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From exploratory data analysis to geostatistical
estimation: examples from the analysis of soil pollutants

C . d e F o u q u e t
MINES ParisTech, Géosciences-géostatistique, Ecole des mines de Paris, 35 rue Saint-Honoré, 77305 Fontainebleau Cedex, France

Summary

Data collected during sampling of the soils of former industrial waste lands are rarely scrutinized closely.
However, exploratory analysis is an essential stage, allowing, inter alia, the detection of possible hetero-
geneities on the site, examination of the vertical variation in concentrations and detection of possible gaps
in the survey. If available and identified, duplicated measurements can be used to characterize the magnitude
of measurement errors. Subsequent spatial analyses with variograms aim to characterize and to quantify the
spatial variability. For hydrocarbon pollution in soils, the spatial variability at small distances is very large
and results in large uncertainties in the estimates. In this context, the usefulness and the limitation of linear
estimation (kriging) are reviewed and illustrated. When mapping polluted zones defined by a quality threshold,
such as a regulatory limit on acceptable concentrations, the kriged concentration map can be combined with
the associated kriging standard deviation map to identify areas in which the uncertainties make it impossible
to decide whether concentrations are greater or smaller than the quality threshold. Examples of exploratory
and variogram analysis are given, followed by linear estimation of concentrations and comparison with a
threshold, using data on hydrocarbon pollutants.

De l’analyse exploratoire á l’estimation géostatistique pour des pollutions organiques des sols

Résumé

Les données acquises lors de l’échantillonnage des sols de friches industrielles sont rarement examinées avec
attention. Or l’analyse exploratoire est riche d’enseignements : mise en évidence de possibles hétérogénéités
du site, examen de la variation verticale des concentrations, détection de possibles lacunes de la recon-
naissance, utilité des mesures redondantes pour caractériser l’amplitude des erreurs de mesure, etc. L’étape
suivante d’analyse variographique permet de caractériser la variabilité spatiale (anisotropies . . .) et de la
quantifier. Pour des pollutions de sols par des hydrocarbures, la variabilité à petite distance apparaît très
élevée, ce qui induit de fortes incertitudes sur l’estimation. Dans ce contexte, l’intérêt et les limites de
l’estimation linéaire par krigeage sont rappelés et illustrés. Les zones polluées sont définies comme le lieu
où les concentrations réelles (et dont le support est spécifié) dépassent une valeur limite ou � seuil �.
Combinée à la carte des concentrations estimées, la carte de l’écart-type de l’erreur d’estimation permet
de délimiter les zones d’incertitude par rapport au dépassement de seuil, à un risque statistique près. Des
exemples de pollution par des hydrocarbures illustrent les principales étapes de l’analyse exploratoire et
variographique, ainsi que l’estimation linéaire et la comparaison à un seuil.

Introduction

The soil, whether from agricultural land or former industrial sites,

is a complex environment and its properties can vary strongly

over short distances. Sampling is therefore needed to determine
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its properties in any particular parcel of land. Geo-referenced

data thus obtained may be used for different purposes, includ-

ing: (i) statistical characterization of variables such as physical

properties or concentrations of substances, and sometimes infor-

mation on their variation down the soil profile, or joint variation

of two substances; (ii) local estimation, to draw maps of soil

characteristics as accurately as possible; (iii) delimitation of zones

where a variable exceeds, or is smaller than, a threshold value, in
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order to apply a fertilizer treatment or to implement remediation,
for example and (iv) subdivision of land ‘into parcels to be man-
aged more or less differently according to these changes in the
soil’ (Webster & Oliver, 1990).

The data, which are expensive to collect, often only serve as an
input to ‘black box’ models, to produce statistics or maps auto-
matically. However, these uncritical treatments do not make full
use of the data. With the help of simple statistical or geostatistical
tools, exploratory and variogram analysis can additionally provide
a synthetic description of the variable studied. Exploratory stages
are difficult to formalize by a general flow chart and are often
neglected, and in this paper I try to show their usefulness. The
results of exploratory analysis are then used to guide modelling,
including variogram fitting and estimation.

The context is soil pollution by hydrocarbons on former indus-
trial sites. This differs from an agronomic context in that the
studied variables are mainly pollutant concentrations, sometimes
only one substance may be considered (a univariate case) and
the sampling design is generally irregular or sparse. Diversified
and successive activities located at various locations on the site,
infrastructure such as roads or underground pipes and other instal-
lations generate heterogeneities in concentrations. Finally, during
site decommissioning, levelling of the site and the use of infill
material from various sources can further modify the spatial dis-
tribution of pollutants.

In this paper these problems, and solutions, are demonstrated
in the context of three case studies. The principles and tools of
exploratory analysis are reviewed. An example of kriging esti-
mation is given and the consequences of uncertainties for the
comparison with a quality threshold are discussed.

Study sites

Former petrochemical complex

At the request of the data supplier, only restricted information
can be made available. The former petrochemical complex covers
approximately 240 ha. The site survey consisted of about 60
sampling points, separated by some 150 m (Figure 1). In the zone
of the former production units, sampling was locally intensified to
an approximately 35-m spacing (about 130 sampling points). At
most sampling points, two samples were taken, a ‘surface’ and a
subsurface one (other details of sampling are not known).

The statistics for the concentrations of hydrocarbons at this
site are summarized in Table 1. The empirical mean concentra-
tion is slightly larger in the zone of the production units (about
1600 mg kg−1) than across the whole site (about 1350 mg kg−1),
but the vertical variation of concentrations is different. Across
the whole site the mean subsurface concentration (1800 mg kg−1)

is twice as large as that of the surface (900 mg kg−1), whereas
the contrast between surface and subsurface concentrations is
attenuated in the zone of the production units with respective
means of about 1700 and 1500 mg kg−1. In this zone mixing
of material from the two depths might explain these differences
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Figure 1 Sampling design of the former petrochemical complex. Symbol
size is proportional to subsurface sample concentration. The local origin
of the coordinates is arbitrary.

(de Fouquet et al., 2004). The summary statistics show the com-
plexity of this site.

Two sites from the LOQUAS project

The LOQUAS project aimed to assess measurements of hydrocar-
bon concentrations in soils made in the field with the Pollut-Eval®
system, based on pyrogram analysis (Blanchet et al., 2005; Benoit
et al., 2008). The Pollut-Eval® analysis is performed on a small
mass of soil (about 100 mg), which raises the questions of how
to obtain a representative sample, and whether it is acceptable
to form composite samples. In order to answer these questions it
is necessary to characterize the spatial variability from scales of
centimetres to tens of metres. Two sites were investigated using
multiscale sampling on embedded grids.

LOQUAS site 0. A region of about 140 m2 on a former test site
for aircraft engines was sampled after the first 0.20 m of soil had
been removed. The horizontal nested sampling scheme consists of
a basic grid with 6-m spacing, locally intensified to 3.0, 1.50, 0.50
and 0.25-m intervals (Figure 2). The primary sample (Gy, 1975)
consisted of a small soil core of depth 1.5 cm and square section
with sides of approximately 10 cm. The sections were sampled
according to a systematic ‘reference’ pattern, which is a set of
five ‘Pollut-Eval® points’ located at the corners and centre of an
8-cm sided square. In addition, six of these sections were more
intensively sampled by 25 ‘Pollut-Eval® points’ spaced at 2-cm
intervals.
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Table 1 Statistical summary of pollutant concentrations on the common data points for both depth intervals of the former petrochemical complex

Area Depth Number of data Min. Max. Median Mean Standard deviation Coefficient of variation

Approximately
150-m grid

Surface 63 1 15 935 120 900 2590 2.9
Subsurface 20 53 415 270 1810 6695 3.7

Area of former Surface 127 1 32 005 250 1480 4090 2.8
production
units (PU)

Subsurface 1 31 410 210 1700 3965 2.3

Units are mg kg−1 (Min. = minimum; Max. = maximum).

(a)

(b) (c)

Figure 2 Site LOQUAS 0. (a) Multi-scale grids, (b) zoom on the central
zone and (c) detail of the five-point pattern (full circles) and of the
six quasi-exhaustive 25-point patterns (A3, A7, A9, B1 = f1, f2, f3) on
the 10 cm × 10 cm soil sections. The local origin of the coordinates is
arbitrary.

Statistics were calculated with only nine data. From the basic
6-m grid, the mean of the nine sections (empirical mean concen-
tration on the five-point patterns) is about 1300 mg kg−1, with
a coefficient of variation of 70% (Table 2). Mean and variance
increased with scale from 6-m to the 3-m to 1.5-m grids, but the
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Figure 3 Site LOQUAS 2. Five-metre horizontal grid and local 1-m grid.
Each circle represents the location of one vertical borehole of 4-m length,
cut into four 1-m cores. The local origin of the coordinates is arbitrary.

coefficient of variation did not change (Table 2). This might indi-
cate the presence of a proportional effect, which is discussed later.

LOQUAS site 2. A small region of about 400 m2 at a former
commercial fuel station was sampled with vertical drillings located
at 25 nodes on a horizontal 5-m square grid, with some gaps in
this sampling regime (Figure 3). Vertical 4-m drill holes were cut
into four 1-m sections, which were homogenized on site. Three
samples were taken from each homogenized core. The 97 data are
the empirical means of these three Pollut-Eval® measurements.

Table 2 Statistical summary of pollutant concentrations on the multiscale grids from the LOQUAS site 0

Grid size (m) Number of data Min. Max. Median Mean Standard deviation Coefficient of variation

6 9 530 3700 1040 1300 910 0.7
3 9 840 3700 1040 1660 1080 0.7
1.5 9 830 3700 970 1700 1160 0.7
0.5 12 400 13 670 1290 2650 3510 1.3

Means are on a five-point pattern. Notations are as used in Table 1. Units are mg kg−1 (Min. = minimum; Max. = maximum).
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Table 3 Statistical summary of concentrations for two grids of the site LOQUAS 2. Four-metre vertical drillholes, cut into 1-m cores

Grid (m) Number of elementary measurements Number of data Min. Max. Median Mean Standard deviation Coefficient of variation

5 m Three on homogenized core 97 130 1590 520 580 320 0.54
1 m Four in the middle of non-homogenized core 49 120 1710 390 470 360 0.76

The grid refers to the horizontal design. Data are the means of, respectively, three or four measurements, depending on the grid. Units are mg kg−1.

The overall site mean is 580 mg kg−1, with a coefficient of vari-
ation of 55% (Table 3).

In some areas, the horizontal sampling was intensified to 1-m
intervals, in order to compare vertical and horizontal variability.
The additional data are the means of Pollut-Eval® measurements
of four samples taken in the horizontal section in the middle of
the vertical 1-m core, before homogenization. The additional data
are thus located on a three-dimensional 1-m grid. Their mean
is smaller and their standard deviation larger than those of the
5-m grid.

Exploratory analysis

The aim of exploratory analysis is to understand how the variable
studied is distributed on the site. This stage is an essential first step
to guide the subsequent modelling or, even if there is no subse-
quent modelling, to obtain a summary description of the pollution.

Preliminary stages

The site history indicates which pollutants should be investigated.
The plans of the former facilities indicate possible areas of large
concentrations. Site history provides useful but often incomplete
supporting information: accidental spills and temporary storage of
polluted materials have generally been forgotten. A geophysical
survey can locate buried objects such as previous infrastructure
components and other large materials such as barrels. However,
the results are not directly related to the concentrations of pollu-
tants and their spatial variability depends on depth, the acquisi-
tion technique and the method used for the return of previously
removed soil. Geophysical survey results should not be used as an
approximate map of concentrations. As with the site history, these
suggest the possible presence of pollution, but are less reliable as
indicators of where pollution is absent.

On polluted sites the initial sampling scheme is usually irregular
and may have been intensified in areas where larger concentrations
were expected. Statistics calculated from such preferential sam-
pling cannot be extrapolated a priori to the whole site. Statistics
calculated from a regular sampling design are more reliable and
a subsequent systematic sampling may identify other areas with
large concentrations on the site. Exploratory analysis is divided
into the following three stages.

Visualization of the data. After coding available information
(lithology, drill-hole length and classes of concentration), mapping
the data helps to answer important questions. (i) Sampling

characteristics: is sampling regular, or are irregularities or
intensifications of the sampling deliberate in some regions, which
might introduce bias? (ii) Vertical extension of the survey: what
is the maximum depth and why (were there drilling problems,
changes of the lithology, etc.) and are some depths less fully
sampled? (iii) Does sampling differ according to some criteria, for
example lithology (superficial infill material or underlying soil)?
(iv) When successive sampling campaigns were carried out, how
were they organized?

Some other information is also essential for interpreting the
data, including whether the samples were simple or composite,
whether the materials were homogenized or not before sampling,
whether the sampling technique was similar for all the data and
whether they have the same support (the size and shape of the
volume of soil to which the data correspond). For example, on
the LOQUAS 2 site, the preparation of samples (taken before
the cores were homogenized or after) and their supports differed
between the 5-m and 1-m grids. We also need to know whether
the samples were located in the saturated or unsaturated zone.

Statistical summary and histograms. The statistical summaries
(minimum and maximum values, mean, standard deviation and
coefficient of variation, and percentiles) can be calculated overall
and for some specific classes such as lithology or depth interval.
When the concentrations range over several orders of magnitude,
it is convenient to examine log-transformed values.

The statistical summary provides information about the site
characteristics such as (i) the range and variability of the
concentrations and the criteria according to which these vary and
(ii) the presence of one or more populations, in particular when the
histogram is multimodal. In this case, we need to know whether
the different classes or modes are separated or mixed on the site.

The empirical variance represents a dispersion variance; that is,
the variance of one data point uniformly taken from the dataset.
This variance depends on the support of the data and on their
relative location (Chilès & Delfiner, 1999). Except for the mean,
all characteristics of the distribution linked with dispersion also
depend on the support of the samples and on the extent of the
sampled domain. For this reason, data obtained from different
measurement techniques or with different supports should not be
mixed for statistical calculations.

Scatter diagrams. Scatter diagrams show how one variable varies
with another one, for example, how concentrations vary with
depth. Plotting the empirical regression (the empirical mean of
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the ordinate by class of the abscissa) makes it possible to exam-
ine whether the link between the variables is linear or not. When
the data are represented by the same symbols or colours on the
different figures, simple plots such as location map, histograms
and scatter diagram complemented by the empirical regression
are very informative.

When calculated from regular sampling, the scatter dia-
gram plotted between local mean and variance allows us to
detect and identify any relationship between these two quanti-
ties (Chilès & Delfiner, 1999). The proportional effect is pre-
sented and discussed for the site LOQUAS 0 in a subsequent
section.

Consequences of sampling characteristics

What the data can or cannot show depends on how the sample
locations were selected and on the depth sampled. Because of the
spatial correlation, the data should be regularly distributed over
the domain so that statistics reflect reality.

Empirical quantities (mean and variance) can be seen as a dis-
crete approximation of associated ‘regional quantities’ (Chilès &
Delfiner, 1999). For the variable z, the empirical mean 1

n

∑n
i=1 zi

of the n data located in the domain V is a discrete approximation
of the spatial integral 1

V

∫
V

z(x)dx. This approximation is more
precise when the n data cover V regularly, and it can be biased
when data are irregularly or preferentially located. In the same
way, the empirical variance is an approximation of the disper-
sion variance of a point (randomly and uniformly taken) in the
domain V . Declustering techniques should then be used to extract
data subsets to obtain an approximately regular grid, or weighting
the data to avoid losing some of them (Chilès & Delfiner, 1999).
Nevertheless, the bias induced by preferential sampling cannot
always be corrected, for example if the large or small values are
not measured.

Initial sampling of polluted sites is generally restricted to
shallow depths. A survey of superficial material can be justified
when the risk is restricted to these depths, for example for dust
generation. However, an accurate characterization of the vertical
distribution of concentrations is needed to evaluate the volumes
of soil polluted or to study the risk of transfer to groundwater.
For many sites, polluted volumes remain unknown at the end of
the investigation (de Fouquet, 2006).

When various operators have worked on a site, the resulting
sampling design becomes irregular, but the less-sampled areas are
not always apparent. They are highlighted by the kriging standard
deviation map, even if an approximately fitted variogram model
is used.

Application 1: variation of concentrations with depth

On some sites, the sampling technique varies according to depth.
As the support is variable, care should be taken when comparing
the statistics for concentration at various depths.

Example 1: former petrochemical complex. The comparison of
the histograms for concentrations measured at various depths on
samples with a common support is enlightening. On the former
petrochemical complex, the statistical summaries for the global
150-m grid show that concentrations at depth were, on average,
twice as large as those at the surface (Table 1). Linking histograms
and scatter diagrams with the location map (Figure 4) gives further
insights. For both depths the histograms of the logarithms are
bimodal, but the value and the frequency of the modes vary with
depth. For the surface concentrations, the small-values mode is
larger, whereas at depth the two modes have similar frequencies.
At some points concentration is larger at depth and surface
sampling may therefore not detect underlying ‘hot spots’. This
observation has some general consequences for remediation: in a
zone where no pollution is detected at the greatest depth sampled,
this does not necessarily indicate that there is an absence of
pollution at greater depth.

Example 2: regular grid site LOQUAS 2. The scatter diagram
of concentration plotted against depth shows that the empirical
mean concentration slightly decreased from 0.5 to 1.5 m depth,
and then increased (Figure 5). The variability of concentration is
larger at 2.5 and 3.5 m. Compared with the concentrations at 0.5-m
depth, the distribution of the 1.5-m concentrations moved towards
smaller values (with the exception of the maximum). The largest
values appear to be greater for the two greater depths. From the
25 regularly located drill-holes, the variation of concentrations
with depth provides information for the area sampled (about
400 m2). However, what happens at greater depth is not known
and a complete assessment of contaminated volumes makes a full
subsurface survey necessary.

Application 2: proportional effect

Figure 6 shows the scatter diagram for the mean plotted against
the standard deviation calculated for the five-point reference sam-
pling patterns (site LOQUAS 0). For each pattern the calculated
variance is the dispersion variance of a point in the pattern,
in other words the variance of one point randomly taken from
the five. This calculation is theoretically sound, though the
number of points per pattern might seem small. Clearly, vari-
ability increases with the size of the mean (Figure 6), a phe-
nomenon commonly observed for soil pollution and at different
scales.

This proportional effect is a relationship between local variabil-
ity and local mean (Matheron, 1974): local variability increases
with the local mean. In the neighbourhood Wx of point x the
variogram is written γx(h) = f (mx)γ0(h), mx denoting the local
mean in Wx, f (mx) a function with spatial mean equal to 1 for the
whole studied domain W and γ0 the global variogram of W . The
proportional effect is present for lognormal distributions (Chilès
& Delfiner, 1999) and, in the presence of a proportional effect,
transformation of the data can be convenient but it is not always
needed.
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Figure 4 Former petrochemical complex,
large grid sampling. (a) Location of samples,
(b) scatter diagram plotted between decimal
logarithmic surface (abscissa) and subsur-
face (ordinates) concentrations at the same
location, (c) histogram of decimal logarith-
mic surface concentrations and (d) histogram
of decimal logarithmic subsurface concentra-
tions. Symbols or colour of histogram classes
correspond to the same points on all graph-
ics: light grey or � for large surface values,
dark grey or + for small surface and subsur-
face values, and black or ◦ for small surface
and large subsurface values.

At a fixed support v and domain V the dispersion variance
varies in the same way. If D2

W (v|V ) denotes the dispersion vari-
ance calculated using the global variogram, the local dispersion
variance is D2

x(v|V ) = f (mx)D
2
W (v|V ). This property is used to
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Figure 5 Site LOQUAS 2. Concentration variation according to depth,
equal to the elevation negatively counted (the surface corresponds to
elevation 0). Twenty-five vertical drillings of the horizontal 5-m grid.
Each data point is the empirical mean of three analyses on point-support
taken on homogenized cores. Mean per class is indicated as a thick line
with ± one standard deviation interval.

detect the proportional effect. Local mean and local standard
deviation are calculated for a moving neighbourhood (ideally on
a regular grid in order to have the same configuration of data
location for all calculations) and their scatter diagram is plotted.
The function f is then fitted from the empirical regression of local
standard deviation on local mean.

Kriging can be done by using the global variogram γ0. If
σ 2

K,0(x) is the kriging variance calculated by using the global
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Figure 6 Site LOQUAS 0. Scatter diagram between mean and standard
deviation calculated on each five-point reference pattern of the multi-scale
grids. The empirical regression line is shown.
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variogram γ0, the local kriging variance σ 2
K,x is corrected

according to the local mean: σ 2
K,x = f (mx)σ

2
K,0(x) (Chilès &

Delfiner, 1999). At a fixed configuration of the data and the block
(or point) to be estimated, the estimation variance depends on the
local mean.

This exploratory analysis provides answers to several impor-
tant questions, including whether (i) the sampling is suitable for
the purpose of the study, (ii) some data seem aberrant and if
so, an explanation is available, (iii) the site can be considered as
homogenous and if not, with which criteria the heterogeneity must
be treated, (iv) there is a proportional effect present and (v) there
is information on the variation of pollutant concentrations with
depth.

Variogram analysis

Stages and tools

Variogram analysis aims to characterize and quantify spatial
variability. Different types of variogram are available (Chilès
& Delfiner, 1999). These include variograms of concentrations
or of transformed variables (logarithm, Gaussian, indicator at
different values) and also those of different orders: Z denot-
ing a random function, the variogram of order ν is defined
as1/2 E[|Z(x + h) − Z(x)|ν]. In addition to the usual variogram
(order 2), the variogram of order 1 (madogram) is also used.

In complex situations (with a few very large values for example)
these different variogram calculations help us to decide if a
spatial structure is present or not. In addition to the variographic
map (see later) they help to detect and to characterize any
anisotropy. The ‘variogram cloud’ is the scatter diagram between
the quadratic deviation 1/2 (Z(x + h) − Z(x))2 and the distance
|h|. Interactively linked with the data location map, it shows those
data that contribute most to spatial variability, including those that
may be spurious, so helping to detect anomalies.

If there are no marked differences between directional vari-
ograms the assumption of isotropy seems realistic. The ‘vario-
graphic map’ (Pannatier, 1997) represents directional variograms
as a two-dimensional surface for lag vectors, centred at zero. It
facilitates the detection of anisotropies and their characterization
such as type (geometric, factorization of the covariance, etc.) and
main directions, which can vary between the different spatial com-
ponents. In the examples presented, variographic maps confirmed
the absence of clear anisotropy in the horizontal plane.

Example 1: former petrochemical complex. In the area of
former production units, the variogram cloud (Figure 7) of
subsurface concentrations shows that the spatial variability at
short distances results mainly from the contrast between two
very large values (maximum larger than 30 000 mg kg−1 with
a median of 210 mg kg−1, Table 1) and the surrounding smaller
values.

The influence of these two large concentrations on the sample
variogram is reduced by transformation to logarithms (Figure 8).
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Figure 7 Former petrochemical complex, subsurface concentrations.
(a) Location of the data points on the area of former production units.
(b) Standardized variogram cloud of concentrations: the halved quadratic
increments are divided by the empirical variance. The circles on the var-
iographic cloud correspond to pairs of sample points between two larger
concentrations and the surrounding smaller concentrations. On the vari-
ogram cloud the broken line represents the sample mean variogram.

Directional variograms (Figure 8a) show that the assumption of
isotropy is admissible for the log-transformed data. Their mean
omnidirectional variogram (Figure 8b) shows the presence of
nested spatial structures; the variability between 0 and 35 m is
large and represents half of the sill. The mean variogram of con-
centrations appears to be more erratic because of the influence of
the few larger concentrations (Figure 8c). In this case, non-linear
geostatistics is more convenient than linear geostatistics in order
to avoid an excessive influence of a few large values on the map
of estimated concentrations.

Example 2: site LOQAS 0, spatial variability at different scales.
On variograms calculated from the different grids (Figure 9) the
spatial variability is much larger for the 0.50-m grid, which has the
larger mean (Table 2). The sampling scheme, with a common dis-
tance for successive nested grids (Figure 2), allows the variograms
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Figure 8 Former petrochemical complex. Area of former production
units. (a) Directional variograms, (b) mean omnidirectional variogram of
the logarithmic transforms and (c) mean omnidirectional variogram of the
concentrations. On (a) the histograms indicate the number of pairs per
distance class for the four directions. On (b) the numbers indicated are
the same for the mean variograms (b) and (c).

to be rescaled. The 6-m grid was chosen as a reference because
it samples the whole plot regularly.

The sample variograms of the concentrations (empirical mean
on the five-point patterns) and of their logarithms have a sim-
ilar shape (Figure 9a,b). They confirm the presence of a spatial
structure at the decimetre to decametre scales. The decrease in the
variogram between 6 and 12 m results from the larger concentra-
tions in the centre of the site: the mean square deviations between
patterns 12 m apart correspond to data pairs located on oppo-
site edges, whereas those for patterns 6 m apart are calculated
between central large concentrations and smaller concentrations
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Figure 9 Site LOQUAS 0, sample variograms of the empirical mean
concentration of the five-point reference pattern at the different scales.
(a) Variograms of concentration logarithm, (b) associated concentration
variograms and (c) realignment of variograms with 6-m grid reference
and fitted model, combining a nugget effect and a linear component. The
number of pairs indicated on (a) is the same for all sample variograms.

on the edges. The last variogram lag will not be considered for
modelling because it is too large relative to the study area.

After rescaling, the global variogram is fitted by a combination
of a nugget effect and a linear variogram (Figure 9c). The validity
of the model is limited to about 6

√
2 ≈ 8.5 m, the last valid lag

of the sample variogram.
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Up to one half of the variogram is the variance of
the estimation error of the point-support concentration at
location x + h from point-support concentration at location
x: γ (h) = 1

2 var(Z(x + h) − Z(x)). The variogram (Figure 9c)
shows that the standard deviation of the difference between
concentrations located 6 m apart is

√
2γ (6m), about

√
2 × 1.25106

≈ 1580 mg kg−1. As an example, this large spatial variability will
result in poor accuracy of the estimates of 6-m square blocks from
a 6-m sampling grid. During remediation, selection will then be
made from an imprecise estimated map of concentrations. As a
consequence, the spatial variability has to be taken into account to
control the quality of any remediation. For a remediation thresh-
old equal to 1000 mg kg−1 and with the above fitted variogram,
the standard deviation of the difference between concentrations
6 m apart is larger than the threshold. A control sample with con-
centration a little larger than the threshold does not prove that its
neighbourhood (to be more precisely defined) is polluted, and a
control sample smaller than the threshold does not prove that this
neighbourhood is not polluted. A more pertinent approach is to
evaluate the probability that at fixed support the concentrations
exceed the threshold.

Example 3: site LOQUAS 2, comparison between horizontal
and vertical variability. The vertical change in the mean
concentrations (Figure 5) contributes to the vertical spatial
variability and the vertical variogram calculated from the local
1-m grid appears to be linear; vertically the concentrations are not
stationary.

Following the results of the exploratory analysis, horizontal
variograms are calculated separately for the upper and lower
depth intervals (0.5 and 1.5 m, and 2.5 and 3.5 m, respectively,
Figure 10). The greater spatial variability of the lower depth inter-
val is consistent with the observed larger dispersion (Figure 5).
The global horizontal variogram would be the mean of these two
variograms. Within a global model, the precision of the estimation
would not be differentiated according to the specific variability of
each depth; the kriging variance would be over-evaluated for the
upper depth interval, and under-evaluated for the lower ones. At
a depth of 1 m, vertical and horizontal variabilities are similar
(Figure 10). The common intuition of a greater horizontal conti-
nuity of pollution thus breaks down at small distances.

Quantifying the variance of measurement errors

For one small section of site LOQUAS 0, 15 point-support sam-
ples were measured twice on two successive days. The scatter
diagram indicates good reproducibility of the measurement, with a
correlation coefficient of 0.8 (Figure 11a). If we assume that each
pair of samples has the same concentration, the difference between
the results comes from sampling and measurement errors (Gy,
1975). If Y denotes the common ‘true’ concentration and (ε1, ε2)

the measurement errors the measurement results are Z1 = Y + ε1

and Z2 = Y + ε2. As the means of the two sets are very close,
the expectations of both measurement errors are assumed to be
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Figure 10 Site LOQUAS 2. Vertical (VERT) and horizontal (HOR)
variograms, calculated on the local, denser grid, with a 1-m lag. Data
are the empirical means of four Pollut-Eval® measurements made at the
centre of the cores. (a) Mean variogram of the two upper depths, in the
fillings, and (b) mean variogram of the two lower depths. The number of
pairs for each variogram point is indicated: this differs between the two
horizontal variograms, because of the slight irregularities of the sampling
design.

identical. The empirical variances of both sets are also close, with
respective standard deviations σ1 = 405 and σ2 = 378 mg kg−1.
The variances of the two errors will be assumed to be identical.

The cross-variogram of the measurements is defined as

γ12(h) = 1

2
E[{Z1(x + h) − Z1(x)}.{Z2(x + h) − Z2(x)}]. (1)

If we denote γAB as the cross-variogram between the random
functions A and B, it is easy to show (Faucheux et al., 2008) that

γ12(h) = γY (h) + γYε1 (h) + γYε2 (h) + γε1ε2 (h). (2)

Under the assumption of absence of mutual correlation between
both errors and the true concentration Y , all terms are null except
the first one: γ12(h) = γY (h). Although true concentrations are
inaccessible, their variogram becomes accessible because of the
measurement cross-variogram, provided that the assumptions are
justified.

The mean of the two measurements is Zm = Y + 1
2 (ε1 + ε2).

Under the preceding assumptions and because both measurement
error variances are equal, its variogram is

γZm(h) = σ 2

2
+ γY (h). (3)

The variogram of the mean is then the sum of the concentration
variogram and a constant equal to the half of the measurement
error variance. Figure 11(b) shows that the difference between
the sample variogram of the measurements’ mean and their
cross-variogram is nearly constant, giving an empirical standard
deviation of the measurement error of about 180 mg kg−1.
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Figure 11 Site LOQUAS 0. Repeatability of Pollut-Eval® measurements
of hydrocarbon concentrations. (a) Scatter diagram of the duplicated
measurements denoted 1 and 2 (units are mg kg−1). (b) Variogram of
the mean of both measurements (upper line) and of their cross-variogram
(lower line). The indicated number of pairs is the same for the simple and
the cross-variogram.

The error variance can also be calculated directly from the
measurement differences. Under the weaker assumption of no
mutual correlation of measurement errors and concentration at
the same point, the variance of the difference Z1 − Z2 = ε1 − ε2

is twice the variance of the measurement error. This calculation
gives a standard deviation of 170 mg kg−1. Compared with the
measurement mean of about 1155 mg kg−1 both evaluations are
consistent. From

varZm = σ 2

2
+ var Y, (4)

the standard deviation of Y is about 350 mg kg−1.
On the sample variogram (Figure 11b) the nugget effect is much

larger than the variance of measurement errors. It reflects the
spatial variability at distances less than 2 cm and the sampling
errors that arise when the material that is finally analysed is
subsampled from the original core (Gy, 1975).

The assumption of independence between measurement errors
and concentrations could break down if soil properties vary
according to the concentrations. On site LOQUAS 2 the order
of magnitude of the measurement error is close to that obtained
on site LOQUAS 0, but independence cannot be assumed for
all datasets: some cross-variograms are no longer parallel to
the associated variograms of measurement means. ‘Redundant’
measurements are thus very useful for assessing some statistical
characteristics of the ‘sampling errors’.

Estimation

Before applying well-established methods such as kriging, it is
necessary to look back at the physical relevance of the modelling.

Remarks on the variables and the support

Additivity property. Additive variables represent ‘extensive’
quantities, such as length or mass: the mass of a mixture of several
samples is the sum of their individual masses. Processing with
additive quantities must take into account the possible differences
of support between the different data or datasets or those between
the data and the volume to estimate. In 2-D modelling, the
concentration of pollutant in a layer with a variable thickness
is estimated with the help of the amount accumulated, which is
a product of the concentration and the layer thickness (Chilès &
Delfiner, 1999).

In soil studies, concentrations (of clay for example) are
sometimes expressed as gravimetric quantities measured for
specific particle size classes; information on the proportion or
density of the different classes is sometimes lacking, making it
impossible to derive the total quantity at data points.

‘Intensive’ variables describe properties that are independent of
the quantity of material present. These variables (for example,
permeability or electrical resistivity), which are derived from
physical laws, are not additive. Many soil variables such as
hydraulic conductivity or pH are therefore non-additive.

As a linear estimator, point-support kriging (kriging a quantity
on the same support as the data) is consistent but this is not
necessarily the case for block-support kriging. Block-kriging is
defined as the mean for the whole block of all point-support
estimations. It is thus an estimator of the arithmetic mean over
the block; as a block-support estimator, it is suitable only if the
arithmetic mean effectively characterizes the block-support value.

Let biodiversity be quantified by the number of species per
unit area. If n1 and n2 denote the number of species present in
two different plots, the number of species present in their union
lies between the maximum of n1 and n2 and the sum n1 + n2,
depending on whether the species of the less diversified plot are
present in the other plot. Estimating the number of species by
block-kriging on a surface S greater in area than the sampling
plots would dramatically under-estimate the result. Furthermore,
the number of species estimated in this way on S could be
less than that recorded on the most diverse plot sampled inside
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S. Block-kriging actually provides an estimation of the mean of
the number of species on the plot-support within S. Block-support
estimation needs more information, namely the species recorded
by plot. As for any estimation method, uncritical application of
kriging without considering the properties of the variables studied
can therefore provide inconsistent results.

Choosing the support. The definition of a polluted volume raises
the important question of the support and of whether the quality
threshold is related to sample-support concentrations (resulting
from the practice and the sampling constraints) or to block-
support concentrations, for blocks about tens of m3 or more such
as the units selected during remediation. This choice may have
important consequences for the delimitation of polluted areas.
When the support increases, the concentration histogram becomes
more tightly distributed around the mean. The proportion of values
above a given threshold, and the surface considered as polluted,
thus vary with the support (Rivoirard, 1994; Chilès & Delfiner,
1999).

Linear or non-linear estimation

Webster & Oliver (1990) and Chilès & Delfiner (1999) give more
details of kriging. The kriging estimation of the block-support
concentration ZV (or of the point-support concentration Z(x)) is
a linear combination of data at sample points xη:

Z∗
V =

∑

η

λ
η

V z(xη). (5)

Weights λ
η

V are chosen so that the estimate is unbiased (on
average, the estimation error is zero) and the precision optimal
(the variance of the estimation error is minimized). The weights
depend on the variogram. Kriging provides the variance of the
estimation error ZV − Z∗

V , which quantifies the accuracy of the
estimation. Different kriging variants allow different types of
auxiliary information to be taken into account, a measurement
uncertainty to be assigned to data, and different assumptions on
stationarity to be made.

The map of the estimated concentrations Z∗
V,i should not be

confused with the map of the true concentrations ZV,i , which is
in practice unattainable. The difference between the two is the
map of estimation errors ZV,i − Z∗

V,i , for which only the mean
(equal to zero) and the variance are known.

To delineate the polluted zone with reference to a threshold s,
the searched area is the set of blocks i so that ZV,i ≥ s. Applying
the threshold to the estimated map corresponds to the condition
Z∗

V,i ≥ s. The associated areas may differ significantly:

ZV,i ≥ s ⇔ Z∗
V,i + (ZV,i − Z∗

V,i) ≥ s

⇔ Z∗
V,i ≥ s − (ZV,i − Z∗

V,i). (6)

and the difference increases with the amplitude of the estimation
error. Two approaches are used to solve this issue.

The rigorous approach is based on non-linear geostatistics
(disjunctive kriging or conditional expectation), generally within
the framework of the anamorphosed Gaussian model (Rivoirard,
1994). The point-support concentration Z(x) is modelled as the
transform by an increasing function (anamorphosis) ϕ of a random
function Y(x) with Gaussian spatial distribution. Various criteria
are available to check the validity of this model (Rivoirard,
1994). The change of support can be made within the discretized
Gaussian model to determine the block-support anamorphosis ϕV

between block-support concentrations ZV and associated Gaussian
transforms YV . When the anamorphosis is bijective with a function
that is both one-to-one (injective) and onto (surjective), the issue
of exceeding a threshold is very simple to formulate because of
the properties of the Gaussian distribution: conditionally to the
observed data Z(xα) = ϕ(Y (xα))

ZV,i ≥ s ⇔ ϕV (YV,i) ≥ s

⇔ Y ∗
V,i + σK,iRi ≥ ϕ−1

V (s)

⇔ Ri ≥ ϕ−1
V (s) − Y ∗

V,i

σK,i

, (7)

where Y ∗
V,i and σK,i denote the kriging and the kriging standard

deviation, respectively, on Gaussian transforms, and R a Gaussian
random function spatially independent of Y. The correlation
between ordinary kriging and associated error can be taken into
account for the lognormal case (Rivoirard, 1994) and the general
case (Emery, 2006). Within this model, probability maps or
confidence interval are easily derived.

Because of its relatively easy implementation, indicator krig-
ing has been widely applied (Goovaerts et al., 1997), without
checking the validity of underlying assumptions. This method
dramatically reduces the information provided by concentration
measurements, because only two values (0 or 1) are considered.
Webster & Rivoirard (1991) present a very instructive application
of non-linear geostatistics applied to copper and cobalt deficiency
in pastures. The study included a check of the hypotheses on the
spatial bivariate distribution within the anamorphosed Gaussian
model using indicator variograms and cross-variograms, a com-
parison between kriging and disjunctive kriging for block-support
estimation of concentrations and a comparison between disjunctive
kriging and conditional expectation for mapping the probability
that the block-support concentration exceeds a threshold.

In a less rigorous but pragmatic approach, the estimation errors
are conventionally considered to be Gaussian, making it possible
to derive conditional confidence intervals. From these confidence
intervals, three zones can be delineated to compare the unknown
concentrations with a fixed threshold (Renard-Demougeot, 2002;
Bobbia et al., 2008). First the ‘unpolluted zone’, where the con-
centrations can be assumed to be smaller than the threshold, up
to a given statistical risk; second, the ‘uncertain zone’, where it
is not clear whether the true concentrations are greater or smaller
than the threshold. This uncertain zone includes concentrations
close to the threshold and depends on the local precision of the
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estimation. Finally, there is the zone where the estimated concen-
trations exceed the threshold.

To obtain a confidence interval the Gaussian hypothesis is not
really necessary. Chilès & Delfiner (1999) quote general results
with a very mild assumption on the error distribution, but at
a given statistical risk, the width of the associated confidence
interval is larger.

Example, site LOQUAS 2

Figure 12 presents the kriged map (with unknown mean) for
1-m3 blocks (Figure 12a), calculated by using the mean variogram
of the depth interval. The associated standard deviation map
(Figure 12b) shows the small irregularities of the sampling
grid. The uncertainty is considered to be too large when the
error standard deviation exceeds 120 mg kg−1 and the associated
estimated values are omitted (shown in light grey on Figure 12a).
In 194 blocks the concentration is estimated to be larger than the
threshold of 500 mg kg−1.

At a conventional statistical risk of 2.5%, the ‘uncertainty’ zone
corresponds to the blocks with Z∗

V,i ≤ s ≤ Z∗
V,i + 2σK,i . To take

into account a proportional effect, the error standard deviation
is corrected using a linear relationship between local mean and
(dispersion) standard deviation. As a consequence, the uncertainty
increases with the estimated concentrations. The uncertainty zone
thus includes 170 additional blocks (Figure 12c). The penalty for
uncertainty is a large increase of the zone to be remediated.

Conclusion

The soil is a complex environment for which probabilistic
modelling has proved its worth (Webster, 2000; Heuvelink &
Webster, 2001; Webster, 2007). However, remediation project
managers or soil scientists do not always make proper use of
statistics (Webster, 2001).

Exploratory and variographic analyses help us to understand
how soil properties or pollution are spatially organized on the site.
For the examples used here, the variability at ‘short distances’ is
large but spatial correlation is present at the metre to decametre
scales. On former industrial sites the survey is not always intensive
enough to detect spatial correlation where it is present or the short-
range components which then occur on the sample variogram as a
nugget component. As a consequence the estimation will be impre-
cise, and at a fixed remediation threshold the ‘uncertainty zone’
can cover an important part of the site. For the economic bal-
ance of benefits from a remediation project, the uncertainties have
to be taken into account from the very beginning (Benoit et al.,
2008).

Soil pollution was presented here in a univariate context.
However, soil science is essentially multivariate. Webster & Oliver
(1985) and Oliver & Webster (1989) addressed the classification
as precursors from a statistical and geostatistical point of view.
There are still many problems within soil science. New random
models are being developed (Milne et al., 2010). To the current

0 10 20

0

10

20

D
is

ta
nc

e 
/ m

et
re

N /A

1100

 900

 700

 500

 300

 100

(a) Block-support kriging Z*
Distance / metre

0 10 20

0

10

20

D
is

ta
nc

e 
/ m

et
re

N /A

160

140

120

100

 80

 60

(b) Error standard deviation 

Distance / metre

Z* > 500

not
polluted

?

0 10 20

 0 

 10 

 20 

(c) delimitation of the ‘not polluted’ and ‘uncertainty’ zones 

Distance / metre

D
is

ta
nc

e 
/ m

et
re

Figure 12 Site LOQUAS 2. (a) Block-support kriging of hydrocarbon
concentration; (b) associated estimation standard deviation calculated from
the global variogram; and (c) delimitation of the ‘unpolluted’ zone with a
conventional statistical risk of 2.5%. The ‘uncertainty zone’ (see text) is
denoted as ?

open questions (Heuvelink & Webster, 2001) one can add the wide
class of change of scale problems (Matheron, 1993) because most
soil properties are not additive.
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serpent de mer. Technical Report N-377, Ecole des mines de Paris,
Fontainebleau.

Matheron, G. 1993. Quelques inégalités pour la perméabilité effective
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