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Nuclear steam generators are subject to clogging of their internal parts which causes safety issues.

Diagnosis methodologies are needed to optimize maintenance operations. Clogging alters the dynamic

behaviour of steam generators and particularly the response of the wide range level (WRL – a pressure

measurement) to power transients. A numerical model of this phenomenon has previously been

developed. Its input variables describe the spatial distribution of clogging and its output is a

discretization of the WRL dynamic response.

The objective of the present study is to characterize the information about the clogging state of a

steam generator that can be inferred from the observation of its WRL response. A methodology based

on several statistical techniques is implemented to answer that question. Principal component analysis

reveals that clogging alters the WRL response mainly in two distinct ways. Accordingly, the output can

be summarized into a vector of dimension 2. A sensitivity analysis is carried out to rank the input

variables by magnitude of influence. It has shown that they can be divided into two groups

corresponding to the two sides of the steam generator. Finally, sliced inverse regression is used to

reduce the input dimension from 16 to 2. A sampling issue that arises when the input dimension is high

is addressed.

The simplification of the original problem yields a diagnosis methodology based on response surface

techniques.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Pressurized light water nuclear power plants mainly consist of
two separated water loops that exchange heat. The water from
the primary loop goes first through the reactor where it is heated
by the nuclear reaction and then through heat exchangers called
steam generators (SGs) where it transfers heat to the water of the
secondary loop. Steam exits the SGs by their upper opening and
then flows through the turbines. A SG consists of a cylindrical
tank (approx. 20 m high and 3 m wide) that contains the second-
ary steam–liquid mixture. The primary water enters the SG at its
bottom and goes through a bundle of U shaped tubes. Eight
circular plates called tube support plates (TSPs) maintain the tube
bundle. The tubes fit in circular holes drilled in the TSPs. These
holes are surrounded by additional quatrefoil holes to let the
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secondary steam-liquid mixture flow through. A SG diagram can
be found in Fig. 1.

SGs internal elements foul with iron oxides carried by the
secondary feed-water. This causes clogging of the quatrefoil holes
that induces safety issues. Means to estimate TSP clogging are
needed to optimize maintenance operations. The pressure differ-
ence measured between the steam dome and the bottom of the
SG is called the wide range level (WRL). Previous studies [1,2]
have shown that the shape of the WRL response curve to a power
transient is altered by the clogging state of the TSPs and derived a
diagnosis method that utilizing this link. The principle of the
method is to compare measured response curves with simula-
tions using with a mono-dimensional SG model. To assess the
method’s potential and make it reliable, it is necessary to
characterise how much information about the clogging state can

be inferred from the WRL response. This issue breaks down into
three closely related questions:
�
 how does TSP clogging affect the shape of the WRL response?

�
 Are these effects different in nature and magnitude depending

on the location inside the SG?

�
 What is the simplest formulation of input and output variables

that captures these effects?
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Fig. 1. Westinghouse type 51 steam generator.
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The methodology presented here to answer these questions
relies on computer intensive statistical methods. As the CPU time
for a transient simulation with the 1D SG model is around 5 min,
large samples of response curves corresponding to different
clogging configurations can be generated.

Sensitivity analysis [3] and principal component analysis (PCA)
[4] have been carried out to address the first two questions and
the simplification of the output. The results suggested the use of a
dimension reduction technique called sliced inverse regression
(SIR) [5] to simplify the input. Along the process, bootstrap
techniques were used to assess the robustness of the results
and help with the interpretation. The SG numerical model and the
statistical method that have been used are described in Section 2.
The results are presented and discussed in Section 3.
2. Model and methods

2.1. Mono-dimensional steam generator model

The SG type examined here is the Westinghouse 51. EDF currently
operates 48 of these, most of them being about 30 years old. A
diagram representing the principal elements of a SG is given in Fig. 1.
The SG model has been developed with the Modelica language using
the Dymola software. Modelica is an object-oriented language
especially designed for modelling physical systems [6,7]. It relies on
a third party compiler and solver for simulation. Here, these roles
were assumed by the Dymola software [8]. More specifically, Dymola
version 6.0d and a solver named DASSL [9] have been used. It is
capable of solving differential algebraic equations. The main elements
of the model are as follows:
�
 primary fluid flow inside the U-tubes (single-phase flow);

�
 secondary fluid flow outside the U-tubes (two-phase flow);

�
 thermal transfer between the two fluids and through tube

interfaces;
�
 two-phase singular pressure drops e.g. at the TSP quatrefoil
holes;

�
 steam-liquid separation devices;

�
 feed water flow rate control system.

All these elements are mono-dimensional but the exchanger
part is modelled as two channels: one for the hot leg (i.e

concurrent exchanging side, where the primary fluid enters the
SG) and one for the cold leg (i.e countercurrent exchanging side,
where the primary fluid exits the SG). The exchanging channels
are composed of 20 evenly spaced meshes. The choice of mono-
dimensionality and of the number of meshes is driven by the
applications for which the model has been developed. On the one
hand, it must be able to simulate the dynamic response of a SG
precisely enough so that information about clogging spatial
distribution is not lost by averaging processes. On the other hand,
computation time for simulation must be kept low so that
computer intensive methods can be used. Typical Monte Carlo
methods require hundreds if not thousands of model runs. For
instance, the method of Sobol’ for sensitivity analysis can often
require an order of magnitude of 103 simulations per input
variable to converge [3]. The number of simulations needed to
obtain robust results with SIR is dependent on the model com-
plexity. In the present case, the results were still fluctuating when
increasing the sample size from 3� 103 to 5� 103 while they
were stable for a sample size of 104. In order to be able to use
such methods with a reasonable computation time, the computa-
tion time had to be under approximately 10 min using regular
workstations. Additional details about the model can be found in
Ninet and Favennec [2].

2.1.1. Model output definition

A power transient is simulated by varying the model boundary
conditions. The transient used in the clogging diagnosis method is
a roughly linear power decrease from nominal power to 40% of
nominal power in an average time of 1148 s. It is modelled by a
linear variation of primary inlet enthalpy and secondary outlet
steam flow rate. The feed water flow rate is being determined by
the control system. The model output is a vector, w, of dimension
1148. Its coordinates are the values of the WRL at each 1 s
time step.

2.1.2. Model input definition

There are eight TSPs in the SGs under study and two 1D
channels so the vector describing the clogging state, x, is of
dimension 16. Each of its coordinates is a clogging ratio associated
to a half-TSP. Clogging ratios are defined as the ratio of the
blocked area to the total area of the holes without clogging:

xi ¼
ðclogged area of half � TSPÞi
ðtotal holes area of half � TSPÞi

: ð1Þ

Clogging affects the WRL response by increasing the singular
pressure drop at TSP crossings. In the model, the corresponding
pressure drop coefficients depend on the clogging ratios through a
function derived from experiments conducted on a 1:4 scale
mock-up of TSPs and tubes [10].

2.1.3. Preliminary analysis

The singular pressure drop at a TSP crossing increases with the
clogging ratio and steam fraction and decreases with the pressure
of the steam–liquid mixture. The pressure is nearly the same in
the two legs and it decreases as the secondary mixture rises
inside the SG. The steam fraction equals zero at the bottom of the
SG (liquid alone) and increases as the fluid rises and gets heated
by the tubes. Its increase is sharper on the hot leg. From this,
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clogging is expected to have a greater impact in the hot leg than
in the cold leg and in the higher parts of the SG than in the lower.

2.2. Sensitivity analysis of a functional output model

Sensitivity analysis studies how perturbations of the model
input variables generate perturbations on its output variables.
Here, general information about how TSP clogging affects the
WRL response is sought without any particular clogging config-
uration in mind. Hence, a global sensitivity analysis method [3]
has been used. A brief review of existing methods if given in
Section 2.2.1. The selected method consists in estimating sensi-
tivity indices called Sobol’ indices through a Monte Carlo compu-
tation scheme. These indices are presented in Section 2.2.2.
A preprocessing issue is addressed in Section 2.2.3. Sensitivity
analysis is usually applied to univariate or small dimensional
output models, hence reduction of the output dimension was
needed. Section 2.2.4 details how a convenient projection basis
can be constructed using PCA. Section 2.2.5 describes how the
validity of the results can be assessed with bootstrap confidence
intervals.

2.2.1. Choice of a sensitivity analysis method

Three criteria are to be considered when choosing a global
sensitivity analysis method: the number of input variables, the
hypotheses that can be made about the regularity of the model
(linearity, monotony, integrability) and the computation time for
one model evaluation. The sample size needed to obtain robust
estimates depends on the model and the chosen method and it
usually grows with the number of input variables. When the
input variables are too numerous (\20), it can be necessary to
select beforehand those that are most influential with a screening
method such as the Morris method [11].

High computational cost can be another potential hurdle to
overcome. Indeed, when the time needed to perform one model
evaluation is more than a few hours, it becomes difficult to
achieve a substantial sample size. This issue can be addressed
though meta-modelling. A meta-model, also known as surrogate
model, response surface model or emulator, is a simple function
that approximates the initial model response over the domain
of interest and has a negligible computation cost. Several
approaches have been proposed to build such approximations.
Recent techniques include gaussian process metamodelling [12]
and polynomial chaos expansion [13,14] for the estimation of
Sobol’ indices.

The objective of screening and metamodelling is to allow to
build a sample which size is sufficient for the estimation of
sensitivities considering the number of input variables. Once this
has been achieved, several estimation techniques are available.
The most simple global sensitivity analysis methods are based on
linear regression: either standard regression coefficients or partial
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Fig. 2. Simulated WRL response curves before
regression coefficients can provide sensitivity estimates if the
model is assumed linear. The linearity hypothesis can be replaced
by a less restraining monotony hypothesis by using a rank
transformation. The WRL response is unlikely to be linear if only
for the highly nonlinear link function between clogging ratio and
pressure drop [10].

Many other less restrictive methods rely on the analysis of the
empirical distribution of the output based on a sample. For
instance, contribution to the sample mean and variance plots
[15] allow for graphical estimations of sensitivities without the
need for large sample sets. Some recent methods do not rely on
moments estimation but instead on global quantitative compar-
ison of histograms [16,17]. However, the most widespread
approach consists in assigning shares of the overall output
variance to each input variable. The method of Sobol’ [18,19]
and the Fourier amplitude sensitivity test (FAST) [20] are two of
these so-called variance based methods. The former is based on a
functional expansion of the model as a sum of terms whose
variances can be estimated by a Monte Carlo method. At least a
few hundred model evaluations per input variable are generally
necessary but the estimates are robust and the only required
hypothesis is square integrability. The FAST method is based on a
multidimensional Fourier transform. Estimation of sensitivities
with the FAST method tends to require smaller samples than with
the method of Sobol’. However its application is less straightfor-
ward and potential biases require advanced treatment [21].

The number of input variables of the SG model, 16, and its
computational cost of a few minutes per model run are small
enough for not requiring either screening or metamodelling. The
model response is smooth (see Fig. 2) because it derives from a
system of differential equations involving simple functions with-
out singularities. Thus the integrability condition needed for the
Sobol’ method is likely to be honoured. As will be stated in more
detail in the last paragraph of the next section, the method of
Sobol’ requires ðnþ2Þ � N model estimates where N is the sample
size and n the number of input variables. Let assume that 10
series of simulations can be run simultaneously, which would
typically require only two regular workstations. A conservative
upper bound of 10 minutes for the model computational cost
leads to a reasonable total computation time of approximately 12
days for a sample size of 103. Thanks to the newer formulae
proposed by Saltelli et al. [22], a substantial increase in rate of
convergence can be achieved and this sample size is usually
sufficient for reliable estimations. These considerations led to
choose the method of Sobol’ with a quasi-Monte Carlo scheme
that will be discussed in the following section.
2.2.2. Sobol’ indices

Let us first derive Sobol’ indices for a univariate output model.
Let f be a function that represents the model, x the input vector of
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size n and y the scalar output:

f : In-R,

x/y¼ f ðxÞ: ð2Þ

The input can be scaled to take values in ½0,1� so In denotes the n-
dimensional unit hypercube.

ANOVA-representation: Assuming f is an integrable function,
consider the following decomposition:

f ðxÞ ¼ f 0þ
Xn

s ¼ 1

Xn

i1 o ���o is

f i1 ...is
ðxi1 , . . . ,xis Þ, ð3Þ

where f0 is a constant and the fij are functions of subsets of
ðxiÞiA f1,...,ng. The double sum means that there is a function
f i1 ...is
ðxi1 , . . . ,xis Þ for each possible family of input variables: from

f 1ðx1Þ to f nðxnÞ, then all the f ijðxi,xjÞ with 1r � � �o io jrn and so
on up to f 1...nðx1 . . . xnÞ. The number of terms in this decomposition
is 2n.

Sobol’ [18] has shown that under the following condition on
the summands of (3),Z 1

0
f i...jðxi, . . . ,xjÞ dxk ¼ 0 for k¼ i1, . . . ,is, ð4Þ

the decomposition exists and is unique. It is called the ANOVA-
representation of f. It follows from (4) that the summands in (3)
are orthogonal and can be expressed as integrals of f. The use of
this decomposition has been the subject of several other works.
For instance, its treatment by Rabitz and Alis- [23], who called it
High-dimensional model representation, is of interest. Archer et al.
[24] gave a review of the different concurrent developments that
have been made on the subject.

Order 1 Sobol’ indices: If f is square integrable, then the f i1 ...is
are

also square integrable. Squaring and integrating (3) raisesZ 1

0
f 2
ðxÞ dx�f 2

0 ¼
Xn

s ¼ 1

Xn

i1 o ���o is

Z 1

0
f 2

i1 ...is
dxi1 . . .dxis : ð5Þ

Now if x is a random vector uniformly distributed in In then
f ðxÞ and f i1 ...is

ðxi1 , . . . ,xis Þ are random variables whose variances
are, respectively,

D¼

Z 1

0
f 2 dx�f 2

0 ð6Þ

and

Di1 ...is ¼

Z 1

0
f 2

i1 ...is
dxi1 � � �dxis , ð7Þ

and the following equality holds:

D¼
Xn

s ¼ 1

Xn

i1 o ���o is

Di1 ...is : ð8Þ

In other words, D measures the variability due to variations of
all the input variables while Di1 ...is represents the variability
caused by variations of the variables from the subset ðxi1 , . . . ,xis Þ.
Equation (8) states, as expected, that the overall variability is the
sum of the variabilities caused by all the possible subsets of input
variables.

This leads to define the Sobol’ index of a subset of variables
ðxi1 , . . . ,xis Þ by the following ratio:

Si1 ...is ¼
Di1 ...is

D
, ð9Þ

where s is called the order of the index. Order 1 Sobol’ indices,
Si ¼Di=D, measure the influence of each half TSP clogging ratio
alone while higher order indices measure the interactions. With
16 input variables there are as many as 120 order 2 indices.
Estimating Sobol’ indices requires numerous model evaluation so
higher order indices were not computed.

Total Sobol’ indices: the input variables are strongly physically
linked so completely ignoring interactions could be misguiding.
As a palliative, consider the sum Dtot

i of the variances caused by
all subsets that include a given variable xi. Dividing this quantity
by D, the overall variance, one defines total Sobol’ indices, Stot

i :

Stot
i ¼

Dtot
i

D
: ð10Þ

The difference between the total index and the order 1 index of a
given variable quantifies its interactions with other variables.

A simple calculation [25] shows that Dtot
i and the variance D:i

caused by the subset of all variables except xi, sum up to D:

Dtot
i ¼D�D:i: ð11Þ

Hence, each total Sobol’ index can be deduced from the estima-
tion of the variance of one subset of variables.

Computation scheme: Sobol’ [19] has demonstrated that the
variances corresponding to subsets of variables can be expressed
as multidimensional integrals. Classical numerical methods are
ineffective because of the high dimension of these integrals.
However, Monte Carlo estimates can be derived and some are
provided by Sobol’ [18,19]. Saltelli et al. [22] proposed a review of
the available formulae for the computation of first order and total
Sobol’ indices and singled out a pair of them which have been
used here as ‘best practice’ formulae.

Let A and B be two samples of N clogging configurations that is
to say two matrices of size N�n. We denote by AðiÞB the matrix
obtained from A by replacing its i-th column by the i-th column
from B and by f ðAÞk (resp. f ðBÞk and ðf ðAðiÞB Þk) the response of the
model corresponding to the k-th individuals of sample A (resp. B
and AðiÞB ). The formula used here to compute the denominator of
first order indices is the following [25,26]:

cDi ¼
1

N

XN

k ¼ 1

f ðBÞkðf ðA
ðiÞ
B Þk�f ðAÞkÞ: ð12Þ

The one used for total indices is Jansen [27]:

bDtot

i ¼
1

2N

XN

k ¼ 1

½f ðAÞk�f ðAðiÞB Þk�
2: ð13Þ

Estimating order 1 and total indices of n input variables with a
Monte Carlo sample size of N require ðnþ2Þ � N model evalua-
tions [22]: N for A, N for B and n�N for the AðiÞB with i varying
from 1 to n.

In this context, standard Monte Carlo relying on pseudo-
random numbers is only moderately effective. This is due to the
tendency of pseudo-random sequences to aggregate into clusters
which is detrimental especially in high dimension. Substantial
improvement is achieved by using a quasi-Monte Carlo procedure
based on low-discrepancy uniform sequences such as Sobol’
sequences [24]. Here a Sobol’ sequence has been used to generate
the samples, following the procedure prescribed by Sobol’ [19].
The input vector coordinates vary from 0 to 0.65 which covers
most of practical clogging cases.

2.2.3. Preprocessing of the output

The increased pressure drop due to clogging alters both the
full power ‘static’ values of the WRL and its dynamic behaviour.
The ‘static’ value is presently used for cursory diagnosis of
clogging. Examining the dynamic response is meant to retrieve
more detailed information and to sidestep the issue of sensor bias.
As the range of variation of the WRL ‘static’ value over the years
of plant operation is large compared to the dynamic variations
of the WRL during a power transient, it has been necessary to
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pre-process the data by removing the ‘static’ value trend. Indeed,
Sobol’ indices computed on unprocessed output reflect only the
variance due to differences in WRL initial value.

A straightforward corrective action would be to subtract from
each curve its initial value. However, this would arbitrarily
eliminate the variance of the first sequential variables. Subtract-
ing a constant is a crude correction and choosing this constant to
be equal to the value taken by the initial variable concentrates all
available accuracy on the beginning of the curves.

Let w : t/wðtÞ be the WRL response function. For a given time
t0, one can write a Taylor expansion of w of the form:

wðtÞ ¼wðt0Þþw0ðt0Þðt�t0Þþw00ðt0Þ
ðt�t0Þ

2

2
þ � � � : ð14Þ

Averaging (14) for t from 0 to 1148 makes the temporal mean
appear as the first term of the ‘average’ expansion. Subtracting the
temporal mean instead of the initial value is a means to distribute
the error along the time interval. In this way no assumption is
made a priori about the most informative part of the response
curves.

Five sample WRL response curves are displayed in the left panel of
Fig. 2. The difference in ‘static’ value can be appreciated by the
difference in initial value. However, differences in the shape of the
curves are difficult to assess. In the right panel of Fig. 2, the same
curves are presented with their temporal mean subtracted. Their
shapes appear more contrasted. For instance, the circle-marked and
x-marked curves are approximately equidistant from the square-
marked one in the left graph but the right graph shows that the
circle-marked curve has a much more similar shape.

The validity of the subtraction of a constant has been inves-
tigated using the PCA results in Section 3.1.2.

2.2.4. Reduction of output dimension

The most straightforward implementation of sensitivity ana-
lysis consists in considering the value of the WRL at each time
step as distinct output variables. However this yields a large
number of indices which makes the ranking of the input variables
and the analysis of their interactions cumbersome. Moreover, this
approach does not take into account the functional nature of the
output because it is blind to the high correlation of the sequential
variables. One way to tackle this issue is to expand the time series
onto an appropriate orthogonal basis [28–30].

PCA is a simple method to obtain such a basis directly from the
data. The optimization criterion used in PCA is the maximization
of variance along the directions of the basis. As our aim is to
attribute shares of overall variance to input variables, using a
variance based method for dimension reduction makes sense.

Principal components: The principle of PCA is to progressively
build an orthogonal projection basis by adding directions so that
the spanned space fits the data the most adequately. Considering
the output vector, w¼ ðwðtÞÞ, as a random vector leads to define
principal components (PCs) as ordered linear combinations of the
original variables, ðwðtÞÞ, that are orthogonal and have maximum
variance [4]. For a set of p variables, up to p PCs can be found.
Coordinates along each PC are called scores; they constitute a new
set of variables, each representing a smaller share of total
variance than the previous one. The sample used for the sensi-
tivity analysis can be used to estimate the PCs and their scores:
the eigenvectors of its empirical covariance matrix are the PCs
and their variances are the corresponding eigenvalues. The scores
are then easily obtained by projection.

A common practice in PCA is to use standardised variables to
avoid scale problems. For instance, if a variable lies in the interval
½103,104

� while the others vary from 0 to 10, the former would
most of the variance of the dataset while varying, relatively, as
much as the others. Both types of PCA (with untransformed
variables and standardised variables) have been used in this
study, leading to different types of interpretation.

Sensitivity analysis on scores: Eigenvalues usually drop quite
quickly in magnitude. PCs of low eigenvalue describe small
fluctuations in the dataset and one can neglect them without
losing much information. Keeping only the r most prominent PCs
allows to sum up the effect of clogging on the shape of the WRL
response with a manageable number of variables.

The WRL response curves lie in a p-dimensional space. Exclud-
ing the p�r PCs of lowest variances comes down to selecting the
r-dimensional subspace that most nearly encloses the data, the
curves being very ‘flat’ along the directions left aside. Then, Sobol’
indices can be computed on PC scores in exactly the same way as
sequential indices. In addition of being less numerous, these new
Sobol’ indices present the advantage of being linked to PCs whose
shapes can be interpreted. A more sophisticated approach using
the notion of generalized sensitivity indices has been proposed by
Lamboni et al. [30]. Here, the small number of PCs with a
substantial eigenvalue made it unnecessary.
2.2.5. Assessing indices validity

It is important to estimate the accuracy of the computed
sensitivity indices. One wants to know for instance, if the ranking
of the indices can be trusted as it is or if groups of input variables
should be considered. In addition, the chosen computation
scheme sometimes induces aberrations, such as slightly negative
indices or sums of indices that exceed one, due to slow conver-
gence of the Monte Carlo estimates; confidence intervals allow to
decide if these irregularities can be overlooked or if larger
samples should be used.

For each sensitivity index S, an estimator Ŝ has been computed.
Building a confidence interval consists in finding Ŝlo and Ŝup so that
the two events So Ŝlo and S4 Ŝup have both a given small probability.
As little is known about the distributions involved, bootstrap methods
are particularly indicated as they are robust and distribution free.

Bootstrap confidence intervals: The general idea behind boot-
strap is to draw conclusions about a given estimator by using the
empirical distribution upon which the estimator is based. The
estimator Ŝ is linked to the sample used to compute it, f, by a
function f : Ŝ ¼fðfÞ. A bootstrap sample fðbÞ is obtained by draw-
ing uniformly with replacement from f. For each bootstrap
sample, a bootstrap replication Ŝ

ðbÞ
¼fðfðbÞÞ is computed in the

same way as the estimator. It is possible to draw inferences on the
underlying distribution followed by Ŝ by analysing the empirical
distribution of the bootstrap replications.

Bootstrap percentile confidence intervals are constructed by
taking the a and 1�a percentiles of the empirical distribution
obtained after re-sampling. The bias-corrected and accelerated

(shortened BCa) intervals used in this study are derived from
the percentile intervals but include a correction of bias and an
acceleration that compensates for variation of the standard error
of S with the value of S. These two corrections consist in shifts of
the percentiles finally chosen from the empirical distribution.

Details about bootstrap confidence intervals and their deriva-
tion can be found in the book by Efron and Tibshirani [31].

2.3. Sliced inverse regression

The dimensionality of the model input was chosen on a
physical basis: it is the most detailed description of clogging that
can be reasonably described by a 1D model. However, as the
results of the sensitivity analysis will show, variations in shape of
the response can be satisfactorily accounted by a smaller number
of variables. Discarding irrelevant variables is necessary to ensure
that the diagnosis method is only used in its applicability domain.
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It also reduces the size of the space to be sampled and allows for
the construction of meaningful graphical representations.

Among dimension reduction techniques, sliced inverse regres-
sion (SIR) [5] bears several practical advantages. It is quite robust,
easy to implement and based on a very generic model. A generic
formulation of the SIR method is given in Section 2.3.1. For SIR to
be really useful, it is necessary to determine the dimension the
input space can be reduced down to without loss of information.
A bootstrap technique intended to address this issue is presented
in Section 2.3.2. Finally, Section 2.3.3 details what adjustments
are needed in the multivariate output case.

2.3.1. SIR principle

The basic idea behind SIR is to find a limited number of linear
combinations of the predictors that are sufficient to retrieve the
information from the regression.

The following model is assumed:

y¼ gðb01x, . . . ,b0qx,EÞ, ð15Þ

where ðbkÞ is a family of unknown vectors, g is an unknown
function taking value in Rqþ1 and E is independent from x.

The space Span½ðbkÞ� is called the efficient dimension reduction

(e.d.r.) subspace and its elements e.d.r. directions. This terminol-
ogy emphasizes the fact that g is arbitrary and that the bk

themselves are not identifiable.
The inverse regression curve Eðx9yÞ lies in Rn. If model (15)

holds, it stays always close to a q-dimensional subspace. Appro-
priate conditions on the distribution of x will ensure that it falls
into the e.d.r. subspace.

Confining the inverse regression curve to the e.d.r. subspace:
Consider the following condition,

Condition 1 (Linearity). For any b in Rn, the conditional expecta-
tion Eðb0x9b01x, . . . ,b0qxÞ is linear in b01x, . . . ,b0qx.

Such a condition is difficult to check because it involves the
unknown ðbkÞ. It is however satisfied if x has an elliptically
symmetric distribution, such as the Gaussian distribution [5].

Theorem 1. Under model (15) and condition 1, the centred inverse

regression curve Eðx9yÞ�EðxÞ lies in the subspace spanned by ðSbkÞ,
where S is the covariance matrix of x.

Hence, substituting x by its standardised version implies under
condition 1 that the inverse regression curve is contained in the
e.d.r. subspace.

SIR algorithm. The model can produce a sample of WRL
responses for an arbitrary distribution of x. This sample can then
be used to estimate, first the inverse regression curve and then, in
the same manner as in Section 2.2.4, the q-dimensional subspace
that most adequately contains it.

The following algorithm given by Li [5] has been used:
1.
 Standardise x using its empirical covariance matrix bS:

~x i ¼
bS�1=2

ðxi�xÞ.

2.
 Divide the range of variation of y into H slices, I1, . . . ,IH , each

containing a proportion ph of the N observations.

3.
 Compute the slice averages, ðm̂hÞ, of the input individuals:

8hAf1, . . . ,Hg, m̂h ¼ ð1=phNÞ
P
fi9yA Ihg

~x i.
4.
 Compute bV ¼ PH
h ¼ 1 phm̂hm̂ 0

h.
5.
 Find ðĝkÞ, the family of eigenvectors of bV sorted by decreasing
eigenvalues.
6.
 Output ðb̂kÞ ¼ ð
bS�1=2

ĝkÞkA f1,...,qg.

In the last step of the algorithm, the n�q eigenvectors with the
smallest eigenvalues are left aside. It is necessary to determine
the dimension of the e.d.r. subspace in order to avoid missing
information or including spurious directions.

2.3.2. e.d.r. subspace dimension determination

Li [5] proposed a statistical test to determine the dimension q.
Unfortunately, it relies on an assumption of Gaussian distribution
for x. As a non Gaussian distribution has been investigated here,
the bootstrap approach devised by Liquet and Saracco [32] has
been preferred.

Let Bk and bBk be the matrices whose columns are respectively
the vectors ðbkÞ and their estimators ðb̂kÞ with k in f1, . . . ,kg. Let Pk

and bPk be the S-orthogonal and bS-orthogonal projectors onto the
spaces spanned by these same vectors:

Pk ¼ BkðB
0
kSBkÞ

�1B0kS; bPk ¼
bBkð
bB 0k bSbBkÞ

�1bB 0k bS: ð16Þ

The following risk function,

Rk ¼
1

k
E½TraceðPk

bPkÞ�, ð17Þ

expresses the closeness of the two subspaces. If k¼q, the criterion
tends to 1 when the sample size tends to infinity. Thus, for a given
sample size N, a value of Rk close to 1 suggests that the e.d.r.
dimension is greater than or equal to k. Contrarily, if k4q,
additional vectors are not e.d.r. directions. Accordingly, they point
in directions at an angle with the e.d.r. subspace and the value of
Rk will stay below 1 whatever the sample size. Let us note
however that the increase in k has also the opposite effect as
each additional direction vector reduces the remaining angular
space in which the non-e.d.r. direction points. In particular, for
k¼n both projectors are the identity transformation and Rk is
equal to 1 whatever the sample size. Hence, there is no value of Rk

under which one can objectively assert that the k-th vector is not
an e.d.r. direction. However, the variation of the risk function as k

varies from 1 to n usually allows to deduce the e.d.r. dimension
unequivocally.

A bootstrap estimate R̂k of Rk can be formed as follows [31]: for
a given bootstrap replication of the sample used to conduct the
SIR, the plug-in estimator of Rk is

bRðbÞk ¼
1

k
E½TraceðbPk

bP ðbÞk Þ�: ð18Þ

For B bootstrap replications, the bootstrap estimate is

bRk ¼
1

B
XB
b ¼ 1

bRðbÞk : ð19Þ

Then, the e.d.r. dimension is determined by computing the boot-
strap estimate, bRk, of the risk function for each value of k from 1 to
n and inspecting the graph of bRk against k. The value of the
criterion stagnates or increases until k¼q. It then drops abruptly
before rising again as the remaining angular space closes. The
variance of the bootstrap estimate is also greater for non-e.d.r.
direction and can be used to come to a decision in
ambiguous cases.

2.3.3. Multivariate output SIR

Several approaches have been proposed to adapt SIR to a
multivariate context [33]. In this paper, the following adaptation
of model (15) is adopted:

y¼ gðb01x, . . . ,b0qx,EÞ, ð20Þ

where y stands for the multivariate output.
Building on what has been done for the sensitivity analysis in

Section 2.2.4, SIR has been carried out with the scores of the r

selected PCs as output variables. Then a method called Pooled
Marginal Slicing (PMS) has been applied to the r-dimensional
output [33]. Pooled Marginal Slicing principle: Applying the SIR
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algorithm up to step 3 to each of the r components of the
multivariate output yields a set of weighted covariance matrices
ðbV iÞiA f1,...,rg. A convex combination with a set of weights ðwiÞ can
be formed:

bV pool ¼
Xr

i ¼ 1

wi
bV i: ð21Þ

The e.d.r. directions are finally estimated by executing the second
half of the SIR algorithm with bV pool.
3. Results and discussion

3.1. Sensitivity analysis of the SG model

Sequential indices are presented in Section 3.1.1 and the
projection basis obtained by PCA is presented in Section 3.1.2.
This is compared to PCs obtained with data from industrial sites.
Finally, Section 3.1.3 details the ‘compact’ sensitivity indices
computed with the reduced dimension output.

3.1.1. Sequential Sobol’ indices

The size of the Monte Carlo samples has been fixed to 1000 so
a total of 18,000 transient simulations have been run for the
sensitivity analysis. Using 10 concurrent threads on two work-
stations, the total computation time was approximately
one week.

Sequential order 1 and total indices are represented in
Figs. 3 and 4. Indices are grouped in graphics by hot and cold
leg variables. The shade of the curves corresponds to the height of
the TSPs: light curves are associated to the lower TSP and dark
ones to the higher. The error bars represent the bounds of the BCa

confidence intervals. Only a few of them are presented for read-
ability but no discrepancies have been observed on the whole set.
Both sequential order 1 and total sets of indices display two sharp
contrasting behaviours for each leg. The ranking of the indices
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Fig. 4. Sequential total Sobol’ indices. Both plots pertain to the same sensitivity anal

corresponding to the cold leg on the right in order to ease readability.
is the same in all cases: the higher the TSP is positioned in the
SG, the higher are the corresponding sensitivity indices. This
is in agreement with the preliminary analysis conducted in
Section 2.1.3.

As stated in Section 2.2.2, the difference between total indices
and order 1 indices measures the amount of interaction. Compar-
ison of Figs. 3 and 4 shows that interactions are globally weak and
that they involve only the highest TSPs, except for the interval
between 650 s and 750 s where hot leg TSPs interact strongly. It
can be noted that the corresponding order 1 indices (left panel of
Fig. 3) briefly become negative. The very low variance of the
output in this interval probably causes this lack of convergence of
the Monte Carlo estimates. Indeed, the time-centred response
curves cross at approximately 700 s, as can be seen on the right
panel of Fig. 2. It seems legitimate to consider these indices as
null because their error bars are roughly centred on the baseline.
3.1.2. Dimension reduction of the model output

Sequential indices revealed that the impact of clogging
changes qualitatively with the SG leg and quantitatively with
the level of the TSPs. However, the large number of sequential
indices makes it difficult to estimate precisely the impact of each
TSP and the interactions. In order to reduce the output dimension,
a ‘raw’ and a normalized PCA have been carried out. The resulting
PCs have been compared to those obtained with plant data.

The first 10 PCs obtained with a uniform sample with ‘raw’ and
normalized variables are displayed in Fig. 5. The normalized PCs
in the right panel of Fig. 5 have been multiplied by the square root
of their eigenvalue. Hence, it is actually the sequential correlation
coefficients between the time step variables and the PCs that are
represented. In both cases, the first two PCs account for more than
99.9% of the overall variance. It shows in the normalized variables
graphic: the correlation coefficients of the next PCs almost do not
depart from the baseline meaning that these PCs are only margin-
ally correlated with the original variables. The low variance PCs
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Fig. 5. First 10 PCs obtained with the uniform sample (left: ‘raw’ variables; right: normalized variables).
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Fig. 7. Order 1 and total Sobol’ indices computed with PC scores (left: PC 1; right: PC 2).
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can be seen in more details in the left panel because they all have
an L2 norm equal to one. They are rather disorderly and do not
look like any general feature of the curves except from the
oscillations in the beginning that have been identified as numer-
ical artefacts.

The first two ‘raw’ PCs are polynomials of degree 1 and 2. The
first PC increases the global slope of the curves by spinning it
round a fixed point around time 650 s. The second PC increases
the curvature by ‘bending’ the curves with two fixed points at
times 250 s and 900 s. The PC 1 correlation coefficients curve is
S-shaped with two plateaux at þ1 and �1 from approximately 0 s
to 400 s and 800 s to 1148 s. In between there are two sharp
inflexions. This means that the original variables of the beginning
of the time interval are highly correlated with PC 1 while those at
the end are highly anti-correlated. The PC 1 correlation coeffi-
cients curve is V-shaped and points towards 1 around 650 s. Only
the time steps variables of the middle of the interval are
substantially correlated with the PC 2.

PCA on measured data: A PCA has been carried out on 291
measured response curves from 5 EDF units. The 97 processed
transients (there are three SGs per unit) spread over a period of 10
years and each unit has undergone a chemical cleaning at some
points. Hence, the data include a wide array of clogging config-
urations, from very low clogging just after the chemical cleaning,
to very high clogging just before.

The first three PCs obtained without preprocessing and the
first 2 PCs obtained with the preprocessing described in Section
2.2.3 are displayed in Fig. 6. On the left panel, the first PC is nearly
a constant and its scores are proportional to the temporal mean of
the curves. The PCs are orthogonal by construction so PC 2 and
3 are very similar to PC 1 and 2 from the right panel. This
validates the chosen preprocessing. The PCs obtained with mea-
surements are similar to those found with the simulations. This
shows that the main effects of clogging on WRL are correctly
represented by the model and that PCA is an appropriate tool to
represent them.
3.1.3. Sobol’ indices of reduced dimension output

The first two PCs obtained in the previous section account for
almost all of the variance of the sample. Comparison with plant
data showed that they satisfactorily represent the effects of
clogging on the WRL response. It is straightforward to select
those 2 PCs to build a projection basis for the reduced dimension
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output sensitivity analysis. Sobol’ indices computed with ‘raw’
and normalized PC scores did not differ fundamentally and only
the former are presented here.

The results of the sensitivity analysis conducted on the first
two sets of standardised PC scores are displayed in Fig. 7. Each
couple of bars corresponds to a TSP. They are lined up from
bottom to top in ascending order, hot leg first. The light bars
represent total indices and the dark bars represent order 1 indices.
The length difference of the two bars of a couple represents the
interaction in which the input variable is involved. The error bars
indicate the bounds of the BCa confidence intervals.

As for the sequential indices, total indices have shorter confidence
intervals and their length is proportional to the value of the indices
while order 1 indices have longer confidence intervals of constant
size. A few total indices are slightly smaller than their first order
counterpart. However, these differences are always small estimates
for total indices are always within the confidence intervals of order
1 indices. Thus, it seems sensible to assume that these order 1 indices
actually equal the total indices and that no interaction is involved
here. The ranking of the indices is again in agreement with the
preliminary analysis. On the whole, interactions are rather limited.
Taking the confidence intervals into account, only TSP 4–8 on the hot
leg and to a lesser extent TSP 7 and 8 on the cold leg seem to be
involved in substantial interactions.

3.2. Dimension reduction of the SG model input

The sequential Sobol’ index curves in Figs. 3 and 4 are almost
proportional. This suggests that clogging of TSPs of a same leg
affect the WRL response in a similar manner. In addition,
sensitivity analysis on the PC scores showed that there are little
input variable interactions. These observations give credibility to
model (15) so SIR is well indicated to simplify the model input.
The high dimension of the input raises a sampling issue. It is
addressed in Section 3.2.1. Then, results of PC-wise univariate SIR
and multivariate SIR are detailed in Sections 3.2.2 and 3.2.3.

3.2.1. Note on sampling scheme

Gaussian sampling: A simple means to satisfy condition 1 is to
choose a Gaussian distribution for x. A sample of 104 response
curves for clogging ratios following a multivariate Gaussian
distribution of mean 0.65/2 and standard error 0.65/6 has first
been simulated. A few individuals with negative or very high
clogging ratios have been trimmed without affecting too much
the elliptic symmetry of the distribution. The first two PCs
obtained with this sample are similar in shape to those found
with a uniform sample displayed in Fig. 5. However, the shares of
explained variance are different: the ratio of the first eigenvalue
to the second is much higher in the Gaussian sample case. The
standard deviation of the sequential variables is also globally
lower in the Gaussian case, especially in the middle of the time
interval. This is due to the fact that the Gaussian sample covers a
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Fig. 8. Box plots of bRk values with uniform sampl
volume much smaller than the uniform sample. At best, the
Gaussian sample can efficiently cover the hypersphere inscribed
into the hypercube ½0,0:65�16. This would not cause much trouble
in low dimension, but here the hypercube looks more like a sea
urchin than a cube: it has 216

¼ 65,536 ‘corners’ having each a
volume approximately 4.25 times higher than the volume of the
inscribed hypersphere. The previous observations tend to show
that the Gaussian sample is unable to capture what happens
inside the ‘corners’ of the hypercube. Yet, sampling extensively
the hypercube while preserving an elliptic contour for x is
rendered difficult by its shape. Indeed, trimming and re-weighting a
uniform sample, following for instance the guidelines of Cook and
Nachtsheim [34], is unlikely to succeed because the probability that
at least one individual out of a 104 size sample falls into the inscribed
hypersphere is lower than 0.04!

Flexibility of the linearity condition: Condition 1 is actually
weaker than elliptic symmetry and SIR can yield sensible results
in cases that does not exactly comply with it. It has been shown
by Diaconis and Freedman [35] that most low-dimensional
projections from a high-dimensional data set are approximately
Gaussian. Hall and Li [36] extended this result showing that low-
dimensional projections of high-dimensional data are almost
linear. As an illustration, a simulation example of e.d.r. directions
correctly identified by SIR with a uniform sample in dimension 10
is given in the rejoinder of Li [5]. Here the dimension is higher and
the data are relatively smooth because they are produced by a
model so it can be expected that SIR would work in spite of a
violation of condition 1. The bootstrap dimension determination
method has been successfully tested with a strongly non ellipti-
cally distributed input [32]. A 104 size uniform sample of WRL
response curves has been simulated in order to investigate the
model’s behaviour inside the ‘corners’. The results obtained with
this uniform sample are presented below.

3.2.2. Marginal slicing

Marginal slicing has been applied to the first two PCs of the
data set. Using ‘raw’ or normalized PCA made but little difference
so only the results with normalized PCA are presented here. The
number of slices had also a very limited influence. Here, 33 slices
of cardinal 303 have been used.

Bootstrap estimates of the risk function for the e.d.r. space
dimension have been computed using 500 bootstrap replications.
Corresponding box plots for the uniform samples are given in
Fig. 8. In both plots, the mean of bRk is first close to 1, then
decreases steeply down to around 0.7 and eventually climbs up
until it reaches 1 for k¼16. The variance of bRk is close to 0 on the
initial plateau, then it soars at the beginning of the drop in mean
and eventually decreases regularly down to 0 as k increases up to
16. The increase in mean in the third part of the plots is a
consequence of the growth of the basis. Additional directions
progressively restrict the angular domain where the directions
found with the bootstrap replications may differ from those found
R
k
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with the original sample. This shows through the progressive

reduction of the variance of bRk as k increases. When k equals 16,

bPk and the bP ðbÞk are proportional to the identity.

The dimension of the e.d.r. space is given by the highest value of k

for which the mean of bRk is nearly 1 and its variance nearly 0 [32].
Here, it is equal to 2 for both sets of PC scores. The first two directions
found with the uniform sample are displayed in Fig. 9. The plot on
the left and on the right display the two e.d.r. directions obtained
respectively with the scores of the first and second PC as output
variable. The black circle-marked and grey square-marked lines
represent respectively the coordinates of the first and second e.d.r.
vectors in both plots. Each mark correspond to a half-TSP. Once again,
they are numbered in ascending order from the bottom of the SG to
its top, hot leg first. The lines are broken at the limit between the hot
and cold leg; however, each pair of colour and mark correspond to a
unique e.d.r. direction in each plot. The Gaussian sample yielded
similar results but the directions were a little less monotonous which
goes against physical reasoning. It was not able to retrieve the second
e.d.r. direction with the PC 1 scores.
3.2.3. Pooled marginal slicing

The dimension of the e.d.r. space yielded by PMS (see Section
2.3.3) with the two sets of PC scores is equal to 2 as can be seen on
the left panel of Fig. 10. The right panel of Fig. 10 displays an
orthogonal basis of the plane spanned by the first two directions
found with the uniform sample. The vectors have been combined
so that hot and cold legs are as separated as possible between.
They are normalized to have a L1-norm equal to 1 so that the
coordinates vary in the same range as clogging ratios. Using PMS
made SIR more robust to changes in the sampling scheme. Indeed,
the basis obtained with the Gaussian sample was nearly the same
as the one displayed in Fig. 10. The bRk values also indicated that
the e.d.r. space is a plane but in a less obvious manner.

The two e.d.r. directions found correspond to weighted
averages of the clogging ratios of each leg. This means that a
clogging diagnosis based on WRL response curve analysis will
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consist of hot and cold average clogging ratios. The results
obtained here illustrate the fact that SIR can provide interesting
projection direction even when the linearity condition is not fully
satisfied. When the input dimension is large, elliptically con-
toured distributions are unlikely to be able to efficiently cover the
domain of interest. In such cases, uniform sampling is a straight-
forward alternative to Gaussian sampling and the bootstrap
method proposed by Liquet and Saracco [32] can be used to
determine the e.d.r. subspace dimension.
4. Conclusion

A methodology combining several statistical techniques has
been carried out with a 1D SG model. It allowed to characterize
the information about the clogging state of a SG that can be
inferred from its WRL response to a power transient. The study
has shown that:
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clogging affects the WRL response in two distinct ways. It
alters its global slope and its curvature.

�
 These effects depend on the leg of the SG and the elevation of

the clogging sites. Clogging of the hot leg and cold leg have a
different impact and the former is predominant. The higher is
the clogging site in the SG, the greater is the magnitude of the
alteration.

�
 The WRL response curves can be summarised by vectors of

size 2, each coordinate describing respectively the global slope
and the curvature of the curves. The clogging state of indivi-
dual half-TSPs cannot be identified by analysing the WRL
response. The diagnosis actually consists in average clogging
ratios of each leg.

The low dimensions of the simplified input and output provide a
convenient framework for future development of a diagnosis
methodology. Two response surfaces, one for each direction of
the e.d.r. subspace basis, can be built by swapping the input and
output. Then, any measured WRL response can be projected on
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the PC basis yielding two coordinates. The average clogging of
each leg is then indicated by the heights of the two response
surfaces associated to the couple of coordinates.

The methodology can be easily adapted to other diagnosis
contexts. Here there are three remarks to serve that purpose. The
derivation of the diagnosis method is mainly based on the
dimension reduction achieved with PCA and SIR. However, the
basis of the e.d.r. subspace that SIR outputs may not be the most
pertinent for the diagnosis. The sensitivity analysis provides
valuable insights on the role of each input variable and suggests
meaningful combinations of the e.d.r. directions found with SIR.

When the input dimension is high and it is suspected that
important features may appear only for extreme values of the
input variables, the SIR should be carried out with both a
Gaussian sample and a uniform sample. Possible inconsistencies
in the results can be caused by a too strong violation of the
linearity hypothesis in the uniform sample case. In such a
situation, the sensitivity analysis can be used to remove the least
influential input variables prior to the SIR. Keeping only the 3–5
most prominent variables allows to build a Gaussian sample that
covers a more reasonable portion of the hypercube domain.

Finally, in situations where the output is more complex, that is,
when there are more PCs with non-null eigenvalue, the reduction
of the output dimension can be carried out in a more sophisti-
cated way. One drawback of using the PC scores as the new
output variables is that this choice is independent of the input.
Using Hotelling’s theory of most predictable variates, Li et al. [37]
have proposed an extension of SIR that relies on the data to find
the output projection basis.
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