Fontainebleau/CG | N-526

CONDITIONAL SIMULATIONS : A NEW
AONTE~CARLC APPROACH TO PROBABILISTIC
EVALUATICN OF HYDROCARBON IN PLACE

e e g e T e L wate i

P. DELFINER | Juillet 1977

e e e v S ot e, et e B e e v, . s it S W T U






CONDITIONAL SIMULATICNS : A NEW MONTE CARLO APPROACH
T0 PROBABILISTIC EVALUATION OF HYDROCARBON IN PLACE

P. DEIFINER
. J.P. CHIIES

Ecole des iines de Paris - Centre de Géostatistique
35, rue St Honoré - 77305 - FONTAINEBLEAU - FRANCE

ABSTRACT

Conditional simulation is a geostatistical method for gene-
rating 2 or 3-dimensional fields of a given variable, that have
the same autocorrelation structure as the true field, and are con-
sistent with the observed data, This method is applied to reservoir
description parameters, and expectation curves of volumes in place
are derived, The field development policy is also examined from
the point of view of reserve evaluation,






I — INTRODUCTION

Due to the high cost involved in the acquisition of data on
a reservoir, it is of high economical value to get the most out
of the information already available, This has motivated the deve-
lopment of more and more sophisticated data processing techniques,
Among these, Geostatistics* is a methodology of resources evalua-
tion and planring that has been in use in the iining Industry for
more than fifteen years. Its application to the Petroleum Industry
is rather recent however, but it has proved to be a flexible and
dependable tool, and is presently being instituted within major
companies, ‘

so far, the main application has been the interpolation of
‘reservoir parameters between wells, by the method of "Kriging", in
view of contour mapping, volumetric reserve calculations, and input
preparation for reservoir simulation models. Geostatistical techni-
gques are also used to process seismic time and velocity data, even
in faulted areas, and to update contour maps in a natural and con-
sistent way by means of well-site inforumationm, including slopes
where a dip-meter logging has been recorded (migration of seismic
data). Haas and Jousselin (1975) report several case studies deal-
ing with such applications. Additional references are Haas and Mol-
lier, Haas and Viallix, and except for general theory, this is all,
to our knowledge, that has been published on the subject to the
attention of petroleum specialists.

We shall not come back here to the applications already men-
tioned, but rather go further, and apply the newly developed tech—
nigue of "conditional simulations" to the probabilistic evaluation

of hydrocarbon reserves in place. The method is of Monte~Carlo type,
with two specific features :

% Tt seems that the word "Géostatistique" has first been introduced

by G. Matheron in 1959 to denote his own approach to estimation pro-
blems. Since then, the word has been used in the more general sense

of "Statistics in Geology". In this paper, we refer to the original

specific meaning.




i) it accounts for the spatial correlations between reservoir
parameter data (e.g. permeability, porosity, thickness, sa-
turation)

ii) at well sites, the simulated values are consistent with the
measured ones, that is, coincide with them in the absence
of measurement errors.

The whole set of numerical values taken by a variable throughout

its domain of definition (in two or three dimensions) is simulated
at once, Due to the structural information introduced in the model,
each of these conditionagl simulations may be thought of as a "pos-

sible" version of the unknown reality, at least as it can be fi-
gured out on the basis of the data at hand.

s

Visualizing several simulations gives an mdea of the uncertain-—
‘ty attached to our representation of the spatial distribution of a

parameter ; there is an all too strong tendency, once a map is
drawn, to accept it as reality. A reservoir geologist may also flmi@x
it useful to ponder over these several possibilities generated by

an objective algorithm, and select one which makes sense to him.

We want here to show how conditional simulations can be used
as input to volumetric calculagtion procedures and lead to the ex-
pectation curve of hydrocarbon in place. As secondary considera-—
tion , we will also evaluate retrospectively the field development
policy from the point of view of the assessment of these reserves.
The method will be illustrated on a real, though over-simplified,
case study, It should be regarded as a first and necessary attempt
before dealing with complex cases,

on the methodologlcal side, the technlques used in the example
are quite sophisticated, and this placed the present authors in the
uncomfortable situation of having to introduce the more advanced
concepts of Geostatistics to readers who may not be familiar with
its simpler aspects, The policy has been to avoid duplicating other
presentations, and to lay the emphasis on the simulations of a va-
riable with a non-stationary spatial distribution. A presentation
of the stationary case can be found in Journel, 1974.




2 ~ A HURRIED RECOLLECTION

Reservoir parameter data usually show spatial variations that
are so complex that only a statistical description can be attempted;
A convenient model is to view the set {z(x), X € D} of'Qalues of
a quantity z(x), where x is a point in the domain D, in two or
three dimensions, as a realization of a random function 7(x)., Fur-
thermore, 2(x) may in turn be modeled as the sum 3

72(x) = m(x) + Y(x)

of o smooth deterministic function m(x) - the drift or "trend"-
and an autocorrelated stationary random fluctuation Y(x), of mean

Zero.

For some variables, like porosity or thickness, it is reason-
able to assume that m(x) = m = constant, for example when D repre-
sents g homogeneous layer. Then the inference of the stationary

‘covariance K(x-y) = E[z2(x)-n][z(y)-m] is relatively easy. As a

matter of fact, Geostatistics advocates, rather, the use of the
"variogram" :
2 v(x=y) = B[2(x) - z(y) J?

because it is a more general and more flexible tool, and has the
advantage of not involving the unknown mean m.

The inference problem becomes much more serious when m(x) can-
not be considered constant anymore, as in the case, say, for the
depth of the top of a dome-shaped structure, The drift is better
represented by an expression of the form

k ¢
mx) = T B, £ (x)

£ =0

where the fg(x) are given functions (usually the monomials of R®

or R3) and Bé unknown coefficients., It is tempting to estimate the
Be's, remove the drift component from 7(x), and infer the covariance
from the residuals, Unfortunately, such procedure may lead to a
considersbly biased covariance - or variogram - estimate. To get



around this difficulty, liatheron deveIOpedka theory for non-sta-
tionary random functions that he called "Intrinsic Random Functions

(abbreviation IRF). The main practical result is the definition

of "generalized covariances"K(h), which, under a restriction, play

the same role as ordinary covariancesbut offer much more flexibility

in modeling. In particular, some polynomial models are admissible,
and these are especially interesting from the inference point of
view, sincefthey involve their parameters in a linear way. In 2-D,
valid polynomial generalized covariances are 3

K(h) = - a |h]| + a1|h|3 when m(x) is a plane

i

K(h) = - a |n| + a1|h|3 - azlh]5 " m(x) is a quadratic

=0, a, = - (10/3) Vab.aé)

(a.20, a

0 2

The restriction is that K should be used only to calculate the va- @
riances of "generalized increments", that is, of linear combinatio

whose weights are subject to some linear constraints (just as varior,

grams may be used only to calculate variances of simple increments ;i
in IRPF theory, =- y(h) indeed appears as a generaliged covariance
of order 0).

It is well beyond the scope of this paper to give an account
of the IRP theory. The mathematical foundations are given by
Matheron, 1973 ; the statistical inference of K is considered
by pelfiner, 1975, and Childs, 1977.

A word now on Kriging. Suppose z(x) is known at sample points |
S = {xa, X,y..-} (S finite) and we want to assess the value z(xo)
at some uninformed point x . The kriging estimator Z*(xo) is the
best linecar unbiased estimator (the BLUE) of z(xo) based on Z(Xa)’
72(x.),... Specificailly, denote Z(Xa) by Za , z*(xo) by Z, » and
let Zg =7, Aa Za . The weights xa are chosen to satisfy the two
" _

conditions :
(1) B(Zo = Z,) = 0 identically in g,

(2) B(z, - 2,)° ‘minimum




It will be useful for what follows to interpret kriging in a geo-
metrical way. By construction, we are looking for an estimator
z: in the vector space H generated by linear combinations of Za’

B P e ss 0
H = { Z)'Aa Zys X, €85 A real}

2o B fe(x), the unbiased=-
ness condition (1) entails the set of linear constraints

. k
In the general case of a drift m(x) = 3

(5) n oy, ) = thx) =0,k
a

so that in fact z lies in a linear manifold 771 contalned in H.
Now E(Z - Z, )2 may be considered as a squared norm ﬂ - ZOHZ
and it is well:known that such a norm is minimiged When ZO is the
projection of 3 onte M. (Fig. 1)

Mg, 1
Projection of z(xo) onto
the linear menifold Me H

It is readily seen that this projection is characterized by the
orthogonality relationship

*
(4) (2, - 2,) L v 2z
_ a
for any set of weights Vv, satisfying
(5) Z v, £(x) =0 ¢=0,...,k

when m(x) = O identically, that is, the constraints (3) are vacuous,
then (4) simply says that the error Z, = Z is uncorrelated with
any sample value Zy - when m(x) = m , that is, o(x) = 1 and k = O,
(4) is equivalent to

(6) (ZO - Zz) L (Za - ZB) for any pair X XB .



In this case, the kriging error is uncorrelated with any increument
7 =~ % . Nicely enough, such increments are the basic quantities
a
used to define variograms. ILikewise, 2O v, Za in (4) is a genera-
o ,

lized increment such as those used to define generalized covarian-
ces, This circumstance comes into play to construct conditional

simulations.

Another property of the kriging estimator, which makes it
appropriate for contour mapping purposes, is that at data points
it coincides with the actual measured values, Indeed, when X, € 3,

* . s
say x, = Xa’ then Z, = Za and. Z, = Za obviously minimizes
¥* .
nzi - Zoﬂz , which is then zero. In general, cé(xo) = nzo - 20"2’
the kriging variance, is not zero amd can serve as a basis to draw

erroxr maps.

3 — THE PRINCIPLES OF CONDITIONAL SIMUTATIONS

We start from the following decomposition :

(7) z(x) = z*¥(x) + [z(x) - zx(x)]
true valus Kriging | error

estimate

(We use lower-case letters for realizations and capital letters
for the corresponding random functions). In (7), the error z(x) -
z%(x) remains unknown when x £ S, because the true value z(x) is
not available., Suppose now that we are able to simulate realiza-
tions of a random function S(x), having the same covariance as
7(x). Then, on a particular simulation s(x) it is possible, with
the same pattern of data points, to compute kriging estimates

and write similarly :

(8) s(x) = s*(x) + [s(x) - s*(x)]

This time, the error s(x) - s*(x) can be known exactly, The idea
is to substitute in (7) the error measured on s(x) and define :

(9) z (x) = z%(x) + [s(x) - s*(x)]

|



We claim that zs(x) is a conditional simulation, with the proper-
ties mentioned in the introduction, Clearly, at data points zs(x)
coincides with the known values since, if x = X say, then

Z*(Xa) = z(xa) and s*(xa)-= s(xa)

There remains to show that zs(x) has the same covariance (genera-
lized covariance) as Z(x). This results immediately from the ortho-
gonality property of the kriging estimator. (e.g. Delfiner, 1975).
To make things clear, suppose that m(x) = m, and let us show that
zS(x) and z(x) have the same variogram.

By the independence of Z(x) and S(x) :
(10) R[50 - zg(0]% =
= B[2*(x) - z#(y)]%+ .E{[S(x) - 5%(x)] - [s(y) - s*(y)]}2

On the other hand, z(x) - 7z*(x) and z(y) - 2*(y) are orthogonal to
7%(x) - 2*¥(y), which is a linear combination of Z(Xa) satisfying
> v_ = Qe Therefore :

g

(11) Ela(x) - z2(y)]% =
= Blzx(x) = 212+ B{[2(x) - (0] - [2() - (]}

As by assumption S(x) and z(x) have the same variogram, the terms
between braces in (10) and (11) are egual and

Blzg(x) - 2512 = E[2(0) - 2(y)?

Intuitively speaking, the whole procedure is based on the idea
that since the kriging estimator and the error are uncorrelated,
we are entitled to pick an error from a simulation and bluntly add
it to the actual estimate,
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The only question left is how to obtain non-conditional si-
mulations with a given covariance or variogram.vln one dimension,
-the problem is relatively well solved. But in 2 or 3 dimensions
it gets more complicated and the mere extension of 1-D methods
would be very costly in terms of computing time. A Very elegant
and efficient method is the so-called "turning bands" method de-

veloped by Latheron and his group at Pontainebleau. Its presenta-
tion is relegated to the Appendix,

The relationships between reality, conditional simulation
and kriging are well illustrated on the 1-D example of Fig. 3. The
solid black line is the real curve ; it passes through data points -
marked by big dots, The thin line represents the kriging estimates
it goes through the data points but is much smoother than reality.
The dashed line is a conditional simulation : it also goes through
the data points, but in addition has a variability similar to that
of reality. We can notice that in general the kriging estimate 1is
closer to the real value than the simulation. This point should
be emphasized : conditional simulations do not purport to estimate
reality, but to reproduce its spatial variations, while remaining
consistent with the observed data.
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Fig. 3 : Reality - Simulation - Kriging

It is also interesting to note that for a given set of data
the average of many conditional simulations at a point x is simply
the kriging estimate, and their variance the kriging variance.
Indeed, from

25(x) = z2¢(x) + [s(x) - s%(x)]

it is clear that

E(zs(x){za, ZB"') = g*(x)

and Var(zs(x)lza, Zoeee) = Var(s(x) - S%(x)) = G%(X)

B

The variagbility of a conditional simulation about the kriging esti-~
mate reflects precisely the uncertainty attached to that estimate.

4 - A CASE STUDY.

We consider the same oil reservoir as that studied by Haas
and Jousselin, 1975, with a more elemenﬁary simulation method,
It has the shape of a well marked dome, with a maximum thickness
of arocund 140 m., and a lateral extension of the order of 3 or 4
Km. At the base cf the reservoir, there is a water table, and the



transition zone is particularly important. Therefore, the oil po-
rosity is considerably smaller in the lower layers.

Altogether 84 wells were drilled, but due to the early time
of the discovery, modern geophysical methods had not been used, so
that good correlations between wells are lacking, The reservoir
was thus simply divided into 7 horigzontal layers of 20 m. thickness
each (Fig. 4).

Pig, :

The average oil porosity of each layer has been estimated by kri-
ging and the results are reported in Table 1. To simplify matters
here, we will assume that these porosities are the true ones, and
will concentrate on the error due to the uncertainty about the re-
servolr boundaries. The simulation part will thus really concern
rock volumes, the conversion to oil volumes being done through mail-
tiplication by that fixed porosity profile.

Number Average
Layer of oi;
Wells Porosity TABLE 1
1 5 7.8 . .
2 15 6.2 Kriging estimates
3 23 7.0 (From Haas and Jousselin)
4 32 Te2
5 29 5.5
6 16 37
7 12 2.1




!

The geometric uncertainty originates frow two sources : the
depth of the top and thedepth of the water level, The latter is
evaluated to lie between 620 m, and 640 m,, that is, in layer 7.

~As for the top depth, it is found to be modeled best by a quadra-

tic drift and the following generalized covariance : ’

kK(h) = - 978 |b| + 1070 |n|®  (|n| in Km)

A regular grid with a spacing of 200 m. x 200 m, is superimposed

on the field and kriging estimates are computed at its nodes, as
well as standard deviations of the errors (i.e. gK(x)). The contour
maps plotted with a printer are shown in Fig. 5 b) and c).

Then, 30 different conditional simulations of the top depth

‘are produced. Their mean and standard deviation are drawn in Fig.

5d) and e)., With 30 simulations only, the mean is almost perfectly
equal to its theoretical expectation, the kriged map. The agreement
for standard deviations is also good, although in this case sampling
fluctuations are higher, a fact easily explained by basic statisti-
cal considerations. A few simulations are shown in. Fig. 6, as they
appear after cut-off below the lowest water level (640 m.). The di-
gits represent the numbers of the layers ; the blanks between layers
are just there to enhance visualization, The simulations have been
picked out to scan the range of rock volumes, starting from the
minimum at the upper right hand corner (n° 16) and increasing coun—
ter-clockwise to the maximum (n° 29) ; n° 20 corresponds to the
median volume and n® 11 and 13 to the 25% and 75% percentiles, Si-
mulation n® 28 had been added for its particular shape looking
somewhat like South America, while the others look like Africa,
Altogether, these simulations have a strong family resemblance -
which they should if they are to mimic tue same reservoir. But

in detail the contours are different. In spite of the 84 wells,

19 of which are in the water (below 640 wm.), the delineation of

the reservoir is still imprecise in the southern and the south~
eastern pard,

As an illustration of the conditioning effect, Pig. 7 shows
cross sections of the kriged top and of the simulations of Fig. 6,
along a line AB where estimation variances are low (see the string



a) Iocations of the wells A

b) Kriged isobaths to the top
(contour interval 20 m.) °

c) Xriging standard deviations
(contour interval 10 m.

d) Pointwise means of 30
conditional simulations

e) Pointwise standard deviations
of these simulations
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of holes in Fig. 5 ¢). The simulated profiles fluctuate about the
kriged curve, but are more chaotic, and even exhibit sudden down-
falls ; these are actually consistent with those observed from
some of the well data, and probably due to faults. In general,

the simulsted profiles remain within the % 2 ox confidence limits.
If a sample point had been located on AB (hence ox = 0), then all
profiles would go through it., From the Z* - 2 Ox limit of Fig. 7,
one may expect that some simulations will show a resurgence of the
reservoir above the water level in the southeastern part ; indeed
such effect is observed on simulation n° 26 and almost on n° 23,
In reality, this is an artefact due to the steep rise in kriging
variance as one moves away from the well sites.

Rock and oil volumes have been mlculated by numerical integra-
tion on the 30 simulations, under three assumptions for the depth
of the water level : 620 m., 630 m., 640 m, The results are recor-
ded in Table 2, in the order of the simulation numbers., These vo-
lumes have also been evalﬁated on the basis of the kriged top con-
tour. In the present case, the estimates turn out to be quite com-
parable to those derived by averaging over simulations, There is
no guarantee, however, that it should be so in general, because
the cutting off below water level is a non-linear operation. The |

rock volume, for example, is the integral :
vV, = J [z, - z(x)] 1 dx
R 1o WL {2(x)<2,;}

where 2 is the water level depth and 1{ the function

WL
assuming the value 1 if z(x) < Z

2(x)< 2y}
WL, ard Q otherwise, This integral
is dearly not linear in Z(x) and the estimator based on kriging :

} dx
WL

; *
= - *
(20 V= | Uy - #00) e
R
does not necessarily satisfy E(V; - VR) = Q. The same holds for
the volume of oil,

*

g of (12)
leads to rather intractable varience calculations ; in practice,

In addition to this risk of a bias, the estimator V
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VOLUMES COWPUTED FROM CONDITTIONAL SIMULATIONS

water ILevel 620 m Water ILevel 630 m| Water Level 640 n
Rock 0il Rock 0il Rock 0il
Volume Volume Volume Volume Volume Volume
106w | 10° o 10 o’ 10® w3 || 10° w? 10 w?
325.7 17.64 391. 1 19.01 463.9 20.54
332.7 18.49 395.9 19.82 467.0 21.352
337.9 18.64 402.3 19.99 473.7 21.49
231.4 T 18.11 395.9 19.46 467.6 20.97
324.7 17.72 393.1 19.15 468.2 20.73
350.7 19.25 417.0 20.65 489.6 22.17
3147 17.21 377.0 18.53 446.6 19.99
354.3 19.47 425.0 20.91 498.7 22.50
317.5 17.23 382.7 18.60 454.6 20.11
325.7 17.97 388.6 19.29 459.8 20.79
217.8 17.42 38243 18.77 450.7 20. 21
316.7 17.55 376.6 18.80 445.0 20. 24
332.9 18.17 401.1 19.60 475.9 21.17
320.8 17.68 387.8 19.09 466.3 20,73
290.6 15.78 3513 17.05 419.1 18.48
346.8 19.07 416.0 20.52 492.4 22.13
33543 18.51 398.4 19.83 466.8 21.27
316.2 17.28 386.3 18.75 465.0 20.41
332.0 18.18 397.3 19.55 467.8 21.03
312.9 17.06 .375.5 18.37 443,6 19.81
30546 16.71 368 .2 18.03 436,2 19.46
330.3 18.04 399.6 19.49 476,2 21.10
541.8 18.70 411.7 20.17 488, 1 21.77
318.9 17.43 383.0 18.78 453.3 20. 26
323.0 17.81 387.8 19.17 461.4 20.72
391.0 21.34 470.1 23.01 555.6 24.80
331.4 18.16 397.6 19.55 470.6 21.08
21.1 1.17 24.°7 1.24 28.4 1.31
VOLUMES CQOiPUTED FROM KRIGED RESERVOIR TOP
3%2.1 18. 27 306,.2 19.62 465.7 21.08

~TABLE 2-




one gives up, and this is & serious drawback.

The histograms of oil in place volumes are shown in Fig. 8.
They seem to be skewed to the right -~ though more simulations
should be made to be quite positive about this. For a fixed water
level, the distribution of reserves is not very dispersed : the
coefficient of variation o/m is 6%. -

Probireserves>x)

b 4
Prob{reserves>x)
% WATER LEVEL
?é 630mn
%
oy
%%% 0.5
%% g
. |
v
) i 7, 105m3
6 18 20 22 24 16 %
, sProbireserves> x)
Vi
%g WATER LEVEL ,
.77
47
%%
.
W
%%%5
W 10%m?3 s
16 18 20 22 24 % 18 20 22 24 x

Fig, 8 - Histograms and expectation curves
of oil in place volumes,

The conclusion at this point is that the uncertainty on the
depth of the reservoir top does not have a large influence on the
reserve estimates. This is due to the unusually large number of
wells, As for the effect of the uncertainty about the water level,
it is dampened by the low porosity of layer 7 : when the water le-
vel rises from 640 m, to 620 m,, the rock volume decreases by 30%
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but the oil volume by 14% only. 1In order to combine these two
sources of uncertainty (top and water level) one may randomize
the water level according +to a probability distribution, for
example a triangular one, But altogether, the geometry is well
enough determined and it is certainly necessary to give oil poro-
sities more attention,

-

5 = REWRITING HISTORY

As pointed out already, the number of wells is unusually largef
S0, it is interesting to see what our idea of the reservoir would
have been on the basis of, say, the first 25 wells, Considering
the picture derived from 84 wells as reality, wa can compare,.Then,
we may try to pux on the field'developer's shoes and find the best
location for the next few wells, with the intention to minimize
the uncertainty about the reserves. 0f course, we are aware that
the game is not fair, For one thing, the developer seeks to opti-
mize production, and not only the evaluation of reserves ; the re- |
gular spacing of most of the wells in the center part of the struc-@
ture proves it (Fig. 9). But also, our choice is guided by what we {7
know from all of the wells., Still, these reservations being made,
the results are quite striking.

The covarisnce that fits best with 25 wells is K(h) = 6430 lhl"
(|h] in Km.), a quedratic drift being forced into the model, Kri- “
ging of the top surface and 30 conditional simulations are done
using this covariance, ¥ig. 9 a shows that the reservoir closes
well to the North, but not to the South., The rock and o0il volumes
are in Table 3 (the heading "simulation" stands for the mean of 30
similations, and similarly for "g"). The volumes calculated from i
kriging are in good agreement with the true ones, but simulations
yield estimates that are 1.7 times larger for rock volumes, and
3 times larger for oil volumes, Note though, that these figures
are consistent with the huge ¢ values,. Such overestimation of the |
volumes is due to the lack of sufficient closure of the reservoir ;?
high variances make some of the simulations "go wild". Incidentall]

i



the display of thse wnrealistic simulations indicates where dril—
‘ling wells would most reduce the uncertainty.

1f we use the covariance in h and h3 inferred from the, 84
wells, the contours go too far to the Northwest (Fig. 9 b). Volumes
estimates derived from kriged isobaths are still good - this time
a little overestimated - but the simulation volumes are 1.6 times
too large f9r~rock'volumes and 3 times for oil volumes, The reason:

is the same as before,

Fig. 9 c¢ shows the kriged isobaths when two additional wells
are taken into account, those drilled n° 46 and n° 75 in chronolo-
gical order. N° 46, to the North, is in the water (z = 651 m,) and
ne 75, to the South, is in the reservoir (z 588 mw.). The closure
is much improved, and simulation volumes are of the order of 1.15
times too large for rock and 1.3%5 for oil.

it

Suppose now that instead of No 75 we drill ne 79, in the water
(z = 681 m., Fig. 9 d). The closure is this time very good and the
simulation volumes are undistinguishable from those obtained using
84 wells, The striking conclusion is that one could have achieved
the sawme accuracy with 27 wells as with 84 ! The price to pay is |
only the drilling of two wells in the water, Admittedly, it is
hard to convince a developer to drill in water on purpose, but on
the other haend, such wells bring valuable information on the ex-

tension of the reservoir,

Altogether it emerges that with few wells, estimates based
on the kriged top are more reliable than those derived from condi-
tional simulations ; we see in Fig. 9 that kriging at least ensures
the closure of the reservolr - in this case, not always ! - wnereas
~some of the similations do not close. But we also see on the 27 (2)
example that when this effect is eliminated, these simulations give
better estimates than kriging, which systematically underestimates

the volume,
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6 ~ CONCLUSTIONS

The method of conditional simulations is a new tqol to deal |
with the uncertainty associated with fragmentary reservoir descrip- |
tion data . Its main feature is to incorporate the information al-
ready- available : values observed at the wells and spatial correla- 1
tions, Conditional simulations may be displayed to suggest hypotheses
or interpretations to the geologist ; they can also give indicationsé
about appropfiate locations for new wells. The simulated values may |
be integrated to calculate volumes in place and build expectation

curves,

To give a computing time order of magnitude) the current simu- §
lation program SIMPACK takes 1/250th of a second per grid point and
per simulation, on a CDC 6600 coumputer, or 1/150th on an IBM 370-158;
For example, the case study presented here, with 24 x 24 x 30 = ‘
17 280 values to simulate, required 70 seconds of CPU time on CDC
6600, or 115 seconds on IBM 370~158.

The method may be further developed in several directions, One
is to take several variables into account, including the relations
between them (for example thickness, porosity, saturation). A com-
parison of resulfs and costs should then be made with standard
Monte Carlo routines.

Another direction is to remedy the boundary problem for poorly
closed reservoirs. It is indeed usually possible to decide for a
maximal contour which no simulation should overstep. One method
being considered, is to translate this information, and possibly
some other of geological origin, into "subjective data" with uncer-
tainty. The kriging and simulation approaches can then hardle such
lower quality data easily,

Lastly, it seems that it might be interesting to use conditional
simulations as input grids to reservoir production models based on
history matching techniques (see Chavent amd al., Gavalas axd al,),
The idea is to realize that, although permeabilities are highly
variable, they usually show some kind of spatial structure which it
would possibly pay off to enter into the production model.
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~-APPENDIX~-

GENERATION OF NON-CONDITIONAL SIMULATIONS : THE TURNING BANDS LIETHOD

A

The problem is to generate realizations of a random function
s(x) on Rn, with a given covariance K(h). There are methods based
on Fourier Analysis, on moving averages, or, in discretized form,
on the diagonalization of the covariance matrix, However, it is
simpler and less costly to use the following "turning bands" me-
thod, For pedagogical reasons, we will explain it in the case that
K(h) is the ordinary covariance of a weakly stationary random func~
tion S(x), with mean zero (abbreviation SRF). The results remain

true when X stands for a generalized covariance, and even turn out
to be simpler to apply, due to the admissibility of polynomial co-
variance models,

The idea is to reduce the simulation problem in RF to a simu-
lation problem in R1. A naive approach to extend a SRF Y(x) on a
line I, to the space R®Y would be to simply ascribe to each point x
of R™ the value of Y at the foot of the perpendicular dropped from
x onto I (Fig. 10 a). |

Six)

L 0 i<, >)

a) u fixed b) u randomized c¢) independent simula-
tions

Pig. 10 — The theoretical steps of the turning bands method
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ILet u denote a unit vector in B® and < X,u > the usual scalar
product of x and u in Rn ; K, is the covariance of Y amd 1is as-

1
sumed to be continuous.

Su(x) = Y(< x,u >)
is,a SRF on Rn and its covariance is

CE(5(x) 8,(0) = K (< x¥,u>)

But we do not like it because it is too anisotropic. LOreover, all
realizations of Suﬂx) are constant on hyperplanes.

- But suppose now that the direction u is chosen at random, uni-
formly on the unit sphere Sy of Rp, that is, according to the pro-
bability distribution =, » concentrated on 3, ard invariant by ro-
tations. Su(x),is then changed into a SRF s(x) whose covariance is

(13) K(x-y) = jx1 (< x=¥, u >) wyldu)

As < %=y, U > and w, are invariant under rotations, K(x~y) does not
depend on the orientation of the vector x-y : X is isotropic, Hence,
there exists a function K on RT such that K(X-y) = Kn(lX~yl). et
x-y =h =1 u withr = |h| and w, a unit vector € S, . (13) writes

(14) K, (r) = EK1(I° <, u>) e, (du)
and, as noticed, does not depend on Uy .

(14) defines an operator T, : K, - K, =T, X » called the
turning bands operator, that associates an isotropic covariance
on B to each (symmetric) covariance on Rr!. The key property of
Th is to be one-to-one (iatheron, 1973) . Given a continuous K, »
there exists a unigue continuous covariance K1 on the line such
that (14) holds., In R® and B2 formula (14) gives :

/2 '

(15) Kz(r) = % jo K, (r cos 6) as
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xIr
(16) @ =1 | k() a
o

(16) can easily be inverted :

K, (r) = '&% [r K3(r)]

2. We can note, how-

But there is no straightforward solution in R
ever, that for all n and any ¢ > 0 the function r* is an eigen-
function of T, ¢

Tn r% = constant xra
a property that makes simulation of polynomial generalized cova-—
riances particularly simple. For o = 2 p+1, the constant is :

By p = P! l"('lz' n) / (@2 r(p +% (14n)))

Coming back to our actual simulation problem, it may seem that
this randomization of u is Jjust a theoretical artifice, since reali-|

zations of S(x) are still constant on lines or planes, The next stepﬁg

is to approximate the spherical average (14) by a discrete average %%
over N lines, with directions us "equally spaced"™ on the unit sphere?
To achieve good convergence properties, independent SRF Yi(x), with |

the same covariance K1, are simulated on each line Iy and one takes

s(x) = (81(X) + SZ(X) tuuot SN(X) /ﬁf

where  S;(x) =Y, (<x, u; >)

‘The covariance of S(x) is
(17 Kn(!h!) ='11q' §K1 (< h, Uy >)-

In 2-D the number of lines may be chosen arbitrarily ; for example
the STMPACK program uses N = 180 . In 3-D the guestion is more com~ ;
plex ; standard practice is to take the N = {15 lines jJjoining the
midpoints of opposite edges of a regular icosahedron - the icosahe- |,
dron is the regular convex polyhedron witn the maximum number of




faces (20) (Guibal, 1972). Naturally, (17) is only a discrete appro-
ximation of (14), but the possible bias - depending on h - is small
compared with the natural fluctuations of the simulated random func-

tions, '

STUULATION OF AN IRF WITH POLYNOMIAL GENERALIZED COVARIANCE."

The last problem left at this point is the generation of the
Y, (x) on the lines, with the appropriate covariance K,. Again, se-
veral methods may be considered, the most general of which, for
SRF's, is based on the spectral representation of Y(x) by mean of
an orthogonal random measure (e.g. see Koopmans, p. 41). But in
practice, this method requires a fast vanishing spectral measure,
that is, a smooth SRF Y(x). Another technique based on moving ave-
rages is applicable whenever K, = £ = % is the auto-convolution
of some function f by its transposed £(t) = £(-%) (see Journel,
1974). We shall merely here sketch the technique used to simulate
IRF's on the line, with a given polynoumial covariance,

we start from the general representation of a k-IRF on R1

with polynomial generalized covariance (liatheron, 1973) :

~ b4 x k-1
(18) Y¥(x) = b, Ww(x) + b j W(E)AE +...+ by (x=E)” w(E)ag
1o o (k=1)!

where W(x) is a O-IRF with covariemce K(x) = - |h| (linear vario-
gram) ; for example W(x) may be chosen as a Wiener-I4vy process
(Brownian motion). The wonderful consequence of (18) is that it
suffices to simulate a single process W(E) and adapt the coeffi-

cients b, b1""’bk . For example, when k = 2, (quadratic drift)

k,(8) == agln| + a |nl’ - a,lnl” (s, =0, 2

o > > 0, a2, 2 -2 VaOaZ)

1

b1, b2 must be chosen to satisfy

.2 a2 2
e, =bs , a =by-2Db, b, ,a, =D

For k = 1, (linear drift) let b2 = Q.




w(x) itself may be simulated on a segment [-R, +R]  in dif-
ferent ways. The simplest, used in SIIPACK, is the following
(chilés, 1977 b) : take x, at random on [-R, +R], with a uniform
distribution, and a random value ¢ from a distribution with mean

zero and variance 52. Let

w(x) = ¢ 1{X0(X—Xo)> 0}

It is easy to check that for x and x+h in [~R, +R] :
E(W(x+h) - w(x))? = o?|n| / 2R

Iocking at a realization of W on a single line this procedure seems
crude, but averaging over a large number of lines endows S(x) with
a reasonable behavior,

Note that all realizations are zero at the center of the figure,.
as well as their derivatives up to order k.
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