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FOREWORD

This text is a revised version of an introductory course
given to petroleum geologists at the National Iranian 0il Com~
pany, in Tehran, 1975. Hence the initial emphasis on petroleum
applications, Some examples in other areas have been added after-
wards, and it is expected that readers with different backgrounds
and interests should have no difficulty finding equivalents in
their own fields,

The appendix recollecting basic statistical results is also
a reminder from the initial course. It has been left in for its
possible usefulness as a formulary,especially concerning results
on lognormal variables,






PROBLEI3 CONSIDERED

— e T e v " e 1 e T et e iy

Geostatistics is a methodology of resources evaluation
that has been used for more than fifteen years by mining Compa-
nies. Its application to the retroleum Industry is rather recent
however, but it has proved to be a very powerful and flexible tool.
Some Companies are now using Geostatistics on a routine basis and
others who do not, are showing a strong interest in the subject,

Here are some possiovle applications of Geostatistics :

1 - Gridding and Contour ..apping of Zeismic Variables.

The gridding operation consists of computing the va-
lue of a pasrameter at the nodes of a regular grid. From the grid
a contour map is drawn. Seismic date yield =

. time contour maps (isochrons)
. depth contour maps (isobatns)

. velocity contour mep

2 - Determination of the Reservoir Top vepth using both Seismic
and wWell Datag.

Depths measured at wells do not in general coilncide
with the information from seismic. Therefore it is neces-
sary to make these two sets of data consistent and to use them
simultaneously. Also, when the number of wells is small, we wish
to utilize the gradients of the depth at the wells wnere g dip-—

meter logging has been performed.

3 - Interpolation of Reservoir Parameters bétWeen Wells.

Thicknesses, porosities, fluid saturations, permeabili-
ties, etc... are measured at wells. We wish to interpolate these



values between the wells, getting isopach maps, isoporosity maps,
etc.. It is also of interest to compute these maps using only
some of the wells to see what additional information has been
brought by the other wells.

4 - Error ilaps.

No method of estimation can ever restore exactly the
true unknown value. There is slways an error. loreover, an estimate
is almost meaningless if we have no idea of the error involved.

Is the error on the thickness 5 m, 20 m, 100 m ? Is the porosity
known with an accuracy of 1;;, 54, 104 ? The technigue used (kri-
ging) provides a mcasure of the error, which itself can be mapped.
The two documents, map and error map, should always be consulted
simultaneously.

5 - mstimgtion of Reserves in Place by Blocks.

The variocus grids : porosity, saturation, thickness,
can be combined to provide a1 estimate of the hydrocarbon reserves
block by block.

4
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6 - mstimation of Reserves by Ilayers.

In reservoirs where the transition zone is important,
it is necessary to divide the field into horigontal layers and car-
ry out the estimation layer by layer.

The partitioning of the reserveir into layers accord-
ing to lithologic types may also be recommended in order to work
on homogeneous gquantities, thereby reducing the risk of error.

geostatistics can provide guidance for the definition of layers.,

7 - kstimation of Total Reserves in Place.,

There the result consists mainly of one figure :
the estimate of the total hydrocaroon content of the reservoir.
Of course, if we can, an upper and lower bound to these reserves
is most welcome.



8 - pimulation of Reservoir idmits and of Reserves,

Should: we want more than just an estimate of the re-
serves, that is a probaovility distribution of these reserves, we
have to simulate the reservoir boundaries. The technique called
"conditional simulation" enables us to get several possible ver-
sions of the top surface of the reservoir. All these versions are
constrained to go through the exact points known at the wells and
to show the same spatial variability as the true top surface.

By simulating the water lLevel depth between two 1li-

mits we can get a histogram of the reservoir voluce and frowm that
of its reserves.

9 -~ Input Preparation Tfor rReservoir Simulstion ..odels.

ne various grids cowmputed in 3 are the basic input
for a dynamic study of the reservolir during the production phase.
As a future application it seewms that the error maps can be used
for the calibration of the model.

10 = Prediction and Guidance about Future Jellis.

Depth, porosity, saturation, etc..car be estimated
for any proposed location of a new well. It is also possible to
study the influence of the number zni the location of wells on
the precision of reserves evaluation. This study can be done
without actually drilling the wells.

11 — Assessment of the Variability of Reservolr Parameters.

Tnis task put here at the end of tne list, in fact
comes first in any geostatistical ureatment. There is a synthetic
function, named the "variogram", which provides a guantitative
understanding of tne spatial behavior of the studied variables

and is the basic mathematical tool of estimstion. procedures.



- CHAPTER I -

REGIONALIZED VARIABLES AND THETP VARIOGRAMS

1 - A MODEL FOR REGIONALIZED VARTABLES.

The available information on a reservoir is fragmentary. 1f
we want to draw conclusions on quantities that have not been mea-
sured, we need a model. Several can be considered.

The simplest one is the commonly used zonation procedure, in
which the reservoir is divided (more or less arbitrarily) into a
small number of zones in each of which the parameters are treated
as uniform. While this scheme appeals for its simplicity, it may
be grossly in error with respect to the actual behavior of reser-
voir properties,

Another approach is to fit an appropriate mathematical func-
tion to the surface of parameter values. Such techniques of exact
interpolation are euployed to¢ procduce seismic contour maps. The
implicit assumption though, is that the charted surface is smooth
enough to be modeled, at least lecally, by a nice simple function.
Again, this may be in contradiction with the real phenomenois

Vériables like porosity, water saturation and most of all
permeability, tend to display considerable small scale scatierp.
Their spatial variations are so complex that they do not seem 1o
be ever amenable to a representation in terms of ordinary mathe-
patical functions. If we could draw them, the curves would look
like Figure 1, with "jigsaw teeth" or unpredictable jumps. Contrary
to the over-optimistic view of exact interpolation methods, it now
seems that no interpolation is possible.

The truth lies in betwsen. lMost of the time, a closer inspec-
tion reveals that the variables arc< not completely random, Neigh-
boring points seem to be related by a complex set of correlzstions :
on the whole there are zones where the values tend to be high, or
low 3 there can be systematic patterns, clusters, orientation



effects,'etc... The term "Recionalized Variable" (abbreviation
Re.V.) was chosen by G, Matheron to emphasize the particular na-
ture of these variables, which combine two apparently contradic-
tory aspects :

i) a random aspect, accounting for local irregularities

ii) a structural aspect which reflects the overall features
of the phencomenon.,

The prevalent probabilistic model assumes that all the random-
ness is due to "errors" (or "noise"), and all the structure to a
functional relationship called the "trend". In other words, if
noise were absent the phenomenon would lend itself to exact inter-
polation. To identifyv this alleged underlying trend several least squa-
res fits are used (trend surface analysis). However, there are cases
where it is not suitable to put aiis the structures in the trend.

For one thing, there can be no trend at all, or more precisely,
the trend can assume a constant value throughout the field (e.g.
porosity in a homogeneous layer). Also, even when a trend is in-
deed there and the fit is good, there can well remain structural
information in the residuals.

A better model for reality seems to introduce randommess in
terms of fluctuations around a fixed surface, which we shall call
the drift - discarding the word "trend" to avoid any confusion
with the previous model. Fluctuations are not errors but full fea-
tures of the studied phenomenon, having a structure of their own.
It will be the first task of the Geostatistician to identify these
structural properties. Having done so, he will be able to solve
various problems of estimation of a Re. V. from fragmentary sample
data.

2 = SOME CONCEPTJAL BACKGROUND.

1 = Random Functions.

At each data point X5 the observed value of a certain
property is considered as the outcome Z(xi) of a random variable



Z(xi) - whose mean is the drift m(xi). At points x when no measu-
rements are available the values z(x) are unknown but well defined

-

they can also be viewed as outcomes of corresponding random va-
riables Z(x). Mathematically, the family of all such random varia-
bles Z(x) is called a random function. (Synonyms : stochastic pro-
cess, random field). The function z(x) is called a realization

of the random function. A random function bears the same relation-
ship with one of its realizations as a random variable with the
numerical outcome (e.g. x = 34) of a single trial. Simply, in-

stead of drawing from a sample space of numbers we draw here from
a sample space of functions. A single drawing determines at once
all the values assumed by the function at all points (Fig. 2).

A random function is characterized by its finite dimensional
distributions, il.e. the joint distributions of any set of variables
Z(x1), Z(xz),...,Z(xk), for all k and all points X,,...,%,. Of
course our probabilistic model would remain pure conjecture if we
were not able to reconstitute these distributions, or at least
some of their moments. This is the problem of statistical inference.

In general, when only a single realization is available, statis-
tical inference requires further assumptions. (In the same fashion
whar could we say on the distribution of X on the basis of x = 34
only?). These additional hypotheses reduce the number of “para-
meters" on which the random function depends. The whole point is
to introduce the really minimum amount of hypotheses so as to co=-
ver the broadest range of practical situations.

2 - Stationary and Intrinsic Hypotheses.

The usual hypothesis in rendom function theory is that
of stationarity, i.e. the invarisnce of the law under transla-
tions. A stationary random function is homogeneous, self-repeating
in space, and this gives an opportunity for statistical inference
. Stationarity in "the weak sense" is when only the first two mo-
ments of the law are invariant under translations :
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i) the expectation of the function Z at any point x is a
constant m : E(2(x)) = m(x) = m independent of x.

ii) the covariance function between any pair of points x and
x+h is independent of the point x ; it depends on the
vector h only : E[(Z(x) 2(x+h)] - w® = ¢(h).

N. Wiener's well known optimal filtering method is based upon
weak stationarity.

However in practice, it often happens that these assumptions
are not satisfied. Clearly when the phenomenon shows a systematic
trend it cannot be assumed that the mean is a constant, For exam-
ple the depth of a reservoir top is systematically increasing
towards the periphery of the reservoir. We shall see later how
"Universal Kriging" takes trends into account. For the moment we
consider cases for which the first hypothesis holds (a constant
mean) but not necessarily the second one. On both theoretical and
practical grounds it is convenient to assume then that only the
increments of the function are stationary in the weak sense. This
is called the intrinsic hypothesis (cf. Fig. 3). For any vector h
the increment Z(x+h) - Z(x) has an expectation and a variance
which are independent of the point x :

E[z(x+h) - 2(x)] = O Intrinsic hypotheses

VB.I'[Z(X+h) - Z(x)] = 2 Y(h) with a constant mean

The function y(h) is called the semi-variogram (we say vario-

gram for short). The variogram is the basic tool for structural
interpretation as well as for estimation and we shall dwell some
time on this subject.

3 - THE VARIOGRAM.

The variogram of an intrinsic random function is by defini-
tion
¥(n) = Ver[z(x+h) - 2(x)]
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As it has been assumed that E(Z(x+h) - Z(x)) = 0, y(h) is as well
the mean square value of the difference Z(x+h) - z(x).

v(h) = % E(2(x+h) - z(x))2

In practice the following formula can be used to compute the expe-
rimental variogram from the available data :

Y g X 2

y(h) =5 2 [a(x;+h) - 2(x;)]

i=1

(We shall come back to the inference of the variogram later on).
The x and x+h refer to dats points in an n-dimensional space.
(n=1, 2 or 3). For example when n = 2 (plane) x denotes the
point with coordinates (x1, xz)wand h is a vector with coordi-
nates (h1, hz). Therefore in two-dimensional space the variogram
is a function of the two variables h? and h@ ; considering polar
coordinates, y is a function of the modulus 'Jh| of h and of the

polar angle o

For a fixed o the variogram indicates how different the values
become as the distance between sample points increases. When
computed for different o these variograms disclose the direc-—
tional features of the phenomenon.

The graph of y(h) plotted versus h, generally presents the
following behavior :

-~ it starts at 0 (for h = 0, Z(x) = z(x+h))

- it increases with h

- it goes on increasing or becomes stabilized about a certain
level.

The properties of the variogram as a structure depictor are
summarized in Fig. 4 and we now review them separately.



1 - Range and Zone of Influence,

The more or less rapid increase of the variogram reflects
the rate of deterioration of the influence of the sample over the
more ard more distant points of the field. When the variogram
reaches a limiting value (sometimes called a "sill") it means that
there is a distance beyond which Z(x) and 2(x+h) are without cor-
relation. This distance a(a) is called the range.

The range gives a precise significance to the traditional
concept of "zone of influence"of a sample. The range of course
depends on the direction and there can be several ranges reflec-
ting different scales of structures (intermeshed structures).
The limiting value itself is exactly the variance of the popula-
tion of sample points. Indeed when the correlation between Z(x)
and z(x+h) vanishes we have : i

v(n) = -12- Var(z(x+h) -~ 2(x)) :.-12- [Var(z(x+h)) + Var(a(x))] =

_20°_ 2
2

Not all variograms reach a plateau. Unlike the usual covariance
function variograms can well be unbounded (Fig. 5).

Yo )

Sil

h n

Bounded variogram Unbounded variogram
Fig. 5

However, when the variogram is bounded it is easy to see that it
relates to the usual covariance function by :

y(h) = ¢(o) - C(h)



2 - Behavior near theOrigin.

¥(h) ¥(h) ¥(r) tucn)
¥(h)~ Alnj2 ¥(Ch)vAlhi
I} =0 Wi 0 /
Co
nugaer effecr
h h h h
(a) (b) (c) (d)
highly continuous continuous discontinuous purely random
Fig. 6

We just examined the behavior of the variogram at long dis-—

tances. But it is also most interesting to consider what happens
near the origin because this is related to the continuity and

spatial regularity of the Re.V. In Fig. 6 we can see four typi-

cal shapes

(a)

(b)

(c)

a parabolic shape - this pertains to a highly continuous

and even differentiable Re.V. (Ex. : reservoir depths).
A parabolic behavior can also be associated with the
presence of a drift.

a linear shape - The Re.V. is continuous (in the mean

square sense) but not differentiable, and thus less re-
gular than in (a) (Ex. : porosities).

a discontinuity at 0 : nugget effect — when h tends to O
v(h) does not tend to 0. This means that the variable is
not even continuous in the mean square sense, and thus

highly irregular (Ex. : seismic velocities, permeabili-
ties).

The origin of the term is the following ¢ gold ore
is often discovered in the form of nuggets, i.e. pebbles
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of pure gold., Consequently the ore grade varies discon-
tinuously from outside to inside the nugget. It is con-
venient to call this small scale variability "nugget
effect" even when the effect has other causes. In gene-
ral the nugget effect is due either :

i) to a microstructure, i.e. a component of the pheno-
menon whose range is smaller than the smallest lag
for which the variogram is computed.

ii) to measurement errors

iii) to location errors.

In the absence of short-distance sampling it is im-

possible to ascertain from the variogram alone which is
- the right interpretation. There may be several causes in-
volved, €specially i) and ii). Physical side information
will be essential at the modeling stage. This aspect is
developed further in Chapter II.

(d) a flat curve : pure randomness - Z(x) and Z(x+h) are un-
correlated for any two distinect points, regardless of how close
they are. This is the limiting case of the total absence of a
structure.

In the trend surface analysis model the error term is
ndsumed to have such a flat variogram.

3 - Anisotropies.

As the argument h of the variogram is a vector, the vario-
gram may be coumputed along several directions of space. It suffices
to average only squared deviations of pairs of points which have
a definite orientation, e.g. North-South, Hast-West.

Some padlrs in BE-W direction Other pairs in N-S direction




When y(h) does not vary with the direction of space it is
sald to be isotropic. Then y(h) is a function of the modulus of
the vector h, i.e. the distance between sample points :

r = Vﬁ£$ + hg + h% in 3-D
y(h) = y(r) with
r = Vhf+h§ in 2-D

Departures from isotropy can be classified into two cate-
gories

(a) Blliptic anisotropy (also called"geometrical"anisotropy)

This is the case where anisotropy may be corrected by an
affine transformation of the coordinates. Typical situations are
shown in Fig. 7
}¥(h)

direcYion 2

‘(h) 82 (h) = €02 ¢ h)

dirsction 2

By(h)=04 (W)

direcrion

"S

InFig. 7a the variograms have the same sill.in all directions
but different ranges ; in Fig. 7b variograms are linear but have
different slopes. e can draw a diagram showing the variation of
the range in case (a) or of the slope in case (b). If the curve
is an ellipse (in 2-D) we are in a case of elliptic anisotropy.
Indeed by a simple affinity on the coordinates it is possible

to transform the ellipse into a circle and restore isotropy.
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direcrion 2 'S Ay s

a 2 b
¢
»
A2 direcion 4 ¢
° % et
llain axes of anisotropy Along OX and Oy the variograms
coincide with coordinate are apparently isotropic
axes
Fig. 8

This is particularly sim,le if the main axes of the el-
lipse coincide with the coordinate axes (Fig. 8(a)). ‘then if Y,
is the 1-D equation of the variogram along the direction 1, the
anisotropy corrected variogram is oi the form : |

-
v(m) = v, (Vix=x)2 + ¥3(y,5,)?)

where k is the anisotropy ratio, namely :
range a3, slope w5
k = ——— or k = w———ee
range a, slope w,

But we should be careful to compute the variogram in more than
two perpendicular directions since we could miss the main axes

of anisotropy and get an apparently isotropic variogram (Fig. 8b).
In the case when the main axes of the ellipse do not coincide
with the coordinate axes, the formula gets a little more compli-
cated since it involves the angle ¢ between the x-axis and the
main axis 0x' of the ellipse. We get

v(h) = v,( Vhran)
htAh = [(x1~x2) cos ¢ + (y1-y2)sin @]2 *
K2[(y,-y,) cos g - (x,x,) sin ¢
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() Stratified anisotropy

There are more complex types of anisotropies. For example
in the 3~D space the vertical direction usually plays a particular
role : there are more varigtions across the strata than within the
strata. A common model is to decompose the variogram into 2 terms :

i) one being an isotropic variogram

B _ 2, .2 21
Yo(0) = v (b ,hyhy) = v (Vh% n2 + n2 )

ii) the other depending only on the vertical component

v(h) = vy (h) + v, (h3z)

4 - Presence of a Drift.

Theory shows that for large lags h variograms have to grow
more slowly than a parabola. ilore specifically :

li%l - 0 as h — oo

h

In practice however it happens that variograms seem to grow
as fast or even faster than h2. This indicates the presence of a
drift.

¥(n)

raw voariggram

experimental
Varioagram

L 2

Fig. 9 - Effect of linear drift on variogram.
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Indeed the experimental variogram we compute by taking

a N
1 2
Y(h) = =< 51 (z(xy+h) - 2(x;))

is an estimate of % E[Z(x+h)—Z(x)]2, which we call the raw variogram
YB(h), as opposed to the true variogram y(h), also called the under-

lying variogram. The two coincide only if the increments have zero

mean. Otherwise from

E[Z(x+h)-2(x)]2 = Var[z(x+h)-zZ(x)] + {E[Z(x+h)-2(x)]}?
mean square variance + (bias)2

it follows that

Y5(h) = 3 B[2(x+0)-2(x)12 = v(n) + § [m(x+n)-nlx)]?

So, in case of a drift the empirical variogram y(h), which estimates
YB(h), is always an upward biased estimator of the variogram.

To fix the ideas, consider first a linear drift in 1-D.

o(x+h)-n(x) = [a(x+h)+b] - [a x+b] = a h

and

g = 7(n) +§ a?n®

A term.% a®n? (a parabola) is added to the variogram. For short dis-
tances this term is small but for long ones it is practically the
leading term, and we observe that wild growth of Fig. 9. The same
conclusions (the added parabola) holds for a linear drift in 2-D

or 3-D except that a h becomes an inmer product a1h1 + a2h2 tooe

The effect of a drift other than linear is more complex
because m(x+h)-m(x) then depends on x, and so does the raw variogram
(increments are no longer stationary). The bias becomes a spatial
average of % {m(x+h)—m(x)]2 over the domain of x. It may distort
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the variogram in nagsty wayse For example a dome-shaped drift will
result in a dome-shaped variogram with a maximum st about half the
span of the dome. Geometrically it is clear that the maximum varia-
tion occurs when one point is on top of the dome and the other on
the periphery, and that the difference goes down at longer distance
since the two points overstep the dome,

Unless stated otherwise, it will be considered in the rest of
this text that the mean m(x) is a constant.

5 = QOther features

Between the origin and infinity the behavior of the vario-
gram displays various features of the Re.V. Some typical cases are :

- nested structures : superposition of different scales of
variation. Such structures tend to appear on variograms
computed along wells.

- periodicities : variograms, like covariances, can depict
periods. But one has to make sure these are real, especial-
ly with spatial variables. Time phenomena actually do
have periods. Variables of nature, and by consequence
human activities, are influence at least by the fundamen-
tal daily and yearly cycles. No such clear periods gene-
rally exist in space. Let us quote Matérn (1960, pp. 67=
68) 3

Milne also studied zo complete enumerations (yields of agricultural crops,
horticultural and orchard crops; number of larvae, eggs or adults of several
kinds of beetles) and discovered no sign of periodicity. Nor could he find “‘rea-
sonable grounds for expecting spatial periodicity anywhere on this earth
except where man himself, either directly or indirectly, has imposed periodic
conditions sufficiently accurate to override the natural environmental irreg-
ularity”. Milne also was of the opinion that “man-made spatial periodicity
will nearly always be suspected either from external signs or past history”.
The surface drainage of irrigation channels and the equal spacing of planted
trees were mentioned as examples.

Milne's formulation must probably be considered as an overstatement. It
is not difficult to find spatial ‘“quasi-periodicity”: the reflection of the yearly
cycle in sedimentary rocks and soils, the regular patterns in organic tissues
(cf. Ladell 1939), not to speak of sea-waves and the effect of their action on
the shore. However, regarding the spatial variation that is encountered in
forest surveys, it may be concluded that no clear case of periodicity has been
reported.
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It may be added that to the author's knowledge Matern's state-
ment on forests also holds for all case studies encountered so far
in the application of Geostatistics. Problems clearly of an oscil-
latory nature seem more adequately approached in the frequency do-
main by Fourier methods. The analysis of propagating waves by means
of an array of sensors is an example of such problems (Capon et al.;
1967 ;3 Capon, 1969), Note however, that time is involved and not
only space,

1ILQ) ¥(w) (h)

1
|
! |
! I

H i ih h n

nested structures periodicity hole effect
Pig, 10

- hole effect : presence of one or several bumps on the
variograms (these would be holes on the covariance).
The hole effect denotes a tendency for areas of high
values to be surrounded by areas of low values, or
"holes".

As with periodicities one must be careful not to confuse a
genuine hole effect with mere sample variogram fluctuations. A
safe recommendation is to disregard any bump unless it can be sup-
ported by a reasonable physical interpretation. For example J. Serra
(1968), in a study of a thin section of Iorraine oolithic iron ore,
found that calcite crystals tend to be separated by intervals roughly
proportional to their sizes, and explained it by a process of calcite
concentration around random germs. Another example of hole effect
would be that induced by competition between plants, although as
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noted by Matérn (1960, p. 62), such effect is usually hidden (i) by
strong correlations in soil properties, (ii) by the averaging effect
of sampling areas rather than points (effect of support).
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-~ CHAPTH. II1 -

THE PRACTICE OF VARICOGRAN INTHRPRETATION,

CALCUILATION AND .iODELING

1 - EXAPLLS OF VARIOGRAL! INTERPRETATION.

wet us first start with g very illustrative example of the
relationship between the varigbility of the Re.V. itself and the
slope of its variogram at the origin. The Re. V. is a piezometric
level in an agquifer, measured through time at four different si-
tes, For comparison, the rainfall and run-off in the catchment
area have also been recorded. All these variables are regionalized
in time and the curves on the left part of #ig. 1 show their evo-
lution over a six month veriod from July to December. The vario-
grams themselves were calculated over a period of three years
and are drawn for short lags not exceeding 15 days.

The curve "Piezo n°® 18" has a very regular evolution and its
variogram is of parabolic type. Piezo n® 33 1is also regular on
the whole, except for some jumps which are accounted for by a
nugget effect on the variogram. Piezo n°® 4 has a greater variability
and also jumps : its variogram is of linear type with nugget effect.
As for Piezo n® 3 the fluctuations are of a larger amplitude 3
the variogram is the same as for n° 4, but with a greater slope.
On the top of the figure we can see the rainfall (vertical lines)
and the run—off. Rainfall is purely random from one day to an-
other and run~off is scarcely structured.

Now here as in other situations the man who knows his data
can go further into the interpretation. An hydrogeologist would
notice that the regularity of the water level is related to the
depth of the aguifer. Piezometers that are close to the surface
(n° % and 4) are strongly influenced by erratic rainfall, whereas
those which are deeper (n° 33 and 18) are regularized by the in-
tegrating effect of the superincumbent geological layers.
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A¥(n)
{103 (m/52 [ () +120 n2 J[K(h)fG;hZ]

2.4

2 . . h
- ] 2 4 6 8 km
FMg. 2 - Time Variogram of PMg. 5 - Velocity variogram
the horizon H1 ' of horizon H2

(Prom A. HAAS and C. JOUSSELIN, 1975)

In Fig. 2 we see variograms of seismic times computed in 4
directions. The varigbility is maximum in the 3WNE direction
(n° 2) and minimum in the orthogonal direction (n° 4). Roughly
we are in a case of elliptic anisotropy. However 1t is not strong-
ly marked and for estimation purposes we can as well neglect it,
provided we do not use the variogram for large distances. At the
origin the variograms are of the parabolic type, which denotes
a great spatial continuity of seismic times here.

On the contrary, the variogram of velocities (Fig. 3) shows
a nugget effect estimated at Co = 280v (m/s)z. 1t must be due to
measurement errors whose standard deviation is therefore

VVZBOO(m/s)2 ~ 53 m/s, i.e. an error range of about +* 100 m/s.

This figure gives an idea of the magnitude of the discrepancy that

can be cxpected betweos Lowe 2lole o Teoity analyses. Ab long iise-

taneces we see o strong wnisctr o, y: 1 the 22-MN¥ 1ipcction (n®4) the

< o
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variogram increases gently while it grows steeply in the perpendi-
cular direction. This growth being parabolic or faster indicates
the presence of a drift along direction 2. Fortunately for the
inference of the underlying variogram we are in a favorable si-
tuation since variogram n°® 4 seems unaffected by this drift and
can therefore be taken as the true underlying variogram.

1

éoop

20}

mean=5.2wm

variance= 2m? d

/ mean =69

10F varicance =330
200} 7

S A
Fig. 4 — Thickness of a Mg, 5 = Curmlated log -
layer Permeability

In Fig. 4 and 5 we have examples of linear variograms. For
thickness there is no nugget effect : the thickness varies conti-
nuously, but not as continuously as the depth of a reservoir for
example. On the variogram of Fig. 5 the nugget effect has been
extrapolated down to Co = 107 (thickness is in meters and permea-
pilities in 10~ % Darcys) while the slope is estimated at w =
0.095, This implies that for a distance of 1 km the nugget effect
accounts for half of the variance. Indeed we know that permeabi-
lities have a highly irregular spatial behavior.

By means of a geometrical example, rig. 6 illustrates the
significance of the range and of anisotropies. The»example is
drawn from a lenticular mineral deposit, but such a pattern could
be found in other fields. If grades in each lenticular body are



DT

-

wa:.a,»!;ci A
ERORT dow o vt ok

2z 20.r

m (sardauyosiup A

i‘“v e
PalaluLils pue oudiys) ?331%&?% p
) DA .:.th .
g . - o Py e I
e S DR s V.
i T ceros s KT e o s o
peaueTIsoY N .
« 4 zo%uma . pouns B ot
= ~ ) z:m W YL SRR R
| P L
% P e AT R ccortr
| : ; e
{3 vl
| “ﬁ
_ e i
- | \i\.\ M
~. P
——— Iknﬂrﬂ.“.a - \‘In.\l?ul?dﬂl —_—— H
2 Vad o [ 3

D e

SRR TG

-

Fs

AECAIR KT Lo e S ..}.tn.J.ﬂ Lt i T A TR 4})

2 IE
G T SRR T PR

i
aﬁa
e
p34)
d:":

TR CELCTY e S

TR

BLo% o= et

£ e

BESEFENNT

L TR

o Yo fote e e St s g e

tr{ﬁ

g
,m aM.HH. M‘:%Ju Las.v
r n.&ﬂ»&. et 38

H

n.

AT T R T N by FITIRIY



-28-

independent, correlations extend only within a single body. Thus
the range in one direction is the average length of the maximum
cross—-section in that direction. The ranges 1 and 2 show evidence
of the geometrical anisotropy of the bodies. Moreover, the sills
of the variogram are a lot different : the variation is greater
along a vertical than in horizontal planes (stratified anisotropy).

2 - HOW TO COMPUTE A VARIOGRAM.

1 - Computation along a line,

Sometimes the problem can be reduced to computation along
a line, Ex. : variogram of cores along a drill hole, variogram of
seismic times along a profile, etc.. If the points are at a regular
spacing a on the line, the variogram can be computed for lags h
multiple of a by the formula s

1

. (k)
v(0) = rwRy

Z, (G - 7(x;))?

where
. Z(xi) are the datsa

. are the locations sﬁch that data are available both
at xi and xi+h.

. N(h) is the number of such x;'s, i.e. the mumber of

pairs of points actually taken into the sum (if data
are missing the pair is simply ignored, ex. Fig. 12).

.1CH]

7 N@)=5

¥(2a)
NEZay=4

Fig. 7
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In case several profiles are
gvailable, one can compute the
average variogram fcr each group
of parallel lines along one di-

rection. -
A z Nj(h) Yj(h)
y(h) = —
Fig.8 Z Nj(h)
J
N R . . .th .
where Yj(h) is the variogram for the j = profile.

If the spacing along a line is not constant, a grouping by

classes of distance should be made.

2 - Computation in the plane.

(a) Regular grid

This case is essentially similar to
the case of parallel profiles just
mentioned. The variogram will be

computed in the 4 main directions
(Attention! the lags are different

f T, + in length along the diagonals of
the grid).
Fig.9

(b) Profile sampling

Someti .
Ibgul >2.444 Soretimes data are aligned
2 q along profiles but these are
-2, -0.444 ] ) _
[F2434 Chgot §-0444 [0.444g o ats not necessarily parallel. Then

we must group the variograms

by classes of angles. The algo-

\t%ocKo. 444
rithm consists. essentially of

- adding up the squared devia-~
tions corresponding to pairs
PO O of points which have the de-
sired orientation. The selec-
tion can be done using for
example the tangent of the

Fig. 10 angle.



B IR s voe dT e v axa mg €HR T

~

f‘
[
i
Pl
“

_ not Low Ly ayeies

matic pattern, tae variogrsm is com-

puted by grouping both by classes of

angles and classes of distances.

This results in average values of the

variogram within each of the given
classes.

Practically, the procedure gous

w4 o ¢ . F O T T
Fig, 11 Lo TsT oo take wavhe pedat i tuen
. e ~
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A i d A b T I Y ST G ey
st codnd,  ouy s {0041 comate Ahe 10Rf oo la Twd{s), Lguare

}J

s . J . . - . e L ¢ .
this difference, look in what direction tie vector (Xi’xj) is, in

what class of distance its modulus falls, and add the squared differ-
ence (Z(xi)—z(xj))2 to the relevant subtotal. Also, add 1 to the
count of elements in that subtotal. Then delete the point taken as

an origin and start again with another point. At the end of the
process, divide all totals by twice the number of terms they have
been computed with. Rote that the procedure is independent of the
order in which the successive corigins are chosen.

3 - Computation in three dimensions.

Theoretically, one could generalize the technique of dis=-
tance and angle classes, the latter being solid angles. But in prac-
tice the third dimension usually plays a special role due to the
vertical stratification of natural phenomena (geologic or atmos-
pheric layers). One usually computes variograms layer by layer, and
also vertical variograms along each bore-hole (or radio-sounding),
possibly pooling these in the end. This information then serves as
a basis for elaborating a 3-D variogram model.
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3 - EXERCISE : Construction of a Variogram.

These data are taken from a computer simulation of a reali-
zation of a random function with a linear variogram y(h) = wlhl.
The data are set on a square grid of mesh a. The semi-variograms
will be computed with 4 principal directions o =1, 2, 3, 4 and
for the values of h ranging from lag 1 to lag 3. It will be noted
that in directions 3 and 4 the lag will be equal to aN 2 = 1.4 a.

The number of calculations is small enough to be performed by
hand, or with the help of a small calculator.

The 4 semi-variograms obtained as well as the mean semi-vario-
gram (of the 4 directions) will be plotted on a graph and inter-
preted.

35 35 33 33 34 31 35 37 L9 k9

35~ 35 —35 — — 35 — 33 - Iq
| |
37 --- 35 — 37— 35 37 —--37—— 39— 39 —- 41
) |
377 ko ——h2 Bl - 36 —— 41 - 34
i
[ 1+1 33 —_ R — - ——
i
- — — - 35 — - —— — bh2— 33 —
! i
| i
' - —- 39 -- — 31
!
- — 30

_ The points where no values exist are considered as unknown
data. They must not play any role in the computation of the va-
riograms. 2

4 L . .
% [ 23 tlain directions
¢
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RESULTS

Variograms

-3 e

h = 1 lag h = 2 lags h = 3% lags
N(1)y  y(1) | N(2) y(2) |[N(3) y(3)
Direction 1 24 4.10 19 B8.42 18 12.08
2 21 4.45 17 8.7 14 11.53
3 17 6.58 13 12.11 8 15.44
4 19 5.02 16 11.9 10 17.25
MeanVarliogram
h 1 a aV\ 2 28a, 2aV 2 sa 3aN 2
N. 45 36 36 29 32 18
vy(h) | 4.26 5.76 11.99  11.84  16.44

b Y(h)

8455

h

- 2

avZ

2a

ZaVZ 3o

3aVE

The varicgrams are isotropic. They can be fitted to a linear model,

with a slope

)

_ 4.2
a

and without nugget effect. This example is
an "ideal case". In practice, for such a small number of data we
we would have much more fluctuations in the variograms.
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4 ~ MODELS FOR THE VARIOGRAM.

For estimation purposes, the experimental variogram may not be
used directly. A theoretical model must be fitted first., The reason
is that variograms have to satisfy certain conditions of mathema-
tical consistency without which one would possibly come up with
negative variances,

1. Admissible linear combinagtions.

Iet us first consider a stationary variable 2Z(x) with a
covariance C(h). The variance of a linear combination

VA

zfxi z(x;)

is given by

(2.1) Var[z*]

1

oA A, COlx-x.)
1,5 4

and must be non-negative whatever the system of points X4 and of
weights A, . This condition expresses that C(h) is necessarily a
positive definite function. Conversely, any positive definite func-
tion may be considered as the covariance of some stationary random

function 2(x).

Now, if 2Z(x) is only assumed to satisfy the intrinsic hypo-
theses it is not possible to calculate the variance of any linear
combination but only that of linear combinations of increments.
These will be called "admissible linear combinations". They are
characterized by the restriction :

(2.2) D A, =0
i
Indeed, it is clear that any linear combination of increments sa-

tisfies (2.2) since any single increment involves the weights +1
and -1. Conversely, if (2.1) holds then : '

%‘ Ay 2(x5) =§ al2(xg) - 2(0)]
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is a linear combination of increments. As such it has g variance
given by

To calculate the covariances of increments we use the following
identity :

Var(%-Y) = Var(X) + Var(Y) - 2 Cov(X,Y)
and write
Var[2(x)-2%(y)] = Var[2z(x)-2(0)] + Var[z(y)-2(0)]

- 2 Cov[Z(x)=-%(0), Z(y)-2(o0)]

2 y(x=y) = 2 y(x) + 2 y(y) - 2 cov[z(x)-2Z(0), 2(y)-2Z(0)]

Solving for Cov(,) and substituting into (2.3) gives

i

Var[D A, 2(x,)] DAy Aj[y(xi)+ Y(Xj) - Y(xi—xj)]
1

i,

]

[? )\J][? )\i T(Xi)] + [z‘ }\i][zj: 7\j Y(XJ)]

- 27 As M. v(x.-x.)
i, v 4+

Because of (2.2) the first two terms cancel and finally :

(2.4) | Var[Za; 2(x.)] == = A, AL v(x.=x.) A, = 0)
ar[i i Y%y ] ) 1,3 i™) YAxy X3 i 1

Thus the very useful result : the variance of a linear combination

whose sum of weights is O may be calculated as with a covariance

(formula 2.1), except that this covariance should be replaced by -v.




=35

As variances must be non-negative (2.4)‘ indicates the condition
that a function y(h) must satisfy to be a variogram :

for any system of points XyreeorXy and of weights h1,...,hN
subject to 2’ A; =0 one has
i

(2.5) ~i§3 M2y Y(xi-xj) >0

-Y is said to be conditionally positive definite.

Note that the condition on variograms is weaker than the con-
dition on covariances since (2.5) has to hold only for systems of
weights ), such that %?Ki = 0, rather than for all A,. Therefore
the class of variograms is richer than that of covariances. It
contains all bounded variograms -associated with a covariance.by
y(n) = ¢(o) - ¢(h), but also unbounded variograms which have no
covariance counterpart.

2. Common isotropic variogram models.

(a) Power PFunctions

y(h) = wlh‘}\ with 0 < A < 2

As a perticular case we have the
linear model y(h) = w|h| where
the variogram is simply propor-

tional to the distance.

(b) Spherical model -

i
¥

LERea R S L »
o

=<

Py
oy

N’
il

v(h) =¢C |h| > a

a = range C =sill
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The spherical model is perhaps the most used one. It has a
simple polynomial expression and its shape matches well what is
often observed : a quasi~linear growth and then a stabilization,
The tangent at the origin intersects the sill at a point of ab-
scissa 2/3 a, which is quite near the range.

The associated covariance C(h) = C - y(h) is proportional
to the volume of the intersection of a sphere of diameter a with
its translate by h, hence the name "spherical" model,

-

(¢) Exponential model

_ vl

y(h) = ¢[1-e 2]

- GxOBE b of e -

practical range = 3a (95% of 0x0.63 |4
sil11)

C = sill

The tangent at the origin inte-
rests the sill at a point of ab-
scissa a. Pig.14

(d) Gaussian model

_ Inl®

2

h) = ¢[1 - 3 RN
v(h) [1 e a“ | ey e
practical range =~ 1.73 a f i - § ‘ é ﬁn;_:

S ORI SR S

C = i l e
sil (95% of sill) PV s g g
The Gaussian model represents an ox0f8 bt ¢ | |
exsremely continious phenomenon. “f‘ji'ﬁ"ﬂ*'WWHm’ N

Practice however shows that numeri- ;";J é‘j“i“j'fﬁjjffiii;j
cal instabilities can occur when R T
this model is used without a nugget L

effect. Mg, 15
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e [

Cubic model

Ym)=0(7£§— 2 =

v(h) = C

We name this model "cubic®
because its irregular term
of lowest degree is |n|>

(Even powers being infini-
tely differentiable do not
matter to define the regu-

larity of the random func-

tion). The cubic model has
the advantage of being -

smooth at the origin, though

Pig. 16

mich less than the infinitely differentiable Gaussian
model. Its overall shape resembles that of the spherical

model.

3 Fitting,thé variogram.

T
and large
does nét
into acco

his aspect is best seen through practical exercises. By
, practice shows that the analytic form of the variogram
matter too much as long as its major features are taken

unt. These are :

the slope at the origin
the nugget effect

the range

the sill

the anisotropies

The slope at the origin is usually assessed by means of the
first three variogram points. Extrapolation to the origin gives
the nugget effect C_ (see next section).

The range is usually assessed visually. The sill is placed
where the variogram stabilizes and is checked against the overall
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variance of the data. They should be roughly equal if the range
is smaller than the dimensions of the studied domain,

Anisotropies are the greatest source of difficulty. The main
two methods (elliptic correction, stratification) have been dis~
cussed earlier, It may be hard to distinguish between drift and
anisotropy.

In general a reasonably good fit can be obtained with the
sum of two or at most three basic variogram models. The fitting
is done by trial and error, preferably using an interactive vi-
sual displaye.

5. MODELS FOR THE NUGGET EFFECT,

The nugget effect was defined as a discontinuity of the vario-
gram at the origin and received a simple physical interpretation ¢
if measurements are taken at arbitrarily close points x and x+h,
the difference Z(x+h) - Z(x) does not tend to zero (in the mean
square sense) but continues to fluctuate with an irred cible dis-
persion., Things are more complicated when it comes to ..odeling
the nugget effect,.

1. Apparent versus real nugget effect.,

The primary difficulty is that in general there is a minj-
mum data interdistance below which the variogram is simply not known.
To make up for this lack of short distance information, usual prac-
tice is to extrapolate to the origin the first known variogram
points. If the curve intersects the y-exis at ;'positive ordinate
Co, then this is taken as an indication of the presence of a nug-
get effect of magnitude Co. On the other hand if the curve goes
through the origin, it is surmised that there is no nugget effect.
Naturally there is a risk of being wrong in both cases. An analy-
sis at shorter distances may reveal that the variogram in fact dips
continuously to zero and that the apparent discontinuity is merely
due to the spacing of the data, which is too wide to detect struc-
tures at a smaller scale (Fig. 17-a). Alternatively, the first



-3 Q=

observed variogram points may be aligned with the origin though
the variogram has a bend and a nugget effect (Pig. 17=b) ; such
behavior is typical of location errors (ef. II=5-5).

¥ (h) ¥ (%)

v %l
ax:;:? missed /7
effect 3 nugadr I i &
- effecy —y
) ®

Fige 17 : Examples of wrong diagnosis on
nugget effect using extrapolation,

The risk of wrong diagnoscis is inherent to discrete sampling,.
Readers familiar with time series will recall that if the sampling
interval is At, it is impossible to observe frequencies beyond the
Nyquist folding frequency 1/2 At., Either it is assumed that higher
frequencies are absent or else At must be reduced. Equivalently,
one can either hypothesize the short distance behavior of the
variogram or, which is always safer, measure it with an ad hoc
short distance survey,.

Hypotheses about the variogram may derive from physical in-
formation available about the studied variable. Often, the variance
of measurement errors is known from separate experiments and mey
account for part of the nugget effect. In other cases we know that
the variable is continuous - e.g. thickness of a layer - and model
the apparent nugget effect by a spherical variogram with a sill Co
and a range smaller than the shortest observed lag (Fig. 17-a).
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2, Discrete noise and white noise,

A simple way of generating a nugget effect is to add "noise"
to the data, i.e., uncorrelated, zero-mean random variables €,
with common variance CO. Indeed if Z(x) has a continuous variogram
v(h) and if €; is a noise uncorrelated with Z(x), the variogram of

Z1(xi) = 2(x;) + ey

i
is

312

3 BL(a(x;)+e,) = (2(x;)+e3)1? = § Bla(x;)-2(x) 1% § Ble;~e

Y(xi—xj) + C, - Cov(si,ej)
or equivalently

71(h) 0 h=0

i

v(h) + C h#0

and shows a discontinuity at the origin. The nugget effect is sim-
ply modeled here as a variogram with a zero range.

The above approach however, is essentially discrete. The €4
are added to the data, as measurement errors, and not to the phe-
nomenon Z(x) itself. In the continuous case, it is extremely dif-
ficult to imagine a process e(x) with zero range, that is, whose
values are uncorrelated at any two distinct points, arbitrarily
close to one another, Realizations of such a "purely random pro-
cess" are so erratic that we could not draw them. In addition Z(x)
has puzzling properties., Its average over any interval is zero
exactly : no matter how small, the interval contains infinitely
meny uncorrelated terms that compensate., More, the Fourier trans—
form of the covariance of e(x)

¢(h) ¢ h=0

= 0 h #0

is zero identically : the process has no power ! In fact Wiener-
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Khintchine's spectral theory is applicable only to processes that
are contimious in the mean square and therefore e(x) is excluded
(cf. Doob, 1952, p. 523). Mathematical theory precisely manages
to avoid processes with too unpleasant sample paths, such as e(x),
which cannot realistically model any observable phenomenon.

The interesting generalization of discrete noise to the conti-
nuous parameter case is the so-called "white noise". It is defined

as a zero-mean process with a constant spectral density over all
frequencies, and is named "white" by analogy with the flat spectrum
of white light (as opposed to a preponderance of low frequencies
for red light and of high frequencies for blue light). Strictly
speaking, such a process cannot exist in the ordinary sense for

its total power, the variance ,is infinite, However it receives

a clear interpretation in the scope of "generalized random pro-
cesses"(cf. Yaglom, 1962, p. 208 ff.). The idea is that physically
a process is never observed at "points" since the measuring device

always introduces averaging. Likewise, a generalized random pro-
cess Boes not necessarily have point values but convolution by a
regular enough function turns it into an ordinary process. Such a
convolution which makes the process more regular is called a re-
gularization. In that theory, the covariance of white noise is

A s (A >0) where § is the generalized function (Dirac §-function)
defined by :

5(p) = jb(x) p(x) dx = ¢(o)

(it is assumed that ¢ € 6, the class of continuous functions
vanishing outside a bounded domain). § is often described as a
"function" which is zero everywhere except at the origin where it
is infinite, and has an integral equal to one (Fig. 18 D),

This infinite variance makes all the difference from C(h)
of the zero-range model and intuitively explains why the compen—
sagtion effect over intervals does not take place anymore, A tel-
ling heuristic detivation is given by Yaglom (1962, p. 64) : in
1=D consider the covariance 3

o(n) = ¢ e /a
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C(%)

[+
|
[+
i

a) zero-range model b) Dirac d-function model

Fig. 18

and let a - O and C - o in such a way that Ca = constant. Then C(h)
tends to zero for any h # O, while C(o) - o in such a way that
400

J ¢(h) dn =

00

remains constant. The 1imit of C(h) is indeed A§ with A = Ca ; a
similar result holds in R™ with A = Ca”. Note that the zero-range
covariance corresponds to a = 0 with C fixed,

Convolution of white noise through a function ¢ produces an
ordinary process with covariance :

6, (n) = A jcp(x) o(x+h) dx = Ap * 3)

where 9(x) = ¢(-x).

In particular, data with support v are of the form 3

7,(0) = 4 [ 2Ge+w) au
v



i.e. a convolution of Z by ¥(u) where
p(v) = 1(u)/v

I(u) being the indicator function of v(equal to {1 inside v, to O
outside). Iet us now introduce the function

P(n) = [T(w) T(u+h) au T %Y

called the "geometric covariogram of v" (Matheron, 1965, p. 20).
The product I(u) I(u+h) is one inside the intersection of v with
its translate by -~h, denoted V_pn? and is zero outside. Therefore
P(h) is the measure (length, area or volume) of v Nv_y ¢

P(h) = Meas (v ﬂ‘v_h)
For h = 0, P(0) = Meas (vNv) = Meas (v) =+

so that the variance of the white noise affecting zv is

inversely proportional to the block volume. P(h) vanishes as soon
as IhL > D, the maximum diameter of v (Fig. 19),.0n the variogram
of Zv the nugget effect is reflected by the addition of a vario-
gram with a sill C_ = A/v and a transition zone of the order of
the dimensions of v,

P(R)=Meas (v Nug)

Fige. 19 : An example of geometric covariogram
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conclusion, we have seen two types of noise that can gene-

rate a nugget effect :

i)

ii)

3

one is a discrete noise which is defined only at the data
points and reflects measurement errors,

another is a component of the studied variable itself., A
strictly punctual model is that of white noise with cova=-
riance Ad. But as soon as data have a finite support v,

as is always the case, the nugget effect is seen as a vario-
gram reaching a sill C = A/v after a transition zone re-
flecting the geometry of the support v.

Pure and compound Poisson models : Exercise,

lecting
the same
effect (
model is
at rando
that the

Suppose that the circle in Fig. 19 represents a pail col-
rain water. Two pails side by side will not collect exactly
amount of water and rainfall data will display a nugget
experiments have been made with rain gauges). A simple
to consider that rain drops are independent points falling
m with a probability proportional to the area offered, i.e.
y follow a 2-D Poisson process. If all drops have the same

weight W, the amount of water falling perpendicularly to a pail of
upper cross-sectional area § is W _ N(S), where N(S) is a Poisson

random variable with parameter 6S.

1° -

20

(Hints
( Answers

Iet 2(x) = w N(SX) be the weight of water collected
when the pail is centred at point x. Show that the cova-
riance of Z(x) and Z(x+h) is W2 times the variance of
N(S, N'S,,,)s i.e. w2 0 P(h) where P(h) is the geometric
covariogram of S.

-~ Assume now that the rain drops have independent random
weights (mean W, variance ci)‘ The weight Z(x) of water
collected is the sum W, +...+ Wy of the N = N(SX) drops
that fell in S. Calculate the mean and variance of Z(x)

and hence i%s covariance,

condition on N = n and randomize N).
: B(2) = w 0 S, Var (2) = (W2 + 02) 0 8, C(n) =

= (w2 + af) @ B(n)).
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These results are identical to those found with the regularigzed
white noise model § this becomes intuitive when considering that the
covariance measure of the Poisson process is 6 §.

The same model applies in 3-D to represent the distribution
of mineralized grains (nuggets) in a sample of ore.

4., Integration of microstructures.

Modeling mineralized grains as points makes sense only if
the support of the sample is large enough with respect to these
grains. If mineral grade were analyzed on a point basis, for
example by taking thin sections, the variogram would reflect the
structures at the scale of the grains. It has been seen above
(§ II-5-1) that when the sampling interval is large, microstruc-
tures are not perceptible and appear as a nugget effect whose
magnitude is equal to (or greater than) the variance of the micro-
structures,

Just as for white noise or Poisson points, integration of micro-
structures over a volume v results in a nugget effect of magnitude
A/v, provided that v is large enough with respect to the range of
the microstructures. To fix the ideas let C(h) denote their cova-
riance and a their(maximum)range. The variance of

= A
Zv == J Z(x) dx
v

is

il

C(x-y) ay -

N

Var[zv] i— J dx

< sy

]

sz ¢(h) P(n) an
v

where P(h) is the geometric covariogram of v. Now, C(h) P(h) is
zero as soon as |h| > a because C(h) vanishes, and on the other
hand, if v is large with respect to a :

P(h) =~ P(o) =+ for |h| < a



-46—

~ ol
So Var[zv] = J ¢(h) ah
which is indeed of the form A/v with

A= J ¢(n) dn

Note that letting a - O while fc(h) dh rewmains constant leads to
the A8 covariance encountered above.

5 Iocation errors.

A location error occurs when the value associated to a
point x has actually been measured at another point x+u. Instead
of studying a variable Z(x) we are in fact studying :

Z1(x) = Z(x+u)

where u is a random vector with probability distribution p(du)
whose form is assumed to be known. Iikewise we assume that the
form of the joint probability p(du, du') is known for any pair
of vectors (u,u').

For fixed u the mean of Z1(x) is

ﬁ[z1(x)|u] = E[Z(x+u) [u] = m(x+u)

so that randomizing u entails

E-Z1(x) = j u(x+u) p(du)

If E 2(x) = m = constant then also E Z1(x) = m and the variogram
of Z1(x) is

71(h) = Jj % E[Z(x+h+u) - Z(x+u')]2 p(du, du')

=J y(h+u-u') p(du, du')



-

The formula is valid for h # 0. Even though y may be continuous,
Y, will in general appear as having a nugget effect of magnitude

c, = JJ y(u-u') p(du, du')

The only exception is for the distribution p(du, du') concentrated
on the line u = u', corresponding to equal location errors at x
and x+h.

An interesting example is given by Childés (1976). The dats are
depths of sea floor measured along lines by non-specialized ships.
Measurement errors affect both the depth values and the coordinates.
The uncertainty on location is modeled as an isotropic Gaussian
vector with a circular standard deviation of 5 km ~ which is quite
appreciable. As a first approximation it may be assumed that all
points along a single survey line are subject to the same displace-
ment error ; the variograms calculated along lines are therefore
not touched. Yn the other hand, displacement errors on two differ-
ent lines may be assumed independent and the variogram calculated
with pairs of points belonging to two different lines is of the
form :

Y(n) = JI y(h+u-u') p(u) p(u') du du’

Pig. 20 shows an example of the experimental curves and of the fits
obtained. This has permitted the determination of the standard de-
viation of the location error.

Note that the variogram is not only shifted as in the case of
measurement errors : its shape is also altered Towards a greater
regularity (parabolic behavior at the origin instead of a linear
one).
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WH)
h)- Pig. 20 : Experimental vario-

grams of sea-floor depths

Y : along survey lines

across survey lines

-2

4000 |

46km

EXERCISE (from Childs, 1977).

Let y(h) = w r be an isotropic linear variogram and assume
that location errors are independent with g Gaussian distribution :
72

p(au) = —1— e” 202 paras where r¥ = |u|®
2™ ©

Show that the observed variogram V(h) admits the following limited
expansions 3

N 2
Y(h) =~ w \/_-g o(1 + B 5) h small
4 ¢
~ 62
Y(h) == h (1 + ) h large
2 12

Pig. 21 shows the two curves. Note that the apparent nugget effect
is :

Y(0) = w \/——g- o

which provides a means of evaluating o.

Hint : Use the second order expansion of '/1+x = 1 +\3-2( -

od) |



w4 Qe

Fig, 21 : Linear variogram v(h) altered by location
errors



«50=

— CHAPTER IIT -

DISPERSION AS A FUNCTION OF BLOCK SIZE

1 - THE SUPPORT OF A REGIONATLIZED VARIABLE.

Often a Re.V. is not defined at a point but rather on a sur-
face or a volume. A porosity or a permeability are examples of
such a Re.V. The basic volume on which a Re.V. is measured is cal-
led the support of the Re.V. If we change the support we obtain
a new Re.V., related to the initial one, but with different struc-
tural characteristics. 1t is well known that porosities measured
on a thin section of a plug, on the plug itself, on a full size
core, along the whole well, do not have the same significance,
This is even more so for permeabilities. fHence the important
question : how can we relate one support to the other? In other
wordsa : knowing the porosities of cores, what can we say about
the porosities of blocks?

The answer will be given in two stages. First we shall con-
sider only the dispersion as a function of the support ; then we
shall see how the variogram of larger volumes can be deduced from
the variogram of the samples.

2 - DISPERSION VERSUS BiOCK SIzZik — AN EXAMPLi.

Table I shows porosity data as measured on a thin section
of a very porous_and permeable sandstone (Voéées sandstone). The
section was divided into 324 contiguous square areas with a side of
length 800 microns (1 micron = 10—6 meter). (It may seem strange
to work at such a small scale but where else could one get such
a complete survey?). PoroSity values were then averaged by groups
of 4 (blocks 2 x 2;, by groups of 9 (blocks 3 x 3), by groups
of 36 (blocks 6 X 6). The results are shown in Table II.
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18,63 22.93 16.50 19.29 24.86 19.20 19.41 25.84 24.48
23.89 18.94 23.04 24.52 27.63 2456 21.09 18.68 21.27
23427 22.47T7 22.48 26.58 22.07 25.62 26.79 25.84 22.64
21.56 25.31 27.49 26.27 26.60 25.15 25.54 23.86 27.08
22.44 23.87 23.81 21.07 21.14 27.25 24.65 23.81 24.54
20.54 21.86 20.40 25.54 20.98 25.32 22.54 20.68 23.15
20.78 20.73 21.86 25.41 22.44 22,68 20.22 20.96 21.99
21.27 20.56 22.02 25.60 24.10 22.61 21.64 21.12 21.36
21.73 19.32 21.83 25.09 25.43 22.14 19.05 16.67 20.08
POROSITIES ~ BIOCKS 2 x 2

20.44 19.48 21.75 21.064 20.32 23.25

23.02 22.770 26.02 25.85 25.80 22.41

21.89 23.11 24.56 23.13 21.68 21.82

20.16 21.23 25.31 22.70 20.82 22.92

22.'719 20.31 25.12 22. 04 18.50 19.13

PORCSITIES —~ BLOCKS 3 X 3

21.35 23.81 22.95

21.12 23.95 20.34

23.03  24.70  23.98 |

POROSITIES -~ BIOCKS 6 X 6

TABLiE IT
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The histograms of the original data and of the aggregated
ones are shown in Fig. 1, 2, 3. ile see that of course the mean
values are the same, but the dispersions decrease sharply with
the sige of the averaging blocks. hile in the original batch
of data values were ranging from 6,63% to %7,22%,with 2 X 2 blocks
they range only from 16,50% to 27,63%, with the 3 X 3 blocks from
18,50% to 27,50% and with the 6 x 6 blocks from 21,12% to 24, T0%.
As for the variances they are respectively (in 10-4 units)

2 _ 2 - 2 _ 2 .
°1x1 = 22.31 Oogo = 5,42 chB = Hh.11 Op = 1.99

Now suppose we did not have gll the 324 values but only some
of them. Then we could not compute the variances we heve just ob-
tained.

But Geostatistics mekes i+t feasible. The only things we need
are the variogram and adequate graphs (or a computer program).

3 = VARIANCES UF DISPERSION WITHIN A VOLUME V.

1. Variance of g point within V.

Por convenience we shall name the supports V or v but if
we are working in 2-D i1t should be understood that V or v are
surfaces.

Under our model the studied variable is viewed as & reallza-
tion z(x) of a random function Z(x). If we had all tne values of
z(x) over a domain V, we could compute the mean and variance of
z(x) within V as :

- my = % ]z(x)dx -
v

s20[V) = ¢ [(2(x) - mp)Pax
v

Letting now the realization vary, the variance of Z(x) within V,
denoted 02(0|V) is defined as the expected value of s2(0]V) over

all possible realizations :

a2(0|v) = E(s2(0|V))
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HISTOGRAM OF POROSITIES

{thin selection of Vosges sandstone

- Fig:2 ~

m=22.80% 324 test areas of 800 microns square)
o =4.72%
40 42 44 46 49 20 22 Y &6 29 v} 22 4 36 8 %
-Fig:1_
POROSITIES BLOCKS 2x2
m=22.80%
0’- 2.53%
é 4“" 4‘2 4.4- 16 48 2o 22 4 3 3 ; 3 >




mz 22.80%

0:2.26%

POROSITIES BLOCKS 3x3

1
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It can be shown that this variance is related to the variogram

of Z(x) by :
GZ(OlV) = lZCIdX‘f vy(x~-y)dy
R

The integral is the average value of the veriogram when x
and y move independently within the volume V. For this reason
we write it as V(V,V). This mean value is also called the F func-
tion and has been graphed for simple geometrical shapes of V and

-

several models of variograms (cf.Graphs 1 to 4). So we have :

s2(0]V) = F(V,V) = (V)

2> - Variance of v within V.

Suppose now that we are considering a volume v and the

Re.V. defined on that support :

) 1,
AV(X) = vy[?(x+u)du
£

Je are interested in the dispersion of
ZV(X) when it is moved within a larger
domain V. For example v can be a section
of a core and V the whole length of the
core or a block, v can be a block and

V the whole reservoir, etc...

The variance of v within V is denoted 62(V|V) and is equal to
2 = 1 . 2
o (VIY) = L[ 7‘[(4V(X) - my)© dx ]_
\'

In this case we obtain

o2(v|V) = '3,‘2] fv(x—y) dx dy - i—zf jY(x—y)dx dy
v v v v

2(v|V) = ¥(V,7) - Y(v,v) = BV) -~ B(v)



3 - Additivity Relationship.

Comparing the results of 1 and 2 we get :

2(v|V) = a%(0|V) - %(0]v)

1t

that is :

G2(0]7) = o°(0lv) + o2(v|V)

li

This formula can be generalized to any of the three volumes v, V
and V?

veVe Vs oo(v|v) = o?(v|V) + C(V|vr)

Iet for. example v = core section
V = block
V! = reservoir

then. the formula reads : "the variance of a core section within
the reservoir is equal to the variance of a core section within a
block plus the variance of the blocks within the reservoir". This
formula shows that 3

oz(coreslreservoir) > cz(blocks]reservoir)

4 - Calculation of dispersion variances using the F function.

(a) Graph 1 gives the variance of a point within a rec-
tangle of sides ¢ and h for a spherical model with a sill C = 1
and for distances given in range units % ,«é . 30, to enter the
graph, first convert your distances into range units, look for
the value on the éraph and then multiply by the value C of the

sill.
= 0.3 F(1,0.3) = C x 0.49

(b) Graph 2 gives the variance of a point within a paral-
lelepiped with sides €, h, h. Same reading as in (a).

(¢) Graph 3 : analogous to (a) for the exponential model



y(h) =

RELARKS
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c[1t-e 2 ]

(d) Graph 4 : same as for (b).

A linear variogram y(h) = wlh[ can be considered as a sphe-
rical one with an arbitrarily large range a and a sill C
such that © = 2 & » To use the graphs, choose the range a

2 a
to be large enough with respect to the dimensions € and h
(g and % < 0.4). For square blocks in 2-D ore can use

?C &) = 0.5214 €

In case of affine anisotropy divide h and 4 by the
ranges in the corresporiding directions.

BX.: Suppose we are in 3~D with a spherical variocgram.
The horigzontal ranges are 800 and 400 and the vertical
range is 120. Suppose the block is oriented the same way
with dimensions 200 x 100 x 50. Then

h _ 200 _ 100 _ . 4 _ 50 _
= =80 = 700 - 0-25 a = To0 - 042

On graph 2 we read

%F(O.42, 0.25, 0.25) = 0.3

T - . . ©a e s M - . - . . - -
In %l oo Car omode D L0 w3 oa T Do o CLos e

we Jjust add up the contributions of each of them.

If there is a nugget effect its contribution must be
evaluated separately. To do so the easiest way is to
refer to the white noise point model with covariance
AS defined in section II-5-2. The variance of averages

over a support v, which represents 62(v|m) is of the form :

o?(vew) = -{-‘}‘
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(02(o|v) is not defined in this model). Hence :

az(vlv) = cz(vlw) - o°(V|w) = Af % - %‘]

The constant A is given by CO = A/vo where v, is the volume of the
support of the data used to compute the variogram on which CO was
fitted. So, finally

v

A"
Bvlv) = ¢, [ =2 -]

This formula also works in the discrete case where Yo and v are

points and V is made up of N points : then.vo/v = 1 and vo/v =
1/N (case of measurement errors).

4 - CHANGE OF SUPPORT : REGULARIZATION,

Iet Z(x) be a point variable and consider a moving average :

Zv(x) = % j Z(x+u) du
v

ZV(X) is a new Re.V. with a support v, while the support of Z(x)
was a point. It may be interesting to express the variogram of
Zv(x) as a function of the variogram of Z(x). In order to do this
the trick-dis to incorporate the domain of integration v inside
the integral writing 2 _(x) as

} Z(x+u) I(u) du

) =3

I(u) being the indicator function of v. Then

zv(x+h) - zv(x) = %-{ [Z2(x+h+u) - Z(x+u)] I(uw) du

and the variogram Yy of zv is equal to :
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Yv(h) = %-ié j du jE[Z(x+h+u)-Z(x+u)][Z(x+h+u')-z(x+u')]I(u) I(ut)du?

Using the rule of II-4~1 one finds the covariance of the increments
under the integral, namely :

- [2 y(u'~u) - y(h+u'-u) - y(h+u-u')]
Setting u'=u = t we get

Y, (h) = -3;2 Jdu I[Y(mt) + y(h=t) = 2 y(t)] I(u) I(u+t) at

Nf—

Integrating in u first, defining the geometric covariogram of v :

P(t) = j I(u)-I(u+t) du

and taking the symmetry into account, one finds the final result

v (m) =L [ v 2(6) as - [v(5) 2(+) as]

It has the form of a convolution product

Yy ==, [Y * P - constant]

1
v
the constant equal to the value of ¥ ¥ P at h = O being there to
ensure that y_(o) = 0.

As an example suppose we have measured porcosities along a
well on core sections small enough to be considered as points.
4

We want to know the variogram y
a length ¢ . e have :

(h) of porosities averaged over

PP (as)
thd
i
|

b-lu| iflul <@

I 8
t i .
® s P ) o=z = O if u| >€
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s0 N, .
=4, [ ) vwean -4, 0= b vea
¢ £” Lp e Lp

(we are working here in one dimension).

These integrals can be calculated directly but they can also
be related to the F function defined above. For a linear vario-
gram

y(h) = w|h]

the results are :

0<hz<?
2
~Qm>=w%(6-@
{ <n
_ |4
Yﬂ(h) = w(h - ?)

L /-3

We notice that y, has a parabolic be-

havior at the origin : it is more re-

zgular than the initial variogram y. ~&4(

In 2 or % dimensions the formulae are more com} .icated and

we may omit them in an introductory course.

S0 far we have seen how to go from a point support to a
block support. Now often our basic data are already measured on
a block support. The standard procedure to follow then is epi-
tomized by the following sketch :

| _21—471\ )

by —> Yo €& Point model of 2

L i N

3
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5 — COiING BACK 10 OUR BXAWP LE.

The variograms of the 324 data have been computed along rows
and columns and plotted on Fig. 4. The variograms of 2 x 2 blocks
and 35 X 3 blocks have also been computed from Table II. We see how
variograms are modified as the size of the support of the Re.V. in-
creases and we understand why this is called a "regularization".

Now suppose our information is the variogram Y of the

1
elementary blocks and with that we wish to predict the variances

of the other blocks. iet us first give them names

v, = elementary block

5 = block 2 x 2 = 4 v,
V= " x5 =9,
Vg = " 6 X 6 = 35 v,
¥ = " 18 x 18 = 524.v1 = whole domain

If we had a model for the point variogram Yy we could use its F
function and get simply :

P (v, [V) = B(V) - P(v.)

In most practiéal situations the dimensions of the support on
which our data are measured are negligible with respect to the
dimensions of the volume we want to compute the dispersion in
(plug, core, or log influence zone versus block or reservoir).
As a conseguence our data can be treated as point data and their
variograms can be used without deconvolution.

Admittedly in our example this approximation is not valid,
at least to compute UZ(VZIV) since v, is only one fourth of Ve
For V3 the approximation seems more acceptable and we shall content
ourselves with it to obtain numerical results without too much ef-

fort. The variogram can be roughly fitted to the sum of two sphe-
rical models :

Y(1) = v,(b) + y,(n)
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with :
Y ) =828l 1 dBlhoy ) <4

(in 10" " units) (

( = 8 In| > 4
and

: 3

brptn) = 1431 (2481 - 1817y ) <
(in 1074 units) g

( = 14.31 In| > 1

(The fit is only rough because it seems that along columns there
is a hole effect not accounted for by our model).

e get (cf. Graph 1) :

02(v3IV) = 8[1 - L B2 ,“i)] +14.31 [1 - § B, 9]
= 8{1 - 0.5350] + 14.31 [1 = 0.940]
= 4.62 (in 10~% units)
v V) =8[1 -1 RS, 8]+ 1431 [1 -1 72, 9]
6 C 4 4 ‘ C "Y1 1

1l

8[1 - 0.810] + 14.31 [1 - 0.98%]
= 1.76 (in 10~ % units)

It is interesting to compare these values with what a blunt appli-
cation of a well known statistical rule would have given, namely
dividing the variance by the number of elementary blocks as if
they were independent (22.31 divided by 9 fo::.v3 and divided by

36 for V6).

Variince in Observed Predicted by Pregicted by
107" units Geostatistics ¢ /n law

Blocks 3 X 3 5.11 4.62 - 2.48

Blocks 6 X 6 1.99 1.76 0.62

These results clearly show that it would be wrong to neglect
spatial correlations.
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6 — EXERCISE : REGUIARTZATION BY CORES.

A core of length L = 5C has been cut up into sections of
constant lengthbe, (for convenience €= 1). The experimental
- half-~variogram Y4 of the porosities of section ¢ = 1 has been
computed up to a distance-% = 25, Now, we have seen that for
variance calculations a model of the point variogram y is needed
and the purpose of this exercise is to show how it can be found

and checked.

A simple procedure consists in choosing a priori a point
model y among the classical ones, compute its regularized version
YZ and ad just the parametefs of Yy so as to obtain a good fit
of Yy to the experimental y,. If possible, one can also group
the core sections by lengths 2€, 2€,... compute the experimen-
tal variograms ;ZE.’ §5€ ,...“and compare them with the theoreti-
cal Yop» Ysg 200" deduced by convolution of the point model y.
If the model is correct, the fit should be good also for these
variograis.

The following table gives the values of the experimental
half-variograms for core sections of length E=1, €=73,8=5
and &= 10.

QUESTIONS

&

1°) Among the models you know, which one would you select

as a model for the point variogram?

2¢) Fit the parameters of this model using the experimental
Y, (h).

30) Using graphs 5 and 6 given hereafter, find the theoreti-
cal values YL(h) deduced by convolution of the point
model and compare them to the experimental values. Dis-
cuss the discrepancies.

HINTS

1°) look at the bahavior of y, at the origin ; see if there
is a sill and how fast it is reached.
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; (h) (in 1074 units)

6
(& 'A‘ Yy
h €= 1 b= 3 £=75 £ =10
1 0.9
2 2.3
3 3.8 2.6
4 4.9
5 6.3 4.2
6 7.2 6.5
7 8.1 ;
8 9.6 |
9 10.7 10.0
10 12.0 9.3 6.0
11 12.0 | |
12 | 12.2 1.5 §
13 14.0 |
14 13.5 |
15 13.9 12.7 12.0 |
16 14.0
17 | 13.2 |
18 12.0 11.8 |
19 12.9
20 13.8 11.5 11.0
21 13.4 13.0
22 13.4
23 13.6
24 13,2 12.7
25 12.5 10.5

2°) Is there a nugget effect? If a, is the range of v, then
a = a, ~ € is the range of the point variogram y. Why?
To compute the sill of y use the additivity relation-

ship and the function F(€) = w % of a linear variogram.

3°) Graphs 5 and 5bgive for C = 1 the values -of v, (%) for
% ranging from 0.1 to 20 and for lags»z ranging from
0O to 25 or 13.
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SOLUTION

1°) The inspection of the experimental half-variogram y1(h)
will give us clues for the point model vy.

We first note that ;1(h) has a linear shape from lag 1
to lag 3. Yet if we extrapolate this down to the y-axis we
find a "negative nugget effect". This means that ;1(h) has
to bend towards the origin and reach it with a parabolic be-
havior. Recalling that the regularizstion of a linear vario-
gram by a segment of length £ is parabolic for |h| < € and
linear with the same slope for |h| > £, we see that the

point variogram we are after is linear at the origin.

‘ Since ;1(h) has a sill, so nas y(h), and we are led to.
choos? between a spherical and an exponential model. The fact
that Y1(h) reaches its sill rather rapidly argues in favor
of the spherical model.

2°) If y(h) is linear, vy,(h) is also linear with the same
slope for |n| > €. Thus we can estimate the slope of y(h)
at the origin from the slope of ;1(h) between h = {1 and h
= 3, #e find :

131 >~ 1.4

Now y(h) lies above ye(h) by a translation of w % = 0.47.
by ' %y Thus we see on tne plot of Y1(h)

that the variogram y(h) deduced

from y1(h) by this translation would

pass almost exactly through the ori-

4 h gin. Hence there 1s no nugget effect.
4 b —

-~C3

wjte

Rough estimates of the range and the sill of y1(h) can be :

a, = 16 and 01 = 13.5

This implies that the range of y(h) is a = 16-1 = 15,
Indeed it is clear from the next figure that if a is the mi-
nimum distance above which there is no correlation between
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two points, then two segments of length ¢ will be uncorrela-

ted only if their elosest end points are at least a apart,

i.e., the two segments are a +-g +'§'= a + € apart.

To find the sill C we notice that

C = variance of a core of length £ ::oz(eﬁw)
but  02(€/w) = B(w) - (L) = C - (L)

thus C1 =0 - F(1)

where F is tne P-function of the spherical variogram y(h).
But for distances like h = 1 - much smaller than the range
a = 15 - this spherical variogram is very well gpproximated

by a linear variogram with a slope w = % g . Thus we have :

C .

so C_—_C_..g_:C['].._l_ = 0 = 1 — 13.5 ~ 14

28, J A I
30
‘(This result can be compared with the one obtained using the
exact expression for the PF-function of the spherical model,
i.e. 3
L) = C['ég - ——12—3] for |€| < a )

20 a

Pinally our point model 1s

3
Cragd BLo1 AL <5
y(h) =
€14 In| > 15

3°) Using graph 5 bis we find the following theoretical
~ values of Yir Y30 Yg and Y10 under the hypothesis that



our previously determined point model y is correct.

h Y ¥y Y5 Ys | Y10
1 1.40 | 0.91
2 2.78 2+31
3 414 371 | 2.73
4 | 5.47| 5.04
5 6.74 | 6.3 4.34
6 7.95 | 7.5 6.5
7 9.09 | 8.5
8 | 10.14] 9.7
9 11.09 | 10.6 9.7
10 | 11.93 [ 11.5 9.45 | 6.3
11 12.04 | 12.2
12 1%3.22 | 12.7 11.8
13 | 13.64 | 13.1
14 | 1,.91 | 13.4
15 | 14.00 | 15.5 | 12.5 | 11.5
16 13.6
17
18 12.6
19 3
20 I N 1.7 9.5
21 L I [
22 L L )
23 L I
24 L )
25 L 1
L
L

If we compare these values h with the experimental ones we

notice a fair agreement for distances h < 10 = % y Which

is one fifth of the total core length. Focr h > 15 =

L
3 the

fluctuations of the experimental variogram may not be sig-

nificant.
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- CHAPTER IV -

VARIANCES OF EXLNSION AND THEIR APPLICATIONS TO
ESTILATION AND SAJPLIhG PATTLRNS

1 - TH: CONCELPT OF VARIANCE OF EXJ ENSION AND ITS RLLATIONSHIP
TO THE VARIANCE OF DISPr.RSION.

Suppose that we want to assess the average value of a parameter
Z(x) over a given domain V of the field, i.e. the integral :

z(Vv) = —(}%(x)dx
v

Now, thé information is available only on a domain v — for example
V can be a block and v a drill-hole ; or V can be a core section
and v a plug, etc.

v l So, we actually know the value of
2 y s G Z(v) = %k/;(x)dx
| :
fige 1

In many cases a natural step is to simply take Z(v) as an estimate
of 2(V). What error do we make?

First of all, under the assumption that 2Z(x) is intrinsic,
7z(v) is an unbiased estimator of Z(V) =

E[2(v)] = ;}/E(z(x))dx = -j;fm dx = m = E[2(V)]
v

v

Then :  E[2(v)-2(V)]2 = Var(a(v)-2(V)) = o5(v,V)

The variance of Z(v)—Z(Vz is caglled the "variance of extension"

of v. to V. It is trhe variance of the error that we incur in "extend-
ing" to the domain V the average value measured on the domain V.
This varlance is soretimes denoted by cE(v V) or c% for short.
(ote that o (v,V) is symmetric in v and V).
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Conceptually, o%(v,v) is simply the variance of estimation
of ZV by ZV. In geostatistical practice however, the term "exten-
sion variance" is preferred in reference to elementary cases when
sample values are extended to their "gzones of influence". The
expression "estimation variance" is used for more general situa-
tions where several samples are combined to estimate a given
quantity.

The theoretical value of the variance of extension is given

oé(v,v) = ﬁ%b/éxcz;(x—y)dy -
v
1

- =5 dyjY(y-y')dy' - -%fdx fv(x—x')dx'
v v vV v v v

by :

Or, in a more concise form :

c%(v,V) = 2 y(v,V) - Y(V,V) - Y(v,v)

where y(V,V) = F(V) and F(v,v) = F(v), i.e. the average value of
the variogram when the end points x and x' (or y and y') are
sweeping independently throughout V and v (e¢f. Chap. III).

by
v \ v
v(v,V) Y(V,V) - v(v,v)
Fig, 2

The above formula holds for any shape of v and V ; in particular
v need not be included into V. The factors influencing the va-
riance of extension are seen to be :
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(i) the regularity of the variable : through ¥y
(ii) the geometry of V

through Y(V,V)

(iii) the geometry of v through y(v,v)

(iv) the location of v with respect to V : through y(v,V)

Furthermore, rewriting the formula as :
o2(v, V) = [Y(v,V) = F(V,N] + [F(v,V) - ¥(v,¥)]

makes it clear that the variance decreases as :

~ the sampling v is more representative of the domain V to be
estimated (In the limit, when v = V : c%(v,V) = 0)

- the variogram is more regular, i.e. the Re. V. is more con-
tinuous in its variations (cf. Exercice p. IV-15).

Also, an obvious but important property of variances of exten-
sions is that they involve only the variogram and the geometry of
the problem, but not the actual values taken by the variable under
study. This fact, which is a conseguence of considering second order
models, is the basis of the design of measurement networks.

Relationship to the variance of dispersion.

Even when v is included into V the extension variance oy (v V)
should not be confused with the dispersion variance oz(v{V) presented
in Chap. I1II. 2(VIV) has a physical significance : it measures the
dispersion of samples of sige v within the domain of definition V.
The extension variance for its part, is an operational concept,
characterizing the error attached to a given sampling pattern. Theo-
retically, the two types of varlances are related in the following
way : the dlspers1on variance o (VIV) is the average of extension
variances GE(V,V) when the sample v takes all possible positions
within V.,

To see this, consider first the case when v is reduced to a

o%(0|V) = E (%\[(Z(x)-—mv)z dx) = %fE(Z(x)-mV)
\'

point :
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But E(2(x)- )2 is the extension varisnce of x to V, so that :
m;

cz(ovlv) = %fc}%(x,v) dx
v

This result can also be obtained from the explicit expression of
cg(x,v) :

o2(x,V) = & fv(x-y)dy -4 jdy /Y(y~y') dy!
i VY y

so that :

%jcé(x,V)dx -2
v

2

il

<

<1
~<Q\\5 <o

ax | y(x-y)dy - 15 /Y(y-y')dy'
vy

/
/

dy / v(y-y")ay' = F(V)

Similarly, if we consider that V is the union of domains vy

=

V= U v,
i=1 *

then

N N
2 1 " 2 1 2
o“Glvy =g 2 Bz, -m]? = f 2 ofv,,V)

which is the announced result,

2 = BELEMENTARY VARIANCES OF EXTENSION.

One dimension.

Iet us first introduce the auxiliary functionsy and F

B h average value of y when

-1 .
x(h) —-Ilu/'y(u)du origin fixed and end point

° moves along segment h



h
F(h) ='£% Jru x{u)du average value of y wher
h 0 __*Ji.__ two end points move inde-
2 b pendently along segment
=2 [ () y(wau .
h °
0

Then, the extension variancesof the following sampling pattern

are
—— 02 = 2 x(¢/2) - B(e)
—_— 62 = 2 x(€) - F(£) - L v(&)

Example : The average porosity of a 1-foot core has been assessed
by meané of a central plug. Up to 1 foot the variogram can be mo-
deled as : y(h) = 1.5 10"4 |n|.- #hat is the accuracy of our assess-
ment?

Assuming the dimensions of the plug to be negligible,
we just apply the above foriuula. In this case when y(a) =wh

we get )
x(h) = % and F(h) = » % so that c% = n %
Numerically :
G% = 0.25 10.'4 SO op ™~ 0.5/

Higher dimensions - Graphs.

As in the 1-D case auxiliary functions can be defined.
However, 1t is easier to use graphs, which cover most cases. The
others can be treated by numerical integration on computer.

Graphs 1, 2 and 3 are typical examples for the spherical va-
riogram. Their use is identical to that of the F-function. Remember
that graphs are given for standardized variograms with C = 1 and
that distances are in range units.

When a nugget effect CO is there, add to G% the quantity

v v
0 o
Co [?7 - TF]



where v and V are the estimating and estimated volumes, respectively,
and Vo the volume of basic sample data. By "basic" samples we mean
samples having the same support as those which were used to compute
the variogram, and therefore to fit CO. When the support is a point

v v
79 = % (N number of sample points) and 1% = 0 (unless V is itself

discrete).

1 - For the porosity data of the previous example, another

experimenter fitted a spherical variogram with a = 10" and C =

1072, Reevaluate G% .

- Using Graph 1 with'é =-$5 = 0.1 we read on the curve
6% the value 0.0255 so that 3
1 -
2 —_ -3 _ = -'4 ~ I
op = 10 X 0.0255 = 0.255 10 and op 0. 5%

e find roughly the same answer as before. No wonder : at small

noho
pla

distances the spherical model is linear with slope » =
-t
1.5 10 , which is precisely the model used before,

2 - The average porosity of a square cross sectional block
(100" x 300" x 300') was assessed by a central vertical core (100’
long). The variogram was computed using half-foot long core sam-
ples and was fitted to a spherical model with the following para-
meters

a = 30 ¢ =20 1074 ¢, = 10”4

Assuming the variogram is isotropic in 3-D, compute the variance
of extension of the core to the block. —

For e e
h _ 300 _ L 100 _
2 - S0 = 10 and a - 30 ~ 033

we ©read on graph 3 the value 0.21. Also, 100' of core length re-
present 200 basic half-foot samples. Thus :

3 1074

- -4

cg = 0.21 x 20.10~% +



i.e. Op = ey

v v
We have neglected the term C0 Tﬁ ; in fact the other term CO ??

is also negligible.

3 _~ APPROXTIIATION PRINCIPIE.

Consider now the practical problem of estimating an average

value Z(N) by means of N samples Zys
Z(v) = %:Z)Zi as an estimate of Z(V). What is the variance of
i

estimation ?

22""ZN‘ Suppose we choose

A rigourous answer is readily provided by the general formula
for extension variances, namely here :

o2 =& ¥ fY(x--y)dy -4 Jay [ y(y-yDay - 525 v(x,=x.)
E NV 1 i 72 N° i 3 i d
v VoY J
But if N is large, this formula is quite cumbersome. Insteed,
we shall appeal to an approximetion principle which yistulates
the absence of correlation between extension errors i1-~lative to
disjoint domains,

let us look for example at the following 1-D problem.

Zi <l
ettt @b} ] L=N¢
2(2,)

There are N samples centrally located in segments of length £.
Iet Z(ei) be the true average over segment i. Then, the average
over I is simply :
(L) =g T aey)
If Zi is the value assumed by sample i and if we take the average

A 1 . .
of these Z(L) = N»Z)Zi as an estimate of Z(L), the error is
: .

2(L) - 2(L) = § = [2; - 2(8,)]
1
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i.e. the average of partial errors Z; - Z(Ei).

The approximation principle consists in assuming that these
partial errors are uncorrelated. It can be proved that, for usual
variogram models, this approximation is quite good. Then :

c§ = Var[g(L) - 2(L)] = %?Var [Zi - Z(ei)]
But Var [Zi - Z(ei)] = cé(o,e) so that :
of = § 02(0,8) = H(2 x(e/2) - B(2)
The estimation variance is simply computed by dividing the ele~

mentary extension variance of each sample into its gzone of influ-
ence by the number of samples N.

In 2 or 3~D the same method is applied. In tiecase of a regu-
lar grid :

EXALIPLE

200 samples were taken along a core at a 1-foot interval. The
average porosity of these samples and their standard deviation
were found to be

T = 16.2%
O = 4.47% -
Compute the variance of & :
(i) vy the az/n rule

(i1) by geostatistics, knowing that y is spherical
with a = 10" and C = 1072,

- - -5 — o
-}-l—--——‘zw—-—- 10 = UN—00316/°
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(ii) PFrom the previous examples we know that :

-4
2 B -4 2 _ 0.255 107 % _ -5
o5 (0, D = 0.255 10 so oy = 250 = 0.0127 10

and oy = 0.0364%.

To our surprise we find a variance of estimation smaller than
that given by the %? rule by a factor of a 100! This is due to
the fact that, with the adopted variogram model, a central sample
is a very good representative of its 1-foot long influence zone.

The composition principle.

In more complicated situations the calculation of a va-
riance of estimation must be broken down into several variances
of extension calculations, and some weighting may be required.

Suppose for example that we want to assess the average oil
porosity of an homogeneous reservoir {i.e. the volume of oil in
place), on the basis of well measurements. The wells have been
drilled on a regular pattern, but they have unequal depths d..

i
o .
KE S
. / = oy,
// = \\\
<
Fig. 3
Iet s . . .
Z(V) = true average oil porosity over the reservoir

Z(Vi) = true average olil porosity over block Vs

Z(di) true average oil porosity over core length di

Assume, at first, that the cores have been thoroughly analyzed,
so that we know Z(di) exactly. Clearly, to estimate the average
over V we need to weigh each Z(di) by the volume V., of its block
of influence. As the cross-sectional area is a constant, this



amounts to weightingby the length di :

,\ 2V aldy) 2 dy ady)
Z(V) = = =

> V. T Ty 4.

Now 2(V) itself can be written as

z v, a(vy) 24y a(vy)
Z(V) - 1 1

*0

> V. - Ty a.
i 1 i 1

The error is therefore a weighted average of elementary extension
errors Z(di) - Z(Vi) :

. Zdy [Z(di) - z(vi)]
2(V) - Z(v) =2

- 2 d.
; 1

By the approximation principle we get :

Z)d? cﬁ
2 s i tofy
op = Var [Z(V) - 2(V)] = S
2d;)
i
where 0% = Var [Z(di) - Z(Vi)], i.e. the elementary extension va-

i
riance of a central bore~hole to its block of influence (cf. Graph

3).
Note that these variances are weighted by the squares of the lengths
d..

i

More realistically now, the average core porosities Z(di) are
themselves estimated by means of samples. To simplify matters, we
admit that these were taken at regular intervals of length ¢ . So,

each estimate ﬁ(di) is the average of n; = ii samples :
12

A
2(d.) = - > 2.
1 nyox 1tk

The total estimation error can be split into two“térms :
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Ta; [2a;) - 2(a)] Ty [2(ay) - 2(Vp)]

A
Z(V)- z(V) = & +
2. dy 2 dy
- .. * v / — v -/
Extension of samples Extension of cores
to cores to blocks

Denoting by Z(ei ) the true average oil porosity of the e

section of the i%h core we can rewrite the first term as

d.
S -=3 [z. - z(e.
i K : 1y (elk)]

2 q,
1

4

1

As usual, the elementary extension errors are considered uncorre-
lated so that variances add up. We finally get :

- 2 2
2 45 of
> _ 1 2 52(0,8) e
O = ~———3 & 4 Tyt p
(Za;)° 4 i (Z 4;)
Z)d? 02
2 g4(e,0 ; 17k
op = —-LﬁL_l + 5 9 where N = Z} n; = total number
(gjdi) 1 of core samples

The total variance of estimation is the composition of a "line
term" GZQOZE) - the variance of the error made when extending
. N

the samples to the cores -~ and a "block term", accounting for
the extension of the cores to their blocks of influence.

4 -~ SANMPLING PATTERNS.

The preceding theory enables us to compare the efficiencies
of 3 usual sampling patterns.

® ® ®
® ® é e ]
®
e e o° ® o °® e e © o
®
¢ ® @ ]
Rand om Stratified Random Regular

Fige. 4



Random Network.

In order to estimate the average value 2(V) over V we
teke the average of N samples Z(Xi) randomly scattered within V.
More specifically, the X4 have been independently located in V
with uniform density 1/V. We wish to evaluate the variance of
the error.

An elegant way to derive the result is the following. For
a given realization 2(x) = z(x) the values z(Xi) are random
through Xi and are independent. PFurthermore,

E[Z2(V) - z(V)] = 0 and

E[2(V) = 2(V)]% = Var [2(V) - 2(V)]

I}

-1;—2-EiVar [Z(Xi) - z(V)]

It

% sZ(C]V)

Randomizing the realization we find : of = ¢ 02(0|V)

Stratified Random Network.

This time V is divided into N similar disjoint zones

of influence Ve Within each v, a sample is placed at random

with uniform density and independently of other samples.

The error is
A o 1 o=
Z(V) - Z(V) = —Nzij [zi - u(vi)]

and by an argument similar to that just seen, the partial errors

Z; - Z(vi) are conditionally independent and :
2 1 2
op =y 0°(0[v)

The varisnce of estimation has the same form as in the
purely random case, except that 02(O]V) is replaced by 62(C|V),
i.e. the variance of a point sample within its zone of influence
Ve
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Now, by the additivity relationship of Chap. III

a2(0]V) - o®(0]v) = o?(¥|V) = O

which proves that the stratified random pattern is always more
efficient than the purely random one.

Regular Grid.

We have seen that in this case the variance of estima-

tion can be approximated by 1/N times the variance of extension
of a sample to its zone of influence

®
°

cg = % GE(O,V)

for the usual variogram model"cg(o,v) is smaller than 02(O|v).

To get order of magnitude information, let us consider the 2-D
case when v is a square of side €.

For the linear variogram Y(h)= oh it was stated in Chap. III
that

P(8,8) = 0.5214= L(= o%(0|v))

Recall now that :

oz(o,v) = 2 y(0,v) = Y(v,v)

N

f 'f(o,v) =m X

v

(¢

————

—ts

x-]é [\/_2_ + Log(1+ V2)] = 0.3826 o €

so that  o2(0,v) = 0.2438 @ @

The ratio

2,
_L_l02(bv = 2.1387
op(0,v)

shows that for a linear variogram the regular grid pattern is
twice more efficient than the random stratified pattern itself
more efficient than the purely random scheme .
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In order %o have a complete comparison between the sampling
patterns, let us further assume that the domain V is itself a
square of area 5. Then the variance of a sample within V is 3

o2(0|V) = F(L,L) = 0.5214 x » x L  with L =Y8S

for the stratified random and the regular network each square

block has a side of length £ = % and we can express the esti=-
mgtion variances in term of 02 = UZ(OIV) and the total number of
samples N
Rand om Stratified random Regular
o’ o o®
N 372 2,14 x N2

TABLE I - Estimation variances for the average over

a square when the variogram is linear.

One can appreciate the benefit of a sampling pattern exploiting
spatial correlations over the crude random sampling : tae va-
riance is brought down by a factor of N Vﬁ'instead of N.

Note that if V is not a square but an arbitrary domain of
area S (that we divide into square blocks), tae formulae for
stratified random and regular remain valid with 0.5214 x w x V'S

substituted for o2.

The same type of comparison can be made in the case of a
bounded variogram. But the results now depend on an additional
parameter : the range a of the variogram. Suppose that a 2-D
domain V has been divided into square blocks of side € , and
that the variogram is an isotropic spherical model.

From readings of Graph 1, Chapter III, and Graph 1, Chapter

1V, curve c% , we can build Table 2. The variance OZ(OfV) has not

2
been included as it depends on the shape of the domain V. However,

for reference purposes, one may keep in mind that if the dimen-
sions of V are large with respect to a (I/a > 10), then 02(O|V)
= 1 in the units of Table 2. '
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TABIE 2
/s cz(Olv) c%(C,v) Ratio!
0.15 0.118 0.056 2.107 '
{ 0.2 0.155 | 0.074 | 2.094 |
0.4 0.31 0.15 2,067
0.6 0.45 0.235 1.915
0.8 0.56 0.32 1.75
1. 0.66 0.41 1.61
1.5 0.81 | 0.65 1.25
2 0.88 0.80 1.1
3 0.94 0.92 1.02
5 0.977 0.96 1.017
8 0.9905 | 0.99 1

Variances for the Spherical Hodel

Again, the regular grid network performs better than the
random stratified one. However, this advantage fades away as
the size of the grid box becomes large with respect to the range
of the variogram, The reason is that for a large e/a ratio, the

influence of a sample is purely local anyway ard the center of

the square looses its strategic superiority.
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5_ EXERCISE.

1 - In one dimension, compare the two following sampling
patterns for the family of variograms : y(h) = |n|> 0< A <2

¢ 2
Answer :
A A
h 2 h
X == 3 F Y S ¢
(h) +1 "’ (h) (A+1) (A+2) ?
A
2_2¢ 1. - 2 1 A
of =%F ¢ A A+2 )5 o5 = A2 2 ) €
- 2
A 01 02
0 1 0.5
0.5 | 0.409V¢€ 0.3 Ve
i
{1 0.167 € 0.167 £
1.5 ] 0.054 ¢'*°| o0.071 p!*°
2 0 0
For A < 1 L S— better than e
For A = 1 e equivalent to —
For A > 1 ———— better than *——=B

For A = O, limiting case of a pure nugget effect, only the
number of samples matters. -

As A incréases, the variogram becomes more regular, and a
single centrally located sample becomes better than two ill-
placed ones. For A = 1 the two patterns are equivalent. For
A = 2 the variances are O, but A = 2 is not an admissible value
for a variogram model.
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~ CHAPTIR V -

KRIGING

1 - THE PURPCSE OF KRIGING.

Measurements on core data or log analysis results provide
the reservoir engineer with detailed information on a single well

basis. The problem is then to extend these studies to a field ba-
sis.

Clearly, the answer can only be in the form of "estimates".
No data processing method, however sophisticated, will ever tell
us exactly what would be found at a well that has not been drilled.
However, what a good method can do is to handle the precious avail-
able data in an efiiciet way so as to get the most out of them.

The accuracy of estimates depends on several factors

(i) the number of wells and the gquality of the data for each

well : this quality may vary from well to well and there-
fore all wells should not be granted the same importance.

(ii) +the positions of the wells within the field : from the
: point of view of a general knowledge of the field, wells
that are evenly spaced throughout the field achieve a
better coverage and thus give us more information than
if they were clustered in a particular region.

(iii) the distances between the wells and the area of interest
if we are interested in a particular block it is natural
to rely more on wells close to the block than on distant

ones. Likewise, if we want reservoir parameter . values
on a point basis (thickness for example), we expect the
accuracy to be good in the vicinity of the wells and to
deteriorate as the distances from the wells increase.

(iv) +the spatial continuity of the interpoléted variables :
obviously enough, a quantity with smooth variations can
be interpolated better than a quantity with erratic




fluctugtions. For example, with the same pattern of data
points, it is usually easier to assess the depth of the
reservoir at a point than its local porosity or permea—
bility. In fact, these are two very different problems
and reservoir engineers are well aware of it since they
generally use different methods to solve them : "exact
surface interplation" for depths and "trend surface ana-
lysis" for porosities and permeabilities. This is a first
step. Optimally, the interpolation algorithm should be
tailored to each particular variable.

"Kriging" is a method of estimation which takes into account
all these factors. The term was derived by G. i:atheron from the
name of D.G. Krige, a mining specialist who first introduced the
use of moving averages to avoid systematic overestimation of ore
reserves in mineral deposits. "Kriging essentially consists in
taking the best linear unbiased estimator (abbreviation : B.L.U.E.)
of the quantity to be estimated, i.e. to give a weight to the dif-
ferent available sauples so as to obtain an estimator with mini-

mum mean squared error. Before giving a detailed account of the
method it may be interesting to present an hypotheti:al example

designed to illustrate the rationale of the weightin ; procedure.

SuppooC we want to estimate the average porosity of blocks in
a homogeneous layer of a reservoir. Blocks are sampled by cores
and it is assumed that the sampling is unbiased, i.e. the expected
value of the porosity o : c¢:re taken inside a block is equal to the
average porosity of that block. e
assume now for simplicity of the ar-

blocks
gument thgt the porosities have a
" - Gaussian distribution ; then the bi-
bt ' variate distribution of block poro-

| sity versus core porosity is also
Gaussian., The regression of &

1
i
L core
' i 1
! X . €. T expected value
: i on ®olocx’ i.e he exp a
m > g i .. is the unit
* coves of Byope BIVEN D0y

slope line. Then, the other regres=-
sion line, t.¢ intcresting one,giving leock as a function of
¢ has a slope B necessarily smaller than one. The regression

core
formula writes ¢ y = m + B(x~m).
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When the porosity x of a core is greater than the general average
m of the layer the expected porosity y of the block is then smal-
ler than x, and vice versa. In other words, there is a correction
to weiglt down values of x larger than the overall mean m, and
conversely.

In fact, this regression approach suggests a more general

formulation. Rewriting y as :

y =8 x+ (1-8)m

we see that the estimate y is a linear combinztion of the sample
value x and the general gverage m, the sum of weights being 1.

But in practice, m itself is known only through an estimate
m¥ = %’Z)Xi sy 1., the average of cores in the layer. Altogether
i

the estimate y* of the block porosity is of the forn

y* =2, a, X,
;1

with ??ai =1, and a; = lﬁﬁ for all cores outside the block,
i

whether or not they are close to the estimated block. The kri-
ging procedure will improve that weightingby allocating to
each core the weight a3 that it really deserves,

2 — DERIVATION OF KRIGING EQUATIONS

The general situation is the following : we have N data
values z(x1), z(xz),..,z(xN) measured at points x;, 1 = 1,2...N.
e want to estimate & quantity Yo which 1is any linear functionsl
of the studied variable z(x). For example ::

value taken by z at x = x

(1) y, = z(x,) o
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i

average of z(x) over the block
VO of volume v and centered at

(ii) Yo %Jz(x)dx

v —
o X = X
(iii) Vo = % ‘];(X)dx : average value of z(x) over the
v wnole field V
(iv) Vo = d[z(xo+u) p(u)du : weighted moving average of z(x)
(v) y, = grad z(x)lx_X : components of the gradient at

o X = X, (hence dip and strike of
a geological layer)

For the sake of simplicity we shall give explicit sclutions in
the first three cases only. furthermore, we shall pcol them in
a single problem by writing Y, @S an average value over an un-
specified domain V, with the understending that if V is reduced
to a point X, the average value of z over the point is z(xo)

itself :
Yo = % J[Z(X) dx

v

To estimate ¥y, we consider a weighted average of the data :

N
y.o= 2. Ay z(xi)

(By convention the star * will denote kriging estimates). The
problem is to choose the weights Ki in the best possible way.
This is where we appeal to our statistical setup. Considering
now the estimator

Y=
0]

I ™M=

Ay Z(Xi)
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we determine the weights Ai so that Yz

1) is unbissed : E[Y - Y] =0

2) has minimum mean squared error :

- *
L[YO -

¥ 1% winimm

#hen condition 1 is satisfied the mean squared error is also

the variance and we shall refer to the variance
deviation of the kriging error, rather than the

error.

To find the Ai's that satisfy 1) and 2) we

two cases : the so-called stationary case where

or the standard
mean squared

shall distinguish
the neans of

z(x) are constant and the non-stationary case where there is g

drift,

A -~ Tre Stationary Case.

Here E[Z(Xi)] =m and ELYO] =1

Condition 1 entails :

N N N
Bl 2 A dx) =Y )l= 2 am-m=u (X A ~-1) =0
iz 1 i o 72, 1 iy 1

Therefore for the estimator to be unbiased the weights
must add up to 1, which is a rather intuitive condition.

The variance of the error can be expressed in terms of

the variogram :

) * _ 2 v 3
E[ Y - YO] = Var(fo YO) =
N N N
s - 5 - -

i=1 i=1 j=1

Y(V,V)



wnere

o}

-102-

V(Xi,V) is the average of the variogram bet-

ween X, and the volume V, 1l.e,

V(Xi,V) = % k/Y(Xi - x)dx

Y(V V) is the average of the variogram bet-
ween any two points x and x' sweeping inde-
pendently throughout the volume V (F-function) :

Y(V,V) = €§ Lj\kf y(x - x') dx dx' = V)
v v

In order tc minimize the gbove variance under the constraint

that the sum of the weights mﬁat be 1, we 1ntr0duce a Lagrange
multlpllor v and set to O the partial derivatives 59 y 1 = 1,2,
N oand 39 of the guantity :

e get the following linear

N
-y ) =2up( 2 A,
0 g i

¢ = Var(yz - 1)

system :

Kriging
Systenm

N
>OAL Y(Xi

J=1

J

e
I

- Xj) + “’ = :{-(Xi,V) 1,2,..-N

The
by 1
Kriging
Variance

Wrien Lne

In the case where

and

minimim of the variance

t . . . o .
or "kriging variance"is given

A

62
K

*
= Var(yo

N
2 Ay Y(X V)-—Y(VV)+u

-y.) =
© i=1

var

S ey
= LIE L e

R O S T T S PSS I T G £ B 8 , Wi

V is a point y(x , V) = Y(X -X )
¥(v,V) = y(0) =
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To solve the system numerically, it i1s convenient to write
it in a matrix form. We get simply :

r X =3B
1.2 o
P - -~ - r-—. o
O Yo Y37 Yy ! M (x5 V)
Yor O Yoz = Yoy Ao (x5, 7)
. o _
L 7R Yoy 1 M ¥(x35,V)
X -
L4 T P — c 1 My ¥ (x> V)
1 1 mer————— 1 0 " i
_\' 'J = | L -
" g V o
T 3 i

If y is.a proper variogram model, T is always non-singular and
the solution is simply :

X=1""38
and the varisnce
o2 = X' B - ¥(V,V) (x7 = X transposed)

Beware : ' is not positive definite (zeroes on the diagonal)

B ~ Non-Stationary Kriging ("Universal Kriging")

In cases where the variszble shows a systematic increase
or decrease along certain directions we say that there is a drift.
Then, the assumption that k[ Z(x)] = constant is obviously viola-
ted and a more sophisticated model must be used.

A natural one is to consider that the drift m(x) = E[Z(x)],

a slowly varying function, can be well gpproximated by a poly-
nomial of the form :

1 a£ f e(x)

m(x) =

4

M=
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The fe are monomials. For ¢xample, in 2-D the explicit
expression of a linear drift in terms of the coocrdinates x

and y would write :

n(x,y) = a, + a, X+ ayy
and a quadratic drift :
N 2 2
m(x,y) = ag t 8y X+ 8,y +ag Xy +a, X +agy

The coefficients 2q a1,...ak are of course unknown. A surpri-
singly nice fact is that we do not need to estimate them, but
just to introduce into the kriging system some more side con-—
ditions. To see why that is so, let us just examine the case
of point estimation, i.e. when Y = Z(XO). The unbiasedness

of Yo implies this time :

N
T * _ < -
L[YO - YO] = £Z1 hi m(xi) - m(xo) =0
But gs
k p
=
m(x;) o 2P £(xy4)

we have, after rearrangement :
k N

¢ 4
€€31 2, [;21 A oE(xy) - F (XO)] =0

This has to be an ilentity in 2p so that we get the unbiasedness

conditions 3

d : P |
ia A E(xg) = £ (x) £=1,2,... k

The rest of the derivation is the same as for stationary kriging.
Again the weights hi are solutions of a linear system but this
time with k Isgrange multipliers Hys HBosesolly instead of just
one, This linear system has a unique solution, provided that the
k vectors fe(xi) (1 = 1,..N) are linearly independent on the set
of observations; i.e. :

£ 3 X B
%C@f(xi)—o for all i = ce_o for all £
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N k p
2 A, y(xi-x) + £(x;) = y(x;-x_)
NON-5TATIONARY j=1 T £ =1 “e + ™
(i = 1,2,...N
KRIGING SYisTE: . ) 225 2e 1)
> a2k = £8x) (= 1,2,...%)
j=p 3 J 0
i} } . 2 . N
KRIGING VARIANCE | o = Var(Z*(x )-Z(x )) = Z i, ¥(x.=x_)
K o) 0 j=1 9 J ©
L 2
+ 2. f
Y

5 — PROPERTILS AND USAGL OF KRIGING ©STINATORS. APPLICATIONS TO
CONTOUR _IAPFING.

Concerning what we mentioned in the introduction on the relg-
tionships between an estimator and tye data, we note that the kri-
ging system takes the following elements into account :

(1) relative position of the estimated domain V and the
semple points x; : through the terms 7(Xi,V) or Y(xi—xo).

Zii) distances between sanmple points : through the terms
Y(Xi_xj)‘

(iii) structure of the variable : through the Seml-variogram Y.

The influence of the siructure on the kriging weights is il-
lustrated by Fig. 1. The value at a grid node has been kriged
with the same data points but with two different variograms.

fe can scve what was meant by an algorithm tailored to each
particular variable. When the variable is continucus, kriging
relies a lot on close data points precisely because continuity
means that close points assume close values ; this is nc longer
true if the varisble is irregular and consequently kriging
damps down the influence of nearest neighbors,



(a) distances of data points to grid node (in Km)

(b) kriging weights in % computed with a continuous vario-
gram y(h) = 15 |h| : a large weight is ascribed to the
closest data (91.6% )

(e¢) kriging weights in « ecooputed with o veriogram with
nugget effect y(h) = 2.4 + 11.2 |h| : the nearest
neignbor gets only o2.4%

A very important property of kriging is to be an exact

interpolator : when estimating point values, kriging restores

at data points the measured values. This can be checked on the
kriging system : when X, coincides with Xi then the solution

is Ki =1 and A\, = 0 for jJ # i. But it is even simpler to go

back to the first principles and see that the minimum of

E[Z*(xo) - Z(Xo)]z is obvicusly achieved when Z*(xo) = Z(XO)

and this minimum is O. This makes kriging an appropriate method
for contour mapping. ioreover, as a by-product, kriging provides
the variance of the error 0% from which an error map can be drawn.
If the error is assumed to be Gaussian, a 95x% confidence interval
for the true value z(xo) is [z*(xo) - 2 oy, z*(xo) + 2 GK] so

that by mapping 2 ox we get a picture of the spatial distribution
of the 95% error level. An example is shown in Fig. 2 and 3. Fig.2
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- Time Contour dap (C. HUIJBREGTS, 1971)
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Brror Contour iHap (2 GK) (C. HUIJBREGTS, 1971)
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is a time contour map (in msec) computed by kriging. fhe crosses
indicate the position of the measurements. Certain interesting
structures can be observed, for example there is one on the right
upper part of the map. Looking at the error map shows that in
that ares 2 Ox is around 100 msec, which casts doubts on the
reality of that structure. .sikewise in the left lower corner,
where there is no data, we observe a high standard deviation
urging us not to give credit to the wriggling contours in this
region.On the other hand, when the standard deviation is low the
map can be trusted.

4 - HOW TO TAKw INS'Q ACCOUNT [ UNCBHTAINTY OF Pl DATA.

Porosities and fluid saturations are obtained after a
complex process involving sevceral weasurenments technigues, enpl-
rical formulae and coefficients deduced from laboratory experi-
ments. In general we shall assume that the uncertainty about a
value z(Xi) is sumerized oy a variarce Gf. Sometimes ci will
have been computed by statisticzl or geostatistical methods,
or Jjust roughly figured out for example by dividing the likely
renge of variation by 4 and squaring the result. e shall assume

that the errors s(xi) are :

4

(13

a) unsystematic E[E(xi)] = 0 Tor all i

b) uncorrelated : cov[e(xi),e(xj)] =0 for alli # j
¢) uncorrelated with the studied variable :

cov[e(xi),z(x)] = for all i and all x.

Then, the uncertainty on the data just introduces a slight
modification in the kriging system. instead of Z(Xi) our data
are in fact z(xi) + a(xi), i.e. the real value plus an error,
and our estimator is .

0= A Lalxy) + e(xy)]
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3ince E[E(Xi)] = 0 nothing is changed in the unbiasedness con-

ditions. But the variance of the error becomes :

N N
. b 1 v
Var[( 2 n a(x)-Y ) + T Ay elxy)]
1=1 i=1
N N
— A Iy Y s
= Var[i,cz_,-1 Ay Z(Xi)—YO] + \l'ar[:_L‘;,.:1 Ay e(xy)]

¥
Var(ro - YO)

h? 0?
117

i

1+

H.
™M=

N
Var[ >0 A, 2(x;)-Y
§Z, i

0
When minimizing this expression we get the kriging system

except for the N diggonal terms Yiqy = 0 which are replaced by

2 . . .
= 04 The stationary kriging system for example writes :

N N _

STATIONARY | 20 Aj Y(Xi~xj) - A of + o= y(xi,v) 1= 1,2500.90
KRIGING J=1

WITH ERROR3| N

AT DATA

> & - -
op = 7 hj y(xi,V) +p - y(V,V)

It is interesting to get a feeling for the practical effects
of the introduction of an uncertainty variance oi . for this,let
us consider the following elementary example (from J.P. DEIHO.HE,
1974) : the variable has no drift, a linear variogram y(h) = |h|,
and the data are located at the vertices of a regular hexagon
with sides of unat length (Fig. 4). Five of these data are supposed
to be without error U§ =0 for i = 1,2,...,5, and we want to stu-
dy the influence of Gg.

One way is to look at the weight A, ascribed to z(X6) when
estimating the value at the center of the hexagon (Fig. 5). At
the beginning cé =0 so z(xé) gets a weight of 1/6 = 0.166. As
cé increases, K6 decreases and in the limit vanishes when Gg is

infinite : a totally imprecise data is like no data at all.
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Another way to study the information brought about by the
sixth data point is to look at the relative variance reduction
due to the presence of this sixth value. This time we want to

estimate z(x) at any point x (not necessarily the center of the
hexagon). Using the five data only, we would have a kriging va-

riance oy ,while using also the sixth value we have o

5

2

K6 which

is smaller. In Fig. 6 we can see the contour lines of the rela-

tive variance reduction (or "gain in precision") :

2 2
%. T %k
- D 6
&= E
o]
K
5
L » A
s Iz
f’g 4 ® 8 0.1
y % ]
%
o ® 01=
T %
[ ]
5
@ point sUr
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r

ity

1974)
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finen o% = 0, the meximum variance recuction is 100% at X (since
2

then op = 0) ard decreases as the kriged point moves away
6
from Xgo For larger and larger values of cé the zone of influ-

ence of the sixth data point shrinks and in the limit disappears
when 02 is infinite. Again, a totally uncertain data would be
of no help at all,

5 — APPLICATICONS OF KRIGING 10 THs waTIATION O HYDROCARBON
IN PLACE,

Kriging technigues can be used for reserves evaluation
either directly to calculate the volume of hydrocarbon in place
or indirectly to provide dynamic reservoir simulation models

with grids of initial formetion parameters values.

A -~ Volumetric Calculations.

The volume of hydrocarbon in place, denoted by Q,

is given by the following triple integral :

Min( WL, Bot(x,y))
Q =‘jéx dy [1 - Sw(x,y,z)] &(x,y,z)dz
X y TOP(X:y)

P

WL = .water level, Bot = Bottom, & = porosity, SW = water satura-
tion. x and y are the two horizontal coordinates and z is the
depth. If required, the formation volume factor (F.V.P,) can be
introduced in the formulas or the correction be made later.

Ideally this integral should be calculgted by numerical
integration in 3-D., This would require estimation of the hydro-
carbon porosity

@h(x,y,z) = [1 - Sw(X;yoz)] @(X7yyz)

at the nodes of a 3-D grid limited by the reservoir boundaries.
On account of the vertical heterogeneity of a reservoir, this
would be a heavy task. A shortcut consists in reducing the
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problem to a 2-D one by considering cumulated hydrocarbon poro-
sities :
Min{ WL, Bot(x,y) ]

[1 - 5,(xy5,2)] &(x,y,2)dz

H@Sh(x,y)
Top(x,y)

I

[Min[ Wi, Bot(x,y)] = Top(x,y)] X Eh(x,y)

where H = thickness and h is a subscript for hydrocarbon porosity
or saturation.

Q :.J[L[H ® Sh(x,y)dx dy
X Y

Wow it suffices to grid in 2-D the variuble H ¢ Sh(x,y) and sum
over the grid points. This can be done :

(i) either by working on the varizble H & 3, directly

(ii) or by gridding H, & and 5, independently anmd multi-
plying the grids,

The first approach requires that neasurements of f, &-and Sh are
available for gll wells. ihis is usually not the case and the se-
cond method 1is preferred.

An intermediate method is to divide the reservoir into homo-
geneous layers and work layer by layer, as for independent reser-
voirs. These layers can be horigzontal ones when the profile of
water saturation pleys a mejor rdle, or determined by litholo-
gic studies. Variograis can also be a help for the zonation of
the reservoir by indicating those layers which meximize spatial
correlations. At this stage no general recommendation can be made.
To a certain extent, one can say thet each reservoir is a parti-
cular case and kriging technigues, as any other tool, should be
used with insight.

T™e complexity of rescrves evalugtion and the fact that
several variables are involved makes 1t difficult to perform
rigorous error calculations. However, kriging provides some
indications. Symbolically we may represent the reserves in place
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in a certain volume (reservoir or layer) as @

a= 7 x
e —/ -~ J

— .
volume average hydrocarbon
porosity over V

The errors can be classified in two categories :

(i) errors of estimation of @h : they depend on the varig—

bility of the variables, on the number and location
of the wells and on the uncertainties at the wells.

(ii) errors on the geometry of the reservoir : errors

about the reservoir top, the water level depth, and
possibly the presence of faults and wedges.

If the geometricsl error. may be neglected then :

2

o 2 2

=V G®h

with cg given by kriging. In the case of several layers a crude
h
approximation is to simply add the estimacion variences of each

layer as if the errors were independent. JWher the boundaries of
the reservolr are very imprecise we must resort to other methods
(ef. infra : "conditional simulations").

&

B - Initialization of dynamic reservoir simulation models.

e A

ity of acorgs v coowide W00 A oni 0 for s
servoir simulation models (&,K,H). Studies are going on Lo com~
bine kriging with history-matching techniques based on optimal
control theory. “he idea is to realize that,-although they are
highly variable, permeabilities are usually not totally erratic,
and that their structure can be taken into account by means of a
geostatistical modeil. This approach will reduce the number of
parameters to be determined, and is expected to yield more realis=—
tic solutions to permeability distribution in the reservoir.
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6 - HOW DO KRIGING ESTIMATES COMPARE WITH REALITY ? A CASE STUDY,

In the early years when calculating a variogram and laying
down kriging equations was still considered pioneering work, some
enthusiastic geostatisticians claimed that kriging estimates were
the "best" because they minimized estimation variances. This argument
never quite convinced practitioners, and rightly so. Optimality is
a property established within a specified model and its relevance
to a real situation depends on well the model describes this reali-
ty.

Another means of assessing the quality of kriging estimates is
to check them against the true values. Unfortunately - or perhaps
fortunately for the geostatistician, who knows ? - the true values
are seldom known. One may instead work on Monte Carlo simulations
but these do not have the flavof of real case studies,

In that respect a recent report by Ph. Narboni offers a very
interesting picture of the performance of kriging estimators in
forestry estimation. He conducted an exhaustive survey of 20,000 ha
in Gabon (1 hectare = 10,000 m® = 2.471 acres), concentrating on
the predominant type of wood called "okoumé". The basic document
was a map at a scale of 1/10,000 showing the position of every
tree with a diameter greater than 60 cm. A 5 mm square mesh grid
was superimposed on the map, defining sampling units of 50 m x 50 m
(patches) in which trees were counted. The studied variable is the
count of trees per hectare,

The sampling scheme may be described as a transect survey,
but with contiguous transects of 50 m width,

A total of aboﬁt 80,000 sampling units weré—analyzed, a task
that took two man-months.

Variograms were calculated : (a) using the complete survey,
(b) using continuous transect surveys sampled at a rate of 1 %,
5 % and 10 % of the total. Because of heterogeneity of the forest
the area was divided into 4 zones of about 5,000 ha each (Fig. 7).
An example of the variograms obtained is given in Fig. 8.
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One interesting outcome of the study is the evidence of the fluc~
tuations of the experimental variograms (at 10 % sampling rate it
is possible to compute 10 replicates). We will not discuss this
aspect here but simply note that ranges are stable while sills
vary more (factor of 1.2 at 10 % rate, of 2 at 1 % rate). The
fitted variogram is a sum of two spherical models plus a nugget
effect,

Estimation of 20 ha panels (500 m x 400 m) was carried out at
a 10 % sampling rate, Panels are centered on transects (Fig. 10).
The classical method used in forestry is simply to take the mean
value of patches inside the panel as an estimate of the panel it-
self. Kriging for its part also uses information from outside the
panel, In case of a regular sampling pattern such as this the same
kriging configuration can be used for all panels, and weights cal~-
culated once for all, Fig. 9 shows the layout employed here, with
data grouped into 5 rings.

]
W"”””"L" __L_—”~_T
I 5 | 5 | 5 |
NN | ISR S § R I | R

I | L N CN
| 7 |
18 e
| :

e ZAVZA ||
Lo ] ﬁ__=___..2__ S | G
: 5 i 5 i 5 :
| - — 34— — 1._._ e

!

n-4 n nri
\ rrarlsecl's /

Fig., 9 : Kriging layout
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Table {1 compares mean estimates over the 4 zones ; multiplication
by the areas give the total number of trees.

Pondérateurs -
Zones = TR T e e e e e e e e e e =z *
. Z A * 2 P “
NGOLO v 4 AL A As A Ag z % 29,72
I 1,18 1,25 0,38 0,10 0,18 0,08 0,26 1,25 0,20 72 7%
II 1,26 1,29 0,38 0,08 0,18 C,08 0,28 1,28 0,23 75 %
I1I 1,53 | 1,58 0,46 0,10 0,16 0,06 0,24 1,53 0,34 76 %
IV 1,69 | 1,61 0,41 0,10 0,17 0,07 0,25 1,62 0,36 74 %
TABILE 1
7& ¢ true value - —? : mean of inside samples
Z* : mean of kriging estimates ci : kriging variance
xi : weights ascribed to the rings of Fig. 9

It may be noticed that outside samples are weighted more than in-
side samples (A1 less than 0.5). This is due to the presence of
a large nugget effect.

Table 1 basically indicates that the two estimates Z: and Z¥
are comparable as far as global estimation is concerned. This does
not remain true however when turning to local estimation. Fig. 10
is the cross-plot of true values versus kriging estimates : the
cloud is well-centered about the unit slope line, with a few points
outside the 95 % confidence interval (there should be some !), This
plot illustrates a property of the kriging estimator that can be
proved mathemstically in the case of a Gaussian random function
with a known mean, namely conditional unbiasedness :

E[z |z%] = 2%

If we go and exploit all panels estimated to be Z* their mean will
indeed be Z*. By contrast, Fig. 11 shows that this property does
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not hold with the classical estimator Z1 based on inside values.
Even though it is globally unbiased, locally it has a tendency
to overestimate panels such that Z* > m and to underestimate them

1

*

when Z1 <m. This is exactly the regression effect mentioned in
the introduction to kriging (attention : true values are now

plotted horizontally).

It is even more spectacular to compare the estimates locally.
Fig. 12 a, 12 b, 12 ¢ are density plots symbolizing the counts in
the panels. As Narboni puts it "the map obtained by the classical
estimates is a patchwork that the eye can't integrate". Kriging
produces smoother values, easier to interpret, while at the same
time faithful to the true values.

7 = VARIANCE REDUCTION AS A GUIDE TO IOCATE A NEW OBSERVATION,.

An interesting possibility is to use the kriging variance as
an indicator of the information brought about by a new observation.
(We have already seen this idea along with the example in V-4).
The crux of the argument is that the kriging variance does not
depend on the actual data values but only on their geometrical
arrangement and on the variogram. As a consequence it is possible
for example to "drill" a fietitious well and compute how much the
variance decreases with this new information. The place where to
drill is where the variance reduction is a maximum (assuming of
course that the objective of drilling is to gain information.
Whether that is the case is another problem).

The reader may try his own skill on Fig. 13 where the objec-
tive is to estimate the total rainfall over a basin.
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"Where do you think a new rain gauge would be most informative?"

The gain of information (= relative variance reduction) has
been contoured in Fig. 14. It shows that the best place is in
the South-Eastern part of the basin (18.8 %) and not in the middle
as could have been thought at first. Of course the objective of
variance reduction may be counterbalanced by other factors, such

as ease of access. Then Fig. 14 may be used to find a constrained
optimum.
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A RiCOLLuCTION OF SOME ELuMENTARY STATI1STICAL RESULTS

I - SAiPle POINTS, SAPIE SPACKE, EVENTS, PROBABILITIES, INDEFRNDENCEH.

#very possible outcome of an experiment is called a sample
point. If we toss a coin there are two possible outcomes : heads
or tails. If we roll a die there are six outcomes : 1, 2, 3, 4, 5
or 6. If we measure the length of an object there are theoretically
infinitely many possible outcomes : all numbers from zero to infini-

ty.

The set of all possible outcomes (or sample points) is called
the sample space (usually denoted by Q).

An event is a collection of sample points. For example in
the die rolling experiment we may consider the event : "an odd face
turns up" ; this event consists of 3 possible sample points : 1, 3
or 5., If we measure a length L we mey consider the event : L is bet-
ween 1.53 mw and 1.79 m", which consists of infinitely many possible
values in the interval [1.5%, 1.79].

Events may be transformed or combined and it is useful to
view them as sets. For example :

IOGICAL NOTATICW SuT NOTATION
NOT A (A false) A° : A complement
A or B AUB: A union B
A ard B AMB: A intersection B
A impossible A=¢: A is an empty set
A certain A=Q : A 1is the whole space
A and B mutually exclusive ANB=¢@: A and B have an

A implies B empty intersection
A included in B

e
N
t

etec...

To every event A we may assign some numbers P(A) between
O and 1 called the probability P(A) of that event. By convention

we assign a probability O to impossible events and a probability 1
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to any event which must happen with certainty. Also, the probability
that one or the other of two mutually exclusive events A and B occurs
is the sum of the probabilities that A occurs and B occurs. This

must remain true if we consider the sum of any countable collection
of events Ay . ilathematically these axioms of probability write :

a) 0 < P(A) =1
b) P(Q) =1 and P(®) = 0O
c) r(Ay Udy U Ay U...) = P(4)) + B(4,) + P(Ag) +...
provided A; N Aj =@ if 1 #
From b) it follows that the probability that A does not occur is
simply P(a%) = 1 - p(4).
It is important to note that the additivity property ¢) only holds

for mutually exclusive events. In general, if A and B are not mu-
tually exclusive, we have :

P(a ) B) = P(4) + B(B) - P(AN B)

In words : the probability that A or B occurs is the probability
that A occurs plus the probatility that B occurs minus the probabi-
lity that A and B occur simultaneously. this is made clear by Fig. 1

When adding A amd B we count the
comzon region A M B twice and

mist therefore subtract it out.
ANB

Fig. 1

A fundamental notion in probability theory is that of inde-
pendence. Two events A and B are independent is the probability that
A and B occur is the product of P(A) and P(B) :

A,B independent o P(A N B) = P(4) x B(B)

For example if we flip a fair coin twice the probébility of getting
Heads, Heads is 1/4 (one out of the four sample points (H,H), (T,T),
(g,17), (T,H). But 1/4 is equal to the product 1/2 x 1/2 of individual
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probabilities so that the events "Heads at first toss", "Heads at
second toss" are independent.

The intuitive idea of the independence of two events A ard
B is that knowing that A has occurred conveys no information on
the event B. It is usually assumed for example that measurement
errors are independent,

2 — RANDOM VARIABLES AKD YHwIR JISTRIBUTIONS -~ THE HISUOGRALL

A random variable is a function which assigns a numericsal

value to each outcome of an experiment ( = to each sample point in
the sample space). For example if the experiment consists of tossing
a coin, the score | nay ve assigned to the outcome Heads, while U

is assigned to Tails. Then we have & random varisblie X which assumes

the vaglues :
1 with probablllty 1/2
0 n n 1/‘2

S0, in an intuitive manner a random variable can be defined
as a function which takes on certain values with certain probabili-
ties. Usually a random variable is denoted by a capital letter, say
X, while one if its "realizations", i.e. the result of a particular
drawing, is denoted by a lower-case letter x.

Independence of random variables goes as the independence
of events concerning them. Iet Bi be an interval on the line, or a
countable union or intersection of intervals ; then the statement
"X; belongs to B,", denoted (x; € Bi), is an event. By definition

X

the random variables X Dy e

19 Xh are independent if probabilities
multiply
P{(X1 € B1) N (%, € B2) NeoN (X, € B )} = P(x1 € B1) Xe. . XP(X € Bn)

Any random variable X is uefined by its cumulative distri-

bution function

Mx) = P[4 = x] -0 € X < o

which 1s the probability that X is less than or equal to some given
value x. Fig. 2a shows an example of such a function F(x). By cong~

truction it increases monotonically from O to 1.
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} 1“(%)
oa%
r 2y é g —‘2 - o 4 °‘-(. 2
-Fig:2a. P(X£x,)=(4-x)% -Fig:2b_ shaded area= (X >x,)

Fig. 2a Fig. 2b
If we are interested in the probability tnat X lies in a
given interval (a,b), we have

Pla < X g 0] = P(v) - #(a)

now 1f the interval is small, suy of length dx, the probavility

that X lies in (x-%ﬁ,x+d—2x) is s

P[x~ %% < X = x+ %%] = P(x+ %?) - P(x- %%) = P (x)dx

provided X is continuous. F'(x) is the derivative of F(x) and we
call it f(x) :

f(x) = (%)

f(x) is the density of probability at the point x. It should be
pointed out that f(x) itself is not a probability (it can well be
greater than 1) ; only the area under the curve f(x) is a probabi-
1lity. The relationship between F and f is illustrated on Fig. 2.
F(x) is the area under the curve f(x) up to the point x :

°

X

(%) i/. fx)dx (hence the nzme "cumilative™)

~~00

The way to estimate f(x) from the data is to build a histo-
gram, i.e. divide the range of values into classes and count the
number of data in each class. The standard question is then : how

3

many classes? If the classes are too wide, much information is lost
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due to the smoothing of the histogram. On the other hand, if classes
are too narrow the variability of the density estimate is too high.
Statisticians formulate this by saying that "there is a conflict
between bias and variance reduction". A practical recomuendation

is often to take classes with no less than 5 points in then.

Incidentally, for reservoir data the estimation of a proba-
bility density is not as simple as it may appear. The sampling may
be very biased because the wells are drilled in areas that are be-
lieved to be favorable (anticlines, zones of high porosity and per-
meability). Also, as it will be seen later on, the various measure-
ments in a field are not independent and do not carry the same a-
mount of information so that some weighting of the data is necessa-

Ty.

3 = MOMENTS : MEAN, VARIANCE, COVARIANCE AND CORRELATION.

The kth moment of a continuous random variable is by defini-

tion ¢ +00
E(Xk) =L/\ %X f(x)dx (provided E(IX]k) < )
«el0G
The first moment called the mean or expected value is thus
simply :
+00
m = E(X) =u/‘ x f(x)dx
4 -0Q

The symbol E denotes the operation of computing tne expected value.
This operation is linear, namely :

E(e X) c E(X) ¢ = constant

f

BX+Y)

I

BlK) + E(Y) X, Y random variables

Also we have of course

Ble) = ¢

The mean value of a random variable is a sort of theoretical
average, Or more precisely, tie limit of the sample average when the
sample size increases indefinitely. The mean can also be interpreted
as the center of the distribution. Think of the x-axis as a bar
with a variable density f(x) : then B(X) is the center of gravity
of the bar. For this reason the mean is often referred to as a loca-
tion parameter - it tells where the center of the distribution is.
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Other location parameters are also used, for example the median,
e.Z2., the value such that 50% of the data are above and 504 are
below. The mean however has a very strong physical appeal when we
are dealing with additive guantities.

Another property of theexpectation worth noticing is the
following :

If X and Y are independent : E(XY) = u(X)E(Y)

We now turn to the key concept which we will use in the
future : the concept of variance., First the formal definition 3
"the variance of a random variable X is the expected value of the
squared deviagtions about its mean". It is denoted by Var(x) or 02
for short. ¥e have :

+00
Y 2_\'— 2_ "2
Var(X) = 0 = E(¥-m)° = (x~m)“ f{x)dx

=00

It

J[xz f(x)dx - m?

(%) - [B(1)]°

1

An estimator of the variance is :

822

i

n
) sanple 1 2an.

A <
n .)

(xi4§)2 where x
i

1

(Statisticians sometimes recommend to divide by (n-1) instead of
n, but this is a debatable issue and it has no importance when n is
largef.

The main properties of the variance are the following :

(a) Var(ec) =0 ¢ = constant
(b) Var(Z+c) = Var(X)
e -

(c) Var(cX) = Var(X)

() Var(x+Y) = Var(X) + Var(Y) + 2 Cov(X,Y)

(a) and (b) make sense if we are told that the variasnce is a mea-

sure of dispersion, or spread. (a) says that the dispersion of a

constant is 0. (b) says that the dispersion is unaltered by a shift
in all the data. (c¢) shows that the variance is in squared units
since g change in the scale of X by a factor ¢ changes the variance
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by 02. To have the dispersion in the same unit as the data, one
considers the square root ¢ of the variance, called the standard-—
dévigtion

o = VVar(x) = standard deviation

If most of the probability mass lies near the mean, the
varlance will be small, whereas if it is spread out over a large

range,the variance will be large (cf. Mg. 3)

This statement is made more precise by Chebyshev's inequa~-

lity. For any positive value t :
P(|%~m| = t o) < Q%

t
If we take t = 2 for example we find that the probability that X
deviates from the mean by more~than 2 stardurd deviations is less
than 25x. This is true whatever the distribution of X may be. Of
course if we have wore precise ideas about the distribution of X,
the stetement itself becomes more accurate (e.g. for a normal, the
probability is in fact 5,4 instead of 25.%).

Formula (d) is of carital importance and it is worthwhile
to derive it from the definitions. By definition :

< B 7, s T, - 2 3 o 2
Ja?(A+I) = L[(A+Y)*(mx+my)] = m[(i—mX) + (f—mY)]
But [(X-m)+(¥-m,) 1% = (%u.)2 + (Y-n,)2 + 2 (X-m.) (¥-my). By li-
X Y L Y X Y’e
nearity of the expectation we thus have :

Bl (Xemy) +(¥-my) 1% = B(Em)? + E(¥-my)? + 2 B[ (X~m) (Y-my) ]

b ~ -~ e’ Y . J
Var(X+Y) Var(X) Var(Y) Cov(Z,Y)

The term.E[(X—mX)(Y-mY)] is named the covariance between X

and Y. It can be denoted by Oy A property of the covariance is
that @

lcov(X,Y)| < v;;r(x) VVar(Y)

80 that the ratio :
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_ Cov (X, ¥) _
VQar(X) V%ar(Y) £

p

is always between -1 ard +1. p is the well known coefficient of

correlation. It measures the mutual relationship between two va-

riables. A positive value of p indicates a tendency for X and Y
to increase together. iWhen p is negative, large values of X are
associated with small values of Y. When p = # 1 there is & perfect
linear relationship between X and ¥ : ¥ = oX + B. ihen X snd Y are

independent their correlation coefficient p (and likewise their co-

variance GXY) is 0. Caution! the converse is generally not true.
Formula (d) can be rewritten using p :
2 2 2
Oyey = Ox ¥ Oy * 2 P 039y

As a particular case when X and Y are independent we simply

Also by formula (c) if we take the average of n independent
random variables with egual variances 02 we get :

5 (2 n Var(Xi) 52
> Var(X.,) = ——m—" = =—
2 i - i n2 n

Var(% Z) Xi) =4
i n

The variance is divided by n. This is only true il the variables
are independent, or at least if tleir correlation is O.

e now give two approximate formulae that are useful.

. Variance of a product.

P=XY with 5(Y) = my> 0, L{X) = my >0, 6(P) = mp > 0

2 2 2 2 2
GP GX O‘Y ()'KO'Y O’X GY
e = 4+ == + 2 D { = , — small)
2 2 772 my Ty 2 2
p ™ "W X Y

. Varisnce of a ratio.

R=% with E(R) = mp > 0, E(X) = m, > 0, E8(Y) =my >0
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02 02 02 0,0 62 02

R__X,°Y _ . X’y X Y
S5t -2egy = 3 suall)
ny o My LY ny My

wr, COLZION DISIRIBUTIONS

(a) Bernoulli.

It is a discrete random variable describing the presence
or absence of a charsacter.

X

1 with probability p
X =0 1" " 1 - p

Its mean and variznce are
u(X) =p
Var(X) = p(1-p)

(v) Normal.
dex-m 2
- 2( o )

The density if f(x) = —_— e

o V Zﬁ

where m is the mean arnd 02 the varisnce . A normal variable is often
denoted by N(m,cg). By using tables of the cumulative distribution
function we can make statements like the following :

There are Y0% chances that X lies in the interval [m~1.645c, m+1.6450]

" " 95% 1 " 1" n ] " n ) [m_1.960’ m+1.96c}
1 " 97,556 " on n uooon W [m_1.960’ yx]
n " 98w " W n " nooon " [m—2.3266, m+2.3266]

(c) ILognormal.

A random variable X is lognormal if its logarithm Iog X
2

is normal. Iet Iog vy and ¢~ be the mean and variance of iog X :

iog X ~ N (log v, 02)
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Then the transformgtion

=1 100 X
2 = 5 108 Y

transforms X into a standard normal N(0,1). X itself is related
to Z by

The density of X is

(13

_ _j_(bog x - log 'Y)2
2 o

£(x) 1
g 14

1 oe
X

1i

Some examples are plotted on Fig. 4. However it is preferable to
work on Z.

Yy is the median of X. Its nean and variance are given by
- 2

B(X) =m =1y e

>

(
(
\
( Var(Xx) = 2"2 = m?(e® -1)

The first formula show the effect of the skewness of the 1ognormal2

/2

which increases with the logarithmic variance 02. the variance of X

distribution : the mean is greater than the median by a factor e

is proportional to the sguare of the mean s0 that :

2
= = e -1
m
2 . 02 2 5 . . . . .
If o is small e -1 = ¢~ and the logarithmic varignce 1s approxima-

tely equal to Z}/m?, an index of relative dispersion. (%%= coeffi-—

cient of variation).

Probabilistic statements on X can easily be derived from
those on the normal variable Z. For example there are 9,% chances
that

- 1.96 £ G £ 1.96 =y e %999 2 x gy !°900
If ¢ is small o ::—:Z_-_’ and the inequali‘sy is I'Ou.éhly .
m m

Y € £ X v e etc..
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0.8 DENSITIES OF NORMAL
DISTRIBUTIONS

~Fig:3. The standard deviation as an index of dispersion

e LOG - NORMAL DISTRIBUTIONS
0.6l log §=0 my=1.649 densities of X=eZ where Z is
ca=AD =246 normal N (leg¥,q3).
o4t -Fig:4._
o2}
Log =05 my=2.748
Tz= = Zx=3.56v
o 7 2 3 ra s:%—%
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Similarly there are Y/,,5,. chances that X is greater than vy e

etc...

5 — Tk BIVARIATE wORAT DISYRISUNICN — RLGRESSION — HIGHWR DI.EN-
SIONS.

Random varisbles can also be defined in several dimensions.
A classical example is that of a rifle aimed at a target. The points
of impact of the bullets on the target are characterized by 2 coor-
dinates x and y. ‘hese can be considered as Jointly defined randon
variables. Suppose that we divide the target into squares, count
the number of hits in esch sgquare and compute the relative freguen-
cy. By plotting these frequercies we get a two-dimensional nisto-

gram (fMg. 5).

Bivariate random variables can be defined in many cases of inter-
pretation of reservoir data. A simple example is that of values of
porosity as measured by two different types of logs (ef. "cross—
plots"). '

A bivariate random variasble is characterigzed by a two-

dimensional cunmulative distribution function :
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P(x,y) = P[X < xand Y g y]

Iike in the univariate case there is generzlly a density f(x,y)
such that

y X
F(x,y) =J d?fj f(x,y)dx
w—0Q =0

The variable X considered alone has a distribution function
F1(X) = P[X< x] = P[X £x, Y € ] = F(x,)
Iikewise Y glone has the distribution function

Po(y) = P[Y sy] = P[E< oo, ¥ gy] = #(c,y)

=51

1 and FZ are called the marginal distriputions of £ and Y respec-

tively.
The bivariate normal has a density :
) 1 ['X—mX)Z- 2 (x—mx)(y—my)
- 2 o N g O
f(x,y) = 1 e 2l1=p%) * Y
2
2N o, 0o 1-p <
Xy y-m_ 2
- (D) |
y

where m and o, are the mean :nd standard-deviation of the margi-
nal distribution of X which is itself univariste normal ; m; and o
are the same for ¥ ; p is the correlation coefficient of X and Y.

A nice property of the bpivariate normal is that p = O implies inde-
pendence of £ and Y. On a cross-plot of X and Y lines of constant
probability are ellipses centered at the poimt of coordinates

(mx, my).

In many applications it is of interest to consider the
mean value of one of the variables, say Y, when the other, say X,
is fixed. This mean represents the best possible prediction of Y

by a function of X, in the sense of least squares. For a bivariate
normal the regression of ¥ on X is given by :
o]
E(YlX=x)=my+p6i- (x = m)

read "expected value
of Y given X"
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"y E(x\y:.g):mx-rrg_;g(%-m&) regression of x ony

regression of y on x

, \E(ylx:x):m&-«»”%(x-mx)

- _ellipse of constant probality density

g

2

I
1
!
i
{
Wige

-Fig:6- Regression lines for a bivariate normal

fig. 6

1t is a straight line passing through the center of gravity (mx,my)
and which cuts all vertical secants to the eliipses at their mid-
points. It can be drawn easily by taking cne ellipse and Jjoining
the two points where it admits a tangent parcllel to the coordinate
a.xiquy (Pig. 6). Similarly the regression of X on Y is :

o

(5 = = - 7 o oy )
B(X|Y = ¥) met ey (y my)

g

1t must be noted that the two regression lines are different.

Instead of considering the average value of Y when X is
known, we may also consider the whole conditional distribution of
Y given X = x., Its density, denoted by f(ylx) is related to the
bivariate density f(x,y) and the marginal demsity of X, f1(x)
through :

_ E(x,y)
f(ylx) = ¥ (%) £,(x) >0

Applying this formula to the bivariate normal, we get :
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- - Sy (ol 2
£(y]x) = —=— 1 . ETT:;§75§ [y - (my+p 5. (x mx))]

The conditional distribution of:Y given X is again normal, with
mean E(Y|X=x) and variance (1-p2) 05- Note that this conditional
variance does not depend on x.

Similar results are obtained for the conditional distribution
of X given Y

Higher Dimensions-

The same approach can be used for higher dimensional random
variables. To each point of the sample space one associates a set
of k values X1 = Xqs Xy = Xpe.sX = " (or a "vector" with k com-
ponents). The joint cumulative distribution function and the joint
density are defined as in 1 or 2 dimensions. The most common model
is the multivariate normal. Call X an n-dimensional random vector,

m its mean and V its variance-covariance matrix, i.e. :

V = B[ (X~m) (%-m)"]

then the density of X is :

- % (%-m) T v~! (ZX-n)

- 1
f(X) = (Zn)n/z ]V|1/26

where |V| stands for the determinant of the (nxn) matrix V.
Suppose now that X, m and V are partitioned as follows :

(% oy RN AITHELY
X=|x m={n V= 1y v
2 2 21 22

X1 is a (kx1) vector and all other vectors and matrices are dimen-
sioned accordingly.

Then the conditional distribution of X1 giveﬁ X2.is a k-va~
riate normal with mean vector :

-1
E(X1|X2) =m, + V,, Vo, (X2-m2)
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and variance-covariance matrix

-1

- V12 v v

L) =
Cov(x,|4;) =V 22 Vo

11

Note again :

i) that the regression of X1 against X2 is linear in X2

ii) that the covariance matrix of X1 given X2 does not depend

on X2

As a consequence, if X1,X2,...,Xh,Xh+1 are jointly normally dis-
tributed, the regression of Xh+1 on X1’X2""’xn is of the form :

E(Xh+1lX1 = Xyyee0X = X,) = A Xy F Ay Xy oot Mg X

and the conditional variance of Xh+1 about this value does not
depend on x1,x2,...,;n.

6 - A COUNTER~EXAMPLE OF LINEARITY : REGRESSION THEORY FOR THE
BIVARTATE TOGNORMAL DISTRIBUTION.

To emphasize the fact that the above results are properties
of the normal distribution, we consider the simple (and useful)
case where X and Y are jointly normally distributed, i.e. Log X

and Log Y are bivariate normal :

2
Log Y ~ N(L
0g (Log Ty cy)

p = corr(Log X, Log Y)

From the results on the bivariate normal we have that the condi-
tional distribution of Y given X is lognormal with logarithmic
mean :

E(Log Y|Iog X = Iog x)

o :
Log Y, + p El (Log x~Tog v,)
X N

o
s

X

Log |vy ($;)
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and logarithmic variance (1-p2) Gg .

Then, the arithmetic mean of this lognormal distribution is
2
(1-p®)0?

E(Y|%X=x) = Ty (——Qp cx e 2

Tx

We see that in this case the regression curve is a power function

and not a straight line (except when p Sz =1).
%%
To calculate the variance about the regression we make use
of the following formula, easily established :
2 2

o O

if Log X ~ N (Log v, 62) then E(X%) = y* ¢ for any a.

Therefore :

C 2
i s 2y 2
’ P 2(1=~
E(Y%|X?x) = L y_(VE)-(%c] . (1=-p )Gy
and as : o »
L
P —02
[E(Y|%=x)]° = {Y (X) f’x] J(1=p%)e
.. J YX

we have 3

1=
Var(Y|X=x) = [E(Y|Xi=x)]2 [e( B ) - 1]

This time +the variance does not depend on x : it is proportional
to the squared mean.

Incidentally, we find, as could be expected, that what matters
in the ILognormal case is thé relative dispersion, i.e. ratio of

variance to squared mean. When 62 is small this ratio is approxi-

mately (1—p2)0'2 , something not unfamiliar.

y

If instead of the true regression curve, we took the linear
formula of the bivariate normal, we would have :

b
’3‘r=my+ R, XEX (x-m)

X



-146-

where R, stands for the correlation between X and Y (p is the cor-
relation between Iog X and Iog Y). fxplicitly :

P OgOy _ ,

_ e
Bo = =21 2 1
(e £-1)2 (e ¥ -1)2

When Oy and oy are small, Ro is close to p and :

a m
Al X (v
y o, * P o, W, (x-m )

It is the same formula as in the normal case, except for the factor
m

Ex . The graphical relationships between the true regression curve
p 4 -

and its linear substitute are epitomized on Fig. 7

e |

Fig. 7 : Regression curves for a bivariate
lognormal

T - ESTIMATION -~ CONFIDENCE INTERVALS.

Suppose that we have n values of a quantity, say 2

Z

1’ 2’
"'Zn at n points Xys x2,...xn. We want to estimate the value at

a new point X, e For this, we consider a function -of the observa-
tions

2x,)= (2, ZypereBy)
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which will be an estimator of our unknown gquantities Z(xo). hen
we insert particular numerical values for the Zi's we obtain a
numerical value of the function T(.), which is called an estimate.

What criterion snould we use for choosing an estimator?
Of course ideally we would like that

Z(XO) = Z(XO) whatever Z(xo) is.

?ut clearly this is asking for too much. So we are led to ask from
Z(XO) to be close ToO Z(XO; in some statistical sense. An obvious
idea is to require that "on average" the magnitude of the error
l%(x ) = alxg )| be small. However this formulation is rather un-
tractable mathematlcally and it is easier to concentrate on the
squared error (Z(x ) - z(x ))2_ Our criterion is then to minimige

the mean squared error :

e - 2
B X - X
(z(x,) Z(x))
Now if we recall what we have learnt on the variance we see that :

. . ~ L o . 2
B(u(x,) - 8x,))% = Var(a(x,) - a(xy)) + [8(5(x,) = ax,))]
L_ﬂw-*ﬂw______l L ~— J R

mean squared error Variance + (bias)

The quantity E(Z(xo) - Z(xo)) is called the bias. Usually we shall
require the bias to be zero, otherwise it would mean that our es-
timator is systematically smeller or larger than the true value.
S0 if s

E[Z(XO) - Z(XO)] =0 (unbiasedness)

we have - _

(a(x,) - 2(x))? = Var(alxz,) - a(x,))

Confidence Intervals.

in estimate is not a true value and we may lead ourselves

into error if we act as if the true value of the quantity were
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equal to our estimate. To be safer, we want an interval which we
can be reasonably confident will actually include the true value.
This interval is called a confidence interval.

With Chebyshev's inequality we have g crude way to build

a confidence interval. Assume cg

then 3

is the variance of Z(x ) - Z(X )

Prob(|z(x ) - x| = 2 0p) s 29
30, with 75% confidence we can assert that the interval
[Z(xo) - 205 a(x ) + 2 OE]

w1ll contain the true value A(X ). If we now assume that the error
A(x ) - Z(x ) is in fact ﬂornally distributed, our confidence in

the previous interval rises to 95,

It can be checked from probability tables (e.g. Biometrika
Tables, Vol. II) that for many common distributions the interval
[m - 20, m + 20] conteins 954 of the probability mass, so that
this confidence interval will remain valid under a broad variety

of assumptions on the distribution of the error.

$ - LINEAR PREDICTION BY LEAST-SQUARES -~ GENERAL THEORY - FITTING
A STRAIGHT LINE

General Theory.

In the customary linear model each observation y; = y(xi)
is regarded as an outcome of a random variable Yi = Y(xi), whose
distribution depends on non-random parameters which are the coor-
dinates of the point X, - It is assumed that these random varia-
blea are uncorrelated, have a common variance 02, and have means
of the form :

X 4

L

The £ (€= 1,2,++,k) are given functions (monomials, for example)
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and the ap are unknown coefficients. E(Y ) is thus linear with
respect to the fe(x )e

In full, the model can be written as the sum of a determi-
nistic function and an error term £ :

S ¢
Yi-\Z’: a, f7 + €5

with

f;‘_ = f£(xi), E(e;) = 0, E(siz) = 6%, E(e; ej) =0 if i # j

4

If the parameters fi are viewed as outcomes of random variables,
2y fi is the regression of Yi on these variables.

When we substitute estimated ﬁe in place of the true a
we get predictors of the yi's”:

e

-» & £t
e € °
Least squares estimation of the a, consists in finding those coef-
ficients ae which minimize the sum of squared deviations (also

called "residuals") between the observed y; and their predictions -
N

Vi ¢
i
To minimize Q = Z}(y E £y )2 it sufflces to cancel the
partial derivatives o% Q Wlth respect to the ae :
10 _ 4 A Sy _ e =
-152 =0 = D (5, -2 B, £) =0 (8 =1,2,.0.,k)
s

' i

One gets the following set of linear equations (called "normal
equations")

E as z fff =Z fg s (€= 1,2y0.049k)
1 i

This system has a unique solution provided that the kxk matrix

of terms 3 fg

s . . . C o . .o
fi is non singular. This condition is satisfied
i
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if and only if the k vectors ff’are linearly independent, i.e.
if

> ¢ ££=0 foralli = c, =0 for all &

e ¢ ° ¢

The least-squares estimators thus obtained are unbiased and

moreover, among all linear unbiased estimators they are the best,
in the sense that no other estimator has smaller variance (Gauss-
Markov theorem).

As its minimum the sum of squares Q satisfies :

E(Q) = (n-k)o?

so that an unbissed estimate of the wvariance 62 is =
A
D (y5-75)°
s2 _ i
n-=k

It is of interest to note that premultiplication of the nor-
mal equations by ae’ and summation over £ yields :

A A
2R L] (y;-y3) = 0

In other words, the vector of re51duals y =¥y is orthogonal to
the vector of predicted values y . This entalls the following
decomposition :
2 A2 A L2

Zys =2 ¥y +2Z (y4-v5)

;771 7 1 1 ivYi
If, as in normal practice, we include a constant term a, in the
regression equation (and thus set f1(x) = 1 for all x), we get :

- D _ A = 2 A 2
? (y;-¥) = Z (y;-Y) + ? (y;-¥4)
-~ J/ e s g s
N R VY
sum of squares _ sum of squares + sum of squares
about the mean due to regression about regression

The ratio R2 = Sum of squares due to regression/Sum of squares
about the mean measures the proportion of total variation about
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the mean explained by the regression. We are pleased if R2 is

close to unity. (Note that R is also called the coefficient of
multiple correlation between the yi's and the §i's).

A great deal of distributional results and hypothesis testing
procedures can be derived under the assumption that the errors are
normally distributed. But this would lead us too far.

Fitting a straight line.

An important application of the above approach is the
derivation of parameter values by indirect means. Example : as-
sessment of porosity using density, neutron or sonic logs. Often
the relationship can be modeled simply by a straight line :

.= . + €.
Yl a X; + b €5

It is convenient to reparametrize this model as :

vy = E(F) + a(xiJE) + €5

(In the notation of the general theory we have here a, = E(Y),

1

f; =15 a, = a, fi = xiJE). The least squares estimates of E(¥)

and a are :

N\ _ ~ ? (Xi""i) ¥4

E(Y) = y 9 a = an 2 (
ZJ\ (Xi_x)
1

it
o>
o o

These estimators are unbiased and their variances are :

' Y (x.-%) €. 2
2 " 2
Var(Y) = %T , Var(a) = E(Qj—a)2 =El|& - _‘21 = "‘-gf:-§
Z (Xi—X) z (xi-x)
i i

Also, it can be seen that Cov(¥,2) = O (this is the benefit of
reparametrization). o

Consider now that we have measured x, but not y_. (x, # X3 5
all 1). As an estimate of y_ we take :
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N\ e —
Yo =3 + ﬁ'(xo—x)

This estimate is unbiased. Its variance is :
Var(f.) = Var(¥) + (x,-%)° Var(3)

So -2
(x_-x)
s 2 2 2 1 (o}
BlY - E(Y - - —
(%, - 53] e ]
1

Q

This is the variance of the error that we make when predicting
the expected value of Y(xo) at the point X,e It is a minimum at

X, = X and increases as x, moves away from X,

tion. Our predictor is best in the "middle" of the observations.

in either direc-

However, it must be noticed that in practice we_ are interes-
e Lo
ted in the actual value y, and not its mean E(YO) (= E(YO)). So
the error we make in fact is @

§ -1, = [€ - E¥)] - [¥, - B(x)] = [T, - B¥)] - ¢,

€, is uncorrelated with YO which depends on other ei's, SO ¢

N 2 _ ~ N 2 2
E(YO—YO) = E(Y0 - E(YO)) + C

Finélly the estimation variance of Yo is
2
(x_-x)
BT -1 )2 = o° [1+d+—2"5]
Z‘J (Xi_x)
i

2

For numerical calculations ¢“ is replaced by its estimate :

2 _ 1 532
S T uz §(yi yi)
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- CHAPTER VI -

CONDITIONAL SIMULATIONS OF RESERVCIR BOUMNDARIES

— T T i T T D i o T2 st T i T i T e 2 e T v e T i L e e T vt T e 2 wnan 22 e T et T i

I - WHY SIMULATIONS?

e have seen how kriging techniques provide efficient esti-
mates in problems involving linear functions of the variable un-
der study. But all problems are not linear and there are cases
when we would like more than just estimates.

A typical non linear problem is that of the cut-off of the
reservoir by a water level. The effective volume is determined
by integration of the effective thickness h, i.e. a truncated
gquantity of the form :

h VA

wy — &(x) if 4(x) = Zyg

h =0 if 42(x) > Zyy,

where Z(x) is the depth of the top at a point x and Zy; the depth
of the water level., Of course having values Z(xi) it is always
possible to grid the reservoir top by kriging and compute the vo-
lume comprised between this upper boundary and a given water
level. However, there is no guarantee of unbiasedness. Kriging
only ensures that, on average, the estimate Z*(x) will be equal
to the true depth %(x), irrespective of what this depth is. No-
thing in the equations implies that this property remains true
when we put restrictions on the values themselves. The equations
have just not been designed for that. It goes without saying that
there is no reason why any of the common methods of interpolation
should perform better inithis situation ; rather, we believe, it

would perform worse.

A crude way to take into account the effect of geometric
uncertainty on reserves evaluation is to work under 3 different
hypotheses :
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(1) an optimistic one : top lifted up as much as possible,
water level at its lowest.

(ii) a pessimistic one : top pushed down, water level raised.
(iii) a median one.
This gives an upper and a lower bound, and a median estimate.

Ideally, what the company's economists would like for their cal-
culations is the expectation curve of the oil or gas in place,

i.e. for each guantity x the probability that the reserves in
place are greater than x.

$ P[Reserves >x]

4
I
|
|
|
i 1
1 | .
H 1 H =

o Proven probable Possivie Reserves

veserves  Yeséryes resewes in place

In order to compute such probabilities we must appeal to a
model. One model, used implicitly in the so-called "rrror-Analy-
sis", is that of total independence between reservoir parameters
values : independence between variables and between grid points.
From the histograms of the different variables (thickness, poro-
sity, water saturation, etc...) equally probable values are es-—
tablished and then drawn at random for each grid point. But in
trying to simulate errors this procedure ignores completely the
spatial structures of the variables. The model of random func-
tions that we have been using througriout seems more adapted.
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2 — THE PRINCIPILES OF CONDITICGNAL SIMULATIONS.

The basic assumption in all geovstatistical operations was
to consider the phenomenon under study as a particular realiza-
tion of a random function. This was a device to set the problems
in a probabilistic framework and thus be able to make use of
convenient tools like expectations, variances, covariances, cor-
relations, variograms, etc... But in fact the profound nature
of a random function, which is an ensemble of possible realiza-

tions, has not been utilized. The idea with simulations 1is to

exhibit other possible realizations of the random function.
While kriging, as any other interpolation procedure, gives a
smoothed picture of reality, simulations display the same amount
of spatial variability that can be expected from the actual
phenomenon. Yet, for these simulations to be plausible candi-
dates of reality, they also have to take at data points the
values that have been measured. This leads to try to construct

what is called "conditional simulations", i.e. functions (or,

egquivalently, surfaces) that satisfy two conditions :
(i) have the same covariance or variogram as the data.

(ii) pass through the given data points.

The term "simulation" here should be understood in a purely

statistical context and has nothing to do with "dynamic reservoir

simulation".

It is not possible here to enter into the technicalities
of conditional simulations. We shall just outline the principles
and then present an example of application tgnthe estimsation of
hydrocarbon reserves.
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We start from the following trivial decomposition :

(g 1) z(x) = z*(x) + [z(x) - z%(x)]
AN ~ 7 % ~ V] A\ — b
true value kriging error

estimate

(We use lower-case letters for realizations and capital
letters for the corresponding random functions)

In Eq 1 the error z(x) - z*(x) remalns unknown because the
true value z(x) is not available. 3Suppose now that we are

able to simulate a realization of a random function 3(x)

having the same covariance as Z%(x). Tnen, on a particular
simulation s(x) it is possible, with the same pattern of

data points, to compute kriging estimates and write similarly :

(kg 2) : s(x) = s*(x) + [s(x) = s*(x)]

This time the error s(x) - s*(x) can be known exactly. The
idea is to substitute in iig 1 this error measured on s(x)

and define a function zs(x) as
(Eq 3) = ZS(X) = z¥(x) + [s(x) - s*(x)]

. We claim that zs(x) is a conditional simulation. First we
have to show that at a given point X5 zs(xi) is equal to
the true value z(xi). This i1s obvious since at sample points

kriging estimates coincide with the actual values, thus :

z*(xi) = z(xi)

s*(xi) s(xi)

il

so in Eq 3 we have ZS(Xi) Z(Xi)’ 1t remains to show that

as a random function :

+

Z,(x) = Z(x) + [5(x) - 8" (x)]

ZS(X) has the same covariance or covariogram as Z(x). This
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is true and we shall admit it without formal proof. The argument
is based on a characteristic property of the kriging estimator
to be uncorrelated with the error, so that we are entitled to

pick an error from a simulation and bluntly add it to the actual
estimate.

‘gz
»®
Ly IO .
)ﬁ‘x : ? i )& ;;z
\ i Py : b 7% b 5 "7
! [} [ ] 1 O
data and Kriging TR A %y
(Y
4+ A
ozl J(‘a %7 condilrional simularion
by ¥ (x) 5 -

5\

uncondirional eimularion
and Kriging

Mg. 1

The only problem left is how to obtain unconditional simu-
lations with a given covariance or variogram. In one dimension
the problem is relatively well solved. But in 2 or 3 dimensions
it gets more complicated and the mere extension of 1-D methods
would be very costly in terms of computer time. A very elegant
and efficient method is the so-called "turning bands" method
developed by G. itlatheron and his group at Fontainebleau. With
this technique it suffices to simulate 1-D functions, which is
relatively easy, and then rotate the lines in space while adding

up, for each simulated point x of space, the values taken by the
projections of x on the lines. -

Ls Ly simulated point
R b
i ¥

Ly Fig, 2 : The turning
Ly Vbands method
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4 Volues

5+

y

Fig. 3 : Reality - Simulation - Kriging

The relationships between reality, conditional simulation
and kriging are well illustrated on the 1-D example of Fig. 3.
The solid black line is the real curve ; it passes through data
points marked by big dots. The thin line represents the kriging
estimates : it goes through the data points but is much smoother
than reality. The dashed line is a conditional simulation : it
also goes through the data points but in addition has a varia-
bility similar to that of reality. e can notice that in gene-
ral the kriging estimate is closer to the real value than the
simulation. This point should oe emphasized : conditional si-
milations do not purport to estimate reality, but simply to give
plausible versions of what it can look like.

It is also interesting to note that if we take many condi-
tional simulations at a point their average 1s simply the kri-
ging estimate and the variance the kriging variance. This results
immediately from the definition : (the estimates z*(x) being fixed)

Il

z4(x) = z*(x) + [5(x) - 8%(x)]

Hence
z¥%(x) + E[S(x) - 3%(x)]

Il

Elzg(x) ]
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- » . 3 - - . *
But kriging is unbiased E[S(x) - 3 (x)] = 0, so

E[z5(x)] = z%(x)

1

Also

[ zg(x) - 2¢(x)]% = E[s(x) - 5" (0]% = of

The variability of a conditional simulation around its ex-—

pected value (kriging) reflects precisely the uncertainty we
have about this value.

3 - A CA3Z STUDY.

The reservoir we are dealing with is an o0il reservoir which
has the shape of a well marked dome, with a maximum thickness of
around 1:0 m. and a lateral extension of the order of % or 4 Xm.
As the transition zong is particularly important the reservoir
has been divided into 7 horizontal layers of 20 m. each (Fig. 4).
The average porosity of each layer has been cowmputed by kriging
of the available porosity data (umeasured in 33 wells).

- — Average
/Bzw T Porosity 4
2 ‘\_ 1 I1.7
yd 3 2 9.3
4 10.8
5 N\ = >
/ \ Izo'n 2 80&.5
; 6 5.55
WWW/WWW/WA ehom 7 315
WATER _
Mg. 4

To simplify matters in this case study we shall assume that these
porosity values are correct and shall concentrate on the error
due to the uncertainty about the reservoir boundaries. This un-—

certainty originates from two causes :
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(1) +the reservoir top depth

(ii) the water level depth

The reservoir top depth is known at 84 wells, the location of
which is represented on Fig. 5. The structural analysis tells

us that there is a quadratic drift and a variogram linear at

the origin and without nugget effect. As for the water level,

it is evaluated to be between 1620 m. and 1640 m, deep, i.e.
within layer 7. We have then performed the following operations :

(a) kriging of the top surface (Fig. 6) and calculation of
the corresponding error standard deviation (Fig. 7).

(b) generation of 30 different conditional simulations of
the top. 3ix of them are shown below as they appear
after cut-off by the lowest water level (1640 m.) =
Mg, 8, 10, 11, 12, 13, 14. The digits represent the
numbers of the layers ; the blanks between layers are
just there to enhance the visualization. From taese
documents it is easy to see the effect of a cut-off
with a higher water level. An example is shown in fig.
9, where the water ievel is taken at its upper limit
(1620 m.).

(¢) calculation of the averages of the 30 conditional si-
mulations (Fig. 16) and of their standard deviations
(Fig. 17). By comparing these to Fig. 6 and 7 we see
that the simulations behave like predicted by theory,
namely their average is the kriged map and their stan-~
dard deviations cofncide with those of the kriging er-
rors. - -

(d) evaluation of rock and hydrocarbon volumes by numerical
integration on :
- the kriged reservoir top
- the 30 conditional simulations.

Three different depths of the water level have been
considered : 1640 m, 1630 m, 1620 m. The results are recorded
in Table I.
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VOLULES COMPUTED FROM CONDITIONAL SIMULATIONS

Water Level 1620 m Water ILevel 1630 m Water Level 1640 m
Rock 0il Rock 0il Rock 0il
Volume Volume Volume Volume Volume Volume
10° n? 10° w2 || 10° m? 10 w3 | 10° ud 10% w?
325.7 26.46 591.1 28.52 463.9 30.81
3327 27.74 395.9 29.73 467.0 51.98
337.9 27.96 402.5 29.99 473.7 52. 24
331.4 27.16 395.9 29.19 467.6 31.45
324.7 26,58 393.1 28.73 468, 2 31.10
350.7 28.88 417.0 30.97 489,6 3%.25
314.7 25.82 377.0 27.79 446,06 29.98
354.3 29, 20 423.0 31.37 498.7 33.(5
3175 25.85 582.7 27.990 454,6 50617
3257 26.95 388.6 28.93 459,.8 31.18
317.8 26.13 382.3 28. 16 450.7 506351
316.7 26,32 376.6 ° 284 20 445.0 30,36
352.7 29.04 419,.3 3113 490,2 33357
33249 27+ 25 401.1 29.40 475.9 31.76
320.8 26,52 387.8 28.63 466,3 31.10
290.6 23 .67 3513 25.58 419.1 27.72
333.9 27.68 400.7 29.79 473.4 32.08
316.8 25.77 379.8 27.76 447.7 29.89
346.8 28.60 416,0 30.78 492.4 3%.19
335.3 27.76 398.4 29.75 466,8 31.90
31642 25.92 386.3 28.13 465,.0 30.61
332.0 27.27 397.3 29.33 467.8 31.55
512.9 25.59 37563 27 .56 443,6 29.71
305.6 25.07 368.2 27.04 436, 2 29.19
330.3 27.06 399,.6 29.24 476.2 31.65
341.8 28.05 411.7 30625 488.1 32665
318.9 26.15 383.0 28.17 453.3 30.39
323.0 26,72 587.8 28.76 461.4 31.08
391.0 52401 470.1 34.51 555.6 37.20
391.2 32,00 h 468.9 34,45 554.1 3713
m 331.4 27.24 397.6 29.32 470.6 31.62
0' 2101 1‘75 l 2407 1086 28.4 1097

VOLUMES COMPUTED FRO:I XKRIGED RESERVOIR TOP
33261 29.43 31.62

27.41 “ 396. 2

465.7 l

-TABLE I~
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In this case, we can note that the estimates of rock and
0il volumes based on the kriged reservoir top are quite compara-
ble to those given by the averages of the simulations. However,
‘there is no guarantee that it should always be so.

From the figures on Table I we can build histograms and ex-
pectation curves of the oil reserves under the 3 hypotheses of
water levels (Table II).

It turns out that for a fixed water level the distribution
of reserves 1is not very dispersed : the coefficient of varistion
% is of the order of 6 % while the maximum observed variation
(i.e. maximum minus minimum) represents 30% of the reserves. In
other words, in this case and for a given water level, the uncer-—
tainty or the depth of the reservoir top does not have a large
influence on the reserves estimate. This is due to the unusually
large amourt of wells. When the water level varies from 1640 m to
1620 m the rock volume decreases by %0, or so but fortunately,
due to the low porosity of layer 7, the reserves only vary by about
14%. Of course the uncertainty on th. water level must be combined
to that of the reservoir top. To do this it suffices to cut the
top by several water levels and pool the histograms thus obtained.

CONCLUSIONS.

This deliberately simplified case study has shown how we
can proceed to find a probability distribution of the hydrocarbon
reserves in place. Naturally these reserves are purely static
ones. The evaluation of the recoverable reserves would involve
the hydro-dynamic characteristics of the reservoir as well as
the technology applied for production. This is a different pro-
blem and we do not touch it. The sole objective of geostatisti-
cal estimation of hydrocarbon reserves is to tell with the ut-
most possible accuracy how much there is down there in the field.
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WATER LEVEL 1620m

WATER LEVEL 1630m

P(reservesy x)

WATER LEVEL 1640m

105m°

Lol
HISTOGRAM AND EXPECTATION CURVES OF OIL IN PLACE VOLUMES



3

K}

- VI-11 -

e COTES DU TOIT e
ttﬂt,t"tttl."ni‘i'i!t.t.t"'.lla"n.ﬁ'.l'at'.ti'.ﬁtt.Q'!tt.vlﬁ'tt"Q'tlﬁi'ﬁ."’!..'ttillti‘..t.itn.tl
- ) L ]
» -
oA »
» B »
- -
- ] -
L ] -
- *
- s 4 -
* . -
- -
* 3 [ é .
* 1 ] 6 66 A -
- s 3 -
- 3 7 E -
3 7 -3 -
- [ ] 'Y
* 6 5 8 *
* 8 3 . v -
* 8 8 »
° i 7 8 ] 76 .
* 14 I3 -
® H >
* H 14 8 7 .
» *.
* 3 6 [ a
* 8 a 7 1
- - 7 6 6 L]
- 8 N ] -
. 8 7 7 H] 2
v 4 -
hd [ 7 ? .
* A Tv -
2 k4 &
- 7 7 6 6 »
- -
* * g 4 *
* s -«
a 2 o
» 3 . -
- -
E ]
L ] -
'S 2 a
[ 5 e
- o
« 3 o
* -
° 1 -
« L]
- *
< -
] »
L4 -
.I"."‘lt'..’.!‘.t.Q"‘Q"'t"i'l'ﬁfl.t't".'.ﬂ.-t..'i‘"ll'.Q.‘Qi'.tﬁﬂ..Q"'ii.."..'.‘l.".'...0'..".

101  CARACTERES/LIGNE 54 LIGNES

X HCRIZCNTAL VARIE CE SAUCHE A DRCITE.ENTRE 5701 05 €T «6179¢ 05 ECH 1 47,82 UNITES/CARACTERE
Y VERTICAL VARIE DE BAS &N HaUT JENTRE .255E £§ EY L2980 0S5 ECH 1 79.49 URITES/LIGHE
PCUR LES 84 VALEURS PRESENTES pANS LE OCHAINE CONSIDEREs IL Y A 84 POINTS REPRESENTATIES DISTINCTS

1 MEPRAESENTE LES VALFURS COVPRISES ENTRE -1790, ET =1675,

2 REPRESENTE LES VALEUYRS CC”FRISES ENTRE ~1575. ET -165¢,

3 REPRESENTE (ES VALEURS COMPRISES ENTPE -1550, 3 -1625,

&4 REPRESENTE LE5 VALEURS (CVUPPISES ENTRE -1425, ET «1600,

§ REPRESENTE LES VALEUIS CCMPRISFS ENTHE =1450, €T ~1575,

6 REPIESENTE LES VALEURS CCYPRISES ENTRE  =1575, €T -1550,

7 REPRESENTE LES VALEURS £CYPRISES FATRE  ~1550. ET  -1525,

8 REPRESENTZ LES VALEURS CCMPRISES ENTRE ~1525, €7 -1500, . .

9 REPRESENTE LES VALEULRS CCMPRISFS ENTRE -1500. ETY =1475,

4 REPAESENTE TES VALEURS SUFFRIFURES & -1475, aa

A REPRESENTE LES VALEURS CCUPRISES ENTRE  =1725, ET  =17900,

8 REPRZSENYE {5 VALEURS CCYPRISES ENTRE 1732, £Y =4725,

€ REDRESENTE LES VALEURS (CvPRISES EXTRE  =1775. ET  =1750,

0 REPRESENTE LES VALEURS FCMPRISES ENTRE  =1800, ET 4775,

€ REPRESENTE LES VALEURS COYFRISFS ENTRE  ~1825. EY  -1800,

F REPRESENTE (ES VALEURS COMPRISFS ENTRE ~1850. ET «1825,

G REPRESENTE LES VALEURS COMPRISES ENTRE «1875. ET -1850,

H REPRESENTE LES VALEURS CC¥PRISES ENTRE =1900, €T «1875,

4

REPRESENTE LES VALEURS COMPRISES ENTRE «1925, ET -1900,

€COLE DES MINES
DE PARLS

22N
N

£COLE DES MiNES
DE PARLS



- VI-12 -

sluvd 3Q

S3INI $30 31003

§

S3INIR $30 310039

¥Yd 30

B

AV

P LN

e =N LY =INn 0991 =3ININI43Y 30 INDTIUSE 00'02 =S3INYTN0$) §I¢ LNINALNVID

iﬁl!l’c.lcil!l’lliif**%.*iilillIﬁi#illkl*!’l"lli‘Qiiil«Iliiid’lil{itliiiklii’.‘iilil”!lf&ci’!ﬁll1..'1; LEERAXEREERNE Y Y

hh 2313 1R 1 AR AR A RS SR RS AR SRR AN A A YR g YhayYy 5§68 900 JJ)J) ff AuttErtEtretrbrtirstrien
¥ IR S Y R Y A S A X S A AR AR AR A A A AR R R AR AR R L 2 1 Y Y94y 58S 09 Ll PR AEFFEEEL bt bbd bttt ty
» CFEEELESEsFSTEees LEEEEREeLY kA A} §SS 999 Ll B9  LortEeErersdbbeietabby
L EEREEESCLEOSY I 154139 [ 2 23] (44 00 L2 RE  At++esstbesiriirttodn
* £EEREsEErL s eeacdeeeezzazazeeeeae £EELS "%y C6S 99 2Ll RE  Atetrsesretrbibrbie
* CCEEREErS galgreeireidezieeeerazzazzerazzro2eeeadee £LEF % £ 99 Ld 8B Gttterdectristeces
*LETETEEES 2i%2%2¢2e2222222z2222222222222 eeqiereee £EEE %Y §S 999 L) 9B (L4t EEtEbibiiey
PEESETSES z22222222227722222 22222 SET YYY  §E 99 Ul BB f4srretrbrtriscis
rEEEET Zpgeeedeeceeee (A% 2222 £€E 999 66 99 Ul RE  Gbetedriiistiide
fLERE gepgaeezzae bALbbbbbibbbbLibil 2ze LEE  o%% SS9 2l QB A44bretbietren
*LLs 2e2dzrzeeee Vbbb LLLLLLBLLLLLLLLERLLELLLBLL 222 S8 w9y €S 929 4L 88 grreebriitecss
“£g zaeaeaze? PLELLLEELELLLLLLL LhbbLd 228 €5 9% 6§55 99 Ll B sbeririietares
#Ls eezzidne? LEbbibbbititit bLbd 2de £ 9% SS 99 L RB b4t ettestress
L3 geeeeee LhbbbibbbbLie YYUVYYYYYVYYYY Lk 222 ¢ 9% §6 99 Ll B8R b44+ttretsrsrn
*s gzzeeee bLibbobbttbt VYVYVVYYYYY VY Yy UYY LEb 222 6E 99 §S 99 Ul 08 Ab+tttedecesn
» 2z2edee PLLLiLELL \AAAAAAAARA] Yeyyyy L 22 ¢f w% &S 99 li 8R bb*trtetsess
+ de2eeze LLbiibiL YYVYVYYYY yYyvy bbb 22 £ 9% S5 99 Ll QR GGt retriee
L Zezeeee bebitbt YYvyyvyy yvyy bi 22 f§€ %% §S 99 )L RB  bb++etirts
b gezeeee LibbbLt Yyvvyvyy ggaUBELD vYvY bl 22 S8 9% SS 999 Ll 88  Abrsetessn
. Zdeeereee btibit YYYYYYYY FEEEEERRET D] vy Li 2¢ g8 9% sS§ R0 L. RBER  S6tetsers
» 22zeeede 13523} yyvyvvvy g8gggggegang yvy bL 2zzz €% %% 5SS oo_ Lil B8 b66+tedes
» dezazade Litkby yyvyvyvy g4e0tg8898884€88¢9 veyy bLL o 22 £5 2% $S5 99 LL QBB bbetertn
* z2ezeeezee pbil yyyvyy gggydoeasgsdcaag YYv (3% 22 ¢ %7  6SS 99 Le BB  466trt+n
. 2eezzeezee Lk YYyvy 990886878 86088908 VYV BEL 222 €E 99 GS5 999 ULl 8RB a64ttts
» 2222222222 bLLLL wyyyy 89069098008866885988 YV Ll 22 €€ 999 SSS 999  4J 8B  abetes
¢ gagaeerzer LiblL Yyvy 889800908689¢€883 948988 vy bbb 222 €55 w9%  §sS 99 LLL RB8 bbetn
* geezeeieee LBt yvy g8688089888868884 988 L2 2 1 Y T4 5.5 %Y §SS 999 Lil REB 446+
1222222222 bLLLLbid vYy CEEEREERESEEERE- T age  ¥v LbL 22z g£f£¢  4ve §6S 999 Lid R 466
rg2r2ze LLit yVYyy LEEEEEE] 3339 88 v L 20 £f L 241 §S8S6 99¢ 2Ll 88 6e®
»222 Lit wYYYYY g8g8868 733332322 e8 ¥ Li 22 ¢€ff Yo (139 999 Lil ReR 4%
»2 Pl Yyy 5885848 30393929392%2923) 8 ¥ L 22 [ 3% A A 331 299 XY [-3:3} s
A LbLy vyvy ¢9gB3se9d 332322333225%23 3y 8 ¥ ) 22 FEE 997y §966 999 2L pgg =
» Ll vy f8ea 93332992 23 8 v bbb 22 (334 Yy 588§ 9999 idl g8 =
* LLLL LA T:] 392392320 23332339 38 v 1 o222 LS FR 244 86SS 9999 Ll :3:Rd
= Lkt wvYy dg 339223333223392732002 Qagugad 33 8 v L 22 [ 43 4% 1999 €558 099 IX 73 R
Ll vYY 848 35233233333323339M32 4Q004aqQ9Qaad 30 8 Y.l 222 SELF . 9%y (13 -1 d1e *
BLLLEY vyyv agn 32309330232229232% 4404Q904dQad0 29 8 v Lb o gae £EES Y9909 €SS 99° Lid ¢
*LiLbi (A4} 9688 3332223230332 0400340y eado J) 88 vv L4 2222 £5efFEL 2499 S¢S 999 Lide
*LiLbt LA 284888 3323330 4300300040000 33 93 v¢v¥ L 22222 SEEES Yoy 458 999 Pyl
LA YRS YYyY EERE 3332233 ¢400000Q39044¢ 332 88 vy LELL 22222 $EEE %9y 6C§ 999 ®
oLl vy oy gupeg 3333 agoqQqaeqQugaqQa 32 g8 yvy LiLLt ez [ 2 vy <s 9R9 =
*“ Lkl vYY¥vy gegesg 933333 4330000030 00Q 3N ae Yvyy EbbbLLL 222 ¢8 4% 41 999 =
» [ 297 YYyyyY aegegs 9333 0Q4¢QqaqQuaaadad 333 888 YYYYYYVYYYYY b 22 g% 9 §S§ 99
» LibbL Ywyyy €883 23230 404092003 dQaaag 33 k] yyv Lb 22 g5 99y (111 ge
» LbLti yyYvYy gegd 33323 404duuagaaadagada kR ] gggg8nagEannaeanane v Ll 22 ¢f 9% (X4 L
22 tLLit vyvyy ge8s 33333 08000000003¢Q0ad09 2 ggeadsd g9 v b 22 €€ o7y €865 =
42222 tLlblbl YVvY g9¢® 23332 006000Q3040000040UQQQ 239 g8 v L 22 ¢¢ 99 (13
2222 Libl Yyvy ga88 33232 2@000099900QQedagad 3333 3232232 g8 v v 2¢ £< LAAA <
* zeed Ltk yyvy LR 3NN ¢ga0434aaaguagaaada 33332233233 23 8g v L 22 (43 y94Yy =
*£ (3444 bLit yyvy £88 3339 400040604000 0Q0QQ 333323223335232) 88 ¥V b 222 FEEE 299% »
1339 2232 Lib vy 888 2320 ggaaqaaaadag 3N 3339333 g8 v Ll pezz (X427 249
* e5C 2eee tLbl yyy 889 3323333393930 qaaadaaq 333 33203 a8 vv il 222 [ 3139 e
* (%% zece Lid Yy gg98 2339323323232 aQa 3223923330 g88 Vv i 44 £9LE L]
hy 113 2222 Lit vyv gade 3323300) 33233333390 CER I A (3% 2222 (23 W
suuey £eC ?z22 Ll yyvy 6984984 32302 33329 488 1yvy Ll 2228 (3414
R b9y cof 222l bib yyvy 8399888998098 333239 32233 gd8 Yvvv bLbi 2222 [
.S Y997 [ %Y zzze Lil yvyvy ggagegnResy 3333339333333233232920 ge8 vyvy Lhby 222 L3
*583 929 [ X3 e2ed b yyvyvy gad6ea 3333337339223 g84 vyYvy Lblibt 222 s
* 6¢5¢ Y99y £58e eezz LibtL YYvYyvy 4608¢ 2332393922303 a8 yyvvyy CLLbLEY 222 =a
s €68S 2449 I3 %% 222 Lubbi yYyvyvy ggedd 3332 EEL] YYvyy tLibLl 222 a
99 §68§ v % X4 %Y 2222 LLibL vyvyyy 998888 TET:] yvYy (S99 211 eZ22s
* 999 685 huwy LEig g2zt Litil yyyyv 698684R0 99494 yyvYy sbbLibLE 2222
» €09 668§ LLAA) [543 2222 LLitl Yyyyy 980488986830986088488 yyYvy bELLLBLLL 222%»
2 9999 65SS 2999 £gse ez bbbl yyvyy ggdd YYYY bbLBLLLLLL 222+
*Ldd Y999 §86S 9949 £LFE 22222 Libbd VYYYYYYY YYVVYYY bLbLbbbLbLLL 222
AP Y'Y 9999 (3441 2999 £€5E zreze bLbbl VYYYYYYYYYVYYYYYYY 11311311313 3% 2222
w yys 999 (3341 2y Yy $EEEE ceee bLbbib blbbbibLLibltLty 2iele
LR L)l 999 1141 9Y9Y [ 3338y zeaze bELbLELLELL LhbbbbbbbbbbbbbbLbe 22222a
. 898 Lbd 9909 566§ h999Y SEEELE 22eeee bibbbbbbbibibtbnbLbbbil 22zi2es
566 RRE Ll 9999 13331 L2240 LEESLE gaezeee 2eqTe2ze

A L Ry Y Y Yy Yy Yy R Yy Yy Py Py Y Y Y Y Y YNy Yy Y Yy Y] JRIBBRBLAPENNLBRB0PIL8DDEY

39vasind ¥yd NOTLYWELSE



e Siyvd 30
$3IN §3Q 37003

- VI-13 -

$iyve 30
S3NN §30 37003

Vi

. vy e e ViU LN A R IR VRN ANRTE N AU VO Vv sSANYTITOSE S0 fMJRALNYIS

...-cCuiccc1.;;-«4);«0;1««:5#.;74"cuccﬂccitiﬂv;ﬁaxcc¢¢sic¢....aiq.-¢¢1ol:acact;c;c«i«i;i‘ao.iic;.icc:ﬁ«««c*;40._:..;«..’.-;;'-!

Y] 939 §6¢64¢ b AAARAAA L] \AAAAA 0] GGGLS 9999 14l PR3 YA IETRE T FY YRR R Sy o
. 9699 5698 7909999y gEREEEes LAAA 224 688§ 999 Lil B9 YR LR T
> 999 $658 (A4 L] CEELCEEECREReEsreiaarees yoavy 1113 090909  JLd RB  LLLEEttrEebbtitsbbssy
299 1111 29944y FEELITERES £eEfiELe oYYy SS6S 9a¢ LIl BRE  RLbtervtidtrivterin
» 36¢ 9% TrELESTrEE Zealzraee [ 3324 (22224 §6S5 999 Lil  HRF L4t EArIEttrsbecty
L2 44 29999 FEFEEEEELe 2222¢222722222222 £EEEEE AR L6 009 [ 33 e LY SRR L LR L LI
56 2999 fEFesses 2rdzaeee eeeee FELkLS 7199 131 999 i B2 fattEtresrieey
. ka4 Liges zzézeeerre L zeiele $EEERE kA2 4 ] 6es 999 LIl g% G+t renbrben
LR X T £LERE d222zgeezazzazdzee vbbLlby 222ee2 CEsEEs 21X €6s 99 . iL /B GAhTrEIteesn
24y £L5s 2222iegieeezezazaeree BLELLLLLLE gedeeeee [ 31437 why [11 999 LilL g% 66+ttt étn
*%79 g£ge 22277p2222722222222222 LEbLLLALLL 222222 £5ES a9y 568 99 Li BRE ALt teven
Y Ley 43444 22222 LELebiLL Zrzedzaeaae £5EE b4y 1] 999 L2 BR  s4+teten
A S % 227 ti erpzzzeaze [334% "t S8 G99 1)L 88 4g6teen
* 5t [44 tbLib Q22282 SEE bAA €SS 99 L 88 134
LIS L 222 LhLbiibLl g222  gggf LA 2 2 141 99 AL RBE®  46=
k4117 222 bh bLibbtt 222 FEEE (24} 1] 999 L2 RE  &»
33 2eie LbbELtiLitLy 121332337133 253233711% 7ee f£ELT k23] SES 999 -JlL 88 =
*g 222z LbLbbbbbiiLs LELLELLLLERLLLLbL LR ez SEER b A4S CSS 999 liL 8 =
* 22282 Libbbbibibii BLVSub bbbl vobbl bLbLE 2222 (4594 hhy S8S 909 LML g8
. ee2d LLBBLLLELLLLLY PLEBLBLLRLLRbLLLbLLLLL 2222 £8€ 99y (317 99 FY S 12
. 22222 LRbbbLLLLLELLLL PLELBLLLLELELLEELELLDLL 2zz22 £8¢€ 799 (131 99 L o»
» 22222 bbLbbbiibiieit ARRLELLLLELLLLLELELBL 2224 [ 431 Lah | [$31 99 2L
* 22222 LbbiibiptitLLel LLLLLLBLLbLbLLELELLL 22222 £EES ey €8s 99 24®
¥ 22222 sbbbibbbbtbLLiibl LLbBLLLLLLLbbLLLLLY 22reee [ 3% 2eeh (137 99 in
»z2222 pLbbittbbbbeiiiitd PLELLbLLLR bbb LbtLbLL [X2 3224 CELLS LA AA 58 09 hd
sge22 bLbbLLLLLbbLLLbLLLLLLLELL LLLELBbLELLbLLL bbb LELELLL azzeaze £ELES 29 (431 999 *
+222 bLbbitbitibb bbbttt bb bt PRLBALLLE LR bbb bbb bLbLbbLbLbLL 2z_22eze [ 1 %%Y (12 <Sss 959#
»22 BELLEb bbb bbb bbb bbb bbb bbb bbb bbb bbb bbb bbbt bbb bbb bbb bbb bbbbbbbbbLbbL ee2a2ee €RLLe any 1131 99=
22 N N YR R R N N N N NN paeeeee £EEEE "oy (11 9»
*2 LELLLLLLLLLR bbb bbb bbb i b bbb bbb bbb bbb bbb bbb L bbbt LbLbLbbbbil eeeeeede £egg kAAA cs¢ »
*2 bhbLbbibbLbibbbbibiLiy LUBLLBELER bbb bbb bbb bbbl b bbb bbb LbLLY gazzeeee (434 2997 . 66§ w
» LRLLLLLLLLLLLbLELLbEELLL LRLLLLELLLL L bbb bbb bbb bbb bbbl LbLLLLY zeaeieee nELE LLAA ] [$13%d
» PELLBLLLbLLLLRLLLbLLLLLLL (593 LALELLBLEL LA LLLLEL L b bLbLLE za2222e $LEEC hey (444
e bhbibiibbibtet tLbbbbbbLbbbbLL LAbbbbbbbbbbbbibbbbbbbtbbLbbbbLL gaezede £8eg 194 Se
s bbb bbibbibbbl LibLLbLLbLibbLL VLLELLELLLLR bbb b bbb bbbl bbb bbbl 22222 gEES 7%y L)
- BALLALELbLEELY BB LLLLE bbb bbb bbb bbb bbb bbb bbb bbb bbb bbb bbb bbbl bLbbbbl  BELL eeeée £EEES why w
L BRbbrbbbbatibl bibbielt 322320 1A Ny e g N Ny S I T A T I Y T T YY) zeeeed [ X131 ey »
* BRbLLbbbbLbeLbbbLiiid BAL R bbb bbb bbb b bbb bbb bbb bbb bbb bbb bbb bbbl bbb bbbt b zecie geL L kA2 Ad
hd LRbELLLBRLLLLLLLLLLL PELBLLLLLALL R LR LR bbb bbb bbb b bbb bbb bbb bbb bb bbb bl geezee £EEs LI
“Li BLEbLLLbLLLLLLLLLLL BABLLLLLLLLLLLEL L bbb bbb bbb bbb bbb bbb bbb b bbb bLLbbLbLY 22zeae fEE L
il LLLbLLbLLLLLEbLLbLY PLALLALLLOLL Vbbb bbb bbb bbbt bbb bbb bbb bbb bbb bbb bbb bbLLEL gaezd? LA %Y ]
Ly LhbbbLL bbbl PLEBELLLLELLLLL LELLBR LB LV L L bbb bbb bbb bbb bbbt bbbbblL 22l £EEE »
L33 (3221535131311 13 1Y LLLLLLLLLELLLLL 2311 I I A A I I T T T T Y A R A A S A gzeee CEERe
* LEbLLLbLbetbbiLLLLL bhLLbLbbibibbtLe BRBALLLLLLUL bbb L bbb bbb bbb bbb bbb bbbblLLE 2222 £CE»
» beLtLLbbbbbbLbbLLLY LELELLLLLLLLL bR bbb bbb bbb bbb bbb bbb bbb bbb bbb bbb bbbl LLELLELLY 2222 [ 2]
» bLetibbbbbbibbitLbbbl PELLELLLLL bbb b bbb bR bbb bbb bbb bbb bbb bbb LLELLELLLE LEbbbLLLLEL 222 e
» LLbbLbbiLbLtiiibl BALLLLLLLLLLLEL bbb bbb bbb bbb bbb bbbbbbbbbibbtbLLLl PRELROLLLLLLL 222 'y
» LEbLiLLLL BLLLBLBLLELLLb bbb bbLLLt CELELLLLBbLLLR b ELE bbb bbb E  BLLbLRLLELLLY 22l .
. bbbttt PALLLLLLLLLLLLLLLLLLL VEbbbbbb bbbttt bbb bibbiL bLLLELLLLS 22 =
* PLELLLLLLL PLOBLLLLLLLLbLELELLLE BORLLELBLLLABLLLL L LL bbb bbb LLLLLLLLY 222 =
* LLLELLLLLELL 133321131112 211337) BLLELLLLBLLLEL L L L L L bbb bbb bbb bbb Lt 2222 =
. LLLLLLLELLL Phbbbb bbb beb bbb bibt bLELLLLLLLLLLAL Phbbbibbbititibbiie el &
.l LOBLLALLb bbb bbb bbbt ib bbb bbbt bbbl bl LLLBLLLL bhbLLLL bbb bbLbbbLbbLLbbLLL 2222e-
137913 [ N R N N N N AR SRR CLBLLLLLBLLBLLLLLLELELLLLLY 222
il R N N N N N s A NSNS AR PLLLLLLLebbbLLBbLbLLLLLLLL 222+
Lt [ R e N N N A RS LOLLLVELbLLLbLLLEbLbLLbLLLY 222
*LitL PRbbibtiiubbbbibibibily LAbbbbbLLbbbbLbLLLL  LLELLL ELLLEbBbL bbbl btbbtbbbLbLL 2e»
“Li Vbbb LLLLELLLLELELL LacbibibbiibiiLe LhiLtli ABLLERLOLLLLLLLLLLELLbLLLALY [4)
. BEbbbbbbtbbbbbbibiLLe bEBLELLLLLLLE LEbbitetbl CLLEEELLLLLLLLLLBLLLLLLLLLLL) 2e
. bEbbbbbbLbLtbbLb ALLBLLLLLELLLLb bbb bbb bbb bbbttt bbb bbbt bbbbbbbbthbLbtbbbibly 2
* LLLLLLELL CLLLLEREb bbb bbb bbb bbb bibbLbbbibbbbbbibbL LLLbLLbLL Y
. LELEOL bbb bbb b b bbb bbb bbbl b bLbabLbbLL L)
*222 : LEbbbbebbbbbbbbLLbbbbbbbbbbLLEbtLiLLLt .
*2c22? bhibb  bRLLLLLLLLLLLELLLLL ®
#22222 LERLLLLLLVLELLELbLLEbLLLL »
» 22872 bLit g2rzeeeere Bbbbbbbibbbbbbibbbbbbin 22 L
s gz2ee brLttd 2gezreazeaiezee PRLBLRRLRRLLLELLLLRLL geeeeeeneedeee »
4 c222 Lebibibl ged2ezeeeeeaee ERRLOLLLELLLLLLLLE LG grg2zeeearzerzee bble
* 222? LibLiite 2errererazeedeee bR bb bbb bbLLLbLVLLLLL 2zedeeeearazezeaezese bbbin
LY gzl bEbLLLEL 2ez2eeeeeraeeeeaee Bbbbabbbibbl bbb geegreraderecaraazarezey bbb »

'lﬁiﬁlilililil.C!C’IIC!&.’ICC!C'C'I&C.CCC!ﬂlillllllilllﬂﬂiiiliﬂii‘.i.illllil,llil.illlC!llCIC"C”"Ii"!.’lll!l’.l””

. NOILVHTLS3, 0 3dAL~LYUYIZ



- VI-14 -

o

Styvd

H3INIA §30 310037

Siuvd
S3INIA $30 31003

M«Amw

3G

By

2

L 4

R L R T e R R Ry R Y Yy Y Y Y Y Y Y P T Ty Py

I3
2
LLLd)
221kl
¥y} S
Y3 665666686
L1l <S¢
P2 §¢¢ [ RS 4
Py (44 CEETLECE
13 £EEEETES
D PV A 4 $EEY §
LY 119
Lii <GS
2) 88§
L2 6566866
PR YN §6668¢
2Ll
142 S
Ld S
22 1]
2Ll <
ZxY¥3
Lidle
22LLL
22482
L2¢
42

R R S B N A S I B N I I I BRI I A R IR R A I IR I B IR I RN I I B IR SR N 5 S U IR I A N N N B UK TR IR I IR
~
~

LR XY Y Yy Y Yy Y Y Y Y Yy Yy R PR N Y R Y R R Y R A A P L e Ry S R P L Y PP YRy OYY Y

b - "a

LiLdlile ,
QLLLLLILLLLLL
QLLLLLL LLiLlill
QLLLLLL4LLL)  JLidiilld

AdLliLiiedd L)) LLLble L
204202082002 . 1iLLL
L11? S Led

L2 585668 §8S68SS  L2lL
Ll §SSSSSSEEG $S 1) l24L
Lid §488¢ §SS adddl

Lilll 54 §66§ LiLd
Ll PRV 31 §§¢ LLLLLLL
LiLlide [y ¥ X2 SS S§  LiLlLiiill
dele L L2 SS SS LLLLLLLLLLLEL
LLLLL il LLL 85§ §S  2llllLlilidy
22 LL Ll §665688% L3 LLLLLLLLL
L S§6SSSS 2227 §66565646¢8 sS PXYRINA
§865686¢S 1111333311 §S Py Y
33339 $6GGSES6SGGASSS £EeLE [$1 L4
S688 £ELEERCRLE [S 'Y
< £ FEEESSEREEROESTE ¢ 4L
CEEFEEOECEERE §85. S 4
FEELEEREEE ££¢¢  LLEL S ¢
FeERLECREces LLLbiit €8 3
FYEEEREEn et LLbtL bebLllbi £ ¢ 22
FLeEEEereisy LLLbt Lebitl £ S &L
FEEREEECEC LibLi LLLLE €% 6§ 4442
FETLLE i LLLLL LLLLL €5 §¢ 424
234 %3 bbbttt LibiL £8 5§ 224
I3 4 bbbt 13333 £f < 224
ss (231 VLELLLL bLibi $RE & 2448008200000
11119 €5 bLibl tLiil £58 & LA L
3 £f bbbbbtL Lt £ S§ §6466¢6¢ LiLd
S$ (133 LhLbiLdl bbt £ §5566856¢ §66¢8 UL
SS £ELEL Lit bl bl §f  <ggSs £R5EE S Ld
S £58¢€ bbb (2112233 [ %3 S wfferress S 42
(439 CEEEEE bibl Lbbblbibg £€ (X323 LERE 6 L2
(431 SECELRLE Lhib bRbELELLLLL £€E £% £EE 66 4
(331 £EE5EES bbbl LbLERLLLELLLL fEEE €5 £ES  S¢ X4
1313 £98€ LLbbLbbbbbbibLy £L5 8 S$EE £E8F  §C 2L
L0 4SS £E8¢E LLbbLbLL £€€ rEEFEE S 22
ALl S6§ fEEseaEse ££8 CEERLE s L2
PYTRYS §S§§ £IVE £9F CEREEREEE & 42
LeLd  SS 113113111 1341 Lit SEEEEEYEENEFES & 4L
Lid 666665648 §s¢ £ig 8 teregegees LY
Lild 14 6§ it EELEEEEEIES 668 Ld
LidiL Lildl sS§  Eg% £EEELE  £EEE GG 2 Ll

2220020004080 S8 SUFELEEEELEREE £€¢  ¢§ Llillid

22220 LedL §6S SEECREREEELeEr e LLL220L4
20204 885§ f£e882E  SK XY XYY Y]
LLle §66SSS SS Lild y3
20448 1131311 §86 - LLQALL
LLdd §6686546SS L1
Yy Yy s IRy
L2222L20020480100
4L

099L N¥3.0 NVYId 9L ON ITIIRNOTLIONOGD NOILYINWIS

N FLUNE LY LY R nadaw .SAMGABAART AR SHNAN I MMAS

- LY. P} -

38 BL 8 FEEBEETE DR S IR EE RS RD BB E BRI EFED S A BTSSP RS ESBE R EEY A E R RBAEAE

o
o




Siuvd 30
SSNIN S3C 37003

//M\
r@ ¥

- VI=15 -

- Slgvd 30
S3NIN $3C 37003

/m.

LT T TS R e P S T S S T P Y T S R VY RN Y Py Y P RS R L R Y T R R S R A P R R R R A R AR A AT N

cv.c'c::.cacc-caac:ti-cccacanaaca:c-«afcctaa-c-aca-:fcacccacccccia;acg;a«c;;ac;ccac-c;;¢4«a¢*c«;;acc::;-ccc¢-¢c+aac

L

&

»

*

L

+

L

L3

.

8

-

.

- LI N2

» I ] *ta s

he ) .8

- Benn L N ) -

» LN} m (R

. ® 65666 668855 °

- ' 655556666 S5 *°

» oo $85¢ gsg

. ¢ og6g 56¢ b

. LR 14 g5

S e mm mm [ R}

» ve < sg

B ae L] LY mmm mm Rl

» . N 1 21141 g5 e

- "t $6S665 "t ® 666655666 [

» * 65566666 §6666646 s¢  *

* setcerees CCCE GGEGEE465646566 £EE8E s °

. .. 56666 fLEfEeEEEs e *

» *t o €6566566¢5 g EESERTEEErECEnss ¢ °

» 11 SEEFSSEESECEsE §ES § °

» * ggg  £fff f£eeeeeeess £Ese LiLL [

. * ge¢  CETEESEECCREEEEeEssE LLLbbLL ges °

. ' g6  SEETEELESESRECEfEEsE LLbLL bubbbbl g€ ¢ °*

. LY+ EEFS TELELECEEsEsS bbbl Lbbbbe g€ g °

* ** oggg SEEEEEESES biLtl Lhivlk €€ 5 °

b ' ¢gs FLEEEs Lkt Lbbit €5 sg °

¢ * 65§ FEELe Poopbitibr bbLEE £E 66 °

* *§6555586¢ £5EEE LLbLbt N

. o ¥ 111111 $€€  LLLLLLL LLbbkL  €E5 g v meececvecns

. o €geg §¢  bLLLL LLbbt sfg 0§+ ! o8

» ae g55¢ €€ bLbbLLL Lhi €5 €¢ §56654¢ .
s e €8¢ £5€  bLLLbibL Lik £€  §5$5686¢ 56666
* . $6s5  £E5CE bil ek bbb g5 ¢38S¢ SRESE
- o 1 £5E€ bbb LhbbbbbLL gg § SEFSEFRER
» teees  cgg  SEREEE Ll LEbbbLbbL €5 £5¢ £E8S
. 5° g6E EECEESEE  Llbl bhbbbbbbbbL SE€ £5 £5§
- se8 ¢G5 EEETEES  LbbL bRLELLLLLLLLL L8y 43 £55 S
. LA 141 £5E€ Lbbtbebbibblie FE€T §LE §REE  SS
- L7314 431 LLbbibLL £ik £EESEE €S
® seees cog CEEEsEses £ig SEERER s
. *t gg¢ £€58 5Cf EEEESFEEC S
+ °gs §55666s  LE€ L CEEECLEEREEFES S
s . 568685558 §6¢ g8 L CEELELEEsS $5
. ¢ ** g5 fff LEELEEFRELS &S

» (AN L S T ¥ £ CEEELE FEEE g ¢ 0
» setse *5 G CERCESSECCELEE £EE gg  eec?
» LA 1 £EREEEREeElss geg 't
» 111 £REEEE S§ e
. 1111 §g ereee
» "t 666665 S §6g 4

* e $555668¢ . *

» sataddbacad (RN ]

» doaety

»

Y

L]

£

»

N
-

o 2 s

S
<

ae

> > 0 8 a

(X}
R}

0294 AY¥3.0 NVId 9b  ON IVTINNOTAZANCD NOILYTINAILS

Y3 Ea - fan..t L mAgmut ANy TA tunstan? Andnm

P ATy

LYY

avn

(L T ER T

L N RN R RN R RN PR ENYEREREENREINI ARSI I I IR IR R

L
[}
)
3
L 4
Ly

i



Sisvd 30
$3MA. $3G 31003

omM\

r@«

- VI-16 -

Siivd 30
S$3HIK $30 31003

RN
iy

LR R R N e Ny Y Ny A Y Y PR Y Y Y PR T NPT TR R TV RY R IR WU R W GAprgapng g o

.

®
. ¢
i -
» ]
* s
. ¥
* »
» 4
hd a
hd -
hd ¥
* : L]
» '
* LLLLLLLL020428L02208L828 »
® Leirrrddld L0404 3
s L2448 Lle 5668565568 Ll )
* Liillll 4L §666S 6588 LiLe [
» 2200801420 Ll 656 1] Ll L}
* LAL2LLLLLLLLLL  LL1 S8 £E68 S LLLiLdd »
® LILLLLLILELLLLLL S¢S (347 (319 Lielll »
¥ QLL8L2420LLLLL 6 eff (33 IZY TR ¥
. LALL20LLLLLLLL §S % §§SS 242822 )
* LALLELLILLLLLLLL §s 13471 Lidd L
» ¥y LLLiliid gss 1343 LLLe »
» L8 2LLiLie §§6§ §85% il »
¢ L2 LhLd 113311 3111 244 »
* LdLe 4311 (341 Le L}
* 2iLL §68¢6 $66¢ S 24 L
M 2020200 §6ESSERE56666566566¢ greeeee S AL )
» L)dre 131 1 CEESESELEETE ¢S 44 L
® . ¥ §55649  §S¢ £EEEEE  gegy REE 68 24 ®
- V1L €GEESHSECEGES FERSRICEREESS £€ee 6 ¢ ®
® L S6S  §56¢ SEEELE Ll £REE € 22 »
¢ 4L S S < £L8E LLbtL SLECEES L4 L
e LL S € £E58E LLLbEL e8¢ S 22 D
. LG FELRELLENES fEELTE bbbbbE  EEE g¢ 22 ®
* LS SEFSFENFLEFEEaaEeaanese bbbkl €€ sg  4d ®
® Ll SS CEEFFErErEensees bLLLLLLLLY €8 g5 22 ®
" ¥} S§CSES CFESEQECERERLeLL bl Liy €€ 68 & [
M PXX] (313N fFSCEEERaresaess Lt bboogEg [Py Y] [N
M LLlLLdL 66668 FEEEEEELeS Liltl bbbl £5¢€ €S Ll »
* 2200227002 §6566¢ FELELELS bEbbLLLULEbLLL |32 5 SN TP »
s 1Ll S6S ¢ fLEECET LLbbbibbbtibl . $£5 SS 22l 141000ie @
» 2hL 113 FEEEEEE LELLLLLLLEL £E §S Ll Lid %
* ryy; S6¢¢ £LELECE Lebbtibbll 113 €2 §§S SCCESe6888 L ®
® YY1 1 EEECCELES bLLLBLLLLBELLLLLLLL € 6685666 S Ll )
® 4o SS6S £EECECES LLbbbbbbbbbbibbbL g€ EECE [y -
. L4 SSS FELEES LEbbbbblt  bLbbL g% £€ FESEFEE 6C 4 )
> 24 §6SSS £es €&e LLLibbbi bb SECEECEREEEENREET € ¢ &4 [
® PY Y] (3434 £€¢ £EELE bbb Ll CELETECEEEEECCEErs § 42 )
* (X% G6S CEEEEEfESIEsaeEnEstEe Lhbbb LLEL EEECLEEREECESSS §§ 24 »
® [¥?) SS FRELECLEELEEEAREL SLCEE Lhebl Ll fege  f£EESS SS§ L4 ) .
* de SSS RELEESESNSEFTEREELErFEEsyE bLebbil EFEEEREES §88S8S 1l »
® L)L SSS CESRC 1341 biti EEERERS §668S8  Lid 2
* L2 131111 £5f £¢ LLLEE  G¢ Ll »
°® Lddd 656668688 §566565  ¢& £EER §S¢S Yy} *
* LiLllld 1111111111 ¢ £S% TEEES SSS  Lddd #
* 24LLL §66SS 5§ LEECRELLELRESHE (39 ¥] »
g 202020002 L2dlil 68 TETEELLECERES [ I3y )
* JALEIL2IILLLL  SS S5ESEEEE LA P 2
» Ll s € £f S566¢ L e
® Ll g8 fEEREC (3331 (Y] .
- L& FETEE  §S¢ Y3 s
® Lé §S S§ d22ZLd4) »
* L S665ESS LiLid -
v . IYyy! Lidd »
M LiddleLidl [
» Lid )
L 3
b .
AL IRy R Yy Ry Y Yy Y R R A R Ry R AR YR Y LY FYY ) ARBOBU R AN AT AR R PR A AR ARRDIBNNRN NS E P PP IR BB LNLT R

0%9L NVY3.Q NYIJ 6 ON 3FVINNOTLIANOD “LOTLYIANIS

. AN 1 -0 damus MAGRMUN LML TA At AR? Antbne wmwBRAMAR? AT L 8MLIN Y AN

10

Fi



- VI-17 -

Siuvd 30
ZINIA $39 31693

N2

Siyvd 0
S3INIM S30 31003

EX
oqu\
4 Y 2

&

.

L)

»

L

»

»

L]

»

L 2

-

L

» i
. Lidd
* LALiddliidlinl
. LL2200020L08L

. LLLlle

» 2Ll §665658
® LhiLbd $68§5¢ 58S
» 22040202200 111113 111
» 148202018 44311 443
. yyy) 11311 §5¢
* L2 §545¢ 566
. I¥¥Y) 655566 113
. LLLd §866555556559468 §5¢
- Lidl §5653655666555566%§ 13

» L2 §66555956565566666665 6§56

* L) SSSSEES $66664¢ S 1

* LI2FrLeIdll 22y SS%% S 11
* & LLL2) §SS§ ££8 ¢S
v Ld 68656 $6¢ FEESSE SECERELECEET €
LA LIl §56  €5§66%<q CECEEEECEIraseEsErEeEeEress ¢
* Lrr ss €€ §EEFEEFEESS §5¢ £ 5
* ’y) § fERgEsss §E55E £ €
* LiL ¢§ SESESETEEE £55E8 58
¥ il €f  SESESEEETIfERELSEsCE €8 ¢
. 2Ll §SC SESFSEESECETREEESES b €LEEEET ¢
* LLEL) §S6C LELETESELLESENSE bLLbbbLl £E58

» did S  CEEFECESEREEsEs LLLLLLLLBLE 5€

- edd ss F§EECESS €888 SLetibib vbbLb [ 9
® Ll 6685  £55¢  SEECE LALLLLLLLLLBLLLLE £cg
. LiL 111 gEEse BALLLLLLLLLLLLELLE £58
- Py 13195 seess LhbbbbbbbbbibiLbibl 419
. 124202 §656 £€8¢ LLLBLLLLELBLLLBLLY 5
" LLliLLL $S566 313 LELLELLLELbLbLLEL

. Lilt  §S§SS £5E LLLLLbbbbLbibbLbi

* 144 §58%S £585% LhbbL bLLbLL

* /il S5§5556S  fEEfE bLbL LbbbbLS
* 4L §865655S SEEFENESE Vel bbbbbbLL
» Le2  §GEEQESS ETCEELEECEgEE PLbbbbLEbLLLL
- Ledd 5§65 CEEEELESEEsEE LbbbbbLLbLe
. 1222222 §6s  sEggE £5€

s 2222208 65§ & £5¢

® 104l $SS 65666665 SEL

» Yy 1131111111 § SEF€

» Ll 2iiL  §S fyESIE

® L2000 L2IL2IBLLL S8 £E8E8¢
* Ldddl r €SS §5¢
. 7i4 SesS

. 1Ll gs6sS

. ¥y 5§

- 212 566
* LLLl 131
. 1LLLdd S
- LieLil

5 YN
B

e

L3

L ]

L]

099L N¥3,0 NVId

[ PYTY - - famas S MALT W iwn AR Hano

Ld
2L
2iddd
eld
Lid
Lad
Ll
Lie
L
Py
Lid
I¥¥3
LiL
242
Le
14
2L
Ll
Li
P
i
LL
L
i
LLe
¢ 2L
& 1L
[$ Y
sS 24e
S8S  L2Ld
£ 86§ 2L
€€ §§§ LEd2AL LLL
§5€ Ss¢ §4RE8SS 4
1333 533111111 SS AL
geee Ss 24
SERLEELEEEESCRELE ¢ 4
L FEELEERE 588 S Ll
i LEEEEREL €£REE  §S 22
k LELECFLLETNES 8§58 24
£  LLLERSS §S 4 .
CEERCEELEES §65 244
CEEELESS $6§8 LLL
3% 313 (4531 L4L
ELEEEs §6S58S ALl
£8E £ELELES S¢S L2442
FESSERCECELTSS S§¢ LL22
LIETERLELE §58 FIX Y
£LE58 131 YV ¥}
13 §6558556668 222
413111111 Lid
66 §5659656§ Ll
$65656¢6S M YYIXY)
[IYRRNRY)
2000000400002

LY Y Yy T Y Y TP T Py T Ry T T Y P Y RN R LR Ry Y Ty Y Yy ey Ry Yy Y Y P TP Y YUY Yy Yy

L ON ITINNOXLIANND KOXAVINKIS

-~nw natne “~AMALRABARY ANA FANHIS L uMAY

®« &8 & 328 k wragy

]

*
L}
L
L)
5.
%
»
L)
L3
LY
'Y
'y
LY
»
L
L
1]
L
®
L
L
)
%
8
2
-
L3
4
»
«
L3
®
')
L
L)
L
L
B
[
»
L]
L]
8
L
8
&
e
»
L]
3
F's
L
L3
Ld
e
£y
'Y

i




- VI-18 -

+ »

» ®

~ * ®
Sigvd 30 . »
SININ S30 3190y - 'y
-~ = 1) s
Vo ; :

. IAMMMV - Led ¥y
- LLLiild v

i Liid Ll L]

s il LLLL : M

* 2Ll Ll ' )

e LLrd [3¥) o om

* L22 L) ' ®

* LL)  S88€S Lid ®

. di) §5SS P ®

M LELdill 8638 cee s

ot d2002Lr 8585 lll .

* LLll €5888  Lldd &L »

* LiL 868888  LiLs LLLLd -

* LAl m8SS 88 L2 20120 -

. Lid 586 §5S8  2LLLllliliL s

. Ll SSS SSS  lddldld *

® Lid LYy) 1111 2ddLd | ®

b Ldll IrYs S¢ 6SS 2224 »

hd LLLALLll LidLy $S £ §s% Ll L}

- QAL QLLLALLLLLILLY §¢6  E£FEEE S84S5 2442 A

® 22285222080 FYYYS §6¢S 144 €58 668 L4 »

M 422 6666668 ¢E 1333 £% 58 8§ AL »

* Ll $G6566855668 334323 44 (333441 bbbl £ 0§ lid ®

* L& €S $8¢ £esae beLbbbe & S§ 24 s

® LS £LEE fegcee bLELLLL £ ¢S L4 &

» L2 S8 FLEISE ££¢€ LEbbbbkiy kb EEE 6 M4 »

. » Ld Ss FRESEL FEEERCEES bbbl BBRL ZEE S¢ L2 ®

® L) €< Ff SFFCCCEsyasy LLLbLEL LLblh  €6F g¢ L2 »

b L 1333 FEETSERETFELe LLbLkL Ll 0SS 4 s

M Jéd 668§ CELEEreEnesy Lhibe LEbL €58 g6 24 ' 3

* LLL  €s§sS SELEECLL LT bt Lbd £EE 0§ il «

* X 3313 FEEEREEseey (33" v bbb £58  SS 224 [

. Iy $66S FELERESE bbb kbl £ S 202042 ..

» Lle §8SS FELEESE bbbl (3 €8 §SS Lddd .

* L2l €648 [ 3234253 Lit LLiLl §  §68¢S¢ LALL) L]

* 21 4d $6¢S [33 3% LU Libh £EEE (3931 LLildliLi [

M LiLe §4S £EEE tebLbbbL LLVLLEE LEEEFRE 6666568666¢6¢ L4 ®

® dlLiLd 1134 £ECE LLLLELLLLLLL g€ (%Y 66966 §666866S L4 »

. Ledll  6SS Feeg BLEbLBLL bbb e £ 666888 224 »

* 244 §6¢ £LEEE Lhilttit bbb FELE  ERIKEVESE S4¢ L4 [y

* 4L S§§ LEECEE S S VEL bELLL CEELSEREEEEErEE 8¢ 44 [

‘ e L2 &S 1123331 BELLLLLLLELALLELLLLLLL SREEEeEEssaeess &8 2L L
s Py YA 1 FEEERE Ll bleblibill s$ELe £REESFES S &L ]

® il 139 LERLEEE Lil £EE v bLLLEL £€ SELESY S 22 L

* dLL o SSS £RELLLE gEFes  Lbbbiebl LELE  ERESSE §8s L& ' [

- LLd (131 FESEEEELses ¢8  Libliue CELEEFEEEERS ss 242 ®

. L §58SS FELEEE £E L EREL  §EXESE 111 did »

* 2L 3311111 SEET gee €ELCET ExfEsS (33 LiLd »

* Py Y] 113 131 cgg” FEFRETEraLasess (139 2442 »

* LoLLL § £f §SS CEESECEERECLECRgEss §8¢ LLle s

» 20202848200 8S 13311 SEESEELLIECE 1114 ddid ®

e L2424 S5 §56€6686S £EECE £4¢ YY) a

e 44 85SS §5656665S SS6¢S Lidd .

s Lid CSGGEE666555566566¢ L2402 a

® L2002L8LL888 (1331131 Lid %

® L20LLLLLLLL LiliLl | (XY} L

» . FLLLLLLLLLLL0220204 LLLd .

» LLiLLLdLd LLd Iyyy’ .

» X3 Ldad &

. » LLL2202001 .
- L)

E Siavd 30 » .
.. S3NN $37 31003 LY Y Y Ty Y P Y Y Y e Y Y L L Y N Y Yy ey Yy Yy Ry Y Y Yy Y Y TP Y TP Y Y EYY Y Yy

0494 NY3,0 NV1d 02  ON 3VIINNOTLIONQY NOILYIAAWIS

re -8 fa - L. L. TN RS LM (MU A YHRBAAAC Andng «ARMASTANARTY AMA LM M EUUAN

i



- VI-19 -

SI¥Yd 30
,S3N $30 31023

%

Sidvd 30
SINK 53C 3003

V'CIC’CIC".-’Il#ﬁillilill.kli.I'l.l.%'..’ii‘i..#i“”"'i"\liil'ﬁ‘l."“

Lidd
LALedidnliLiLd
L102402L L4
Lie P2 YA
24220001 CG88ES Ll
IYYYNINY] 11533312131 LaLd LLd
Lil §665666555596 LidliilLd
L §S6§ €555¢ LPLLLLL
Ledy ss $6S §Ss¢ 23y
22222 §S8SS §58¢¢ LiLL
LLLL 6668668 S48 Lid
L) §666E6E56¢C 665 ‘. L
QlLELLd2iiLiLL §6656654565856¢ L2
222L2002000ELLL $666666665856 Ll
LiLLl §566685¢ LLd
XYY 13331 LLd
Lild §66665SS Ll
123373 §866€66666666 Ll
PREIQALLEILIILLLLL 5666¢ 666 14
L2220200200L8L2 S§6656666¢ SSERFFELEESE § L4
il G6GEES6665566 §656¢ £ £ £ S 2L
Lid GGGEE865SS 353 311 £5¢ €S 4L
Ll 8S¢ SEECEFeEsLes 3 £ 8§ 44
104 §46§ CEELEFELES £EEg (1327 £ 6§ 2L
LL 8¢ SCEEELERNS £E8E8 €5 86 4L
] CEFREESSE FLEsses EEYEE ¢ L2l
L) SS LELES LLLLbbl  geess § L
L <SS £ELELE Libt LEbd 14 ss L
L4l (441 £EEEECE L 394 £ S U
Lid <SS FELELe 3 LL v il £5 5§ 2id
Lill 6566868 FEEFEE Lib bbb £F 56§ 220408
LiLLl 1313 £EEEE LLLbEE bLbt Lty 58 L24L
Lilid 6< £Esee CLLLLLLLLL LY €g6g Ll 7]
LrLdLLlL §6SS £Eses bl R ££E  €6§566S LLLLLILLL) 2L
LiLLLLLLL §§6¢¢ £EEEE Lk - Lbi [$39 655668S /. 6888 44
Lrlile §6358S £EEE€ Led ¥y Lbt £EL 1113319 §655866656 42
1772 §56S86 LEELEEsE L LLbb £EsE 131113111331 1 1Y
LALl §566¢ CEEEEELNTE Lil Litd £ERELE £ §¢ 4
Lid §€6§ FEEEERESESE Litl Lhbl SERCREEECLCERNE [ Y
Lidd §C6S LEEFFESS LLLL bLbLL CEEERSEsesss &S 2/
LLLA2 1117 gREeLE bbbl LiLbii FRELERELENCF €8 44

Yy’ (39 FELE Libbbbbbl bbbbLL Ltk £C  LERESS SS 244
L2Ld S8S  £EEE Lhkbbbbbibl bibe FECECOEES §S 244
2LL §5 FERKE EEFFEEEC LhbbbbbibL §EEELELES L1 Ld

224 6§ RECELESE FEEE LeLbLbb £EEENE 113 Ll
Lid  S6S s £fE LbbiL EEERES (13 Yy
2l 133 (333 gLy L £558s SS& 4Ll
Lid $s 333391 L£ELE ghegeg §66  4ddd
24220 S§ €666S £0€E LELEEE 6868¢ LiLd
rdLLLlL 8§ 6655588 EERLRERfE 131131335 Lidd
LillL S 3113313331 £EEE 6856 (X2
2240 SG6S5565555566S (1331 11 2400224
LLL §66GGECKS §6666594S LLALLILAL
XYYy LLLL) €686S [¥Y¥)
LALADLELLLLLIDALELLL ¥y
2LLELL 2000200000400

o .1 16 - LT YY) =% NN ST A DB eNAnT AnSna whTAAOHANY A3/ LIRBUIIUNNT

B8 FTB BB BBEED ES BB EEETRE SR E AR BR NS RSB SIS EESAE RS FS FEE BRI AE Sy

Cll)liiiliilt!‘l0#!!*"!#’{!!’4!{’!&"CI*’CC’C’ii’llClii’CI{liiliIltttﬁliiiiCil’il!i{lli.ﬂlllI{li"i!l'lll’.!i"’l'lf

0991 N¥3,0 NVId 42 ON VVINNOTLIANGD NOILVANWIS

vy

Fi



- VI-20 -

sisvd 30
S3MIA 530 31093

; =
o
r@«

Styvd 30
S3NIX 33 37003

./ﬂ,.\
Vv

F

-
-
&
-
3
L
»
»
?
L)
»
»
»
®
»
»
L]
»
-
»
L
)
L
»
*
»
*
.
L)
-
2
'y
L)
@
»
]
%
L3
13
2 )
L]
L
L3
»
L)
»
2
L
L]
»
¥
»
»
.
2
F'y
¢
»
»
°
»
L

L
»
3
»
»
>
»
-
»

Ciiliiﬁ”’llll”l!&‘t!Iiidiilll’i’lililliiltJ

S A A AR R e R X Y XY VY Y PP P U P U P g suigy

YRR
d220210888
L L220200L
24L drdiLiLe
L4 (31 L2242200482
i (3331 LLle
L2LL dLeLLe
2Lliid §66§ QLLLLLLLLLILLE
L2 SS6666S 2220200000 LLLR Ledidlld
¢4 65566¢SS 17 LELALLLLLLLELL
Ll 888 §66¢¢ LLLLLILidl)
L4 8§ 6666655556688 dheddele
YTy 1131 §666655555666§ 20L04d
&Ll €666S 66765656586 L1EL
e §SS §964588¢ IryA
2AlEd 6s¢ 6CG866564¢ Lid
LiLe §8§ 5656665656 LLLd
I3 2% §66SS S8¢ £31] LLLl
iLL S556666866¢ vy
L §66666555646¢S 4L
Ldre 133333 11353413 141 §65568S L
LLLrelirliy A A S T 1 X 1 11 1 I X1 Y]
[XIVIRINRY) 1349 S¢ LA
Ll §S8S¢ £esee £EESE 6 44
[2¥) §8566666¢6¢ CEERECLENFS £EFORLELET S 22
LLLl §s ELELETCCT £LE8 S A
ddLll §  fft £98¢gE £EE <5 44
Lidl §¢ fEEEL feggeELe gLece bhLLtbill £5 S5 4L
LLiy ss FELECFEreResEnesss BLitir LLbte sg€ ¢ 2
2200 34 £LECS T cerses it Lt s §S Ll
L1222 (131 £8E¢C £eeEfe Lill bt £5 S L4
LLrd 8¢ gfLgS CEEYERET LhbRLLEBLLL LSS Lid
L1d €S SFIELTICRIfEsELee LLbbbbiibey €8S L4l

Litd  ¢SS§ SERECENEEEEELLS bLbbbLiLy LE 56 Liddd
[ 7YY 1 ESERECOETER 1323332 gL 4§ L4220020808L4

L2L2LL) SS £EES PLLBVLLLL 68 6§ LRIV

ILiiL €S 98¢ LLLLLibsl 5§ 1114 < ¥y Y]
L §SS £€¢ VRLLBLLLL £ee §§5§ §66¢§ S6S§S L2
did §SSS £LE LhblibLil SEEE  §669¢ FEEfESS S L4
24 65§ £E8 123%13211232111321] ££ S6¢S ¢ ££ ¢ 1L
JLL 885§ 1323 BLLbELLLLMLLLLbLLELLL £f  S6S68S £F LLLLLLL ¢ ¢ 42

24 §6666¢S £e bLLLLLLEEbbLLbbbLLbbbilL £€ §65665 € 4 L E X3
444 £66gh¢ £58 LLbbbbiibbibil  ¢8 €668 § LLLLLL S S 422
Lidd 13311 1337 LhbbLLLbLLLL ££ cS 5§ §9E 6C L)4
Fyy s 1131 CECTELTRNErNEs bRbbLiilt ££ 0§ £t £e §S L&l
(723 ¥] 113 EEEEEATELLELEEsE ’ 1% £LEECES sS¢ LL
LiLd 1331 CCEECFESE €688 gL LELEREERS 333 Lid
Lid 1$311 143 [ 31 £EEEFLLE ti ELELES 1331 dLL
L4 2331 6666666868 (%1 LELES S¢S Lid
LiL 6886868668 S 666§ et fEELECS 13311 Lddd
1YY Y) S6 AFSEECRErRELeS 33X Léd
L22028402220200802 SS SREEEESLY G589 Lidl
LALLlL2200288L88 SS§ £¢ §566¢68¢ LL24
L1did $SS $65¢¢¢s§ [y’
[XY¥3 §S6SS 111143 4dd
Lidl S6E5566566S . Leled
Lrddiidle $§66¢¢ 4L Lid
LLLLLLLLIILIL L4LLLALLED2
LA2224000L0440014)

. A

b - Lo - LY X -RANALA I DA R ERAR nabnasg mAMURLBAAT AT, T LML MUAY

SRR ARAARL LI LI T LR L EE I L T TV Y T P P T T Y Y Y'Y T pnynuyspspnpign
/ 099L NY3,0 NV1d RZ  ON ITIINNOTLIANOD MOTLYINWIS

»
»
®
»
v
™
»
»
™
»
»
-,
&
%
a
L4
L)
(3
'
»
*
-
»
[y
L
'
»
Ly
®
2
.
L
L3
[
L]
2
e
®
Ly
4
s
.
2
®
L
L
‘o
L
L
»
»
L3
»
s
»
%
»
®
®
»
A
'y
@
*
L
L
Y
@
L3
»



- VI-21

Sigvd 30
$3KIM 530 37C03

. &,
N

/ﬁ Q40022002040

il ied

Lidl §666¢5 Lid .
Lileie  S56S 658§ 2L

.

s

L3

4

»

"y

.

»

s

4

-

»

L

- Li) §S¢ §S 44Ls :

. Lis §ss £ S L2

. 1Y §959 £€¢ 5§ 44

¢ Lle §654SS ¢ 4L

* Yy 666S8S 8§ X2

® F23 $666s 4

. Lddd Ll

. LYY IVININ Y LiLdl

hd YR YN Y) Jenddd .

hd LLLll §568% L4208

® oL €5EEESE 66CE8E668S 1141

. Ledl 6589 665655566  €8558S XY

b LilLd G6695665556665866¢¢ [$3 37231 tLdd

* L2422 GS6ER66666686666¢ 6568 1LE

* Iy ys 56688 666¢ GSSS Ll

s Yy LLLL §6¢ €S Li2

. LLryrrlil)i 6sss  fELRE i SERLESSREE S L4

® Ix3 g§garc FEFETsCees FE5565sE §8 SQ L2}

. L2l $5665666566€6¢¢ feEEEERREEETRERELES £ SS 242

. Ll 8S¢ §56 CREEELEERssasrsesaes 3 £ §6 L2

L4 6§ fEf CEELEFLREE €5 bbLLL § 8 & .

' reL €SS EEELEREECETRE bebbbb £ 5 4L

L €SS ERECEEENFLEEE LEECEC LhbbLbbLL €5 § A4
LL €888 FEEEIEERPEfEEyLeEnstes LeLbbbLELL €T & L2
L £6S6§ CEEEEEaFeeeefeaeeess LLbbiibil €€ g8 242
24l 1331 SFECEFLEERIEERECES  LLLLLLLL £ ¢¢ ')
Yy, g6¢ EECSLERTECAEESS LbbblL 1¥34 (331 Lidd
L1L 131 EEEFELEREREES LLivibl £ELES (331 LALLILLL
P2 X (311 EELSEEREELE  LbbbLtLLL (33X 2841 (331 LLLD .
224l €S5S¢ FEEEEREELEES LiL Lit £EEE S§S LA220LL24
JLL SS¢ CEESTESFOYE L ¥ b §E8S 6566 [ 3 RA Ll
i §¢ SELECFEECSE bLL yyvvvvvy b £8€ S8 §§ 6656686 44
Lili 686 CEELECE 2221 yyyvyvyy bbb 1344 1411 LLFEE 6 L4
2] £s gegee  LilbliLy [AAAAR} Libbd £L€ LEECESELR S8 L4
224 SSS £8E L bbLLL vy vebbilb FELLEERCERST £EEE §Q A4
[res §6865§ £€€  LLLLLLLLL Lebbbubbbbbllh FEERELPLNERRENES S 24
24 ggs g8 bpbtbtibbbbbbbbibbbibll £EEE  FRENFESE S§ 24
YYYYY] §S g£Fig LbbLEbLLLLLLLE £ee L )
Lidddd §S§ EEEEETESLERELE bLbbi SEETRENELL S§ L4
Ledd 68§ [ % L SEELERELORS §S ALd
2Ll §SS 6666665458  LLEEE EEEERESS SS L
Ll §658C686¢ sS AR EELYELELES (331 LLd
Lid (141 £E98E CEEERECESSS 66§ 2LLl
LiliL Y3 §5% 232332333447 §6¢ LiLlie
L222002000201010 668§ SEEEEES (334 202200002
222208800008 §55SS §566¢ LéllddL
242284008 $555658¢ 6665656¢ LéL
2lLLLLe §665659 §5555966¢ ryey:
L22244L G665655655669¢¢€¢, (29
LiLLll 111431440 Lid
LeLLLLe ’ L4l
LIL20LIQLLLLLL00 00000

- Siuvd 3¢

®
-
[
5
L3
*
L]
*
a
B
L
L
-
L3
s
Y
Y
»
»
®
L3
®
5
»
L
»
[y
3
2
5
.
4
L3
*
Ld 8§56 EEECRERREELCOTERELE bLLbLiL g% ¢ 4L ) Loy
L)
a
L]
L
%
8
®
[
-
n
®
L)
L)
»
»
L)
'Y
»
B
B
L3
2
LY
L)
L
[y
°
L
2
B
2
L
a
'y
$3NM1 S3GC 31003 »

P ER LT B I BB ER TP BT TR BE XD XD R AR Y EN KIS E R

BN B IEN R A AR B AL GRS ANE P TR A AR R B RAS BN NP PA RGN BB SN ARERI BRI R NTP RN A MNP R U QAF SR IR I ANDRB L SR II AP RBDL RS LLNLALSPRVO22DR

099l NVIQ NYId 42 ON BTTINNOTLIGNOD NOILYINAIS

e -t ) - SAmut A L AuM T A TUReRAAT LGN ) .ATUAEAAAT ATA EMATIUNASY



- VI-22 -

a o-...;-c..-c«ci’vl;v;ti«lcucucltc‘nt«».,-i«c.cﬁlﬁﬂ-,.cuc«‘nc«A-s«iacia‘-c-‘c,a.‘tcf..:;tsvkixcixqt;c-aisc.qt.4‘c;c.-sa¢n_)oc.. - ——

LN A A L I IR R XA R 2 A AR A 23 T AR A R A A A AR U A S A SRR A E AL 4 AL AL 66865 0069 10 BE ALt EriEteribbard iy
T AR S R TR RS SR AT S R AR A R AR L S A S A AN S A A S S T AL R SR RS SRR RS LA 548 9u9  JLL  fR Ah+et badrbrtdbbbbrts
-~ mwwmqq\quﬂqmwﬂ X221 33331 rheh [ 1331 990 Li LG E LSRR A48 2 St AR ~
Sé¥e 30 eSS S T yErEsLne 997 GG 09  llL R3] Ahesrteteririeriby
TaANIM $30 37003 cmmnwnn Z2éeeeeeevezrzavee grossey kAAs (319 99 1) B9 AGrtedr tedrirepty
- *3E05¢ qreedeeredeezaeereeizerredzeacadrdzdd SEEAE 244 G 999 )L RE  ALtrttiteiaririieg -
SLEVE 7322232¢222222222222722? perodezeeraa?? €5y HhYy €8S 999 AL QT AAtIIEEREI be by
*ELE gzezreeeaaeeeee 2722882 ¢ w9 665 999 Ll BY  A4rErbebrbaiav
. (2% 2222222222822 2ne2228 £i% 899 6SS Q9  Lll 2D Larertererdby
L3 3% edez2222v2 bibLLL Libbibbbibibbil 22é2 gRE Y €S5S 89 Jl RR  fArEEFreteenn
*5 22222222 Lhbdbibubbbbebbbt bbb bbbt bibLLibl zee (2% w9 §SS 99 L) 89 ALFrrrestesse
i gceezee bbbbbbbLbLLBLLLLLL LeLLiil 222 £5  wyw €5 09 4L R hh+brarerrn
* 222222272 BriibbbbbbblbLl tiiLbii 22 [ S GS 99 24 Q8  S65++ssiean
- 7aedzec2 LhbtbibibLiL VYYVYYYYVYyYY bibb 222 SER Y 8§ 99 2Ll 3B Abttetests
" g22zze LhbLLLLLLL FAAAAA AR AAAAAAARA AL Lbt 222 €% %% 4S 999 L)L REB  H&++rteten
¢ 222222 Liibititl \AAARAAAAA A YYyyyyvyyy Lyl 22§88 %Y SS 9% LLL eR Shrtrets
s 222222 bLitisd YYYYVYYYYYYY yyvvyy bbb 222 €8 97 §S 999 L) R Ab+treesn
* z2eeee Ll \AAARAAAA R A yYyvYy bbb 222 g5 9% ¢S 99 JLL 98R bhreete
* 2a2z2zz bbbiy A AAAARAARD ] ggaanged yyvyvy bbb 222 £¢ %Y §S 972 L 88  Sht+rta .
» 2eeeeei Vbbbl \AAAAA AR A R a988492494a8d YYYy bbb 22 €8 v SSS 99 AL B8 Ahtertn
. Qaeaeee LLbbl VYYVYYVVYY aH3d6493uTEa vigy L 22 f££5 %% S¢S 99 Ll 88 [T 12T
4 gzzieee Libbly vYYYYVYVYY 990894ydBedEy Yy Wy 222 €6 4%y SS§ 99 Lé BEE 44 +en
» 2zzeee (RS YYVYYYYYY 298869084 89988¢0 vYYy  bib 22 ¢ Y%7 $SS 999 AlL AR3  466r+w
- geeree Litl VYYYYvy 9990866200086980Y vy Ler 222 &% "9 SSS owoﬁ L g9 L1154
. 2222272 bbb YYVYYY 8618898949088398€883 vyy [ 3% 22 (43 A4 ) §SS 999 Lil R3B  Bbote
hd 2222222 Liil vyyvy 4gn598R8980R 49828 ¥y bbb 222 e aeY 11 999  til 33 &65¢
- 2222222 Lebbiit Yyvy 949992986098 gaeg vy LLL ¢ Ss 29 S5 999 LiL B8R 8%
* 2272222 brtettit ¥Yy 280939499938784 88 ¥Y LiL €2 g€fc  wv9e  §5¢ 999 L4 RBR 4w
s222272 Lt Yvyy EREEEEEEEREEELEEL] 237993 a8 v L 22 ¢¢ hh 668 999 244 RR8 »
#2222 LbLL yYvY Yy 29g9d8n4 322323233 a8 ¥V kL 222 i€ (22} (114 9999  2LL a3y
%222 LLL  ¥vy 89aaq 432333333 3 8 ¥ LU 22 gz% "9y (333 9939 Lid 388 »
2 Lt Yy 94898881983 333323239123523) 7 8 ¥ b 222 ¢gff \AAAS 688 0399 L Q33*
» (A ¥Y¥ Aqs 229233339313 ) g ¥ L 22 [3%% b9y (4444 9999 Lid gRe
. hd pLit vy 8g8 323222392 33330 22 88 ¥ L) 22 333 LAAAS (1444 999 Litd A
L 2 yyYy 81 2393239373333292%323339 dagaeg ¥y 88 ¥ V22 LEES LASA 2 [141 999 Ll @
* it yvy gn1 33323397%33332239202 [eXeRifedeRef e RV 3232 88 ¥ b 2el 13241 Yene9% (131 999 Ll o 0
aLbLbl vy Y ndg 3523332333333 300000000037 32) 88 vy bbb 222 $EeE bAAA S 84S 9999 Lilw =
aLiltbl yyy 4984 315739273333%33) N 91049@¢Qad30a00 3320 8 v it 22228 $FSfES ey ss Qe le
Lbtbd Yuy Ae8e9 9333923333 04.1000000G60GA3 23 89 v¥ it 22?22 £LEEE 247 §5S 99327 - N
“LiLL vy AgEag 23232920 0g40e0aaegeaagy b I 1 B A LiLi v222ee [ 441 L2 414 FEX
*LLLbLtL LA AR AURAY 233323 2043000 QQaccagn 300 #8  VYY LLbbtd 2222 £5 997 §6SS 7999+ iy
s bbbt (221 EREE: 33393 000000600300000Y 32 LE yyvy Lbbbei 22 £€ 9wy 4SS 99+
= oLLLLL yYwyy 4849 39232239 60670000000C0AQ 399 g8 YYYVYVYYYYY bL 22 ¢%  wv% g8¢¢ 9w
+ bathl Ywyyy ELEL 23922 20100Q00Jd000Usa 203 agg Yyyy Lb 22 ££  a%Y (141 s
A3 [ 2" FAAAA 93913 32323 €070900¢30000J04¢0 233 a0d8 e8d9q8808884 L A A 124 €585 #
»22 Lbbibt Yy VY EEE] 22339 0400400000G29000y 339 LEEELTE:] 98 ¥ b 22 §£8%  wvyY (144
#2222 15213) yyYy ERL 3233 0300040032c43auqaagd f ] g8 v L 22 «¢¢ LA Se
. 7222 Ltebit yyy ane 25333 1600003806 g0d0Qcuaad 3232 233929299 ag v b 22 it LAR AR s
. * 7222 Ll Yyv AE8 2322 400a0300039G4060L¢uaa 53092239032 233 ea v 4 22 (£ noye »
LS %Y e2de Lebtld ovY 688 23332 9060Q040a0Q4000Q 232553723939203% 8 ¥ b ze? [ 2% kA2 A
*EEET 2ez2 Ll Vvy 8839 23923 6063040406000 233935 9239320399 88 vy LL  2ade [A 3%+ kA0
* STRES 222 tbib  vyy 188 3533329 4¢a600a 332 209930 a8 vy Lb 2222 Peef ®
* CEeE 22272 Ll vy 3899 33329323333933232) aaqaq 233333323233 g8 vy Li 222228 [ S
9 SEEE 2227? Lt Yvy 2888 3325333233333 239313323M) ] vy Li a2 £FEte
LA STES voee il yyy g6a88 330 33333333 LR Yvy Vb paved fre
 ahey Feee 222 bid yvy aQgae8999 323333 313233 944 vvy Lhilbt 2222 [
g 499 [4%%2 e2e Lit Yvy CELEEREEL T 22232233333223333330 ) 8848 Yyvy bbbl 2222 %
sg62 LAAA ] [ X4 2ed Lid yyvvy gaAgGaELE 39333332322233)0233 L] [AA%] bLLLEE 222 =
* 5688 LLAA X241 222 Libt Yevvyy ggRAUES 3733392393303 gee Yyey LrbibLt PR
- £68¢ A X %% 222 LLbil YYyvy ggaaag EELE] yyye LLbbititl 2222 »
*90 ] Y979 LEEE 2227 Lblld YYYYYY 348818 gdga Yvv bhbbbLlibl 272 o
“ 999 S¢S ve9Yy 11 3%% 22227 Ll yyvyYyy guaeed geggaoA yyy LEbbbbLLbb 22
. 999 §Ss a9 gEseEL 22ae LLLLL Yvyyvy FCRECELEEEDEE LT YVyvy LLLLLLLLLLLL 2222s
sl 999 §46SS hAA M FECEE 22222 LELb e yyvyy 483 YYYVYY LELLLbLLbLLE 22¢2e
LA ¥ 999 66%5¢ L AL NS £o5ES 22222 LLLbE yyvvy YYYYevy LLbbbbibLbbi 22222
LYY 999 (3131 2949 gReee 2222 LLELbLE LARARAAARAAARAAL Lbbbitbbiiibl ¢2liede
-8 i 9994 (311 14432 2eeee Vilbiy LbbbbibbLtetibi 22e2elie
*aRe LLd 9909 FEETE 2222t LLbbLELbLLL betbbbiubbbtil eeea2zade
- » nm LeLd. 90% € (2251 £Eeges gae2eee PRLRELLBLLLLLLLLL 222222227
srevd 30 66 28 AL 9999 6348 IIZITL R LEgEse 22222 22222222222 -

S3NIK 30 31023 c-«.-cs«:ccucﬁaac-cgisac:-¢a;;-:;:;c¢¢:ac;;ac;aca-cca-ac-sagncc-;ac:.-aa¢g;4caa;4ccca;i-c¢-;¢-gacc-c-A'stcccfaac.v

1 SITIINNOTLIONDGD SNOTLVINWIS S3Q IMNIAOMW

k4

I
v

p
2

™.

@)

¥



siava 30 L mPN LY BN Gubu* e3INdN4ddd Fu aNuliUsli GUTUL =5ANDLTIUSE s3v dwdnslev)d
mmz_zmmuF;buu.u;fccul..ﬁ:o";at;vgcc;.;ac«uc-a-ccf—auccooacccaoa.o-aaccu-;.-o',ccc.cc»c._,.:-.v-.-acac:¢¢o-aaaa-aa-ac.u-c-ccca-.v-n
yoy (3] 29999299 29999999 [EEY 9y Lbie ¥ Gutereertrrvartetrattrrons
9y 1 1%9 L A2A 0] REeErfaTeCataint 7922%77% 55858 Yy Lede B¥b Lobesrtsrsrrrrrmtrtroees
856 27999 fefrfitatataiakafatnbufatntd vyeY Sl b9y Lid s¥Y DOUPTrErEr LT a bt an
131 9% LECENELEaENEY frfafraagetd 799 She ¥y N YY) ByY SOprerrrrsessvves
* S8 100 XSRS ER 4N 22¢2222%¢¢¢2 fabriy 2799 5549 ¥9v9 Iy cHuyd Lutseesrsenrnes
g8 TNy £E4s 2e2eeeeieceieeedidc Lygh 7999 56458 949 L4l GsY  bsoTessessrs
LI A £Es5¢8 ezzee c2eeided’ fat 7999 96 ALYy ¥By  Goteeressn
LI A £4g 22222 2ee2e R €222 rfrfrin 279999 868 Yy Ll Yo boasessen
s 9y €if 222222282¢eeeeqcl2¢edT beabadbibaidh cdelet tafrtrint 79979 84y YY9Y LL BY  gOeeess
=99 £f geegeaieeaerieeeedeedee babbly  bLELbE cece $ereirirbihy 49999 Sy LE L Y Bosee
a9 §%§ eced 2e2c2edeee bobababababob ceée 23333 7779 585 Yy9y 4 Be  boos
s iS5 2zee bhabsbsbiibey cecee $9exE "y 888 Yy Lz kg ¢®
sSELE eze v pabsbesiibs 2ced écdedeled frhat 7Y WGy Yy ¢4 s¥d »
[1%%1 2¢2¢ Lhbibie bisbalbitiiy 2¢cledeedcleecdelies 1S 133 %Y v%229 6S  2Y  Lé BEe
L34 %} ezz? Bhbbbbitbits sbitbs deddeee ¢deeee ST R%Y 29 Sy Yy Le .
L% gedee 11331321222 3 () céc ¢2cel afbirbrtn 999 8% 9y cle s
] eeeee Vebbbbbbbbbbiibl [N bLbebid c2¢ frizfriat 799% 6y 9y LLe
s Z2eeel bobebbbbbbbbbibiinty bebabi by bebbbebrlbal 222 atifrintt Y & w9y e
s 2g2222 bhsbbabbbibbabibnise babwbbbobsbabbbbibbl [ARRN 2 trhbbabid (3 22 N
s22cedd babbbubbbbdbbbibubst Pabbbbbbbadbobblabibubibibiil (244 terf 797 bs vy e
s22c222 bebbba bbb abibbint hbbbs bbb bubbei b bbbbibLl ({44 Ergrd 79 85 9y s
sgg2eee Lhbbstbbabebbd vhbbbesbbibobbbabibibin 22¢ée [EREY M4 C  dye
»22¢ babbbbbrbibiih babbbabbbbhbbibitbuls c2e2eld trint v 8% 9s
LY phabbbibaints bhbidebbtebaininbedn ¢2¢eeee [ X381 77 &y we
. bebbbL bbEBbbbbLLt bbbbabbbebatebibbl c2eddde [ S%NY 299 »% @
° phebsbbbebabbbibibebelet Phbbbabbbbbbbebbbobnbebabl 2¢d¢lteéels SRR 7Y Sy ¢
* Phbabbbbbbbababbbabibblitiil babbbibbibi, babebdbbbslbel ¢2deedied 158802 7% Sabe
. Lhbbbabbbbbbblby bbbbbbbbbbbbibibabatbeibing bibbbsbbabbid ¢edeeede [ 13 %Y Y 56
. MbabbbbbpiabibLy Vebhbbbbbbbbbbbbbabbbabatibatit  abbbibbbbibinl 2¢2222 IXSY k22 [
L fr'—rpr’fr—r—P’—-rperepe.e—,.Prrrrrr.rrvrerrrrra.rpr..'r,..,r.¢r,—. et Leent VAN L
e bobibsbebabasibolibbidl bbbbubbbabibibatbbbabibabbababibilLd geeee $1248 299 -
L bhsbebpbbbabtbpbilslaly Libile bibbbbabbbabobubbrtbaerbalbibins 2deee [X%Y 99199 -
L bbb RELELE LR LMY Ebbbbbbibbbabibbbrbabibbbbhbibabads eeeeed PR %7 LAAAA L
L sbbbh sbbbbbabibatbitbe Labbbbbabpbbbbbabt sbbbbbbbubobitinid ¢2eeed ISR Y 997
& Phbbbeabbbbbibabibats bibbbbbbusbibbbabstbubbbobibabibodiing 222222 [XE%Y nhe
@ I IIIILE bl bhsbabbbbbbpabibubababobababbbitababibbbotietl éceee £rb2fh k2
s PLALLEBLL LR bhbbrbobbbobbbbbbbbbbbabbbbbrbibibbababibobibibt 2eee LEEELE ya
) babbbibatilatsbbbeis ..,,F.F,p-,.,r'rv,w.,.___.F.rrr.,.wrr.vv—.vvr*—.rrpr-v 22de rirty -
shbbbbbbbbbibbbibabbpbbeis bubkbbbobabbbbibbabobatabbbibpbbbibed babbbbbbbbbibebbd 2eee 113 T
shbl bbbabebabbbibrbibil ibbbbbbbababibubitababbiabibiiil Pabbbabbbibibaley 22dd Lhele
LX) bebabbbbbabadibsind bbbbsbbbbbpbabbbabrdbbbibibubabibnl Shbabybbbbbbbbld ¢cgiiedd L
L33 bbbl b bbbl bhbbbbbbbbe bbbl bbb bpbebabil bbb bbBbb bbb b 2eceed Lee
af Blabetd bhbbabbbibabibsl bhbbbbbbbba bbb bhbbabbbbbbib bhabbbbbbbibabb geée g
L habibbbobbbbbebbinbibabe Vhbdbbbbatibe habbbabsbdbebbbe bEBLBLLEDMALD 2e2d Lo
L babbbbbbbbabbitbinbibati Bbbbobbibbbbabuibbbbrbbbbbibbbibebits bbbl BbLLAbabiLY el L.
» BLibbbbibababbbabrbath hbabibabbbibabobattbade bubbbsbbibyt bbb Lbbbabbbbabs ez g
° Patebabital Mhbbbbab bbb bbbbinbbbibe bobabbbaanbabbbbbabill Phskbbbbbbbl [244 .
L PLbbbLbsl babbbbbabebibibebobibe T NN N e N Y Y A YA R A RN e2¢ -
. Labbbbl habbbbbibibibabaibly bebbbbbbbbal bbb bbabLibbbil babebs ¢eee »
) N Y T N S N A T AR A AR A e pebbibiinl MALL bbb bbb bbb bEb by 2d2¢ *
» Pebbbbbabbbebe bbb bbbibiblabbbrbibein bhibbebid Labbbbbabbibbbibbaby ¢eldedn
e} bEbbbbabibabbb bbbl bpbabbbabibabitiid pibbibebbl bbb bbbbbbbRbbsbLbl ¢ceeln
sl bobbbbbrbababbbabutibabdbababibbabbbidabibiiollbed bAbLb bbb bbbbebnbibait 17214
LR} PALEbEbEAbAR bbb E bbb el nbabebabbbibibbbebbiiid bbb bbb bbb BbbEb bt bl 2¢de
sbbbl 4 TR I T T I A T N s S NSRRI R R I R N R R R R e
siled bhbbababebibbbebbbilibls bebbbus bbb bibabibbbibl BLbBbLLbbat bbb bbb baba bl ds
314 Labbbbbabbbabalibiteid phbbibsin bbbl bebbbbbbbebpbbbibbbubibebibd -
LEYRY) Phbbbbe bbLLMLELL LEL bsbibsbabbabbriade vhids bbb bbs bbb bbbbabai bbbl .
el PLLbBLE bbb bbbl bubbbbbbbbbbibbbbobptibibaty MLbbbboblbbbbibbbibibebibbd .
s bhobbbbbabbbababibii T T T N N AN NN T S I N T A L R A A AN T R A R R Y [}
» bababababiini pbrbiirbatsinil pbovbbibrbabibabbbaaibbbbrinsbbabbbbianabibeini -
. bebbbebbbad bobubbbad  dhbtbbebbbabubpbibabidbbibieiliil bhbabbbabbbnd )
222 131322} 2 beti bl bbb bbbbbbbbbbbsbbyibbbbbribthl sEbBLELMS -
#2222 bbbl ¢ddeedd SRS sbibabbbedbebibabibobbbbinl YY) L
e2222 LhbbLbtbl ¢eedeiedel vibbsadpdsbodbababrbbtdbibnbt .
»¢2288 bebbtbbil 2e2e2ededelll Vbbb babibabbtebibptabaind 22 -
s2gee2l abbbeibiLi 2ededeaceeeddece ok bibadbibbubebibbbald cceddetecs w
s 22222 (SN SNSRNNY ¢éceeeededeedd babebbbabubbbibibibiinl eeeeecdidl biie
LY X324 piabbbbiid 2écedll TR R R N A AR ) ¢ ¢édéeddRccie Vi be
.2z thbbbbi bk ¢ babbbibabi bt Cdedddeede ddeedeeddeeldcec T
SI¥¥d Penans -.ntacy;c;o.c.c;a;c;«*c-c‘yt.aacaaa¢;c;cccaqq.a.o¢¢o¢a.«;.coaq;qc‘ycrf-qf.c.;:.,..o;c._vaoc’;cc.;’-n«¢cc¢.coccac

33NN 3G 31003

NF7
(WIS

Salidanwbabanay b

ab Sal b

quAi=Sioeda

i



REFERENCES

The following list includes only the references which have ac-
tually been used to write this course.

*DAVID, M. (1974) : "A course on Ueostatistical Ore Reserve
Estimation".- Département de Génie iiinéral, Ecole Poly-
technique de iontréal - 304 p.

*DELFINER, P., ETIENNE, J. and FONCK, J.M. (1972) : Application
de l'analyseur de texture a l'étude morphologique des
réseaux poreux en lames minces". Rev. Inst. Frang. du
Pétrole, Vol. XXVII, n® 4, pp. 535-588.

*DELFINER, P. and DEIHOMME, J.P. (1973) : "Application du kri-
geage a 1l'optimisation 4 'une campagne pluviométrique
en zone aride", Symposium on the Design of Water Resour-
ces Projects with Inadeguate Data, UNESCO - Wil0 — IAHS -
iladrid, June 1973, pp. 191-210.

*DELFINER, P. and DEIHOMME, J.P. (1973) : "Optimum Interpolation
by Kriging". Display and Analysis of Spatial Data.-
Ed. Wiley and Sons, Iondon, p. 96~114.

*DELFINER, P. (1975) : "Ii.ear Estimation of Non-3tationary

Spatial Phenomena'". Proceedings of NATO A.S.I., Geostat
75, Tome. Ed.: Reidel, Dordrecht, 20 p.

*DELHO:ME, J.P. (1974) : "Ia Cartographie d'une Grandeur Physique
a partir de Domnées de différentes Qualités". Proceedings
Congrées A.Il.M., idontpellier 1974.

*HAAS, A. and JOUSSELIN, C. (1975) : "Geostatistics in Petroleum

Industry". Proceedings of NATO A.S.I., Geostat 75, Rome,
Ed. : Reidel, Dordrecht, 15 p. -

*HUIJBREGTS, Ch. (1971) : “"Courbes d'Isovariance en cartographie
automatique". Sciences de la Terre, Tome VXI (1971),
n® %-4. Journdes d!'Etude C.N.R.S., p. 291-301.

*HULJBREGTS, C. (1975) : "Three-day Short Course on Practical
#ining Geostatistics". Clausthal, 2-4 Oct. 1975 - 120 p.



*JOURNEL, A. (1975) : "Geological Reconnaissance to Exploitation"
A decade of Applied Geostatistics" - The Canadian Mining
and Metallurgical Bulletin, June 1975, p. 1-10.

*MATHERON, G. (1965) : "Ies Variables Régionalisdes et leur es-—
timation". Ed. : Masson et Cie, Paris, 305 p.

*MATHERON, G. (1967) : "Eléments pour une Théorie des Milieux
Poreux. Ed. : Masson et Cie, Paris, 166 p.

*IATHERON, G. (1971) : "The Theory of Regionalized Variables and
its Applicagtions". Ies Cahiers du Centre de Morpholo-
gie Ilathématique, W° 5. Ed. : Ecole Nat. Sup. des liines
Paris, 212 p. '

*MATHERON, G. (1973) : "The Intrinsic Random Punctions and their
Applications", Advances in Applied Probability, N° 5,
Dec. 1973, p. 439-468.

*MOOD A.M. and GRAYBILL, F.A. (1963) : "Introduction to the
Theory of Statistics". McGraw Hill, 443 p.

*3SERRA, J. (1967) : "Echantillonnage et Estimation locale des
Phénoménes de Transition Miniers". Thesis - University
of Nancy, 670 p.

R |

Y

P e |

/
i






