and especially oil companies. In some cases, this comes from Europe. The Centre
de Géostatistique BLUEPACK software program is very successful in the oil domain. Among the many
universities teaching geostatistics and offering research programs, let us mention:

"o Stanford university, California
¢ Tucson university, Arizona
» Lawrence university, Kansas
¢ lowa State University ...
and, in Canada
¢ Polytechnical School of Montreal.

In the rest of the world, countries with a strong mining tradition make use of geostatistics: South
Africa (gold, precious stones, platinum), Australia (gold, base metal), French speaking Africa (uranium,
phosphate, manganese. . . but also oil and forests), South America: Peru and Chile (copper), Brazil (semi-
precious stones, asbestos, oil), Venezuela (oil). This industrial approach sometimes includes teaching
programs and research methods : -

¢ GEOVAL in Australia (Sydney, Perth),

o Santiago University in Chili,

e School of Mining of Ouro Preto in Brazil, ...
We also know that geostatistics is taught in China, that India is developing a project for a research centre,
ete. ..

Communication

The Centre de Geostatistique took the initiative in promoting the First International Geostatis-
tical Congress near Rome in 1975. Several years later there was sufficient interest to make this sort of
communication systematic and at the second congress (Lake Tahoe, California, 1984) it was decided to
hold a congress every four years. At the congress in Avignon in 1988, IGeostA an international geostatis-
tical association was set up to ensure communication within the geostatistical community. A newsletter,
De Geostatisticis is sent out regularly to members. There is also a similar review, Geostatistics, in the

USA.

Matbematxca.l Geology, which is edited by the Interna.tlonal Association of Mathematical Geology. But
as the fields of application of geostatistics is becoming more varied, papers are more and more dispersed
in publications : reviews on statistics and probabilities for theoretical research, on stereology for some
works on random sets, on geophysics for petroleum geostatistics, etc. . .
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Available software

As with the methods, it is difficult to list software reserved for geostatistics or using it only partly. Therefore this list
only sets out to give partial information, even on the French level.

The Centre de Geostatistique at the ENSMP pioneered the use of geostatistics in an industrial
context, and as from the middle of the 70s, developed an exclusively geostatistical software library which
is currently set forth into two program collections:

¢ GEOSMINE, adapted to mining and non-linear geostatistics: deposit simulation, disjunctive kriging,
selectivity curves.

¢ BLUEPACK, specialized in non-stationary geostatistics : variographic analysis in IRF-k, mapping,
simulations. As an example, surveys of cil structures use BLUEPACK.

These programs, also developed by the Centre de Geostatistique, depend on a data base structure.
They are commercialized in collaboration with GEOVARIANCES which itself also commercializes

o OPMINE, software for simulating.open pit mining.

Besides this, the Ecole des Mines, in collaboration with IFP (French Petroleum Institute) has created
and distributed the program

¢ HERESIM, software for the conditional simulation of heterogeneous reservoirs, setting out to model
complex stratigraphic structures encountered in petroleum exploration.

The BRGM (Bureau of Geological and Mining Research) also offers a series of programs,

¢ GDM, more interested in mining geostatistics but also including functions from the geostatistics
domain. Like GEOSMINE, this program also depends on a data base structure.

The COGEMA has created
¢ SERMINES, a mining estimation program system.

The Centre de Geostatistique and the SNEA(P) have collaborated in the construction and commer-
cialization of the program

¢ KRIGEPACK, directed towards the automatic variographic analysis and mapping with the kriging
system of non-stationary regionalized variables.

Two programs from abroad are worth mentioning :

¢ GEO-EAS, an interactive program of variographic analysis and kriging, proposed by the EPA
(Environment Protection Association) in the USA. This software is in the public domain.

¢ REGARDS, distributed by Trinity College, DUBLIN. This is a program of ”exploratory geostatis-
tics”, which is entirely directed towards interactivity and permitting highly precise structural anal-
yses.

It is much more difficult to list software in which geostatistics plays but a secondary role. The
programs of the National Meteorology in France use algorithms based on cokriging which were first set
up with the collaboration of the Centre de Geostatistique. Moreover, we know that certain universities
in the USA (Arizona) produce and distribute programs containing geostatistics. We also come across
geostatistical software in the most unexpected places, for example in provincial universities in the ex-
USSR. Lastly, the production of software using geostatistics can be made by industrial companies (for
example, FLUOR in the USA).

The following software including geostatistics can be quoted as an example :

¢ GEOCAD : modeling program mainly using discrete splines, developed by INPG in Nancy together
with STANFORD University.
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¢ CARTOLAB, automatic mapping program distributed by INPG and GEOVARIANCES.

o The GEOSTOKOS company in the U.K. distributes a family of graphic software which uses
geostatistics as well.

¢ In Denmark, two graphic software programs, UNIRAS and IRAP contain a kriging estimation.
o Likewise, the American software SAS explicitly proposes kriging.

Needless to say, this list is far from being exhaustive. Stories get back to us of geostatistical software
of mining estimation being written by South African companies (precious metal or stones). As well as
this, we might say that geostatistics is used by many without their knowing it, since most of the statistical
software include methods of local regression based on cubic splines, which, mathematically, is the same
as kriging in IRF-k — minus the essential step of the variographic analysis. . .
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Proceedings NATO ASI “Advanced Geostatistics in the Mining Industry”, Octobre 1975 —
Reidel, Dordrecht

(The initial paper on disjunctive kriging.)

Rivoirard J. [1991] : Introduction au Krigeage Disjonctif et 4 la Géostatistique Non Linéaire — ENSMP,
Paris
(A course on non-linear geostatistics.)



Geostatistics and its methods : 41

Various methods

Séguret S. [1991] : Géostatistique des phénomenes i tendance périodique (dans 1’espace-temps) (Thése)
~—- ENSMP, Paris
(Comparison of signal processing and filtering techniques applied to marine geology.)

Boulanger F. [1990] : Modélisation et Simulation des Variables Régionalisées par des Fonctions Aléatoires
Stables (Thése) — ENSMP, Paris
(Generalization of simulation models to a non-gaussian frame, using the ARMA methods of the
time series.)

Dubrule O. [1981] : Krigeage et Splines en cartographie (Thése) — ENSMP, Paris
(Kriging considered as an interpolator, and the spline-kriging equivalent.)

Langlais V. [1990] : Estimation sous contraintes d’inégalités (Thése) — ENSMP, Paris
(See also “Positive Kriging”, R.J. Barnes & T.B. Johnson : in records from the third
International geastatistical congress.)

Jeulin D. [1991] : Modéles morphologiques de structures aléatoires et de changement d’échelle (Thése de
Docteur &s Sciences Physiques) — Université de Caen
(A synthetic approach of random set models.)

International geostatistics congress proceedings

Guarascio M., David M. & Huijbregts Ch. ed. [1976] : Advanced Geostatistics in the Mining Industry
— Reidel, Dordrecht

Verly G., David M, Journel A. & Maréchal A. ed. [1984] : Geostatistics for Natural Resources
Characterization — Reidel, Dordrecht

Armstrong M. ed. [1989] : Geostatistics — Kluwer Academic Publishers, Dordrecht

The records from the first three International geostatistical congresses contain theoretical develop-
ments as well as examples of application. We can also quote
Armstrong M. & Matheron G. [1987] : Geostatistical case studies — Reidel, Dordrecht
(A particularly representative group of examples of applications.)

In the records of the ” Application of computers and operation research in the mining industry”
symposium (APCOM), there are papers on geostatistics.

Taking stock of geostatistics...

The word ” geostatistics” has been in the Petit Larousse dictionary for the last ten years. However,
the article in the Encyclopedia Universalis which puts the emphasis on non-linear geostatistics is more
instructive. To sum up, the following works should be cited:

Matheron G. [1978] : Estimer et Choisir — ENSMP, Paris
in English :
Matheron G. [1989] : Estimating and Choosing — Springer Verlag, Berlin

This textbook proposes a synthetic look at geostatistics and at the significance of classical operations
in routine during a study. The all-important notions of stationarity and ergodicity are minutely analysed,
as well as the fundamental problems of the adequation of a model to reality and of the real place for
probability theory in geostatistics.
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COMPARISON REALITY-KRIGING : SPHERICAL MODEL
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COMPARISON REALITY-KRIGING : GAUSSIAN MODEL
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“TITANIC” : VARIOGRAMS ON PROFILES
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HETEROGENEOUS RESERVOIR : STRUCTURAL ANALYSIS
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HETEROGENEOUS RESERVOIR : CONDITIONAL SIMULATION
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RADIOACTIVITY-GRADE VARIOGRAPHY
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