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,1752'8&7,21�
Uniform Conditioning by panel grade consists of estimating the grade distribution 
on selective mining unit (SMU) support within a panel, conditional to the unique 
panel grade, usually an Ordinary Kriging to face a possible lack of stationarity. 
The general framework which forms the basis of Uniform Conditioning is the 
Discrete Gaussian Model of change of support, based in particular on the 
correlation between Gaussian- transformed variables. Recently mining companies 
have shown a renewed interest for Uniform Conditioning, because of its 
simplicity and efficiency in accounting for support and information effects at 
different scales. It was nevertheless restricted to selection applied to a main grade 
and recovery of the same element. The model has been extended to the 
multivariate case, where the correlations between all variables on any support can 
be calculated after transformation into gaussian space. In addition a rigorous 
formulation of the information effect on panel grade has been developed, that 
allows taking into account the heterogeneity of the data configurations when 
estimating panel grades.  

The uniform conditioning provides results assuming a free selection of SMUs 
within panels and does not give any indication on the confidence level of the 
estimates. The above limitations justify resorting to simulations that can be used 
as input for making statistics on expected fluctuations and for simulating a 
selection processes that is closer to real mining operations. An important 
drawback is the prohibitive time-consuming algorithm for block simulations on 
large deposits, when these were obtained by averaging simulated values at points 
that discretize the blocks/SMUs. An alternative method for calculating the change 
of support coefficient due to Emery and Ortiz (2005) authorizes to perform the 
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multivariate variographic analysis on Gaussian data and the application of a  
change of support model to get the block variogram model to be used for directly 
simulating  the blocks/SMUs. 
 
02'(/6�)25�121�/,1($5�*(267$7,67,&6�
%DVLV�RI�WKH�'LVFUHWH�*DXVVLDQ�0RGHO�
Let v be the generic selection block (SMU) and Z(v) its grade, that will be used 
for the selection at the future time of exploitation (we assume that this grade will 
be then perfectly known, i.e. there is no information effect on this). The 
recoverable resources above cutoff grade z for such blocks are: 
- the ore T(z) = ( )1�����≥  

- the metal Q(z) = ( )( )1���	�= Y ≥  
We use here the discrete Gaussian model for change of support (e.g. Rivoirard, 
1994). A standard Gaussian variable Y is associated to each raw variable Z . Let 

( ) ( ( ))= [ < [= Φ  be the sample point anamorphosis. The block model is defined 
by its block anamorphosis ( ) ( )
��= Y <= Φ , given by the integral relation : 

2( ) ( 1 ) ( )
 \ U\ U X J X GXΦ = Φ + −∫                                             (1)

        
where the change of support coefficient r is obtained from from the variance of 
blocks. 
 
Then the global resources at cutoff z are: 
- ore: [ ] ( )( ) 1 1 1 ( )������ ���( 7 ] ( ( * \≥ ≥  = = = −                                  (2) 

- metal: [ ] ( )( ) ( )1 1 ( ) ( ) ( )������ ������� ��( 4 ] ( = Y ( < X J X GX≥ ≥  = = Φ = Φ    ∫           (3) 

where g and G are the standard Gaussian p.d.f. and c.d.f., and y is the gaussian 
cutoff related to z through ( )�] \= Φ . 
 
8QLIRUP�&RQGLWLRQLQJ��8&��LQ�WKH�8QLYDULDWH�&DVH�
UC by panel grade (Rivoirard, 1994) aims at estimating the recoverable resources 
on a generic selection block v uniform within a large block or panel V, 
conditioned on the sole panel grade, or for more generality, the panel grade 
estimate, say, Z(V)*. 

[ ] [ ]*)(1*)( )( 9=(]7 �� !
≥=                             (4) 

[ ] [ ]*)(1)(*)( )( 9=Y=(]4 "#$%
≥=                      (5)

       
The idea is to impose the panel grade, estimated for instance by Ordinary 
Kriging, in order to avoid the attraction to the mean that may be caused by some 
techniques in case of deviation from stationarity. The estimation of the metal at 0 
cutoff must then satisfy the relation: E[Z(v) | Z(V)*] = Z(V)*. As v is uniform 
within V, it follows first that the panel grade estimate Z(V)* is implicitly 
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assumed to be conditionally unbiased i.e. E[Z(V) | Z(V)*] = Z(V)*. Secondly it is 
assumed that the anamorphosis of Z(V)* is obtained from that of Z(v):  

[ ]
** * *( )* ( ) | ( ) ( )& '(*),+ ( + -.+= 9 ( < < < <ρ= Φ = Φ = Φ  

assuming the standard Gaussian variables Yv and YV* being bigaussian, and 
denoting * *( , )/10 /*06 U U FRUO < <ρ= =  . 
In practice S is obtained from the variance of the panel estimate. The previous 
relationship is used to compute the correlation between the block and the panel 
estimate: * *( , ) //20 /30FRUO < < 6 Uρ= =  

The ore tonnage and metal at cutoff )(\] 4Φ=  are then  

[ ] ( )*

* *
( )( ) 1 ) ( ) 1 156 7�8:9 ;=< 67 ] ( = 9 ( < * D≥ ≥

  = = = −                                           (6) 

[ ] 2
* * *( ) * ( 1 ( ) ) ( )> ?A@1>B> @3>C4 ] < X J X GXρ ρ= Φ + −∫ with * *

2
*1 ( )

D3EBE
D3E

\ <D ρ
ρ

−
=

−
            (7)

          
8QLIRUP�&RQGLWLRQLQJ�LQ�WKH�0XOWLYDULDWH�&DVH�
Indices are now added to distinguish the variables. Let Z1 be the metal grade used 
for the selection, and let Z2 be one of the secondary metal grades. In addition to 
the univariate case seen above, we now wish to estimate the other metals, for 
instance: 

FGHY=]4 ≥= )(22 1
1)()(  

Its global estimation is given by:  

[ ] [ ]

( )

1 1

1 2 1 2 1 2

2 1 2
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   = Φ = Φ   

= Φ∫

            

(8) 
where r2 is the change of support coefficient for Z2, and 1 T<  and 2 U<  are 
bigaussian, with a correlation VVVV <<FRUO 2,121 ),( ρ=  that is the covariance between 

both random variables. 
 
Multivariate UC (Rivoirard, 1984) consists in estimating the recoverable 
resources of blocks v in panel V from the sole vector of panel estimates (Z1(V)*, 
Z2(V)*, …). The problem is simplified by assuming that: 
- 1( )= Y  is conditionally independent of the auxiliary metal panel grades 
given 1( )*= 9 , and so the UC estimates for the selection variable correspond to 
the univariate case. 
- similarly, Z2(v) is conditionally independent of Z1(V)* given  Z2(V)*,.  
- 1( )= Y  and 2 ( )= Y  are, conditional, independent of the other metal panel grades 
given 1 2( ( )*, ( )*)= 9 = 9 . It follows that the multivariate case reduces to a 
bivariate case. In particular we have: 
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9=9=Y=(]4 WXYZ                              (9) 

We further impose, for the metal at cutoff 0: 
 

[ ] [ ]2 1 2 2 2 2( )| ( )*, ( )* ( )* ( )| ( )*( = Y = 9 = 9 = 9 ( = Y = 9= =                              (10) 

This is similar to the univariate case, so that, first 2 ( )*= 9 �is implicitly assumed 
to be conditionally unbiased. Secondly, the Gaussian anamorphosis of 2 ( )*= 9  is 
obtained from that of 2 ( )= Y and is given by 

2 2 2 2 * 22 2, 2 2 * 2, 2 * 2, 2 *( )* ( ) | ( ) ( )[J\]_^ ` ] ` a `= 9 ( < < < <ρ = Φ = Φ = Φ               (11) 

 
The model is entirely specified by the anamorphosis, the different change of 
support coefficients, and the correlations between the Gaussian variables (Y1v, 
Y1V*, Y2v, Y2V*). The correlation between Y1v and Y2v, and that between Y1V* and 
Y2V* allow completing the correlations by using the conditional independence 
relationships: 
 
- As Z2(v) and Z1(V)* are considered independent, conditional on Z2(V)*, we 
have: 

2 1 * 2 2 * 1 * 2 *( , ) ( , ) ( , )bdc bec c cFRUO < < FRUO < < FRUO < <=     

i.e. 2
2 1 * 2 2 * 1 *2 * 1 *2 *

2

fhg figjgkg gkg6
Uρ ρ ρ ρ= =                                             (12) 

- As Z1(v) and Z2(V)* are considered independent, conditionally on Z1(V)*, we 
have similarly: 

1
1 2 * 1 1 * 1 *2 * 1 *2 *

1

lim lhmjmkm mnm6
Uρ ρ ρ ρ= =                                                                         (13)  

The secondary metal 
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can then be computed. After developments as detailed in Rivoirard (1984), we 
finally get the remarkable expression: 

( )( )2 2

2
2 2, 2 2 * 2 * 2 2 *( ) * 1 ( )s tu vxw y zMu{u y zMu|4 ] < X J X GXρ ε ρ  = Φ + −  ∫      

with 12( )VLJQ Uε = , 2 2 *
2 2 *

2
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(15) 
'LUHFW�%ORFN�6LPXODWLRQV�
The discrete gaussian model can be seen basically as a block model, where the 
domain is partitioned into small blocks v. Then each sample point is considered 
as random within its block, and conditional on its block value (here the 
multivariate value of the different elements), the point (multivariate) value does 
not depend on any other variable, whether they are values of other blocks or other 
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points, even in the same block. This will allow to deduce the point-point and 
point-block covariances from the block-block covariances. After anamorphosis, 
all Gaussian values are considered as multi-gaussian, allowing conditional 
simulation. The model is specified by the simple and cross-covariances of block 
Gaussian variables, from which the other covariances can be deduced, for 
instance between elements 1 and 2 and blocks i and j: 
- block-block cross-covariance: Cov[Y1,vi , Y2,vj] 
- point-block cross-covariance: Cov[Y1(xi), Y2,vj] = r1  Cov[Y1,vi , Y2,vj] 
- point-point cross-covariance: Cov[Y1(xi), Y2(xj)] = r1 r2  Cov[Y1,vi , Y2,vj] 
except between the point and itself where the covariance is derived from the 

statistics on the data Cov[Y1(xi), Y2(xi)] (for a single point element, the 
variance is 1). 

 
The difficulty is to get a consistent model on Gaussian transformed variables 
from the model of the raw variables. The link between covariances on raw and 
gaussian variables is expressed by means of the gaussian anamorphosis model. 
But the uniqueness of the solution on inverting these relationships is not 
guaranteed. Another approach  (Emery and Ortiz 2005) can be followed 
considering that the Gaussian transform on block support is the regularized point 
Gaussian variable, normalized by its variance, this being precisely the square of 
the change of support coefficient. This leads to another way of determining the 
change of support coefficient, using the variogram and variance of the gaussian 
variable, instead of those of the raw variable as used in the “classical” method: 

2 var ( ) var ( ) ( , ) 1 ( , )� �U < Y < [ Y Y Y Yγ γ= = − −;  
In the same manner one can calculate directly the block gaussian covariances and 
cross-covariances from the regularized simple and cross-covariances of the 
gaussian data: 

1 11 1
1 1 2 2 2

1 1 1

( , ) 1 ( , )cov( ( ), ( ))
cov( , )�

� � � ����� Y Y Y Y< Y < Y< < U U U
ρ γ−

= = =                                                   

(16) 
[ ] [ ]

1 2 1 21 21 2
1 2

1 2 1 2 1 2

( , ) cov ( ), ( ) ( , )cov ( ), ( )
cov( , )�

��� � ��� ���A� Y Y < [ < [ Y Y< Y < Y< < U U U U U U
ρ γ−

= = =        

(17) 
 

&$6(�678'<�
'HVFULSWLRQ�RI�WKH�'HSRVLW�
*HRORJ\�
There are at least 3 arsenic mineralization events in this copper deposit. A 
younger mineralization pulse, related to the potasic alteration and at least two 
different  later events are recognized that belong to the phyllic late-alteration 
stage. While in one stage enargite is in veins associated with pyrite, covellite, 
digenite, in the other late and more intense event, enargite occurs in high-grade 
veins, breccias and stocwork related to pyrite and, to a lesser extent, to tennantite. 
The present study is related to this last stage (Fig 1). 
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Figure 1: View of the high As area (color from pale blue to red depending on the ore proportion 
within 20x20x18m3 blocks) and the layout of drillholes. 
�
'DWD�
We have considered the two variables Cu and As of the high As domain, 
composited on 3m. The data set, made of 68 drillholes, is almost perfectly 
isotopic (i.e. all variables sampled at all locations). The domain is defined on 
panels that have a square section of 20mx20m. The block model is made of 
regular panels of 18m high, which is the practical bench height. Each panel 
contains 6 smus of 20mx20mx3m. Uniform Conditioning requires estimating the 
panels. After cokriging, the statistics provide a more reliable estimate of the mean 
of the whole deposit (it is the consequence of the declustering property of 
kriging). The cokriging weights assigned to the Cut (total copper grade) 
composites when estimating Cut have been used for calculating the histograms as 
well as the corresponding anamorphosis and variograms. The table 1 shows that 
the declustering does not change the statistics for As. 
 
Table 1: Statistics on the 3m composites before and after declustering (the difference in counts is due 
to exclusion of a few data with negative weights).  

VARIABLE Count Minimum Maximum Mean Std. Dev. Variance 

Cut 

2169 0.02 6.39 0.99 0.67 0.44 

2127 0.02 6.39 0.82 0.47 0.22 

As 

2165 0 2.11 0.22 0.16 0.02 

2123 0 2.11 0.21 0.14 0.02 
 
The linear coefficient of correlation of composites of As and Cut is 0.53, but it should 
be noted that the scatter plot are not elliptical and the regressions are not linear (Fig. 2). 
Things are not much different after the normal-score transform. 
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Figure 2: Scatter diagram of As and Cut on composites 3m with the regression curve (As|Cut) on raw data and  
               after normal score transform. 
 

*HRVWDWLVWLFDO�$QDO\VLV�DQG�0RGHOLQJ�IRU�8QLIRUP�&RQGLWLRQLQJ�DQG�%ORFN�
6LPXODWLRQV�
9DULRJUDPV�RQ�&RPSRVLWHV�
Uniform Conditioning requires the dispersion variances and covariance of the kriging of 
the secondary variable (As) and the main variable (Cut) on the panels. These statistics 
can be obtained from the multivariate variogram model, fitted on the weighted 
experimental variograms (Fig. 3). There is no evidence of anisotropy, and the 
variograms, computed up to 250 m, show a sill lower than the sample variance, due to a 
larger scale variability. We have considered the statistical variance as the most reliable 
estimate of the actual variance and have derived from it the dispersion variance of the 
SMUs. 
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Figure 3: Bivariate experimental and modeled variograms on 3m composites. 
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The weighted simple variograms on the normal score transforms have a sill closer to 
their variance of 1 (Fig. 4). The cross-variogram shows the existence of a structure at 
large distance (220m) with a negative correlation. 
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Figure 4: Bivariate experimental and modeled variograms on normal score transforms of 3m composites. 

&KDQJH�RI�6XSSRUW�
The change of support coefficients are calculated in two different ways for Uniform 
Conditioning and Direct block simulations. 
 The change of support used in Uniform Conditioning is calculated: 
o for the SMU support, from the variance computed from each variogram model of 

raw data. 
o for the kriged panels, from the theoretical dispersion variance of the cokriging of 

the panels. In order to account for the heterogeneity of the cokriging configurations, 
the panels can be classified according to the variance of the main variable, with a 
value of the change of support coefficient that depends on the class. 

For the simulations the change of support coefficients result from the regularization of 
the Gaussian variogram model on the SMU support. Table 2 gives an idea of the 
variations of the coefficients according to the two approaches. 
 
Table 2: Change of support coefficients for SMUs, calculated from the variogram of raw data (method 1) or  
              from the variogram of Gaussian transforms. (method 2). 

5HVXOWV�
&RPSDULVRQ�EHWZHHQ�8QLIRUP�&RQGLWLRQLQJ�DQG�'LUHFW�%ORFN�6LPXODWLRQV�
The grade tonnage curves when selecting on Cut (Fig. 5) show that the direct block 
simulation technique gives a slightly lower tonnage for cut-offs less than 0.8%. (and 

 Cut As 
Method 1 0.75  0.71 
Method 2 0.71 0.64 
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slightly higher values for cut-offs from 0.8 to 1.5 %) and slightly higher Cut grades than 
UC (the global grade-tonnage curves on SMU support is very close to the simulations). 
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Figure 5: Grade-tonnage curves on smus Cut, calculated from UC or simulations.  

The average As grade when cutting on Cut is higher for UC, particularly at cut-off 
around 1.2 (figure 6). 
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Figure 6: Mean As grade recovered after cutoff on SMUs Cut, from UC or simulations. 

It should be noted that Uniform Conditioning and block simulations are very close for 
the range of practical cut-offs (between 0.25 and 0.5 % Cut). The difference in As mean 
grade appearing for higher cut-offs has applies to smaller tonnages and may come from 
a limited number of panels. 

&RPSDULVRQ�EHWZHHQ�6LPXODWLRQV�2EWDLQHG�E\�WKH�'LUHFW�DQG�WKH�&ODVVLFDO�0HWKRGV�
The block simulations have been averaged in order to calculate simulated panel grades. 
A further simulation post-processing has been carried out to average the 50 simulations 
(giving a approximation of the conditional expectation for each panel). The statistics on 
the 5308 panels entirely simulated (Table 3) show a good fit of the average grades 
obtained by cokriging and by simulations, and a higher standard deviation for cokriging. 

Table 3: Statistics on the average of 50 simulated panel values obtained by direct block simulation compared  

              with the panels cokriging values.  

VARIABLE Count Minimum Maximum Mean Std. Dev. 

Cokriging Cut 5308 0.295 2.084 0.821 0.282 

Mean of direct simulations of Cut 20x20x3 5308 0.259 1.99 0.82 0.23 

Cokriging As 5308 0.043 0.78 0.21 0.07 

Mean of direct simulations of As  20x20x3 5308 0.04 0.642 0.207 0.047 
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The classical simulation method consists in discretizing each block into n points and in 
averaging the simulated point values. The comparison of both methods has been made 
by averaging 50 simulations of panels, and shows behaviours that are largely similar, 
although there is a notable dispersion (Fig. 7). 
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Figure 7: Scatter diagram of the average of 50 panels simulations obtained by averaging points or from the  
               direct block simulations method��
 
&21&/86,216�
The generalization of the discrete Gaussian model to the multivariate case has shown 
interesting applications for predicting recoverable resources that account for change of 
support. Regarding the sought objectives, these methods are remarkably simple, 
depending on a few key parameters, and can be run in a very short time. 
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