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Résume

Le probléme qui a motivé ce travail est I’évaluation d’un projet minier et en particulier la sélection de la
meilleure option de développement incluant la possibilité d’obtenir des sondages d’exploration supplémen-
taires. Cette thése porte sur la modélisation des réserves d’une mine d’or a ciel ouvert par des simulations
conditionnelles et en particulier une approche bayésienne, et sur I’évaluation financiére du projet en utilisant
les options réelles.

Dans les projets concernant les ressources naturelles, tels que les mines, il y a au moins deux sources
importantes d’incertitude : I’incertitude du marché représentée principalement par le prix du métal (or),
et I’incertitude technique ou privée représentée par les réserves. Les méthodes traditionnelles d’évaluation
de projets, la valeur actualisée nette (VAN) par exemple, sont basées sur des valeurs fixes pour tous les
paramétres et un scénario de développement défini. Elles supposent que le management est passif aux
changements de conditions. Les simulations de Monte Carlo peuvent étre utilisées pour modéliser les in-
certitudes liées aux parameétres financiers et techniques, mais elles ont de grandes difficultés a intégrer des
scénarios flexibles. De nos jours, il est largement reconnu, en finance et en management (Brealey et Myers,
1991), que les bons managers peuvent et doivent réagir aux changements de circonstances, et que ceci peut
valoriser considérablement les projets en cours. Les décideurs ont la possibilité d’agir, car de nombreuses
options réelles intégrent un projet d’investissement et ils peuvent choisir de les exercer dans I’intérét de la
compagnie.

Les options les plus fréquentes sont :
- attendre avant d’entreprendre le projet (renvoi a une date définie, ou a une date inconnue) et
- abandonner le projet (temporairement ou de fagcon permanente).

La méthode des options réelles a été développée a partir des techniques d’évaluation des options financiéres.
Elle a été congue pour intégrer la flexibilité managériale et les incertitudes sur les prix, mais peu de travaux
ont été effectués pour prendre en compte les incertitudes des paramétres techniques. Les questions liées
aux incertitudes techniques ne sont apparues que récemment dans la littérature traitant des options réelles,
et elles concernent en particulier le pétrole (Chorn et Croft, 1998; Galli et al., 1999; Lund, 1999; Cortazar
et al., 2001; Connell, 2002; Dias, 2002; McCarthy et Monkhouse, 2003). Au contraire, I’approche VAN est
souvent combinée avec des simulations conditionnelles des réserves (Dowd, 1994 Sanguinetti et al., 1997;
Thwaites, 1998), mais sans prise en compte de I’incertitude du prix et de la flexibilité. C’est pour cette rai-
son que nous nous sommes intéresseés a la combinaison des simulations conditionnelles géostatistiques avec
les options réelles. Tout comme la volatilité dans les modeles traditionnels des options réelles, la sélectivité
de la distribution des teneurs ajoute de la valeur au projet.

La premiére partie de la thése est consacrée a I’introduction et I’analyse du cadre bayeésien et a I’application
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au cas d’étude. La deuxiéme partie de la thése est consacrée aux options réelles.

Nous avons commencé par utiliser les simulations conditionnelles car elles sont bien acceptées dans I’industrie
miniére. Toutefois, des hypothéses fortes sur la fonction de covariance sont nécessaires. Ceci est habituelle-
ment obtenu en appréciant graphiquement « & la main » la covariance expérimentale et en I’introduisant
dans les équations de prédiction comme s’il s’agissait de la vraie covariance. Cette approche est appelée
plug- in. Pour tenir compte de cette incertitude, le cadre bayésien a été introduit. Les paramétres du mod-
éle sont traités comme des variables aléatoires. En particulier le cadre bayésien a été considéré a cause
de I’information disponible : le gisement est caractérisé par une partie supérieure échantillonnée de facon
dense et une partie inférieure peu échantillonnée. Bien qu’on ait supposé la continuité entre les deux par-
ties, I’approche bayésienne a permis de laisser de I’incertitude sur la structure de la covariance. Ceci etait
particulierement interessant dans notre cas pour la structure a grande porteé de la covariance qui décrit la
correlation entre la partie superieure et inferieure du gisement.

Un point critique en statistique spatiale par les champs aléatoires gaussiens est I’identification de la struc-
ture de la covariance. La méthode de krigeage est largement utilisée pour la prédiction miniere car elle
permet des prédictions optimales quand la structure de covariance est connue. En réalité la covariance est
inconnue et doit étre estimée, de telle sorte que I’optimalité du krigeage est mise en question. En outre, la
variance de krigeage risque d’étre optimiste, puisqu’elle ignore cette source d’incertitude. Le paradigme
bayeésien fournit un cadre a I’intérieur duquel on peut analyser la performance prédictive du krigeage. La
qualité de la mesure d’incertitude attachée au prédicteur est aussi importante que la qualité du prédicteur
lui-méme. La prédiction bayésienne est basée sur la distribution prédictive compléte qui intégre la variabil-
ité des paramétres du modéle.

Le point le plus delicat de I’approche bayésienne est la définition de la distribution a priori des paramétres
qui a un rdle important en particulier pour les jeux de données de petite taille. Plusieurs distributions a
priori ont été définies, non- informatives ou informatives. Les distributions non- informatives sont souvent
impropres : il faut alors vérifier que la distribution a posteriori est bien une distribution propre. La sensi-
bilité des distributions a posteriori des parametres et des distributions prédictives a ces a priori a été étudiée
empiriguement.

Selon la distribution a priori choisie, les distributions prédictives bayésiennes peuvent ne pas étre calcu-
lables analytiquement, ni simulables directement. Les algorithmes de Monte Carlo par chaines de Markov
doivent alors étre utilises.

Nous avons etudié le modele gaussien développé par Kitanidis (1986) et Handcock et Stein (1993). L’importance
de la prise en compte de I’incertitude sur les paramétres du modéle a été mise en évidence dans plusieurs ex-
emples et dans le cas d’étude. Dans le cas des champs aléatoires gaussiens, I’incertitude sur les paramétres

de corrélation influence fortement la distribution prédictive, contrairement a I’incertitude sur le paramétre

de variance. Le point le plus critique semble étre I’effet de pépite, c’est-a-dire le comportement & petites
distances pour lequel il n’y a pas d’information disponible. Bien que I’on attende une variance plus impor-
tante dans le cas ou tous les paramétres sont inconnus, ce n’est pas toujours le cas.

Il faut noter que la taille des jeux de données en sciences de la terre est généralement importante voir
trés importante. |l en résulte des temps de calcul longs. Par exemple, les simulations conditionnelles du
gisement ont d{ étre effectuées pendant la nuit, par lots de 20. L’approche bayésienne est méme plus lourde
encore, car elle nécessite en plus la simulation de parameétres inconnus. De plus I’inversion de la matrice de
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covariance est nécessaire pour chaque valeur des paramétres de corrélation.

Comme les données dans le cas étudié ne sont pas gaussiennes, nous avons introduit le modele gaussien
transformé proposé par De Oliveira et al. (1997). La famille Box- Cox pour les transformations de puissance
est combinée avec le modele gaussien. Le modéle gaussien est défini pour la variable aléatoire transformée.
Le paramétre de transformation est aussi traité comme un paramétre inconnu. Ce modeéle permet de prendre
en compte facilement I’incertitude sur la transformation. Mais il est assez difficile a utiliser en pratique
car pour chaque valeur du paramétre de transformation, le domaine des données transformées est différent.
L’interprétation physique des paramétres est problématique. Box et Cox (1964) et De Oliveira et al. (1997)
soulignent la nécessité que les paramétres soient a priori dépendants. Mais il est difficile de définir une telle
distribution. De plus, les résultats semblent sensibles au choix de la distribution a priori. Nous remarquons
gu’il s’agit de la distribution a priori : elle est mise a jour par les données.

Néanmaoins, nous recommandons le modele gaussien transformé comme premier outil pour analyser la non-
normalité des données. Ensuite on pourrait utiliser, soit une simple transformation (la transformation loga-
rithmique, qui peut étre utilisée pour des données de distribution statistique manifestement asymeétrique, bien
que cette hypothése doive étre soigneusement vérifiée), soit, comme I’indiquent Christensen et al., (2001)
quand la méthode d’échantillonnage suggére une distribution non gaussienne spécifique, une incorporation
dans le cadre du modele linéaire mixte généralisé. Le modele gaussien transformé peut aider a décider si,
par exemple, la transformation logarithmique est appropriée ou non a la modélisation des données étudiées.
Et plus généralement, ceci permet d’éviter la sélection d’une transformation incorrecte due, par exemple,
a I’effet d’influence de quelques observations. Nous soulignons que le cadre bayésien fournit le prédicteur
optimal en modeéle log- normal, alors que ceci n’est pas le cas pour le krigeage sous le méme modéle quand
la moyenne est inconnue.

Nous avons défini une approche bayésienne plus générale pour évaluer les réserves du cas d’étude. Selon
la pratique habituelle en géostatistique, nous avons utilisé la fonction d’anamorphose gaussienne, au lieu de
la transformation de Box- Cox, pour transformer les données en valeurs gaussiennes. Les résultats ont été
comparés aux résultats obtenus avec I’approche plug- in. Nous rappelons qu’en général les hypothéses pour
le cadre bayésien sont plus fortes que pour le krigeage. La distribution spatiale de la variable d’intérét doit
étre spécifiée. Par contre, tout comme dans le cas de simulations géostatistiques habituelles, la normalité
n’est demandée qu’a une anamorphose prés. A la fois une moyenne constante et une dérive quadratique
verticale ont été introduites dans le modéle. Une distribution a priori non- informative a été considérée
pour les paramétres de la moyenne. Nous remarquons que la distribution a posteriori des paramétres permet
de Vérifier la présence d’une dérive. Plusieurs covariances ont été fixées a priori et considérées comme
ayant la méme probabilité. Ceci nous a permis d’inverser la matrice de covariance seulement une fois dans
I’algorithme d’échantillonnage. L’anisotropie géométrique a été facilement prise en compte dans le modeéle.
Pour chaque échantillon de Monte Carlo de la moyenne et de la covariance, une simulation conditionnelle
géostatistique a été effectuée. L’importance de la prise en compte de I’incertitude des paramétres de covari-
ance a été mise en évidence. Les distributions bayésiennes et plug-in des réserves différent principalement
dans les queues.

En conclusion, nous recommandons I’approche bayésienne, mais elle doit étre appliquée avec certaines
précautions car elle est dépendante du cas considéré comme, par exemple, pour la définition des distribu-
tions a priori. Nous pensons que c’est un point fort de cette approche, car elle force a un examen critique du
probléme a étudier.
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Une partie importante de ce travail est consacrée au choix du modéle de prédiction. Le modéle aurait
été plus général si on avait utilisé une famille de fonctions de covariance, au lieu de choisir un modéle
spécifique. La classe de fonctions de covariance de Matérn qui inclut le modéle exponentiel aurait pu étre
envisagée. Ceci aurait permis de prendre en compte des comportements différents a I’origine. Nous n’avons
considéré que deux modeles : exponentiel et sphérique.

L’approche bayésienne qui a été utilisée repose fortement sur I’hypothese gaussienne. Pour les données
qui ne semblent pas suivre une distribution gaussienne, mais qui conservent une certaine similarité avec
elle, la distribution normale asymétrique (Azzalini et Dalla Valle, 1996) pourrait étre choisie a sa place.
C’est une distribution permettant une grande flexibilité d’asymétrie et de kurtosis. Lorsque I’histogramme
des données présente une distribution continue et légérement asymeétrique, une transformation gaussienne
est appropriée. Il est vrai que toute variable continue est « anamorphosable », mais si I’histogramme est trop
asymeétrique et montre de longues queues, une transformation gaussienne limitera I’amplitude des valeurs
fortes et amplifiera les différences peu importantes entre les valeurs faibles. Ceci peut étre intéressant si, par
exemple, la proportion de zéro est élevé.

La méthode des options réelles a été considérée pour évaluer le projet minier sujet a la fois aux risques
du marché et aux risques techniques. Son point fort est qu’elle peut étre utilisée pour évaluer la flexibilité
inhérente a chaque projet. Négliger la flexibilité peut conduire a une sous-évaluation des projets et par voie
de conséquence au refus de projets qui pourraient étre profitables.

L’approche risque- neutre a été considérée. On a fait I’hypothése que le prix de I’or suivait un mouve-
ment brownien géométrique (GBM). Il s’agit d’un modeéle non stationnaire. Il est vrai que pour des durées
courtes, relatives au temps de retour a la moyenne, il est difficile de différencier un GBM d’un modele avec
retour & la moyenne. Nous avons utilisé la programmation dynamique stochastique pour réaliser les calculs
car ceci nous permet d’évaluer les options a exercice anticipé (options américaines). Le modéle binomial
(Cox, Ross et Rubinstein, 1979) a été utilisé pour discrétiser le GBM.

De nombreux types de projets, relatifs tant aux ressources naturelles qu’a la R & D dans les industries
de hautes technologies, sont menés par étapes séquentielles, et les informations obtenues a chaque étape
sont cruciales pour les prises de décision concernant les étapes suivantes de développement du projet. Une
option permettant d’obtenir des informations supplémentaires peut s’avérer une source majeure de valeur
pour le projet.

Cette these aborde la question de I’évaluation de cette option. Dans le cas d’étude, une partie du gise-
ment a été peu échantillonnée et des sondages supplémentaires peuvent étre obtenus afin de mieux con-
naitre cette zone. Le projet serait alors mieux défini : la variance des réserves réduite ou le modeéle initial
corrigé. Le management doit décider si oui ou non I’information supplémentaire justifie le colt. La ques-
tion a laquelle nous aimerions répondre est quel sera le colt pour nous dans le futur si nous ne disposons
pas de cette information maintenant ? Ou comment chiffrer le gain apporté par les nouveaux sondages ?
L’investissement nécessaire pour obtenir de nouvelles informations est une alternative importante, tant pour
décider d’un développement immédiat, que pour attendre de meilleures conditions de marché. 1l comprend
des défis pratiques complexes, dans un cadre dynamique prenant en compte I’expiration de I’option de dé-
marrage du développement, le temps d’obtenir I’information et I’interaction avec les incertitudes du marché.

Martzoukos et Trigeorgis (2001) discutent le paradoxe des options réelles concernant I’acquisition de con-
naissances et d’informations : si les options sont en général des fonctions croissantes de la volatilité tan-
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dis que I’acquisition de connaissances diminue les incertitudes, pourquoi alors voudrions-nous avoir plus
d’information ? L’acquisition d’information et le moment optimal de cette acquisition entraine de meilleures
prises de décisions et augmente la valeur de I’option réelle. Les deux auteurs s’intéressent au moment opti-
mal d’acquisition d’information.

Alors que pour Marzoukos et Trigeorgis I’apprentissage n’est relié qu’au prix, Dias (2002) prend en consid-
ération les incertitudes techniques relatives a la dimension et a la qualité des réserves. 1l se focalise sur la
sélection de la meilleure alternative pour I’investissement en information. Mais il suppose que des informa-
tions supplémentaires ne peuvent que réduire I’incertitude sur les réserves. Dans le présent travail, I’intérét
est mis sur la valeur de I’information supplémentaire, dans le cas ou le management décide de I’obtenir;
cela valait-il la peine de I’obtenir et a-t-elle aidé au choix du meilleur projet ? Le bénéfice résultant des
informations supplémentaires pourrait étre une augmentation du retour sur I’investissement prévu lié a une
décision plus informée, par rapport a une décision prise sans informations additionnelles. Pour cela, les
données supplémentaires ont été simulées de facon a doubler I’information de la partie peu connue, et trois
scénarios ont été choisis pour représenter un cas riche, un cas moyen et un cas pauvre.

Les décisions initiales qui ont été considérées sont :
1. démarrer le développement immédiatement,
2. attendre un an sans rien faire,
3. attendre un an pour avoir des sondages supplémentaires.
Lorsque le développement a commence, les choix disponibles (flexibilité opérationnelle) sont :
1. continuer I’exploitation,
2. abandonner le projet.
Les choix de développement considérés sont :
1. développer une petite fosse,
2. développer une grande fosse,

3. démarrer le développement d’une grande fosse mais revenir a une petite fosse si les résultats ne sont
pas prometteurs.

Les résultats ont mis en évidence la valeur de la flexibilité managériale, qui peut étre importante.

Le modele a permis de prendre en compte la flexibilité d’initiation, la flexibilité de I’information et la
flexibilité opérationnelle. Dans ce cas la flexibilité d’initiation est importante, tandis que la flexibilité opéra-
tionnelle a peu de valeur. On a pu constater, comme I’on pouvait s’y attendre, que plus les réserves sont
incertaines, plus la flexibilité est importante. L importance de I’incertitude des réserves a été aussi mise
en évidence par la comparaison des résultats des deux approches Bayésienne et plug-in. Elles ont fournis
les mémes résultats, c’est-a-dire le méme projet optimal, tandis que la valeur du projet et la valeur de la
flexibilité d’information sont trés différentes. Notre principal intérét s’est mis sur la flexibilité d’obtenir
plus d’information. Sur la base de I’information initiale, la décision optimale consistait a retarder le début
du projet d’un an, puis a développer une grande fosse. Si I’information additionnelle est riche, elle permet
de bien différencier les deux projets : le développement de la grande fosse s’avere bien plus intéressant
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que celui de la petite fosse. Si I’information additionnelle est moyenne ou pauvre, la réduction du risque
est moins importante car les deux projets sont encore trés voisins. L’ information additionnelle permet de
réduire le risque de 40%, montrant ainsi la valeur de cette information. Une information a de la valeur non
seulement si elle entraine une modification de la décision initiale, mais aussi si elle permet de mieux définir
le projet.

La sensibilité de la flexibilité a la valeur initiale du prix de I’or a été vérifiée. La flexibilité d’initiation, c’est-
a-dire I’option d’attendre, est intéressante lorsque les prix de I’or sont élevés. La flexibilité d’information
a peu de valeur aussi bien dans le cas de prix trés bas que de prix trés élevés. Ceci indique qu’il n’est pas
intéressant de doubler I’information concernant la partie inférieure du gisement, si le prix de I’or est bas,
car dans ce cas le développement du gisement n’est pas intéressant, ou s’il est trés élevé, car le risque d’un
développement non optimal n’est alors pas important.

L’option de réorientation vers la petite fosse si la partie inférieure du gisement n’est pas intéressante aug-
mente de fagon importante la valeur du projet.

L’hypothése risque- neutre est douteuse lorsque les options réelles sont évaluées car un projet minier (ou
pétrolier) présente des risques spécifiques qui ne sont pas cotés sur le marché et un portefeuille répliquant
le projet est impossible a trouver. Nous avons aussi considéré I’approche décisionnelle en fixant un taux
de discount représentant le risque du projet. Les résultats sont naturellement trés différents des résultats
obtenus avec le taux risque- neutre : la stratégie de développement est différente. 1l est donc trés important
de définir correctement le taux de discount. Une prime de risque qui couvre le risque privé devrait venir
s’ajouter au taux sans risque. Les approches décrites par Smith et Nau (1995) et Slade (2000), bien que
différentes, utilisent les taux de risque ajustés.

Le modéle a permis de prendre en compte I’incertitude sur les réserves et sur le prix de I’or. Des colts
inconnus ont été considérés pour évaluer la partie inférieure du gisement. D’autres sources d’incertitude
auraient aussi pu étre inclues dans le modéle, comme par exemple le taux de production et la teneur de
coupure. De plus, il pourrait étre intéressant d’introduire dans le modele la corrélation entre la production
et le prix de I’or, ou de fagon analogue, entre la teneur de coupure et le prix de I’or, ou entre la teneur de
coupure et les colts. Des prix élevés entrainent des teneurs de coupure plus faibles. A des prix éleveés, la
société miniére pourrait vendre plus et diminuer la durée de vie de la mine (Lane, 1991).

Nous avons considéré seulement trois jeux de donnees supplementaires. Les probabilités associées ont
été definies en supposant que ces jeux de données representaient 25 %, 50 % et 25 % des jeux de donnees
supplementaires possibles.

Nous avons fait I’hypothése que le calcul des réserves est mis a jour seulement si des sondages supplé-
mentaires étaient réalisés. 1l pourrait étre intéressant de considérer une mise a jour continuelle des réserves
sur la base d’informations provenant de la production. Pour ceci, Connell (2002) introduit un GMB pour
modéliser I’évolution des réserves dans le temps. Toutefois, ceci suppose que la variance des réserves aug-
mente avec le temps.

L’approche considérée pourrait prendre en compte les opportunités du marche pour couvrir les risques du
projet. Il pourrait étre intéressant d’évaluer le cas étudié en considérant que, par exemple, 50 % de la pro-
duction annuelle sont couverts. Le marché des produits dérives de I’or a augmenté rapidement au cours
de la derniere decennie (Neuberger, 2001). Les compagnies minieres couvrent souvent une certaine pro-



RESUME vii

portion de leur production prévue, de telle sorte que les institutions financiéres soient sires que les dettes
seront payées. C’est a dire que les compagnies miniéres utilisent le marché des dérivés pour couvrir leur
production. La principale raison de cette politique est la réduction et le controle du risque. En pratique,
seulement quelques compagnies vendent plus qu’une faible fraction de leurs réserves prévues. Le manage-
ment sait qu’une stratégie de vente & terme (contrat forward) qui apparait comme une gestion prudente du
risque lorsque le prix de I’or chute, serait inadaptée en période de forte hausse du prix de I’or. Le producteur
ayant une couverture totale ne tire aucun bénéfice de I’amélioration du prix. Une autre possibilité pour la
compagnie miniére est d’acquérir un put. Les produits dérivés augmentent la flexibilité de la direction des
compagnies miniéres.

Plus d’information concernant la compagnie qui exploite le gisement pourrait aider a mieux définir la regle
de décision pour le projet optimal. Nous avons considéré que le décideur avait un comportement neutre
vis-a-vis du risque et choisissait donc le projet avec le profit estimé le plus élevé, méme si ce projet est
plus incertain. Une petite compagnie qui ne veut pas prendre de risques ou qui est conservatrice préferera
un projet plus sdr a un projet a plus forte valeur mais avec une plus grande incertitude. Au contraire, une
grande compagnie qui est impliquée dans un grand nombre de projets n’hésitera pas a choisir le projet avec
le meilleur retour sur investissement méme s’il est plus risqué. La théorie de I’utilité devrait étre utilisée
pour I’analyse de la décision dans le cas d’une attitude conservatrice vis-a-vis du risque. La régle de déci-
sion est alors de choisir I’alternative qui a la plus grande utilité attendue.

Le caractére novateur de cette thése tient a ce qu’elle combine des méthodes géostatistiques et des out-
ils de la finance pour évaluer un projet minier. Nous pensons qu’il est important d’utiliser un modele qui
prend en considération a la fois les incertitudes techniques et celles du marché pour I’évaluation de projets
relatifs a des ressources naturelles. Le modéle bayeésien finalement utilisé est plus général que le modéle
gaussien transformée proposé par de De Oliveira et al. (1997). De plus, le domaine de la variable gaussienne
est maintenant bien défini et les difficultés liées a la distribution a priori ne sont plus présentes.
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Chapter 1

Introduction

In natural resource projects such as mines and oil fields, there are at least two important sources of un-
certainties, market uncertainty represented mainly by the price of the commodity, and technical or private
uncertainty represented by the reserves. Traditional methods of evaluating projects such as discounted cash
flow analysis (DCF) are based on fixed values of all the parameters and a fixed development scenario. They
assume that firms are passive to changing conditions. Monte Carlo simulations can be used to model the
uncertainty on financial and technical parameters but have great difficulty in incorporating flexible scenar-
ios. Nowadays it is widely recognised in finance and management (Brealey and Myers, 1991) that good
managers can and do react to changing circumstances and this can add considerable value to projects. Man-
agement has the opportunity to act because many investment opportunities have real options embedded in
them, options which management can exercise when it is in the firm’s interest to do so. The most common
and important real options are

- wait before starting the project (deferral/ postponement),
- abandon the project (temporarily or permanently).

Real options is an approach to evaluating projects that has been developed from techniques used in finance
for pricing options. It has been designed to incorporate managerial flexibility and uncertainty on commod-
ity prices, but little work has been done on incorporating uncertainty on technical parameters. Technical
uncertainties have only recently become issues in the literature of real options, and concern in particular
petroleum (Chorn and Croft, 1998; Galli et al., 1999; Lund, 1999; Cortazar et al., 2001; Connell, 2002;
Dias, 2002; McCarthy and Monkhouse, 2003). On the contrary, the DCF approach is often combined with
conditional simulations of the reserves (Dowd, 1994; Sanguinetti et al. 1997; Thwaites, 1998) but without
accounting for price uncertainty. For this we thought of combining geostatistical conditional simulations
with real options. Like volatility in traditional real option models, variability of the reserves adds value to
the project.

Many types of projects such as natural resources as well as R & D in high tech industries, are carried
out sequentially in stages and information obtained is vital in making decisions about the subsequent de-
velopment of the project. Managers can react to capitalize an upside potential (if the news is good) or to
mitigate downside risk (if not). The option to obtain additional information can be a major source of value
to the project. Most of the real options literature (Dixit and Pindyck, 1994; Trigeorgis, 1996) has examined
the value of flexibility in investment and operating decisions, but little has been written about management’s
ability to change strategy or acquire information (that is learn).
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This thesis addresses the question of how to evaluate this option, using an open cut gold mine as a test
case. In this case, additional information can be obtained by drilling extra drillholes. The project would
then be better defined: the reserves variance reduced or the initial model corrected. Management has to de-
cide whether the additional information justifies the cost. The question we would like to answer is what will
it cost us later not to have this information now? Or how to value the additional information? The invest-
ment in additional information is an important alternative for both the early development and the waiting for
better market conditions. It presents complex practical challenges in a dynamic framework considering the
expiration of the option to start the development, the time to learn and interaction with market uncertainties.

Martzoukos and Trigeorgis (2001) discuss the real options paradox of learning and information acquisi-
tion: since options are in general increasing functions of volatility whereas learning reduces uncertainty,
why would we want to learn? Learning and optimal timing of learning leads to superior decision- making
and enhances real option value. Their focus is the timing of learning. While in Martzoukos and Trigeorgis
learning is related only with the underlying asset value, Dias (2002) considers technical uncertainty about
the size and the quality of the reserve. He focuses on the selection of the best alternative for the investment
in information. In this work the primary interest is the value of additional information, that is if management
decides to obtain it: was it worthwhile to obtain it and does it help in choosing the best project? The benefit
of additional information could be the increased expected payoff from a more informed decision, compared
to a decision without additional information.

The first part of the thesis focuses on evaluating the reserves: firstly by using multiple conditional simu-
lations, which, as it was said earlier, is standard practice in mining geostatistics nowadays, and secondly by
a Bayesian approach. In the second part of the thesis, real options are used to evaluate the project.

The next section of this chapter introduces the case study and the objective of this thesis. The motivations
for a Bayesian approach to spatial prediction and real options to value flexibility are also given. Chapter 2
details the case study. The additional data are simulated and three scenarios are chosen to represent a rich,
an average and a poor case. Kriging is carried out as a first approximation of the reserves of both the large
and small pits and then conditional simulations are considered. For this the covariance model is specified
and the covariance parameters once defined are supposed known. Chapter 3 describes in detail the Bayesian
approach to spatial prediction for both gaussian and transformed gaussian random fields. A few examples
are discussed and the lower data are analysed to highlight the importance of taking into account the uncer-
tainty on the parameters. Chapter 4 presents the application to the case study to obtain the reserves. The
same anamorphosis as for conditional simulations is used to transform the data in gaussian values. This is
done to directly compare the results and to underline the importance of the uncertainty on the covariance
parameters. For this the covariance model is specified and the covariance parameters are treated as unknown
random variables. Chapter 5 introduces real options. It describes and compares contingent claims analysis
based on the risk- neutral valuation and stochastic dynamic programming based on an adjusted discount rate
as two methods to value real options. The test case is then evaluated using the risk- neutral valuation and
highlighting the value of initiation, operating and information flexibility.

1.1 The problem

The Eldorado gold mine is an open pit gold mine. Initially the mining company was planning a small pit
about 400m deep, and designed the drilling and sampling program with this in mind. So the drill-holes go
from the surface at a height 400m above sea level to sea level. Subsequent drilling suggested that high-grade
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mineralisation extends downward to about 200m below sea level. Drilling gave reliable predictions for upper
levels but below that the reserves are highly uncertain. More than eighty inclined drill-holes intersect the
top part of the deposit; only six were drilled into the lower part. So management has several options for
developing the deposit including

1. open up a small pit now, with a sure profit;
2. open up a large pit now, with the chance of a larger profit;

3. first carry out additional drilling which would reduce the uncertainty on the grades in the lower part
of the orebody, but would be costly and would delay the start of the project; then choose between a
large or small pit;

4. open up a large pit now, with the possibility to revert to a small pit.

Figure 1.1 presents schematically the four options.

(1) Small pit {2} Large pit

J
/ /

(3) Extra drilling (4) Large pit with
— 2 nossibility to revert to the small

o

Figure 1.1: Schematic representation of the development options available to the mine management

The question is which of these options is the best and in particular, whether it is worthwhile to obtain addi-
tional information on the lower part of the large pit or not. Additional information is obtained to reduce the
uncertainty on the project value and to optimally delimit the pit to be developed.

Before attempting to answer these questions, we review the standard procedure for defining a mining project.
The key steps involved are

1. set up a block model of the deposit by predicting the average grade of each block, for example by
kriging. The block size is determined by the mining method used and the size of the equipment, with
small blocks being more selective.



2.

3.

4.

CHAPTER 1. INTRODUCTION

Set up a family of nested pits corresponding to different cutoff grades, typically using the Lerchs-
Grossman algorithm®. The innermost pits correspond to the highest revenue area.

Choose the economically optimal cutoff grade, for example using the procedure developed by Lane
(1991). This presupposes known costs and a fixed metal price.

Select the blocks which are above the cutoff grade for mining. To be more precise, their grades are
predicted based on the blast hole information?.

As the purpose of this thesis is to evaluate the impact of infill drilling on a mining project, we are going to
make a certain number of simplifying assumptions

the cutoff grade has been set, once and for all, at 1g/t (this corresponds to a breakeven at $ 250 per
ounce of gold).

Because of the geometry of the deposit, there are only two economically viable nested pits: a large
one and a small one (as shown in Figure 1.1).

The infill drilling will modify the grades of block predictions but will not alter the pit contours.

As the blast hole data are very closely spaced, there is very little difference between the final kriged
block grades and the true grades. That is, we are going to ignore the effect of information on the
selection process, and consider a selection on the true block grades.

1.1.1 Evaluation formula

To resolve this decision problem an objective function that depends on both the price and the reserves has to
be specified. The term reserves (or recoverable reserves) is used for tonnages of mineralised material which
could be ore under certain circumstances.

The objective function specifies the value of alternative management actions and usually accounts for both
benefits and costs. For this, once the deposit is divided in blocks of a given size, we consider a selection
based on two levels

the first level defines the project in terms of the blocks that will be exploited. Each project U (U or
Us, that is large or small pit) corresponds to a set of indices, Dy . Let Z(v;) denote the average grade
of block v;. A project is defined as { Z(v;);¢ € Dy }.

The second level is a selection within each project based on a cutoff. Any block with a mean grade
below cutoff is waste and any block with grade above cutoff is ore. For the moment we suppose
that free selection applies, that is all blocks above cutoff can be mined irrespective of where they are
located®. The choice of the cutoff grade between ore and waste is critical. A low cutoff implies that
most of the material being developed is treated as ore. The recovery of mineral is high because very
little is classified as waste but the average grade of the ore is low. On the contrary, a high cutoff
implies that the recovery of mineral is low because the lower grades are classified as waste but the
average grade of the ore is high. Intermediate cutoff grades give rise to intermediate positions (Lane,
1991).

L Algorithm used in «Whittle 4D»

2Blast holes (8- 10 inches in diameter) are drilled into blocks just before mining to receive the explosive charge; drill holes (2
inches in diameter) are drilled from surface to explore the deposit

3In reality an open pit mine has to move all blocks of ore and waste: waste blocks are moved and dumped outside the deposit

area
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If the cutoff grade is z. then the value of the project U is

Vo = Z (Z(UZ) - ZC)]-Z(W)Z;:C —Cy =By -Cuy (1.1)

€Dy

where By is the conventional income and Cy is the fixed cost of project U. This expression assumes that
z¢ iIs well chosen, that is the selection of blocks above z. is free and the quantity of metal recovered from a
block of grade z. pays for its marginal mining and processing costs. This hypothesis is rather simplistic but
has the advantage of allowing simple and rapid computations.

To obtain Vi, the decision to accept or reject block v; is based on a predicted value Z*(v;). This is called
the information effect. The recoverable reserves should take it into account®. As it was said, we will assume
that the information effect is negligible.

Linear geostatistics, that is simple or ordinary kriging, cannot be used here. It provides predictions of
the average grade of Z(v) or more generally of any linear function of the grade Z, but we need the distri-
bution of Z(v) (or Z*(v)). In non-linear geostatistics, disjunctive kriging, for example, has been developed
to estimate functions as E[1z-(,,)>,,]. Another approach is that of conditional simulations, which has the
additional advantage of providing multiple realisations of the grade distribution and in particular the vari-
ability of possible values each block can take.

... the four options

Now, the first option (Figure 1.1) is easy to evaluate. As the upper part of the deposit is densely drilled,
the prediction of the reserves can be obtained through kriging (for example, if no cutoff is considered), and
the value of this option will depend principally on the gold price. The second and thus the fourth options
are inherently riskier, and conditional simulations would effectively add value by providing the histogram
of possible reserves, allowing management to decide whether the upside potential justifies the downside risk.

It is much more difficult to evaluate the third option. We have to quantify the effect of additional data
before they are obtained. Supplementary observations are obtained to reduce the risk and better identify
and delimit the project. The first step in predicting the impact of additional drilling is the definition of the
number and location of the extra holes. The next is to generate possible sets of the additional data. We
simulated 100 such sets and chose 3 of these to represent an average case, a rich case and a low grade case,
as is done in the oil industry, for the lower part of the deposit. We call these artificial sets of data fictive data
to distinguish them from the real data.

Conditional simulations to each set of additional data are then carried out to evaluate the variability of
the reserves of the deposit after additional drilling.

Therefore in order to evaluate the third option we take into consideration the following 2 sets of data

- the data that are available, that we will call the initial data; and

4The predicted grades, Z* (vi), are used to select blocks above cutoff and thus

BU = Z (Z(’Ul) — 20)12*(1)1')22,:'

i€Dy
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- the data that could be collected to get a better knowledge of the lower part of the deposit, that we will
call the additional (or supplementary) data.

This second data set is defined by the strategy for extra information that is adopted (and could be optimised).
Different strategies could be considered differing in the number and location of additional data. In this work
we decided to compare two strategies: no additional information (Z,) and doubling the number of samples
in the lower zone (I1). Let Z(I) = Zr be the additional observations if I is chosen. We want to evaluate the
gain due to the additional information and define a strategy to choose between the two projects that depends
on the additional information. To summarise, we have two levels of decision: the strategy I and the project
U and at least two levels of uncertainty: Z(I) and the distribution of Z(v) (and of Z*(v) if it was used for
selection). The problem under study can be described using a decision tree as shown in Figure 1.2. For
simplicity, the random vector Z(I;) is supposed to take two values, high and low. Analogously, the grades
distribution is limited to two values.

The tree is solved backward. Given the formula (1.1) we need to compute for each block v;

vi(ze) = E[(Z(vi) — 2e)1z(0)> 2]

and
vi(Zr1; ze) = E[(Z(vi) = 2¢)1 5(0;)2: | Z1]
which depend on the distribution of Z(v;) given the initial data or given the initial 4+ additional data.

Let w*(Z1) be the optimal project if the result from extra drilling is Z;,
u*(Z1) = arg m(fj).xE[VU|ZI] = arg mgx{.ezD: vi(Z1;zc) — Cy}
1€Dy

and let b(Zr) = E[V,+|Z1] be the associated profit. Given the initial data, that is if I, is considered, the best
project is
Up = arg max E[Vy]

and E[V,,] is its profit. All the distributions we will consider are conditional on the initial data even if it is
not always specified. The value of the extra information Z; is usually considered given by

9(Z1) = E[Vyx — Vil Z1)- (1.2)

Information that does not imply a change of the optimal decision is then worthless (if E[Vy,|Z1] = E[Vy,]).
This implies that the expected reserves for project u are the same whether they are computed conditional to
additional information or not. Observe that only the expected value of Vy, that is the conventional income,
is taken into account and not its dispersion. Thus a decision that gives a higher expected profit will be chosen
even if the profit is more uncertain. The strategy for additional data is evaluated by

II) = Ez, [Vu*(ZI)] -Cr - E[Vuo] = EZI[g(ZI)] - Cr

where E, indicates that the expected value is taken with respect to Z; and Cf is the cost for additional
data. It must be chosen to maximise the expected value of the total profit

I = arg m?xEZ, [b(Z1)] — Cr
= arg mIaLx{EZI [mg,XE[VU|Z[]] — C[}
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Project value

Choose the project

Choose the project

Choose the strategy for
additional informatian

Choose the project

Figure 1.2: Decision tree: the optimal strategy for additional information (I; or I) and the optimal project (U, or
Us,) must be chosen. The squares represent a decision node, the circles represent a random node (realisation of a
random variable). For simplicity, only two possibilities at each random node are represented: high and low for the
additional information and high and low for the reserves of project U; or Us. The two project values are computed
conditional on the initial data or on the initial data + additional information

Note that only the univariate conditional distributions of blocks are necessary to obtain the expected profit.
However, if we were interested in the dispersion of this valorisation function, we would need the joint dis-
tribution of blocks.

The objective function given in (1.1) ignores the fluctuations in the commodity price, the sequence of ex-
ploitation and the discounting of the revenues which must be considered as well. However, as we will see,
there will be no difficulty in introducing other random variables independent of the grades distribution. The
revenue from project U is a function of Vi and the commodity price. We will suppose that the reserves and
the price are independent. Rigorously, they are not independent as, for example, higher prices could permit
to extend the mine’s life exploiting with a lower cutoff.

The importance of technical uncertainty in evaluating a mining project is thus clear. Usually in real op-
tions papers the revenue from project U is a function of only the commaodity price. This can be realistic for
projects with no technical uncertainty or with technical uncertainty small compared to price uncertainty.
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1.1.2 Valuing the reserves: towards a Bayesian approach

Let {Z(z),z € D}, D C R3, be the random field of interest and Z = (Z(x1),...,Z(zs))! asetof n
observations from a single realisation of this random field, where z1, ..., x,, are known distinct locations in
D. Let

E[Z(z)] = B" f(2)
be the mean of Z(x), where 3 is a vector of unknown regression coefficients and f(x) is a vector of known
location-dependent covariates (fo(z) = 1). Let

Cov[Z(x), Z(z")] = ™' K(z,2') forz,z’ € D

be its covariance function, where o > 0 is a scale parameter. We focus on the prediction of the unobserved
random variable Z(zo) = Zy at a known location z¢ € D, where Z, comes from the same realization as the
data vector Z.

If we are only interested in a predictor for Z, given Z, kriging can be considered and we do not need
to specify the distribution of Z, just its mean and covariance. That is, we focus on the class of predictors
that are linear combinations of the data of the form

> NiZ(z).
=1

The best linear unbiased predictor, Z, is the unbiased linear predictor that minimizes the variance of the
prediction error, Zyg — Zy. It is given by

Zo=kIK 'Z+by(FTK 'F) 'FTK'Z

where F = {fj(z;) }nxp, ko = {K(z0, %) }nx1 and by = f(z0) — FT K~ 'ko. This predictor is known as
the universal kriging predictor or the ordinary kriging predictor if 8 = . It is the optimal predictor un-
der the gaussian assumption. Note that it is obtained supposing the covariance function and its parameters
known. These are frequently obtained by fitting the experimental covariance (in the stationary case) “by
eye” and the parameters are plugged- in into the prediction equations as if they were the truth.

Kriging provides the best linear predictor of Z(z() but to obtain »; and be able to choose between the
projects we need the entire predictive distribution. For this conditional simulations, which combine kriging
and non conditional simulations, are used. They imply carrying out conditional simulations of Z°. For each
simulation, v; is computed and we finally obtain a set of simulations of ;. Analogously to kriging to carry
out conditional simulations the covariance function and its parameters are fixed. This is why it is called the
plug-in approach. However, it requires the gaussian assumption.

A Bayesian approach makes it possible to take into account the uncertainty on the drift and covariance
parameters. The model parameters are treated as random variables. This is interesting for the case study
as the lower part of the deposit is sparsely sampled and the model will thus be defined by the upper data.
In addition the uncertainty on the range of the covariance model allows to take into account different hy-
potheses concerning the correlation between the upper and lower part of the orebody. We start by studying

5In particular we need the predictive distribution of Z (v;). The change of support must then be considered. Support denotes the
volume upon which average values may be computed or measured. The available data Z have a punctual support or their support is
small compared to that of blocks which is 10m x 25m x 10m. The influence of the support on the distribution of gradesis called
the support effect
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the gaussian random field model following Handcock and Stein (1993). As the data of the test case are not
gaussian we then introduce the transformed gaussian model proposed by De Oliveira et al. (1997). The Box
and Cox family of power transformations is combined with the gaussian random field model. The gaussian
model is defined for the transformed random variable. The transformation parameter is also treated as an
unknown parameter. We will see that this model is quite difficult to use in practice as for each value of the
transformation parameter the range of the transformed data is different. Moreover, Box and Cox (1964) and
De Oliveira et al. (1997) suggest that a priori the parameters must be dependent. As we will see, such a
prior is difficult to define.

The most delicate point of the Bayesian approach is the definition of the prior distributions for the unknown
parameters as they are unobservable. Several prior distributions for the parameters are considered and the
sensitivity of the posterior and predictive distributions is checked. This is important as it can happen that the
model may be poorly identifiable from the available data and the choice of the prior may have a strong influ-
ence on the results. The Bayesian predictive distributions cannot always be computed analytically and they
cannot be simulated directly. Markov Chain Monte Carlo (MCMC) algorithms must be used. In the past few
years Bayesian analysis has seen a real growth of its applications, in particular in spatial prediction problems
in epidemiology, air pollution, toxicology, image analysis. This is mostly due to the development of MCMC.

Finally, a more general approach to evaluate the reserves is defined. As it is usual practice in geostatis-
tics the gaussian anamorphosis function is considered to transform the data in normally distributed values.
Both a constant mean and a vertical drift are specified. As the number of observations is large, the type
of covariance function is chosen while its parameters are let unknown. As for conditional simulations the
gaussian hypothesis is needed for a transformation of Z. Classic geostatistical conditional simulations are
carried out but now without a fixed covariance model. The two approaches differ in the treatment of un-
known parameters.

The Bayesian and plug-in predictive distributions are compared. They differ mostly in the tails. This is
important as we work with a cutoff.

Moreover, the Bayesian approach allows us to
- consider a random drift instead of an unknown drift;

- update the information on the unknown parameters by extracting information contained in the obser-
vations;

- incorporate external but related information in the estimation process.

1.1.3 Valuing flexibility: towards real options

The following example, which is standard in the real options literature (Trigeorgis, 1996), highlights the im-
portance of taking account of management flexibility to react to potential losses when valuing an investment
project. A company wants to invest in a mine that costs $ 100 million, of which § 10 million is needed at the
start of the project. The mine will produce a return of either $ 180 million or nothing with equal probability.
The classic approach based on the net present value (NPV) would give an expected NPV of $ -10 million
and the investment would be refused (Figure 1.3). However, the company can simply drop the project if
an exploratory hole is barren (that is, there is no gold to be found). If exploration shows promising results,
further investment may be less risky. The outcome may be between a loss of 10 and a profit of 80. The
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0.5 180 — 100

E[V] = —10

0.5 0—100

Figure 1.3: Value of the project (in $ million) with classic NPV approach. The expected NPV is negative: the project
is refused

expected NPV is $ 35 million: this project is then worthwhile pursuing (Figure 1.4). Flexibility enhances
the project value.

0.5 180 — 100

E[V] =35

0.5 0—10

Figure 1.4: Value of the project (in $ million) with NPV approach but taking into account flexibility. The expected
NPV with flexibility is positive: the project is undertaken

Analogously, we suppose that management reacts optimally to changing conditions of price and reserves
when evaluating the case study. To value flexibility a decision theoretic approach is used.

A decision- making problem involves a temporal sequence of decisions, each alike in kind, but where the
optimal action at each decision point may depend on time and the system state. The initial decisions we
consider are

1. start immediately,
2. wait one year passively,
3. wait one year to acquire new information by extra drilling,
4. abandon the project.
Once the project is started the available option is
1. abandon the project.

Our goal is to develop a decision rule that guides management actions for each time and system state to be
optimal for the objective function. The analysis of such decision problems requires specification of

1. predictive models of system dynamics formulated in terms of quantities relevant to management.
for the reserves Conditional simulations or the Bayesian approach that was briefly introduced in the
previous section are used for the reserves; a geometric Brownian motion is defined for the gold price;
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2. an objective function for evaluating alternative management strategies. The expected NPV under risk-
neutral probability is used to value the project. It accounts for management flexibility.

The risk- neutral price process is used and cash flows are discounted at the risk- free rate. Stochastic dynamic
programming is used to carry out the computations because it allows us to value early exercise options. Al-
though Monte Carlo simulations are carried out for the reserves, a discrete approximation of the geometric
Brownian motion is considered for the gold price as it permits us to visualize the sequential problem without
the burden of carrying out the simulations. Moreover, it helps highlighting possible management responses
to changes in price and reserves. The Monte Carlo reserves allows us to define possible mine- types with an
associated probability of occurrence (Cortazar et al., 2001). Thus the project is evaluated for each simulated
value of the reserves, that is the Monte Carlo value of the mine is obtained.

We are interested in the value of additional information. We assume that additional drilling only, if ob-
tained, may modify the initial distribution of the reserves and that no information is provided by the pro-
duction phase. Note that information on the reserves in a mine (or reservoir) develops over time. Hence
the production management can learn more about the mine (or reservoir) behavior over time. Such learning
structures should be incorporated in the model to provide solutions in the form of strategies. In this case
technical risks evolve in time: the integrated approach by Smith and Nau (1995) or, if these risks seem
important compared to market risks, the stochastic dynamic programming approach with an exogenous dis-
count rate as in Lund (1999) could be used.

Other sources of uncertainty could also be included in the model. Costs are assumed unknown to value
the lower part of large pit. However, having no information on the company exploiting the deposit we fi-
nally kept them constant to value the 2 projects.

We do not take into account market opportunities to hedge the project risks. Hedging eliminates the risk of
fluctuating prices, but, if forward selling is considered, also means limiting the opportunity for future profits
should prices move favorably.
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Chapter 2

The case study: the Eldorado gold mine

The Eldorado mine is an open pit gold mine. About 90 inclined holes were drilled in the orebody and 3205
samples were analysed. The strike of the deposit is about 15° east of north, it dips at about 45° to the west
and plunges northward at about 30°. On the eastern side the deposit is cut by a fault so there is no minerali-
sation below this. The structure of the mineralisation is expected to be parallel to this plane.

In Section 1 the data are described. In particular, the hypothesis of stationarity is checked. In Section 2
the additional information needed to evaluate the third option is defined through conditional simulations.
In Section 3 ordinary kriging is carried out to define the envelope containing the orebody. In Section 4
conditional simulations are carried out and in Section 5 conclusions are presented.

2.1 Stationarity

The orebody is limited to the right by a fault. The mineralisation lies along this fault. It does not continue
up to the surface. There is waste above it as it can be seen from the basemaps presented in Figure 2.1 (with
low grades shown in yellow and higher grades shown in darker colours). It has to be mined to access the
ore. We will estimate this waste separately. Firstly we outlined the mineralised zone. The basemaps are
presented in Figure 2.2. The data selected seem homogeneous. Unless explicitly stated in this work we will
always refer to these data.

An extrapolation hypothesis is needed to decide whether the upper data inform us on the distribution of
grade in the lower part or not. There exist several extrapolation hypothesis. At one extreme we could treat
the data in the two parts of the deposit as if they were independent, that is the upper data do not inform us
on the lower part, at the other we could suppose that the same random function is observed in both parts.

The first step was to determine whether the deposit can be considered as being stationary (second- order
stationarityl). For this the mineralised zone was divided into a grid and the statistics were calculated for
grid squares. As no significant trends were found, either perpendicular to the fault or parallel with it, this
zone can be treated as being stationary. Figure 2.3(a) presents the average grade for each depth. Figure
2.3(b) presents the average grade for different levels of the coordinate in the eastern direction. Looking at
the first graphic it can be noted that the average grade of the upper part is higher than the average grade of
the lower part. A drift that takes this into account could be considered instead.

1A random function with a constant mean and a two-point covariance function that depends only on the distance between the
two pointsis called second- order stationary

13
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We assume that all the data are realisations of the same random function Z with a constant mean and a
fixed covariance function2. It is a strong hypothesis. We note that to carry out kriging we just need to
specify the first two moments of the random function.

2.1.1 The raw data

Table 2.1 gives the statistics of the 3205 samples together with the statistics of the 2390 samples inside the
mineralised zone. The two histograms presented in Figure 2.4 differ only in the number of low values which
depends on the selection considered. It can be noted that the mean grade in the upper part is higher than in
the lower part. Looking at these values it is reasonable to think that the mineralisation extends in the lower
part.

Variable N Minimum Maximum Mean Standard deviation
Grades 3205 0.01 21.20 1.18 2.10
Grades 2390 0.01 21.20 151 2.32
Upper Part | 2244 0.01 21.20 1.52 2.35
Lower Part | 146 0.01 9.19 1.36 1.73

Table 2.1: Statistics of all the grades and of the grades inside the mineralised zone

Variogram model

Experimental variograms® were calculated in the three main directions of the orebody: the two directions
parallel to the plane of mineralisation, d; and do, and the direction perpendicular to the plane of mineral-
isation, ds. Looking at the experimental variograms in Figure 2.5 we can assume the same behaviour for
the directions parallel to the plane of mineralisation but not for the perpendicular direction. We see that
the range in ds is shorter. This can also be seen in the Basemaps (Figure 2.2). The experimental vari-
ograms tend to the same sill. This anisotropy can be modelled as a geometric anisotropy. Physically this
corresponds to a rotation and stretching of the original spatial coordinates which then allow to revert to an
isotropic model. The parameters corresponding to the anisotropy angle and to the anisotropy ratio must be
added to the model: generally three rotation angles, needed to align the coordinate system with the principal
directions, and two stretching parameters, needed to equalize the correlation length in all 3 directions. Let

2If the random function Z is stationary, its mean m = E[Z(x)] is constant and its covariance function
K(h) = E[Z(z) — m][Z(x + h) —m]

depends only on the distance h. Thelag h is a vector, that is the covariance depends on both its length and on its direction. The
relation between covariance and variogram is
v(h) = K(0) — K(h)

where y(h) is the semi-variogram. When the covariance depends only on the length of the distance it is said to be isotropic. That
isthere is no reason to distinguish one direction from another. The Euclidean distance will be considered
3The experimental variogram is given by

Y (Z(i) - Z(z)))’

4,j€ED(h)

Y(h) = IN(h)

where D(h) = {(4, j) : |xi — x;| = h} and N(h) isthe number of pairsin D(h)
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x = (1,79, x3) be the coordinates of the samples in the original directions, that is eastern, northern and
depth and & the Euclidean distance between x; and x;. Let x' = (z/, x5, %) be the coordinates in the
three principal axes of the orebody and A’ the Euclidean distance between x; and x. Thus first we need
to transform the coordinates x into coordinates x’, x’ = Tx where T;; is the cosine of the angle formed
between the positive semiaxes z} and z;. Then as in the plane parallel to the plane of mineralisation isotropy
is assumed, we need to compute the ratio, &, between the major range of the ellipse that is for d1 and d» and
the range for the perpendicular direction d3 (k < 1). The anisotropic model is given by

70 = (b2 )2+ w205

where ~ is the isotropic model. A variogram model consisting of a nugget effect* plus an exponential was
fitted. The isotropic exponential model has the general form

0 h=0
v(h) :{ a ! (1—exp (—%)) h#0

with sill @1 > 0 and scale parameter » > 0. The exponential model is continuous but not differentiable at
the origin. The exponential variogram reaches its sill only asymptotically when h — oo. It reaches 95 % of
the sill at about 3v. This is called the practical range. When the variogram reaches a limiting value, the sill,
this means that there is a distance beyond which Z(z) and Z(x + h) are uncorrelated. Table 2.2 shows the
sills of each structure and their ranges in the three main directions.

Sill Range 1 (m) Range?2(m) Range 3 (m)
Nugget effect | 1
Exponential 1 | 4.8 60 60 40

Table 2.2: Variogram parameters of the fitted model (the main directions of the orebody are obtained through a
rotation of (-165, 45, 150) that is indicated in the geological convention, relative to east)

2.2 Generating grades on the fictive holes

The additional information is simulated.

When conditional simulations were first developed in the seventies, their main uses were mine planning
and grade homogeneisation (Deraisme, 1977; Maréchal and Shrivastava, 1977). Simulations are still widely
used for this (see for example Dowd, 1994; Sanguinetti et al., 1997; Sahin and Fuseni, 1998). In a similar
vein, simulations have also been used to compare different sampling patterns. For example, Kleingeld et al.
(1997) used a Cox process to simulate the diamond distribution in marine placer deposits in order to test the
efficiency of different sampling campaigns and to assign confidence intervals to block predictions.

By the early nineties, the emphasis had moved to evaluating mining projects. In his review paper, Raven-
scroft (1994) distinguished between two types of uses of simulations

4The behavior of the variogram near the originislinked to the continuity and to the spatial regularity of the regionalized variable.
If the variogram is not continuous at the origin, we have a nugget effect that can be due to microvariability that is variability at a
scale smaller than the sampling support or to measurement errors
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- modelling local short-scale variability in a way not provided by any interpolation technique (applica-
tions listed in the preceding paragraph);

- generating alternative images of the deposit to allow for sensitivity and risk analysis.

Since then, risk analysis has been one of the leitmotivs of simulation papers. Analogously, we thought of
simulating the additional information to generate alternative scenarios for this additional information. Sev-
eral authors have focused on the interaction between geological uncertainty and openpit optimisation (Biver
et al., 1997; Thwaites, 1998; Coombes et al., 2000).

Nowadays multiple conditional simulations are routinely used for evaluating projects in both mining and
petroleum. When multiple simulations are used for volumetrics in the oil industry, it is standard practice
to run several hundred reservoir simulations and then rank the simulated volumes in descending order and
select three typical cases: a pessimistic case (10% probability of being below it), the most likely case (the
50% quantile) and an optimistic case (only 10% of exceeding this). These are denoted as P10, P50 and P90.
One key difference between oil and mining is that ore reserves depend on two variables, grade and tonnage,
rather than one.

In the 1980s the oil industry started to introduce probabilistic reserve definitions in addition to the usual
proved and probable categories. Murtha (2001) explains what is meant by P10, P50 and P90: «P10 is the
point that would split the area under the curve into 10% and 90% of the total area, meaning that there is only
a 10% chance that the reserves are less than the P10 value». As the distribution of the reserves is obtained
from a Monte Carlo simulation model, this means that 10% of the realisations in the model are less than
the P10 value and 90% are greater. This requires being able to rank the results of the MC simulations in an
unambiguous way.

The procedure used to define the new drill-holes can be divided into 4 steps
1. choose the number of fictive holes and their locations;
2. run 100 point simulations to assign a value to these drill-holes;

3. calculate the average grade of fictive plus real drill-holes for each simulation for the lower part of the
ore-body;

4. find the three cases P10, P50 and P90.

Number and location of the fictive holes

Only six drill-holes intersect the lower part of the deposit. We decided to double the number of holes in
that part of the deposit by adding six fictive holes located about half way between the real ones. Table 2.3
describes how we located these new drill-holes relative to the ones already existing: it was the quickest way
to build them. Figure 2.6 highlights the location of these drill-holes.

2.2.1 Conditional simulations to inform the fictive holes

One hundred conditional simulations were run to inform the points on the six fictive drill-holes. Conditional
simulations of a gaussian random function are carried out in the two following steps: first a non conditional
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Initial drill-hole 3 Yo Y3
1 87 I o — 65 I3
2 76 I ro — 60 I3
3 76 r1 To+ 30 I3
4 76 r1 o+ 70 I3
5 89 T T2 — 50 I3
6 90 I ro — 50 I3

Table 2.3: Location of the fictive drill-holes (where z1, 25, 23 are the coordinates (in meters) of the initial drill-holes
and yy, y2, y3 are the coordinates (in meters) of the new ones)

simulation is obtained, it is then conditioned using ordinary kriging. For the non conditional simulations
turning bands are used. We do not describe here the turning bands algorithm (see Matheron, 1973; Chilés
and Delfiner, 1999). This approach gives realisations of a gaussian random function. Conditioning by krig-
ing is described in Appendix A.

The histogram in Figure 2.4 shows clearly that the data are not gaussian. We use an anamorphosis function
to transform the data into normally distributed values, we then work with the gaussian variable, and finally
back-transform the results to get them in the initial random variable space. We assume that grades after
anamorphosis are gaussian.

The anamorphosis function is a one to one monotone mapping of the raw data to the standard gaussian
values based on the cumulative distribution function. Let ¢ denote the anamorphosis function, Z = ¢(Y).
This function associates each point z of the histogram of Z to a point y of the histogram of Y, such that
P[Z < z] = P[Y < y], that is it puts into relation the equivalent quantiles of the distributions F' and G of
the random variables Z and Y, respectively. It can be written z = ¢(y) = F~! o G(y). The transformation
function ¢ can be defined graphically from the empirical distribution.

The anamorphosed grades

To carry out the simulations raw grades had to be transformed to normality. The statistics of the gaussian
variable are presented in Table 2.4. The transformation was obtained using a gaussian anamorphosis func-
tion.

Variable N Minimum Maximum Mean Standard deviation
Gauss 2390 -2.05 3.56 0.00 0.99

Table 2.4: Statistics of the gaussian values inside the mineralised zone

We used the linear interpolator inversion letting the gaussian variable range from —10 to 10 and the gaussian
inverse variable range from 0 to 30g/t (compared to a maximum sample of 21.20). Eighty Hermite poly-
nomials were used to define the anamorphosis. Figure 2.7 shows the anamorphosis function with gaussian
values along the X axis and actual values along the Y axis.
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Variogram model

We calculated the experimental variograms of the anamorphosed grades in the three main directions of the
orebody (with an angular tolerance of 35° and a lag-value of 25m for the directions parallel to the plane
of mineralisation (d1, ds) and of 45° and a lag-value of 5m for the direction perpendicular to it (d3)) and
then fitted a model (Figure 2.9). This fits the experimental variograms quite well at least for distances up to
200m. The parameters of this model are given in Table 2.5. It is a nested variogram. This variogram model
was used to generate 100 conditional simulations to inform the fictive holes.

Sill Range1(m) Range?2(m) Range3(m)
Spherical 0.1 5 5 5
Exponential 1 | 0.7 100 100 60
Exponential 2 | 0.2 350 350 100

Table 2.5: Variogram parameters of the fitted model of grades after anamorphosis (the main directions of the orebody
are obtained through a rotation of (-165, 45, 150) that is indicated in the geological convention, relative to east)

The points were simulated on a 5m x 5m x 5m grid. The parameters of this grid are in Table B.1. Given
the size of the data set to allow the computations a neighbourhood has to be used that includes only a subset
of the data for the prediction (that is for the kriging) of each grid node. The neighbourhood was set as an
ellipsoid with ranges of 200m for d; and dy and of 20m for d3 to take account of the anisotropy. The range
of ds is much smaller than that for d; and do. This choice is given by the supposed structure of the orebody.
Moreover, as it can be seen in Figure 2.9, at a distance of 20m for d3 we already have the 70% of the total
variation. And, as there are zones with few samples points, in particular for the lower part of the orebody,
we had to define large ranges for d; and d,. The simulated values were assigned to the samples locations of
the fictive drill-holes that were closest to them. The mean grades of the real + fictive drill-holes for the lower
part of the mineralised zone were calculated for each of the 100 simulations (Figure 2.10). Three typical
cases were selected to represent the P10, P50 and P90 reserves. Table 2.6 gives the statistics for the real plus
fictive drill-holes for the upper + lower part and for the lower part, for these 3 simulations together with the
corresponding statistics before adding the fictive drill-holes. We now have 2642 data: 2390 real data and
252 fictive data.

Figure 2.11 presents the average grade for each depth for each new data set.

2.3 Recoverable reserves

For each pit we need predictions of the reserves. As we have seen in Chapter 1, for each block v we look
for the recoverable reserves at cutoff z,,

(Z(’U) - Zc) 1Z(1})ch-

This function is called the conventional income. It is of considerable economic importance. It allows us
to decide whether block v is economically interesting. It is assumed that the selection of blocks above z.
is free and that z. is chosen so that the quantity of metal recovered from a block of grade z. pays for its
marginal mining and processing costs. In particular, after having defined the mining blocks, we look for
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Upper + lower part

N Minimum Maximum Mean Standard deviation
Initial 90 holes 2390 0.01 21.20 1.51 2.32
Rich (simul2) 2642 0.01 21.20 1.54 2.46
Average (simu46) | 2642 0.01 21.20 1.50 2.33
Poor (simu66) 2642 0.01 21.20 1.47 2.27

Lower part

N Minimum Maximum Mean Standard deviation
Initial 90 holes 146 0.01 9.19 1.36 1.73
Rich (simul2) 323 0.01 20.16 1.87 3.20
Average (simu46) | 323 0.01 16.72 1.54 2.29
Poor (simu66) 323 0.01 9.96 1.26 1.72

Table 2.6: Statistics of the real + fictive data and of the real + fictive data in the lower part of the deposit (of the 252
new data 177 are in the lower part)

- the ore tonnage (that is the number of blocks above cutoff)

Z L172(0;)> 25
- and the metal tonnage
Z Z(UZ) 1Z(w)2zc-
The grades Z(v) of the blocks are not known. The objective is to predict for all the blocks of the two pits

- the ore tonnage
T(zc) = Ellz()>z.] = PlZ(v) 2 ]

- and the average recovered grade

m(z) = E[Z(0)|Z(v) > 2.

Note that the metal tonnage is given by m(z.)T'(z.) and the conventional income is given by (m(z.) —
ze)T'(z.). These functions are called recovery functions or selectivity curves. If the distribution of block
grades was known we could predict all of these. Note that when the selection is made, Z(v) is not known
exactly. So the selection is made on predicted values, that is the recovered average grade is

E[Z(v)|Z%(v) = z].

The predictions of recoverable reserves should take this information effect into account. As it was said in the
previous chapter we suppose that the information effect can be neglected: the final predictions are obtained
using blast hole information and can be assumed very close to the true grades.

Ordinary kriging is not considered. Kriging is a linear predictor. We need the distribution of blocks and
not just their predicted values. One alternative is to consider multiple conditional simulations and compute
for each simulation the quantities of interest. Another alternative is to predict directly for each block v its
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distribution function, P[Z(v) < z.]. This function can be predicted by disjunctive kriging. To approximate
the tonnages and grades that might really be recovered we will consider conditional simulations. They give
us a measure of the spread of values around predictions.

Kriging was used to define the envelope containing the orebody.

Pit contours

We have to set up the contours for the 2 pits. In industry, softwares such as «Whittle4AD» are used to
determine the outlines of the pits so as to maximise the profitability while respecting the slope stability
constraints. Because we do not have access to this software we have chosen a simplified procedure for
constructing the pit contours level by level. This was done through kriging conditional on the original data.
Figure 2.12 presents the contours of the two pits for a given level of ;.

2.4 Conditional simulations

Following Journel (1977) the objectives of kriging (predictions) and simulations differ, as

- apredictor Z*(z) gives a prediction that is the closest as possible to the true unknown grade Z(z). The
predictor is chosen so that it is unbiased and minimizes the mean squared error, E[Z(z) — Z*(z)]?.
But these predictors have no reason to reproduce the spatial variability of the true grades. The min-
imisation produces a smoothing of the dispersions.

- On the contrary a conditional simulation reproduces the empirical distribution of the true grades, that
is it identifies the principal caracteristics of dispersion of the true grades. But a simulated value of x
is not the best predictor of Z(x).

We want to simulate block grades given punctual data. The change of support must be considered. Predict-
ing 175>, for a point support is not equivalent to predicting 1,(,)>,, for a block. The change of support
from point to block has a large impact on the quantity of ore above cutoff as it can be seen in Figure 2.8.
The dispersion of grades of larger and larger blocks decreases. There are several models to take the change
of support into account: the affine correction, the discrete gaussian model and the averaging of points in a
block (see Matheron, 1978; Rivoirard, 1994).

We will consider the averaging of points in a block, which is the most straightforward and extensively
applied. Simulations are carried out on a fine grid that is smaller than the block size. Then the simulated
values that fall within a given block are averaged to obtain the block value. Each block v is discretised in
n points z;, 2 = 1,...,n, and the true block grade, Z(v) = ﬁ I, Z(y)dy, is assimilated to the arithmetic

mean of the » punctual grades, Z*(v) = 1 3", Z(x;) and it is this mean that we simulate. The discretisation
of block v or the number n of points taken in v depends on the error Z(v) — Z*(v) we can accept. As Journel
says, the variance of this error should not mask the structural variability of the real block grades. In practice
it is sufficient to make sure that E[Z(v) — Z*(v)]? is small compared to the nugget effect corresponding
to v. If the block is large, the nugget effect is almost zero, it must be checked that E[Z(v) — Z*(v)]? is
much smaller compared to the prior variance of the dispersion of the grades Z(v). An advantage of this
approach is that no hypothesis is made on the law of the random function Z(v). Simulations are based only
on the available information. The disadvantage of this approach is that the number of points to estimate can
become enormous.
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A total of 4 sets of 50 simulations were run using, as for kriging, the following sets of conditioning data

the original real data;

the high grade valued data;

the average grade valued data;

the low grade valued data.

First information on the grades after anamorphosis (i.e. statistics and variogram model) is given. The results
from conditional simulations are then presented. Finally comments on the simulations results are given.

2.4.1 Statistics of anamorphosed grades

To carry out the simulations the data have been transformed to normally distributed values beforehand. A
different anamorphosis transformation was used for each set of data. Table 2.7 presents the statistics of these
transformed values. As expected, they do not vary in the upper part but they do in the lower part.

Upper + lower part

N Minimum Maximum Mean Standard deviation
Rich (simul2) 2642 -2.13 3.62 0.00 1.00
Average (simu46) | 2642 -2.14 3.58 0.00 1.00
Poor (simu66) 2642 -2.12 3.62 0.00 1.00

Lower part

N Minimum Maximum Mean Standard deviation
Rich (simul2) 323 -2.13 3.25 0.00 1.12
Average (simu46) | 323 -2.14 2.93 0.00 1.02
Poor (simu66) 323 -2.12 2.24 -0.07 0.97

Table 2.7: Statistics of the real + fictive gaussian values in the upper + lower part and in the lower part of the deposit

Variogram models

The experimental and variogram models were then computed. Figure 2.13 presents the variograms of the
anamorphosed grades for the two data sets rich and poor. The two variogram models have the same struc-
tures and the difference in the parameters is small. Adding new data changes the anamorphosis function and
the variograms, but in this case we added only 252 data with respect to 2390 real data.

2.4.2 Simulations results

Blocks of size 10m x 25m x 10m were defined. The grid parameters are given in Table B.2. The neighbour-
hood is the same as the one used for simulations. The discretisation of the blocks is of 2 x 5 x 1. Figure 2.14
presents simulated grades for two different depths. Table 2.8 presents the tonnage and Table 2.9 presents the



22

recovered average grade with a cutoff of 1 g/t. Adding the new data may increase the variance of the recov-
ered grade as it can be seen for the rich and average additional information. On the contrary the variance of
the tonnage decreases. This is particularly evident for the rich additional information. As expected, the aver-
age number of blocks above cutoff, in the lower part of the large pit, increases when adding new information.

Given the initial data, the large pit is expected to contain 326 tons of ore, while the small pit 238 tons
of ore. Given the additional information, the large pit contains 351, 337 and 324 tons of ore while the small
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pit contains 246, 240 and 238 tons of ore for the rich, average and poor information, respectively.

Initial 90 drill-holes
Nblocks | Min  Max Mean Stddev 10% 50% 90 %
Large pit 55259 | 17053 23780 21028 1269 19358 21181 22476
Lower part | 11079 3229 6055 4697 599 3938 4776 5379
Small pit 41821 | 13470 18108 15788 958 14743 15776 16876
Initial 90 drill-holes + rich fictive data
Nblocks | Min  Max Mean Stddev 10% 50% 90 %
Large pit 55605 | 18983 24258 21298 1012 20038 21389 22278
Lower part | 11322 3785 5996 4981 486 4379 5024 5511
Small pit 41831 14105 18151 15792 802 14804 15740 16667
Initial 90 drill-holes + average fictive data
N blocks | Min  Max Mean Stddev 10% 50% 90%
Large pit 55605 | 18527 25159 21410 1159 19864 21354 22472
Lower part | 11322 3904 5897 5006 445 4360 5033 5519
Small pit 41831 | 13527 18625 15868 946 14726 15917 16832
Initial 90 drill-holes + poor fictive data
Nblocks | Min  Max Mean Stddev 10% 50% 90 %
Large pit 55605 | 19066 24059 21179 1219 19815 20880 23009
Lower part | 11322 3850 5958 4831 525 4227  AT78 5543
Small pit 41831 | 14261 18129 15805 922 14675 15721 16955

Table 2.8: Simulations results: tonnage (with a cutoff of 1g/t) for the whole large pit, lower part of large pit and small
pit. The number of predicted blocks is 55259 for the large pit and is 41821 for the small pit. Given the additional
information the number of predicted blocks is 55605 for the large pit and is 41834 for the small pit. The size of the

blocks is 10m x 25m x 10m
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Initial 90 drill-holes
Min Max Mean Stddev 10% 50% 90 %
Large pit 282 337 310 0.13 296 3.09 3.28
Lower part | 290 4.09 3.49 0.32 3.06 348 3.96
Small pit | 2.84 329 3.01 0.11 288 3.02 3.16

Initial 90 drill-holes + rich fictive data
Min Max Mean Stddev 10% 50% 90%
Large pit | 3.02 3.65 3.30 014 312 329 350
Lower part | 3.38 5.17 4.01 0.38 3.57 397 4.48
Small pit | 294 337 3.12 0.11 298 311 325

Initial 90 drill-holes + average fictive data

Min Max Mean Stddev 10% 50% 90%
Large pit 292 344 315 0.13 3.00 317 3.36
Lower part | 3.05 4.62 3.60 033 327 354 402
Smallpit | 282 331 3.03 011 287 3.03 3.16

Initial 90 drill-holes + poor fictive data

Min Max Mean Stddev 10% 50% 90%
Large pit | 2.85 3.43 3.06 014 289 301 323
Lower part | 2.82 3.94 3.24 0.23 294 322 354
Small pit | 2.81 327 3.01 0.12 285 299 3.20

Table 2.9: Simulations results: recovered average grade with a cutoff of 1g/t for the whole large pit, lower part of
large pit and small pit. The number of predicted blocks is 55259 for the large pit and is 41821 for the small pit. Given
the additional information the number of predicted blocks is 55605 for the large pit and is 41834 for the small pit. The
size of the blocks is 10m x 25m x 10m

2.5 Conclusions

The scope of this thesis is to value the additional information. We decided to simulate the additional data to
work with different possible scenarios. Obviously, the computations become time consuming. It is perhaps
more interesting when fewer data are available. Another approach could have been of assuming the percent-
age of reduction of the variance of the reserves due to extra information (Dias, 2002). But additional data
do not always imply a reduction of variance.

We assumed that the data from both the upper and lower parts were realisations from the same random
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function. It is a strong hypothesis. In addition a constant mean was considered. The parameters of the
model are effectively defined by data in upper half. The data after anamorphosis are treated as being re-
duced gaussian, but the anamorphosis function is defined using the histogram of raw data thus of the upper
data. A Bayesian approach that permits to introduce some uncertainty on the model parameters seems an
interesting alternative. It allows to let some flexibility in the model. In particular, the uncertainty on the
range of the covariance model allows to take into account different hypotheses concerning the correlation
between the upper and lower part of the orebody.

After a description of the Bayesian approach to spatial prediction in Chapter 3, the application to the case
study will be presented in Chapter 4. Compared to the Bayesian approach, conditional simulations will be
called the plug-in approach. Finally, the project will be evaluated in Chapter 5.
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Figure 2.1: Basemaps of the variable grade. The low values are indicated in light (yellow) colours, while the high
values are highlighted in red/ brown. z; stands for the coordinate in the eastern direction, x5 for the northern direction
and z3 for the depth. From the X;0X3 basemap we can see that the mineralisation lies along the fault (highlighted
in the figure) and that there is waste above it. From the X>0X3 basemap we see that the 6 drill-holes that go into the
lower part of the orebody may indicate the presence of a rich region
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Figure 2.2: Basemaps of the variable grade inside the mineralised zone. The size of the area under study is of 500m
for 21, 850m for x5 and 600m for x5
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Figure 2.3: Checking the hypothesis of stationarity. The average grade is computed for each vertical level in (a) and
as a function of z; (i.e. the eastern direction) in (b). The vertical line in both graphics is the mean of the data. From
these graphs it is plausible to treat the zone as stationary. From (a) we can note that the average grade in the vertical
zone between 100m and Om drops. As it can be seen in the previuous X;0X3 basemap for each vertical level in this
zone few observations (just 123) are available. These data come in part from the drillholes that test the lower part of

the deposit. It can be noted that the average grade of the upper part is higher than the average grade of the lower
part. A drift that takes this into account could be considered instead
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Figure 2.4: Histograms of the variable grade (a) and of the variable grade inside the mineralised zone (b). Note that
more than 50 % of the grades are smaller than 1g/t
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Chapter 3

Bayesian approach to estimation and
prediction of random fields

3.1 Introduction

Geostatistical predictions require the covariance structure as input parameters. As these are inferred from
data they are subject to error. Particularly if not enough data are available this error should be taken in
consideration. Bayesian geostatistical analysis (Kitanidis, 1986; Omre and Halvorsen, 1989; Handcock and
Stein, 1993; Diggle et al., 1998; Papritz and Moyeed, 2001) specifically recognises uncertainty on model
parameters. Its effect on estimates and decision process can be evaluated. In addition it provides a statistical
method for updating estimates as new information becomes available. Another advantage is that geological
information or previous knowledge, that is the user normally has expectations about the general behavior of
the phenomenon studied, can be included in the estimation process.

Kitanidis (1986) recognized the importance of accounting for covariance uncertainty parameters in pre-
dictive inference for gaussian random fields. He proposed a full Bayesian analysis, but did not implemented
the approach, expressing the predictor and prediction variance in terms of integrals which cannot be com-
puted analytically. Omre (1987) and Omre and Halvorsen (1989) proposed a mixed approach that they
called Bayesian kriging: the mean function is defined as a random variable, while the covariance parame-
ters are obtained using an estimator for the covariance function conditional on the mean parameters. The
authors define only the first two moments of the mean parameters, while their entire distribution is needed
to calculate the prediction density. They show that the choice of prior distribution for the mean leads to a
continuum of methods between simple and universal kriging. Handcock and Stein (1993) proposed a full
Bayesian approach for prediction in gaussian random fields that explicitly accounts for uncertainty of the
covariance parameters. Their analysis was restricted to linear kriging; Diggle et al. (1998) extended the
same approach to non-linear spatial prediction by embedding the linear kriging methodology within a more
general distributional framework that is similar to the structure of a generalized linear model. De Oliveira
et al. (1997) observe that these models seem to be well suited for image restoration inverse problems. In
order to consider non gaussian random fields, they introduce a Bayesian Transform Gaussian (BTG) model
which considers a parametric family of monotonic transformations and accounts for parameter uncertainty
in the predictions.

33
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Let {Z(z),z € D}, D C R3, be the random field of interest and Z = (Z(z1),...,Z(z,))T aset of n

observations from a single realisation of this random field, where z1, ..., x,, are known distinct locations in
D. Based on Z we want to predict the unobserved random vector Z(xo) = Zo = (Z(z01),-- -, Z(zox))7,
where Zg comes from the same realization as the data vector Z and zq1, - - . , o are known distinct loca-

tions in D. Now, let 8 be the vector of model parameters, and f(Zo|Z, @) the predictive density of Z¢ given
Z and 0. The parameters are viewed as random variables with prior distribution 7(@), and Bayes” Theorem
is used to revise their probabilities. Their posterior distribution is thus

©(8|Z) x 7(8) £(Z|9). (3.)

The prior distribution reflects beliefs about @ prior to experimentation, the posterior distribution reflects the
updated beliefs about @ after observing the sample Z. The posterior distribution combines the prior beliefs
about @ with the information contained in the sample Z to give the final beliefs about 8. But in practice how
these priors and their parameters should be chosen? Or how a qualified guess can be made? It can be based
for example, from a different but related data set. In petroleum reservoir description the general knowledge
of the geologist is of great importance and seismic information may be available too. For other applications,
such as meteorology and air pollution analysis, underlying drifts may be determined by rough deterministic
models and used as qualified guesses for expected surfaces (Omre, 1987).

The Bayesian prediction is based on

§(Zo|Z) = / /(Zo|Z,8) 7(6|Z) d6 (32)

which takes into account the parameter uncertainty by averaging over the parameter space the conditional
distribution f(Zg|Z, ), with weights given by the posterior distribution for the model parameters, =(6|Z).
It is obtained from both the prior and data information.

The plug-in prediction is based on )
f(Zo|Z,0) (3.3)

where 8 is an estimate of the unknown parameters @. Thus, the plug-in approach consists of two steps: first
the data are used to estimate the unknown parameters @, and second the data and the estimates 6 are both
used to produce a predictor for Zo by plugging 8 in the place of 8. As Handcock and Wallis (1994) state,
the Bayesian prediction can be interpreted as a weighted average of plug-in predictions. In comparison with
likelihood based methods, the Bayesian predictive distribution takes into account the complete likelihood
surface rather than focusing on the maximum likelihood estimates of the covariance parameters (Handcock
and Wallis, 1994).

We let 7(-) denote any parameter density function. Its arguments identify the random variables in ques-
tion.

The problem of spatial prediction in random fields is now formulated as a decision problem as in Cressie
(1993). The reference for decision theory and Bayesian methods is Berger (1985). We must recall, as it was
said in Chapter 1, that we do not only need the prediction of Z¢ but the entire predictive density function.

Prediction as a decision problem

Let P be the class of predictors, Zo, for Zo, where Zg is a function of the data Z. Let L(Zo, ZO) be the
loss function which measures the loss incurred when predicting Z¢ with Zg. An optimal predictor Zg € P
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is the one that minimizes the Bayes risk

r(Zo) = E[L(Zo, Zo)],

where the expectation is taken with respect to the joint distribution of Zq and Zg. It is a well known result
in Bayesian decision theory that regardless of the loss function used and if 7P is the class of all functions
of the data, then minimizing the Bayes risk is equivalent to minimizing the Bayesian expected loss (Berger,
1985; p 159)

p(Zo) = E[L(Zo,Z0)|Z]
= /L(Zo,zo)f(zdz)dZO-

If the squared error loss function is used, L(Zo, ZO) = (Zo — 20)2, the optimal point predictor is the
conditional expectation
Zo = E[Zy|Z). (3.4)

This predictor is called the least squares predictor. The Bayes risk and Bayesian expected loss become
respectively the unconditional and conditional mean squared prediction errors and are given by

’I‘(ZO) = E[(ZO — 20)2] = Var[ZO] — Var[Zo]

p(Zo) = E[(Zo — Z0)*|Z] = Var|Zo|Z).

The Bayesian expected loss is going to be used as the measure of prediction uncertainty and f(Zo|Z) as the
predictive density function. This density function is the central quantity for predictive inference. The result
in (3.4) is valid not only for Z¢o but also for other quantities of interest, such as, for example, the overall
mean or the mean within any subarea.

There are two possible approaches to prediction: the Bayesian approach and the plug-in approach. In
the following sections a detailed description of the Bayesian approach is presented, and for comparison
purposes the plug-in approach is briefly described. We will concentrate on the results for unknown mean
parameters because of their relation with conventional geostatistical methods, where the mean is filtered and
the covariance parameters are estimated by some method and plugged-in for predictions. The theoretical
kriging predictor which filters the mean and assumes the covariance function is known, is optimal among all
unbiased linear predictors and if Z(-) is gaussian among all unbiased predictors. But the kriging predictor
that is computed in practice is based on an estimate of the covariance function. The effect of this estimation
is still not well understood. Putter and Young (2001) show that the effect of estimation is negligible asymp-
totically if the joint gaussian distributions of Z(-) at z1, ..., z, under the true and estimated covariance are
contiguous almost surely®. It is not easy to verify the conditions for contiguity. The importance of taking
into consideration the uncertainty on the covariance parameters will be highlighted.

In Section 2 the gaussian random model is presented. We follow Handcock and Stein’s work. Informa-
tive prior distributions for the parameters of the mean and covariance functions are considered. In Section
3 the transformed gaussian random field is treated. These approaches are applied to the test case. For this

'For every n, let (U, An) be a measurable space and let {Q,} and {Q;} be two sequences of probability measures on
(Un, Ar). The sequence {Q'n} is contiguous with respect to {Q,. } if, for every A, € A,, Qn(An) — 0 implies Q'n(An) -0
(Putter and Young, 2001)
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only the lower part of the deposit and its 146 observations are used, while the upper data are treated as prior
information.

In the next chapter the Bayesian approach will be used to obtain the recoverable reserves.

3.2 Gaussian random fields

3.2.1 The model

We assume that Z(-) is a gaussian random field with mean 87 f(x), where B is a p x 1 vector of unknown
regression coefficients, 8 C RP, and f(z) is a p x 1 vector of known location-dependent covariates. Its
covariance is o ! K, (z,z'), z,2' € D, where « is the precision and v is a vector of structural parameters
controlling the range and the smoothness of the random field, v C R?. K, (-) is the correlation function
assumed to be positive definite Vo. The likelihood of the model parameters 8 = (8, o, v)” based on the
observed data z = (z1,...,2,)7, z; = Z(z;), is given by

L(8l2) x o3 |K,| 7% exp (-5 (2~ FA)'K, (2~ FP)) (35)
where | K, | is the determinant of K, and F' = { f;(x;) }nx, is assumed to have full rank.

The Bayesian predictive distribution is given in (3.2). By the stated assumptions we have that

(Zo,Z|IB,O[,V) NNn+k (( };'(')g ) ’ a_l ( gé: .-[lélljj ))

where N, and L, are k x k and k x n correlation matrices. It follows that
(z0]2,8,a,v) ~ Np(M, o' %) (3.6)

where
M=L,K,'s+ (Fy-L,K,'F)B

and
Y=N,-LK'LT.

To perform the integration in (3.2) note that
(B, o, v|z) = n(Blz, o, v) w(alz,v) T(v|z).

In general, it is not possible to write down meaningful closed form expressions for the parameters posterior
distributions and for the predictive distribution, and MCMC methods are required to do the computations.
In particular Gibbs sampling is a natural tool to sample from a posterior of this form.

We start by defining the prior distribution for the parameters and compute their posterior distribution. In
particular, as we use the predictive distribution, f(z¢|z, 3, a,v), given in (3.6), we look for the following
conditional distributions

- w(v|z);

- w(alz,v);
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- 7T(,3|z,a,u).

Although we use (3.6), we present the predictive distribution f(z¢|z, ) obtained integrating with respect to
B and «. Depending on the choice of the prior we have analytical forms for 7(v|z) and 7(«|z,v). If not
available the algorithm for simulations is Gibbs sampling. In this case we need the following conditional
distributions

- m(v|z,B,q);
- m(alz, B,v);
- 7T(,B|Z,OZ,V).

The kriging and the more general plug- in predictor are then described and compared to the Bayesian predic-
tor. Two examples are given to highlight the importance of accounting for parameters uncertainty. Finally
the application to the test case is presented.

The choice of the parameters prior distribution

The choice of priors is a delicate issue in Bayesian inference. If the investigator has real prior knowledge
about the parameters then the issue is the expression of that knowledge in terms of distributions. The prior
distribution for the parameters is unobservable. It is easier to express prior knowledge directly in terms of
potentially observable Z, than the parameters themselves. An approach to the selection of prior distributions
is the so called device of imaginary training samples. The distribution of Zj is

m(Zo) = / 1 (2018, @, ) 7(B, o) dB devdw.

Hence given that our prior knowledge about Z can be expressed as m(Z,) we can then indirectly evaluate a
prior for (B, o, v), (B, a, v), by solving this integral equation. This will be difficult to achieve in practice,
but analysis might suggest families of priors to be explored by other methods.

The incorporation of geological knowledge into kriging studies is very situation dependent.

Conjugate priors can be computationally convenient although this alone should not justify their choice.
Two extreme cases for prior choice are

- when parameters are perfectly known, the priors can be regarded as degenerate distributions on the
parameters values;

- when the prior knowledge about the parameters is vague, noninformative or flat priors can be adopted.
For spatial random fields it is usual to regard the mean parameter 3 independently of the covariance parame-
ters (Handcock, 1989). We will suppose that the parameters are a priori independent and that information

is available to define the prior distribution. We start by defining the priors for 8 and «. The prior distribution
for v is not treated here but in the applications.

For comparison purposes the following prior distributions will be considered
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1. A conjugate prior. The conjugate prior family for B and « is the Normal- Gamma which assumes
dependence between 8 and «,

(B, alv) ~ N(b,a™'$) I(a1,1/az).
This is equivalent to the product of the distributions
(Bla,v) ~ N(b,a™'8) and (alv) ~ T(a1,1/as).

That is, the prior mean and variance for (83|, v) are respectively b and a=1.S. The prior index and
scale parameter for («|v) are respectively a; and 1/as.

2. A noninformative prior. We chose as a noninformative prior

1
(B, a|v) x -

As we can see in Appendix C it is Jeffreys prior for (3, «). It is used to represent ignorance about the
value of the parameters 8 and «. The prior

(B, a,v) x %

was proposed by Kitanidis (1986) and Handcock and Stein (1993), but without specific guidance
as to the choice of 7(r). In practice, it is common to use 7(8,a,v) x 1/a, but Berger et al.
(2000) show that this choice results in an improper posterior distribution for (8, , v). This holds for
other common choices of noninformative priors, such as 7(8,a,v) x 1/av and 7(8,a,v) « 1.
Berger et al. (2000) observe that commonly used improper priors for v should not be chosen as
they lead to improper posterior distributions. They consider objective Bayesian analysis of spatial
data that utilizes noninformative or conventional prior distributions, such as Jeffreys, for unknown
parameters of Gaussian random fields. In spatial models, noninformative priors are often used because
of the difficulty of interpreting and hence eliciting a subjective prior for the correlation parameters.
The authors provide noninformative prior distributions that result in proper posterior distributions.
They define a suitable noninformative prior, the reference prior, that can be used in default Bayesian
analyses. They take w%(B|a,v) = 1 and compute 7% (o, v) using Jeffreys rule for the marginal
model defined via the integrated likelihood?.

3. Aninformative prior which assumes independence of 8 and «. To simplify the calculations, we define
a gaussian prior for 8 and a gamma prior for «. We will refer to this prior as the independent prior in
contrast to the conjugate prior.

We will limit our attention to isotropic covariance functions. We will begin with only 8 unknown as it
permits to see the relationship between the Bayesian approach and geostatistical methods. As Omre and
Halvorsen (1989) showed if the prior for 3 is taken as noninformative, the Bayesian predictor coincides
with the universal kriging (or ordinary kriging) predictor. If on the contrary a degenerate distribution is
taken for B too, the Bayesian predictor coincides with the simple kriging predictor.

The integrated likelihood is given by L' (o, v|z) = J L(B, a,v|z) 7%(B|a, v) dB, that is the product of the likelihood and
the prior (B|«, v) over B
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3.2.2 Parameters posterior distribution

For the three priors we defined in the previous section we now compute the conditional distributions for the
model parameters, that is 7(3|z, o, v), m(a|z,v) and 7 (v|z). These distributions can be computed analyti-
cally for the conjugate and noninformative priors, while for the independent prior we can only compute the
full conditional distributions, that is 7(83|z, o, v), 7(c|z, 8,v) and w(v|z, B, a).

We recall that

n(8,0,v]a) o< 7(B,,v) [ (2B, v)
= n(B,0,v) a3 |K,| 75 exp (=5 (2~ FB)T K (2~ FB)) .

Let
R(B,v) = (z— FB)'K, ' (z — FB) = ||z — FBI[}-
and R
B = minR(,v),
that is X
B=F'K'F)'F'K 3.
It is then possible to write X X

1. Conjugate prior. From Bayes’ theorem we have

m(Blz, o) o w(Bla,v) f(2]B; a,v)
o const exp (—% (R(B,v) +|1B — b||§—1)> :

It is useful to observe that
R(B,v) + I8 = bl[5-1 = S®@) + 18 = be|[5 (3.8)

where
b.=S.(F'K,'z+ 5 'p), S.=(S'+F'K;'F)™! (3.9)

and
S(w)=blSb+2"K 'z — bl S b,.

Recognising the factors involving B in 7(B|z, o, v) it is evident that
(B|z, a,v) ~ ./\/'p(bc,oflSc).
Now to obtain the conditional distribution of the precision « recall that

(B, alz,v) (B, alv) f (2|8, o, v)
of a3 exp (—%(R(,B,u) +18 - bug,l)) exp(—as @).

X
X
Using (3.8) and integrating over B we have (a|z,v) ~ T'(a11,1/a92). The parameters of this conditional

gamma distribution are

ai; = a1 + % and age = ag + @ (3.10)
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The choice of a; is of little importance when the sample size n is large. The posterior distribution for v,
m(v|z), can be obtained using the relation

(B, o, v|z)
(B, a|z,v)

which follows directly from Bayes’ theorem. The posterior distribution for v is of the form

m(v|z) =

(3.11)

S(w)\ et
; .

m(v|z) o (v) |K,| 2 |S,|2 <a2 + 22
2. Noninformative prior. Here we have

m(B|z,a,v) o const exp (—%R(ﬂ,u))

and using (3.7) it is evident that the conditional distribution of 8 is gaussian. Recognising the factors
involving B we obtain the conditional mean and covariance of the mean parameter 3, that is

b.=8=25.(F'K;'z) and S.= (FTK;'F)™! (3.12)

which coincides with the maximum likelihood estimator. The same result can be obtained with the conju-
gate prior and S~ = 0: note that here S(v) = ||z — Fb.||%2_, = ||z — FB|%>._, = R(B,v).

v

In this case

(B, alz,v) x o ! @7 o exp (—%R(,B,u)) .
Thus integrating over 8 we have the conditional distribution of the precision «, which is gamma with
parameters

n—p and a9y — R('BZ’V).

(3.13)

ap =

The posterior distribution for v is
m(v]z) oc w(v) |K, |72 |Sc|? R(B,v)~"7". (3.14)

It is interesting to consider the influence on the posterior distribution of » of the prior distributions for g8
and a. The terms in (3.11) that involve the prior parameters for 8 and « are

—(a1+%)
15!+ FTK; P (a2 + #) .

As the prior variance for « decreases, that is either a1 gets smaller or as gets larger, this quantity tends to
zero. Thus going to a noninformative prior for the precision, the distribution of » becomes more dispersed.
On the contrary, the influence of the prior for the mean coefficients 3 is little: going to a noninformative
prior for 3, that is S~ tends to zero, the distribution of » becomes slightly more dispersed.

Remark. We have seen that for the conjugate and noninformative priors we have that

(B|z, a,v) ~ Np(bc,a_lsc) and (a|z,v) ~T'(a11,1/a2),
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then
(187 CV‘Z, V) ~ Np(bCa a—lsc) P(a'lla 1/0,22).

Note that
(B|z,v) « |Sc|_% /ag exp (—% [[be — b||§c_1> exp(—aag) o™ el do
and recognising the terms involving o we have that
7(Blz, v) o |Se| % [2a22 + [|be — b2 1] "1 +8).
Thus

(Blz,v) ~ t,(be, S%Sc)- (3.15)

This is a p- variate ¢ density with n = 2a11 degrees of freedom, location parameter b, and scale parameter
528S., where s? = 2agy /1. The parameters (b, S.) and (a11, az2) depend on the prior distribution.

3. Independent prior. Now if 8 and « are a priori independent we cannot compute analytically the pre-
vious conditional distributions. To sample from the parameters posterior distribution Gibbs sampling can
be used. Its implementation requires sampling from the full conditional ditributions (3|z, o, v), (a|z, B,v)
and (v|z, B, a).

From Bayes’ Theorem we have

m(Blz,a,v) o< w(Bla,v) f(2]B, a,v)
a 2
o const exp (—5 (R(ﬁ,l/) + 1|18 - b||(aS)*1)) :
It is now evident that
(ﬂ|Z, «, V) ~ Np(bca a_ISc)
where
b.=8.(FITK,'z+a 'S 'b) and S.= (o 'S '+ FTK, 1F)L (3.16)

For the conditional distribution of «;, we observe, from Bayes’ theorem,

m(alz,B,v) o< w(e|B,v) f (2|8, V)
x consta® ! exp(—aag) a? exp (—%R(ﬁ,u)) .

Thus
(OJ|Z,IB, V) ~ P(Gll, 1/&22)

where

n R(B,v
a11:a1+§, a22=a2+%-

Analogously we have that

m(v|z, B, a) x m(v) |K,,\_% exp (—% R(,B,V)) .
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The choice of the correlation function

Handcock and Stein (1993) and Handcock and Wallis (1994) considered the Matérn class of correlation
functions. It is a general class of isotropic correlation functions. It is used for the wide range of behaviors
covered at the origin and the interpretability of the parameters (for more details see Stein (1999)). These
correlation functions have the general form

Kot = i) (£> £ ;)

where A is the Euclidean distance, T' is the gamma function®, v; > 0 is a scale parameter controlling the
range of correlation that is how fast the correlation decays with distance, v > 0 is the parameter control-
ling the smoothness or roughness of the field that is the geometrical properties of the random field (such
as continuity and differentiability), and X, is the modified Bessel function of the second kind of order v,
(Abramowitz and Stegun, 1965). The case v, = 1/2 corresponds to the exponential model. Integer values
of v, indicate the number of times the process is differentiable.

De Oliveira et al. (1997) used the general exponential correlation function given by
K, (h) = exp (—vh"?)

which contains the exponential and the squared exponential correlation functions as two of its members.
Let v; = exp(—v) € (0,1). This parameter controls the range of correlation. For any fixed v, the cor-
relation between observations decays with distance faster for small values of »; compared to large values.
The parameter v € (0, 2] controls the roughness of the random field. This family is easy to compute and
is parametrized by physically interpretable quantities. However, as Stein (in Diggle et al., 1998) notes, the
processes are not mean square differenciable unless v = 2.

The Matérn class is thus the best choice.

In the applications we will choose the covariance function by graphically fitting the experimental vari-
ogram. We will not investigate how the choice of the covariance influences the predicting performance of
the model.

Example 1

Simulations are carried out to obtain a 1 dimensional data set, z, of 30 observations from a standard gaussian
random function Z with an exponential covariance with scale parameter 30m. The data are simulated on a
grid of 290m with a mesh of 10m. The mean of the data is 0.19 and the variance is of 0.81. The experi-
mental variogram is presented in Figure 3.1. This first example is to show the dependence of the posterior
distribution of the model parameters on their prior distribution. In particular the difference in the results
obtained with a noninformative prior and an informative prior is considered. For this we defined a small
data set. Given the 30 observations we can assume that Z has a constant mean and an exponential covari-
ance. The model parameters are @ = (53, o, v), Where v is the scale parameter. We look for the posterior
distribution of 8. The non informative prior distribution is taken for 8 and «. For v a discrete uniform prior
is defined between 10 and 150. The resulting posterior distributions are presented in Figure 3.2 (continuous

3The gamma function is defi ned as: T'(1) = [;° 22" 'e ™ "da

“The practical range (when the correlation is only of 5%) of the exponential model is about three times the scale parameter
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curve). The mean values of the posterior distributions are, respectively, 0.23 for 5, 0.97 for o and 46.01 for
v. Now suppose we have some prior information on 8 and « and that this translates into taking a conjugate
prior for these parameters. Thus a gamma distribution with mean 1 and variance 1 is taken for « and a
gaussian distribution with mean 0 and variance 1/« is taken for (8|a). The posterior distributions obtained
with this prior are shown in Figure 3.2 (dashed curves). The mean values of the posterior distributions are,
respectively, 0.18 for 3, 1.05 for . and 38.92 for v. We note that the posterior mean of 5 gives a weight to
the prior information, in this case to the value 0 for 8. In addition using the prior information the estimate
for the precision « increases. As expected the three posterior variances are lower when prior information is
used than in the noninformative case. The posterior distributions with an informative gaussian prior for v, of
mean 30 and variance 10, are also presented in the figure (dotted curves). Thus when few data are available
the influence on the results of prior information is important.

Figure 3.3 presents the posterior distribution of 5 with fixed covariance parameters, with v fixed but «
unknown and with both covariance parameters unknown. In (a) the noninformative prior was used, while in
(b) the conjugate prior for 5 and « and the gaussian prior for v were used. From the figure it can be noted
that it is the scale parameter v that mostly influences the posterior distribution of 5. As expected, for the
conjugate prior the differences berween the posteriors are smaller.

Figure 3.4 shows the posterior distribution for v obtained with the two different priors. In particular in
(a) different prior means and variances (conjugate prior) for 3 are considered. It can be seen that they do
not influence the posterior distribution of ». In (b) different prior means and variances for « are considered.
It is evident that it is « and its prior parameters that mostly influence the posterior distribution of v.

Example 2

Simulations are carried out to obtain a 1 dimensional data set, z, of 300 observations from a standard gaus-
sian random function Z with a nugget effect of 0.4 and exponential covariance with scale parameter 30m.
The model used to simulate the data is presented in Figure 3.5(a). The data are simulated on a grid of 299m
with a mesh of 1m. The mean of the data is 0.15 and the variance is of 1.07. The experimental variogram is
also presented in Figure 3.5(a). This example is to show whether it is useful or not to introduce a Bayesian
approach when relatively many data are available and no prior information is given. In particular, the effect
of accounting for the uncertainty on the nugget effect is investigated.

The likelihood function of 8 = (5, , 7, v/) is now given by
L(8]7) o |71 + a1 K,| % exp (—%(z _ PR (2 T+ a 'K,) (7 — Fﬂ))

where 72 is the nugget effect and I the identity matrix. For the mean parameter 3 the non informative prior
is considered. Instead of letting the covariance parameters vary continuously we chose 15 possible sets of
covariance parameters, which are supposed a priori to be equally likely. Two of these are shown in Figure
3.5(b). Gibbs sampling is used and simulations from the conditional distributions are obtained, but how this
will be seen in more detail later in this chapter.

Figure 3.6 presents the posterior distribution of 8. The dotted curve is obtained accounting for the uncer-
tainty on the covariance parameters. The continuous and large dashed curves are obtained for two different
sets of covariance parameters: true model with a nugget effect of 0.4 and a model with a nugget effect of
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0.1, respectively. The Bayesian curve is close to that obtained with the true model. The posterior distribu-
tions of 3 obtained plugging- in the covariance parameters tend to overestimate the uncertainty. Usually in
geostatistics one covariance model is chosen to fit the experimental variogram even if more than one model
seems plausible. If the nugget effect is not defined while it should be included in the model the posterior
distribution of /3 greatly overestimates the uncertainty. The Bayesian approach could thus be useful to model
the uncertainty on the short scale behaviour. This should be checked in more detail for predictions.

This simplified approach still permits to take into account the uncertainty on the parameters.

3.2.3 Prediction of Z,

For simplicity we consider the prediction of the single random variable Zy = Z(zy). If the parameters
were known, the optimal predictor for Z(z() would be given by

Zy(m0) = Eg[Z(mo)|z] = kLK, 'z + (f(z0)" — kLK, 'F)B. (3.17)

which is conditionally and unconditionally unbiased®, where k,, i§ an x 1vector, k,; = K, (zg,z;). Under
the gaussian model the simple kriging predictor coincides with Zy(xy). Thus under the gaussian model the
simple kriging predictor is optimal. The prediction variance (and kriging variance) is

Varg|Z(zo)|z] = E[(Z(x0) — Zo(z0))%|2] = o~ (1 — KTK'k,) (3.18)

which does not depend on the data but just on their location. This is true only for the gaussian model.
Note that the conditioning on the data reduces the prediction variance. Thus gaussianity is a sufficient con-
dition for the linear SK to be optimal, if all the parameters are considered known. If the parameters are
unknown the optimal predictor is in general non-linear . In general, the parameters @ are not known. When
using simple kriging, the mean is known and the covariance parameters are estimated by some method and
plugged-in for predictions, as if they were the truth parameters. It must be noted that if we misspecify «
we will misspecify the prediction variance proportionately. If we misspecify v both the predictor and the
prediction variance will be affected.

As it was said earlier, if both the mean and covariance parameters are unknown, it is not possible to write
down closed form expressions for the predictive distribution and so MCMC methods must be used. For
example, Gibbs sampling can be used. If just the mean parameter is unknown and as (3|z, «, v) follows a
normal density, the predictive distribution, f(Z(z¢)|z, o, v), is a normal distribution, N"(M,, o 1%,). The
parameters depend on the prior. The mean and variance of the predictive distribution are

M, = E[Z(z0)|z, o, V] = KL K 'z + (f(w0)” — KL K ' F)b, (3.19)
and

a7'%, = Var[Z(zo)|z, 0, v] = o [(1 - kLK, k) + (F(20)” — KD K, F)Se(f (w0)” — KD K, F)T]
(3.20)
where b, and S, are given in

SItis conditionally and unconditionally unbiased, that is

Eg[Zo(x0)] = Eo[Z(wo0)] and Eg[Zy(wo)|z] = Eo[Z(o)|2]
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1. Equation 3.9 for the conjugate prior;
2. Equation 3.12 for the non informative prior and in
3. Equation 3.16 for the independent prior.

The increase in variance with respect to (3.18) is due to the fact of having taken into account the uncertainty

on 8.

Once a sample of the covariance parameters is available, we sample from f(Z(z)|z, o, v). However if
just the mean or the mean and the precision parameters are unknown, depending on the prior specified, the
predictive distribution can be calculated analytically. This is the case for the conjugate and for the noninfor-
mative prior. The predictive distribution is f(Z(z¢)|z,v). It is a ¢ distribution with 7 degrees of freedom,
with location parameter M, and scale parameter s3%,, that is ¢, (M,, s3%,). Note that now the predictive
variance depends on the data and not only on their location. The parameters depend on the prior as we have
seen previously. The ignorance about the precision parameter « is expressed by the difference between the
variance of the ¢ distribution, ns2%,,/(n — 2), and the variance of the gaussian distribution, a=1%,. As s?
is the natural estimate of o~ the ratio of the variances is approximately given by n/(n — 2). Thus if 5 is
large the uncertainty on a will not change the predictive distribution very much. Thus the uncertainty in «
manifests itself in the conversion from a gaussian to a ¢ distribution. The uncertainty on ~ manifests itself
through the weighting of each of these ¢ distributions by the posterior for ». Depending on the influence of
the correlation parameters on the spread and location of the ¢ distribution, the Bayesian posterior might be
wider or narrower than the predictive plug-in distribution.

Example 1

Reconsider Example 1 introduced previously. Given the 30 observations we want to predict the random
variable zy at an unobserved location xzy. We first compare the Bayesian predictive distributions obtained
with the noninformative prior for 8 and « and the gaussian prior for v and with the conjugate prior for 8
and « and the gaussian prior for v. Figure 3.7 shows clearly that when the uncertainty about zq is great,
prior information plays an important role, and on the contrary when the uncertainty about zq is small prior
information has a smaller weight compared to data. The noninformative prior is then used to highlight the
importance of taking into account the uncertainty on the covariance parameters. The plug- in, that is the
results we would obtain if simple kriging or ordinary kriging were carried out, and the Bayesian predictive
distributions are compared in Figure 3.8. The figure presents these different predictive distributions at two
unknown locations. In (a) z¢ is 55m that is close to the 30 observations and in (b) x( is 400m that is far
from the observed data. The influence of taking into account the uncertainty on the mean and covariance
parameters is particularly important in (b). On the contrary it can be noted that taking into account the
uncertainty on the mean is not relevant in (a).

Figure 3.9 presents the predictive distribution at zp = 450m. In (a) it can be noted that the Bayesian
predictive distribution tends to overestimate the uncertainty with respect to the predictive distributions with
the covariance parameters known. The difference is larger when the uncertainty on zq is larger. In (b) pre-
dictive distributions obtained with 8 unknown and with different values of the covariance parameters are
compared. The Bayesian predictive distribution is a weighted mean of these distributions.
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Example 2

This example is considered here to see what is the effect on the predictions of misspecifying the nugget
effect. Looking at the experimental variogram (Figure 3.5) we can assume that there is a nugget effect.
Figure 3.10 presents the predictive distributions at z, = 55.5m and =y = 400m. The Bayesian predictive
distribution is compared to the predictive distribution with 8 unknown and fixed covariance parameters.
In (a) and (c) the predictive distribution is defined using the true model. Looking at these graphs it can
be said that when the uncertainty on zg is small as in (a) the Bayesian predictive distribution tends to
overestimate the uncertainty. On the contrary when the uncertainty on zo is great as in (c) the Bayesian
predictive distribution tends to underestimate the uncertainty. In (b) and (d) the predictive distribution is
defined using a model that seems to fit well the experimental variogram and has a smaller nugget effect but
still a total variance of 1. This model is one of the fifteen we defined for the covariance function. Looking
at (b) it can be seen that a smaller nugget effect greatly reduces the predictive variance. In this case we
would underestimate the uncertainty on zy. This does not happen in (d) as the range of correlation is small
compared to the distance between z, and the observed data and thus just the total variance is relevant. The
Bayesian predictive distribution prevents us of these kind of errors. The Bayesian predictive distribution is
a weighted mean of the plug- in predictive distributions.

3.2.4 The plug-in approach

We consider the maximum likelihood (ML) approach for estimating @, that is

A~

0 = arg mg,xL(B\z).

Once the model parameters are estimated, they are plugged-in in the predictive distribution to obtain the
predictor and prediction variance of Z, given respectively in (3.19) and (3.20).

Only the mean parameter is unknown. As we can see in Equations 3.19 and 3.20 we do not need to
estimate the mean parameters 3. However, for any fixed value of « and v, the ML estimate of 3, ﬁ is given
in (3.12) which is the generalized least squares estimate of 3, even when the random field is not gaussian.
In this case Z(zq) = E[Z(x0)|z] is (3.19) which is also the best linear unbiased predictor of Z(x) and is
known as the universal kriging predictor if F' and f(z) are trend matrices with rows given by data coordi-
nates or a function of them (ordinary kriging if 8 = ), or as the kriging with external trend predictor
if Fand f(zo) are trend matrices with covariates measured at data and prediction locations, respectively.
Its prediction variance (or kriging variance) is given in (3.20) which depends on both « and v.

In this case the Bayesian predictor coincides with the kriging predictor.

The mean parameter and the precision parameter are unknown. For any fixed value of v, and sub-

stituing ﬁ in the place of B in the likelihood function (3.5) we obtain the following profile likelihood
Ly(alz,v) x of |K,| % exp (—%R(B,u)) .

Thus & which is given by
arg max Ly(a|z,v)
(8

. (R(Bw))‘l'
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This could be compared to the mean of the conditional gamma obtained with a noninformative prior and
with parameters given in (3.13). As E[Z(z)|z] does not depend on « it is unchanged, but the prediction
variance is now given by ¢~ 3.

All the parameters are unknown. Replacing 3 and & in the likelihood function gives the following profile
likelihood )
Ly(v|z) « |K,|"2 a2
and the ML estimate of v, &, if it exists, is obtained by iterative numerical methods.
Thus, the predictor E[Z(zo)|z] is

Z(zo) = KK 2+ (f(z0)T — kLK 'F)B, (3.21)

which has been named the empirical or estimated best linear unbiased predictor of Z(z). In general, it
is a non linear predictor since & is a non linear estimator. The variance of Z(z) has no closed form, and
the usual estimate of it is obtained by plugging & and 2 in (3.20). This would in general result into an
overestimation of the predictor’s precision and in consequence the prediction intervals for Z(z) tend to be
too optimistic. The estimates 3 and & are then computed with . The estimation of by ML has been
criticized because of the occurrence of multimodal likelihoods. As De Oliveira et al. (1997) state for the
Bayesian approach, in principle, a multimodal likelihood is not an issue for the prediction of Z(xz).

The most common alternative for the estimation of covariance parameters is the weighted least squares
method for curve fitting as proposed in Cressie (1993, p.94). The resulting fits are often visually convinc-
ing, but this raises the question of whether matching theoretical and experimental variogram is optimal in
any sense. The ML methods have the advantage of being optimal under stated assumptions although they
are computationally expensive for large data sets. As we have seen they also play a central role in Bayesian
inference.

The plug-in posterior can be wider or narrower than the Bayesian posterior depending on the estimates
used. In general, it tends to underestimate the uncertainty by a small amount. The weak point of the plug-in
approach is that it does not account for the uncertainty about the covariance parameters on the estimation
of the prediction uncertainty. This has been one of factors that motivated the development of the Bayesian
approach to prediction in random fields. The Bayesian approach fully accounts for model uncertainty in the
computation of predictors and their associated uncertainty measures. However, it is more computationally
demanding. Chiles and Delfiner (1999, pp 175-176) observe that with the Bayesian approach two different
sources of uncertainty, the spatial variability and the uncertainty on the magnitude of this variability, are
mixed. Moreover, to obtain the UK (or OK) predictor no distributional assumptions are needed, while for
the Bayesian approach the conditional distribution of Z(x() given z and the parameters @ is required. On
the other side, linear kriging predictors are compelling only under the gaussian assumption. Papritz and
Moyeed (2001) compare Bayesian and model-based kriging with plug-in kriging methods for two different
data sets. Given their results they doubt that there is a gain by using Bayesian approaches to kriging. They
found that it did not matter whether parameter uncertainty was taken into account or not. The authors sug-
gest that this depends on the validity of the modelling assumptions, that are quite strong for the Bayesian
approach.

3.2.5 Application to the test case

As we have seen the data are clearly not gaussian. Thus the gaussian model presented in this chapter is not
realistic. Although the mean F'3 is positive and Z centered around this mean does not take negative values,
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once the new information is available the change in the mean could be important and negative values of Z
be obtained.

To work with this model we need to transform the data into gaussian values. The anamorphosed grades,
introduced in Chapter 2 and presented in Table 3.1, will be used to describe the gaussian model. We use the
observations of the lower part and use the upper data as prior information.

N Minimum Maximum Mean Standard deviation

2390 -2.05 3.56 0.00 0.99
Upper part | 2244 -2.05 3.56 0.00 0.99
Lower part | 146 -2.05 2.13 0.00 0.92

Table 3.1: Statistics of the gaussian values

The model

We chose the following drift function

E[Z(z)|B] = Bo + fi1(z)p1 + f2(x) B2

where f1(z) is the vertical coordinate (or depth) of Z(z) and f2(x) is the vertical coordinate squared. We
did not consider the coordinates in the horizontal plane. It must be noted that the data are in this plane in
a rather small area and the coordinates are very close. The covariance model is the same exponential as
in Table 2.5. This model was chosen after fitting the experimental variograms of the upper data (Figure
3.11). Note that the 146 observations of the lower part of the orebody do not influence the experimental
variograms. For simplicity, the omnidirectional variogram is considered instead (Figure 3.12). The model
parameters are thus @ = (83, o, v).

As it was said earlier, the parameters are a priori independent. The following prior distibutions for the
model parameters were defined

- agaussian distribution for 8 with mean b = 0 and covariance S equal to the identity matrix multiplied
by 10;

- agamma distribution for . of index a; = 1 and scale parameter a; = 1, that is of mean 1 and variance
1, and

- adiscrete prior for v on the interval (10, 100). More weight is given to values in the interval (20, 40),
so that the mean is 30.

The mean parameters of the priors for o and v were computed by eye fitting the experimental variogram
(Figure 3.12). To highlight our ignorance on 3, its variance is set equal to 10.

Parameters posterior distribution. The algorithm used to sample from the parameters posterior distri-
bution consists of the following steps

1. choose the initial values for oz and v. These starting values are chosen in the range specified by the
prior.
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2. Update all the components of the parameter vector 8

- choose a new value, B’, from the conditional probability function 7(8|z, o, ).
3. Update «

- choose a new value, o/, from the conditional probability function 7(«|z, 3, v).
4. Update v

- compute the approximate discrete posterior distribution in the support chosen for v, that is
(v|z, B, a);

- choose a new value, v/, from 7(v|z, 8, @).

We observe that at each iteration K ;! must be computed and as we have 146 observations it is quite time
consuming. The advantage of taking a discrete prior for v is thus clear®.

Steps 2-4 were iterated until the chain was judged to have reached its equilibrium distribution. Then we
sampled every kth (= 50) realisation of the chain. Increasing the value of & reduces the serial correlation in
the resulting output sample (Diggle et al., 1998). Figure 3.13 presents the samples of (3, «, v) given z and
the evolution of the Monte Carlo estimates of these parameters as a function of the number of iterations. The
chains seem stationary. Figure 3.14 shows the posterior distribution for the model parameters. The posterior
mean for B is (—0.558, —0.011, —6.203 x 10~%)T". The posterior mean of the precision « is 0.87 and of
the range v is 33.44. The correlation between the parameters is shown in Figure 3.15. As expected, there
is a strong dependence between the two parameters of the covariance, « and v (the range increases as the
variance increases).

Figure 3.16 presents the estimated drift. The solid line represents the average grade measured at each
depth from -200m to Om. The figure contains 3 dotted lines which correspond to different estimated drifts,
that is with a different number of drift parameters.

Sensitivity to the prior. We compare the results for the different priors. The prior distribution for v is
always the same gaussian defined previously. We restrict the analysis to a constant drift. Figure 3.17 shows
the posterior distribution for the model parameters. The mean values of these posterior distributions are
almost identical

- with the independent prior we have —0.20, 0.91 and 30.98 for 3, « and v, respectively;
- with the conjugate prior we have —0.20, 0.90 and 32.10 for 3, « and v, respectively;
- with the noninformative prior we have —0.22, 0.87 and 34.04 for 8, o and v, respectively.

However, the variance and in particular the behavior in the tails differ. As it is expected, the posterior
variance is larger and the tails are heavier with a noninformative prior. Note that the precision is slightly
smaller in the noninformative case. As the choice of prior distributions is extremely difficult, it is important
to check the inference for the sensitivity to the priors chosen. In our case we must admit that the posterior
distributions are very close and the choice of the prior has little influence on the results.

®If we do not discretise the posterior distribution of the correlation parameter v, then to sample from 7(v|z, 3, ) aMetropolis-
Hastings algorithm can be used
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The importance of taking into account the uncertainty on the covariance parameters is highlighted in Figure
3.17(d). The posterior distributions for the mean for three cases are compared: with the 2 covariance pa-
rameters unknown, with o unknown and v fixed and finally with both « and v fixed. The third and second
curves are very close, while the first one has a higher variance and is skew. The importance of taking into
account the uncertainty on o seems thus moderate. Integrating out «, in the conjugate case, the distribution
of B goes from a gaussian to a ¢ distribution with the same mean but a different variance (see Equation 3.15).
The ratio of the variances of (8|z,v) and (8|z, «, v) is 1.01.

The fact of accounting for the uncertainty on the covariance parameters would be more evident if fewer
data were available. For this we kept just 20 observations and computed the posterior distribution for 3
(Figure 3.18). The posterior distribution of (3|z, v) is thus a ¢ distribution with v = 21 degrees of freedom.
The ratio of the variances of (8|z,v) and (8|z, o, v) is 1.10. In addition note that in this case the prior
distribution has a larger impact on the posterior distribution (Figure 3.18(a)).

Prediction of Z,. For each (3, «,v) obtained previously, we sample from f(Z(z¢)|z,3,a,v) . Figure
3.20 shows the predictive distributions at the 4 selected locations presented in Figure 3.19 for different lev-
els of uncertainty. The dotted curve is obtained with the model parameters fixed at their posterior mean. The
predictor corresponds to the SK predictor. The dashed curve is obtained taking into account the uncertainty
on B. This predictor corresponds to the UK predictor. SK and UK produce very similar results. Accounting
for the uncertainty on 3 increases the prediction variance. The large dashed curve is obtained taking into
account the uncertainty on the precision «. The prediction variance increases. Finally, the continuous curve
represents the Bayesian predictive distribution. In general a higher variance is obtained when taking into
account the uncertainty on the correlation parameter v, but it is not always the case as it can be seen in
Figure 3.20(c). This can be due to the fact that the Bayesian predictive distribution is a weighted mean of
the predictive distributions with fixed model parameters.

Comparison with the plug-in approach. Figure 3.21 compares the Bayesian and the plug-in predictive
distributions obtained fixing by eye the covariance parameters. The Bayesian predictive distribution has
heavier tails. Thus the plug-in approach tends to underestimate the prediction variance.

The model parameters can be estimated by ML. The profile likelihood for v is shown in Figure 3.22. The ML
estimate of v is 21. The corresponding ML estimates of « and 3 are 1.17 and (—0.547, —0.013, —7.238 X
10~3)T. Note that the estimate of the precision « is much larger than the value obtained with the Bayesian
approach (0.87). This higher precision is due to the fact that the uncertainty on the parameters is not taken
into account and the prediction variance, for the 4 selected points presented in Figure 3.19, is much smaller.
This can be seen in Figure 3.23.

Cross validation is often used to compare different prediction methods (Papritz and Moyeed, 2001). We
did not use any measure to rank the plug-in and Bayesian predictions as we are interested in the entire
predictive distribution.

3.2.6 Conclusions

Kriging when the mean is of a known regression form can be given a Bayesian interpretation. Hence except
for the differences in interpretation we end up with the same analysis as the traditional or plug-in approach.
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The exponential model was chosen instead of using a more general family of covariance functions such
as the Matérn. However, we wanted to highlight the importance of accounting for the uncertainty on the
covariance parameters. Moreover, we decided that enough data were available to choose the covariance
function. The calculations are time consuming and thus we preferred to allow for the uncertainty on a mini-
mum number of parameters.

The choice of the prior for the model parameters is a crucial point in Bayesian analysis. We have seen
that for the test case this choice does not have a large impact on the results.

The sampling algorithm requires at each iteration the computation of the inverse of the covariance ma-
trix. This is time consuming and if the dimension of the data set is large (more than 100) this becomes
unfeasible. One possibility is to use a reduced covariance matrix. As we will see in the next chapter, we
discretised the range of the correlation parameter > and computed the covariance matrix and its inverse once
for all.

The data we are working on are clearly not gaussian. Thus the gaussian model presented in this chapter
is not realistic. Although the mean F'3 is supposed positive and the gaussian distribution of Z centered
around this mean does not take negative values, once the new information is available the change in the
mean could be important and negative values of Z be obtained. For this reason we consider in the next
section the transformed gaussian model proposed by De Oliveira et al. (1997).
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Figure 3.1: Experimental variogram. The horizontal dashed line represents the variance of the data. The number of
pairs for each distance is shown



GAUSSIAN RANDOM FIELDS 53

0.8 1.0
0.8 1.0 1.2

0.6

probability
probability
0.6

0.4

0.4

0.2

0.0

0.02 0.03

probability

0.01

0.0

Figure 3.2: Posterior distribution of the model parameters. The continuous curve is obtained with the noninformative
prior for # and « and a uniform prior for v. The dashed curve is obtained with the conjugate prior for 8 and « and
a uniform prior for v. The dotted line is obtained with the conjugate prior for 3 and « and with a gaussian prior
for v. From these graphs it is possible to see how the prior information changes the posteriors. In particular it is
interesting to note that the change in the prior for v influences greatly the posterior of «, while the effect on 5 seems
more moderate (not for its variance)
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Figure 3.3: Posterior distribution of the mean 3. The continuous curve represents the posterior obtained with the
covariance parameters o and v fixed. This posterior is a gaussian distribution. The dashed curve is obtained letting
unknown. This posterior is a t distribution that has the same mean as the previous gaussian but a different and slightly
higher variance. The ratio of the variance of the t distribution and the gaussian is approximately n/n — 2, that is 1.07.
The dotted curve represents the posterior with both the covariance parameters unknown. In (a) the noninformative
prior is used and to obtain the continuous curve « is set to 0.97 and v to 46.01m. In (b) the conjugate prior is used
and to obtain the continuous curve « is set to 1.19 and v to 28.92m (these values are the posterior means of « and v).
The scales in the two figures are not the same. This was done to highlight the differences between the curves in each
figure
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Figure 3.4: Posterior distribution of the scale parameter v obtained with both the noninformative (large dashed line)
and conjugate prior (continuous curve) for 5 and a. A larger posterior variance is obtained with the noninformative
prior. In (a) we let the prior mean and variance of the conjugate prior for 3 vary. The posterior distribution of v
is insensible to these changes: the curves obtained almost coincide. It is clear that the posterior distribution of v
depends mostly on the prior for «. This is evident in (b). The dashed curve is obtained with a prior for « that has the
same mean (=1) but a smaller variance than the prior used to obtain the continuous curve. The posterior mean and
variance of v change for changes in the prior variance of . The dotted curve is introduced to show that a change in
the prior mean of « also changes the posterior of v
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Figure 3.5: Variogram model used for the simulations: a nugget effect of 0.4 plus an exponential model with a sill of
0.6 and practical range of 90m (a). The experimental variogram of the data is also presented. Given the data different
variogram models may be chosen. Two of these are presented in (b). For example, if the first point is neglected in
the experimental variogram as the number of pairs is low compared to the second and third points, the nugget effect
would be set at around 0.1, while if the first point is kept it would be set at around 0.4
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Figure 3.6: Posterior distribution of the mean parameter 3. The continuous curve is obtained using the true model.
The dotted curve is obtained taking into account the uncertainty on the covariance parameters. The two curves are
almost identical. The large dashed curve is obtained using a different model that graphically seemed to fit well the
experimental variogram but has a smaller nugget effect (= 0.1). And finally the dashed curve is obtained defining a
covariance model with no nugget effect. The fact of not considering a nugget effect when on the contrary it should be
taken into account gives a posterior distribution of S that largely overestimates the uncertainty
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Figure 3.7:
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Predictive distribution. The continuous curve is obtained with the noninformative prior for 8 and « and

the gaussian prior for v. The dashed curve is obtained with the conjugate prior for 5 and « and the gaussian prior

for v. In (a)
xo = 400m.
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Figure 3.8:

the predictive distribution is computed for 2o = 55m. In (b) the predictive distribution is computed for
It is evident that when the uncertainty about zq is great prior information has an important role
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Predictive distributions obtained with the noninformative prior for 5 and « and the gaussian prior for

v at (a) zo = 55m and at (b) o = 400m. The continuous curve is computed with the 3 parameters fixed and thus
supposed known. The parameters are set equal to the mean of their posterior distributions, that is for the mean g

0.23, for the

precision « 0.97 and for the scale parameter v 46.01m (values obtained in the previous section). The

predictor corresponds to the simple kriging predictor. The dashed curve is computed letting 5 unknown. The predictor
corresponds to the ordinary kriging predictor. The dotted curve is obtained letting both 8 and a. unknown. And finally
the large dashed curve is obtained letting the 3 parameters unknown. The predictor corresponds to the Bayesian

predictor. The Bayesian predictive distribution has a larger variance and heavier tails
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Figure 3.9: Predictive distribution at o = 450m obtained with the noninformative prior for 8 and « and the
gaussian prior for v. In (a), as in the previous graph, the continuous curve is obtained with the 3 parameters fixed at
their posterior mean. The dashed curve is computed letting 5 unknown. The dotted curve is obtained letting both 5 and
a unknown. And finally the large dashed curve is obtained letting the 3 parameters unknown. This last distribution,
the Bayesian predictive distribution, has a larger variance and heavier tails. In (b) predictive distributions obtained
with 8 unknown and with different values for o and v are compared. The corresponding predictors are the ordinary

kriging predictors
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Figure 3.10: Predictive distributions with the noninformative prior prior for 8 and o and the gaussian prior for v. In
(a) and (b) o = 55.5m; in (c) and (d) zo = 400m. The continuous curve represents the predictive distribution with
B unknown and fixed covariance parameters. The dotted curve represents the Bayesian predictive distribution. In (a)
and (c) the Bayesian predictive distribution is compared to the predictive distribution based on the true model. In (b)
and (d) the Bayesian predictive distribution is compared to the plug-in distribution based on a model with a smaller
nugget effect
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Figure 3.11: Experimental and variogram model for the gaussian variable in the upper zone
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Figure 3.12: Experimental and variogram model for the gaussian variable in (a) the upper zone and in (b) the lower
zone. An exponential model with a sill of 1 and a practical range of 90 fits both variograms
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Figure 3.13: Time series plot of the MCMC output every 50th iteration of the model parameters given z and the
evolution of their estimates as a function of the number of iterations. The chains seem stationary. The Monte Carlo
estimate of the posterior mean of « is 0.87 and of v is 33.44
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Figure 3.15: Correlation between the parameters using samples from the posterior distribution. The samples of the
mean parameter 3o seem independent of the covariance parameters. Note the strong dependence between o and v
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Figure 3.16: The continuous line represents the average grade for each depth z3. The figure shows the following
estimated drifts: 3o + B1z3 + B2x3 (large dashes), 3o + B1z3 (dashed line), B, that is a constant mean (dotted line)
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Figure 3.17: Posterior distribution for the model parameters. In (a), (b) and (c) the posterior distributions for the
mean parameter /3, the precision parameter « and the correlation parameter v are presented, respectively for the
independent case (continuous line), conjugate case (dashed line) and the noninformative case (dotted line). In (d)
the influence of accounting for the uncertainty on the covariance parameters is highlighted (conjugate case): the
distributions of 8 with the 2 covariance parameters unknown (continuous line), with « unknown and v fixed at 30
(dashed line) which is given in (3.15) and with « and v fixed at 1 and 30 respectively (dotted line) which is a gaussian
distribution, are compared. The last two curves have both a mean of —0.20 and variance of 0.07
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Figure 3.18: Posterior distribution for the mean parameter 3 given only 20 observations. In (a) the distributions
for the conjugate case (continuous line) and for the noninformative case (dashed line) are compared. In (b) the
importance of taking into account the uncertainty on the covariance parameters is highlighted (conjugate case): the
distributions of 3 with the 2 covariance parameters unknown (continuous line), with « unknown and v fixed (dashed
line) and with both « and v fixed (dotted line) are compared
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Figure 3.19: Location of the lower data and of the four points where prediction is carried on
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Figure 3.20: Predictive distributions at (a) zo = (17100, 23400, —2.5), (b) z¢ = (17000, 23600, —75), (¢) o =
(17025, 23150, —50) and (d) zo = (17125, 23250, —150). The continuous curve is obtained with uncertainty on all
parameters taken into account. The large dashed curve is obtained with uncertainty on 8 and « taken into account
while v is fixed at its posterior mean. The dashed curve is obtained with uncertainty on 3 taken into account while «
and v are fixed at their posterior mean: as a noninformative prior is defined for 8 the predictor corresponds to the
UK predictor and the prediction variance to the kriging variance. Finally the dotted curve is obtained with 8, « and v
fixed at their posterior mean. The predictor corresponds to the SK predictor and the prediction variance to the kriging
variance. Note that in (b) the Bayesian predictive distribution has heavier tails than the plug-in distributions. In (a),
(c) and (d) they are very close
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Figure 3.21: Predictive distributions at (a) zo = (17100, 23400, —2.5), (b) zo = (17000, 23600, —75), () o =
(17025, 23150, —50) and (d) zo = (17125,23250, —150). The continuous curve is obtained with uncertainty on all
parameters taken into account. The dashed curve is obtained with uncertainty on 8 taken into account while a« = 1
and » = 30: as a noninformative prior is defined for @ the posterior mean corresponds to the UK predictor and the
variance to the kriging variance. Finally the dotted curve is obtained with 8 = (0,0,0)7, & = 1 and v = 30: the
posterior mean corresponds to the SK predictor and the posterior variance to the kriging variance
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Figure 3.22: Profile likelihood function for ». The ML estimate is 21
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Figure 3.23: Predictive distributions at (a) zo = (17100, 23400, —2.5), (b) o = (17000, 23600, —75), (C) zo =
(17025,23150, —50) and (d) zp = (17125, 23250, —150). The continuous curve represents the Bayesian predictive
distribution. The dashed curve represents the plug-in distribution with « and v fixed at their posterior mean. Finally
the dotted curve represents the plug-in distribution with o: and v fixed at their ML estimate
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3.3 Transformed gaussian random fields

The Gaussian assumption is often inappropriate for analysing geostatistical data. Transformations can then
be used in an attempt to get nearly gaussian behaviour. Diggle et al. (1998) proposed a generalised linear
mixed model which, like the original generalised linear model, accommodates non gaussian data. However,
in the geostatistical setting there are technical difficulties in fitting the model (Christensen et al., 2000).
The simplicity of the transformed gaussian model, proposed by De Oliveira et al. (1997), makes it an at-
tractive alternative. The Bayesian transformed gaussian model combines the Box- Cox family of power
transformations with the Gaussian random field model in a Bayesian framework. However, the range of the
transformed data depends on the transformation parameter. Thus letting this parameter unknown, the range
of the transformed data varies at each step of MCMC.

The Box- Cox family of power transformations (Box and Cox, 1964) is frequently used to normalize positive

data
2)\_1 .
_ — If A#0
9:(2) { logz if A=0

It must be observed that the model is compatible with normality only for A = 0. For any A # 0, the range
of ga(+) is not (—oo, 00), but a proper subinterval of the real line: if A > 0, the range of g,(:) is (—%, o),
while if A < 0 the range of this transformation is (—oo, %). Strictly speaking, a truncated gaussian model in
which one replaces G(dy) by ﬁ I,ep G(dy) where D is the image g (R*) should be used. Nevertheless,
this model is a sensible approximation provided we restrict consideration to appropriate values of A. We
need that (Agx(z) + 1) > 0, thus for A > 0, we need that P[gy(z) < —3] ~ 0, while if A < 0 we need that
Plgx(2) > 1] = 0.

The resulting parametric family of probability distributions is fairly rich. It includes sampling distribu-
tions that are gaussian- like (for X close to 1), but also sampling distributions that are skewed with tails
heavier than the gaussian (for A close to 0). Figure 3.24 presents the histogram of the upper data (2244
observations) and of these transformed data for 3 different values of A. It can be noted that for A close to 0.2
we obtain a nearly gaussian behavior, while for X close to 0 we get negative skewed values and for X closer
to 1 positive skewed values. Note that this approach permits to test the lognormal model. Another approach
could be that of limiting A to a few values, for example (—1,0,0.5,1), so that the transformed predictors
can be interpreted as the reciprocal, the logarithm, the square root, and the untransformed response (Hoeting
and lbrahim, 1998).

3.3.1 The model

We assume that for some unknown transformation parameter A, {Y (z) = gx(Z(z)),z € D} is close to a
gaussian random field with mean 87 f (z) and covariance o ! K, (z,z'). Let Y = (gr(z1),---,9x(z))7,
we then have that

(YA B,a,v) ~ No(FB, a7 K,).

The likelihood function of the model parameters 8 = (\, B, «,v)” based on the original untransformed
observations z is given by

n _1 o
L(8l2) o |K,| 75 exp (~llga(2) = FBIE 1) J(A2)
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where J (A, z) is the Jacobian of the transformation,

n

Jn) =]

=1

n

— A-1
=1I="

=1

dgx(zi)
dzi

The Bayesian predictive density function is given in (3.2). It can be observed that in this approach the uncer-
tainty about A, that is the uncertainty about the sampling distribution, is transferred to the final prediction.
The transformation parameter A is another of the uncertain parameters. As it was said earlier, one limitation
of this approach is that for each A the range of g, (-) changes.

By the stated assumptions we have that

(92(20): 9@, B, 0, ) ~ N1 (( A ) o ( 0K ))

v

where N, and L, are k x k and k x n correlation matrices.

It follows that (ga(z0)|z, A, B, , ) ~ N (M g, ' ) 5,,) where
My = LK} 'g\(2) + (Fo — LK, 'F)B

and
Sxgw =N, - LK, 'L,

We then have
k 1 «
f(zolz, A, B, a,v) oc 2 [E) 5|72 exp <—§||g,\(zo) - M,\,,B,u||22;16 ) J(A, zo). (3.22)

We can compute f(zo|z, A, B, a,v) only for n and k& small. If n is large a neighborhood must be defined.
Observe that it is a simplification of geostatistical conditional simulations, that were used in Chapter 2,
which allow to sample Zy ~ L(Zy|z, B, o, v) for any law L through an anamorphosis transformation.

First we define the parameters prior distribution. The parameters posterior distribution is then computed.
We use f(zo|z, A, B, a, v) for predictions. Thus we look for the following conditional distributions

- m(\v|z);
- m(alz, A v);
- w(B|z, A\, o, v).

Gibbs sampling is used to sample from = (), »|z). Finally an example and the application to the test case
are presented.

The choice of the parameters prior distribution

The choice of the prior distributions for the parameters needs some care as a change in A magnifies or shrinks
all the data and changes the interpretation of 3, o and v. Box and Cox suggest to take conditional priors of
B, a and v given A, that is

ﬂ-(A’IB’ a’ V) = ﬂ-(A) Tr(ﬁ’ a’V|A)7
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where (3, a, v|\) depends on ) as the general size and range of the transformed observations g, (z) may
depend strongly on A. If the conditional prior was assumed independent of A\, Box and Cox state that
“nonsensical” results would be obtained. However, note that this is the prior distribution. The relationship
between the parameters is also defined by the data.

Two different prior distributions will be considered: the noninformative prior proposed by Box and Cox
and an informative prior. In addition, using the device of imaginary training samples we will define an
alternative noninformative prior to that of Box and Cox which is, as we will see, arbitrarily defined.

1. Box and Cox prior. Box and Cox suppose that for a given A the parameters (3, «,v) are a priori
independent. They take

(V)

ﬂ'(,Ba a, V|A) X g()‘) Ta (323)

where 7(v) is the marginal prior of v and g(-) is a function to be determined. That is 8 and log(«) are
uniform over the range for which the likelihood is appreciable. The dependence on X is introduced through
a multiplicative factor. The authors determine g(\) in the following way. Let A\; be any reference value of
A for which the likelihood is appreciable. For all A in some neighborhood of A1, Box and Cox assume that
g (Z) is approximately linearly related to gy, (Z), that is

gx(Z) = const +Ixgx, (Z)

where [, has to be specified. They assume that the mean parameters 8 and log(«) are uniform over the
range for which the likelihood is appreciable. Now the function g(\) is chosen so that when the previous
equation holds, the conditional prior (3.23) involving A and A; is consistent. For o we have that

log(ay) = const + log(ay, )

and, hence, to this order, the prior density of a is independent of A\. Analogously for . However, the
coefficients 3 are linear combinations of the expected values of g, (Z) so that

B _ I
dBy,

Since there are p independent components of 3, it follows that g(A) = 1/I%. They argue that g(\) =
J(A, z)"’/" is a pragmatic choice: in passing from A; to A, a small element of volume of the n dimensional
sample space is multiplied by J (A, z)/J(\1, z). An average scale change for a single z component is the
nth root of this and since \; is only a standard reference value we have I, = J(\, z)'/".

The prior is finally given by

3
a
S

(X B, a,v) x w(A) J(A, )™
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This is an improper distribution. Note that it is outcome- dependent”. The choice for I, is qualified by Box
and Cox as “somewhat arbitrary”. This prior distribution is also used by De Oliveira et al. (1997). It must
be observed that g(\) is a multiplicative factor in the parameters prior distribution. Thus it will influence
directly only the posterior distribution of X that will then influence the other parameters posterior distribu-
tion. For this and as we dispose of prior information, we decided to use the upper data to define the prior
distribution for the parameters.

2. Informative prior. The prior distribution for the parameters is defined using the upper data z(z*) = z*
(of sample size m). It is given by

_ o _ f(@* |\ B a,v) TN (N, By o, v)
T By av) =7 By vle) = T B by 7N (N By o, ) dAdB da do
where 7V (), B, a, v) is the standard noninformative prior, that is
1
WN()\,IB,Q,U) = —-

av

The prior distributions are then
- (B|z*, A\, a,v) ~ Ny(b,a™!S) where
b =8 (Fj Kq,0:(2"), S=(Fj K5, Fo)™",
Fo = {f;j(z}) }mxp and Ky, is the correlation matrix for z*;

- (a|z*, A\, v) ~ (a1, 1/a2) where

and R\ v) = [lga(s") — FoblP2 .

- w(\, v|z*) is given by

E3 _ ﬂ-(AMB? a,l/|z*)
T vlE) = B el
and thus )
(A v]z") o< = J(\2") [Kou |77 IS]2 RO w) =" (3.24)

Now a priori the parameters are not independent. Given A and v we have a conjugate prior for 8 and .
As in the previous section a quadratic drift and an exponential covariance function are defined. Figure 3.25
presents these priors for 8y and « for different values of A. It can be noted that both £y and « depend
strongly on \.

"Pericchi (1981) and Sweeting (1984) suggest different prior distributions which do not depend on the data. Pericchi‘s prior has
some major drawbacks discussed by Sweeting. In particular, for agiven A, theimproper prior for the parameters arises asalimiting
case of the family of conjugate prior distributions. Thisis inappropriate because the posterior distribution cannot be thought of as
an approximation to a posterior distribution based on a vague but proper conjugate prior. As Sweeting states, this arises because
the passage to the limit is taken before application of Bayes's theorem, and the resulting posterior distribution is not the probability
limit of any sequence of posterior distributions based on proper conjugate priors. The family of conditional prior distributions
derived by Sweeting leads to a class of scale- invariant prior distributions as limiting cases. In particular, there is no need to choose
arbitrarily afunction g()\). It isan interesting alternative to the prior proposed by Box and Cox
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3.3.2 Parameters posterior distribution

The parameters posterior distributions for the two priors previously defined are now presented.

1. Box and Cox prior. The conditional distributions (3|z, A, a,v) and («|z, A, v) were given in (3.12)
and (3.13), respectively. Note that z must be replaced by gx(z). In particular, the joint posterior distribution
of the transformation and correlation parameters, A and v, is

(A vlz) ot (N 7(v) J(\2)' TR K77 |Se|? RO\ v) 7
where R(\,v) = ||ga(z) — Fbc|/%_,. As it was said earlier g(A) only influences the posterior distribution
of A. To sample from this posterior distribution Gibbs sampling is used.

2. Informative prior. As we have seen this prior corresponds to a conjugate prior for 8 and «. We suppose
that Z* and Z are two independent random variables although identically distributed. It is an approximation
as we have supposed (see Chapter 2) that the data are spatially correlated and come from the same random
variable. That is, we compute

(A, B,a,v|z,2") o (A, B, o, v|2") f(2|A, B, o, V)

instead of
(A B, a,v|z,2%) x (A, B, a,v|z") f(z|z", \, B, a, V).

The conditional distributions (8|z,z*, A, @, v) and (a|z,z*, A, v) were given in (3.9) and (3.10), respec-
tively. Note that the prior parameters b, .S and a1, a2 now depend on z*, A and v. The joint posterior
distribution for A and v is given by

—(a1+%)
m(A vlz,z%) o 1A v]z") J(A,2) | K, 7 |Sel? ( + M) 2

where S(A,v) = bT'S b + gi(2)T K, 'gr(2z) — b] S, ! be.

Now if the data z* were not available, the device of imaginary training samples and the expected- pos-
terior prior could be used to convert improper noninformative priors into proper distributions. In this case
the conditional prior of (3.23) could be obtained without having to use the prior suggested by Box and Cox.
The expected- posterior prior is given by

T (6) = /7TN(0|Z*)m*(z*)dz*

where m*(z*) is a predictive measure for the imaginary data z*. It can be defined from beliefs as to how
a training sample would behave, that is from subjective knowledge about the problem. For choices of m*
see Pérez and Berger (2002). The training sample is assumed independent of Z and often Z; and Z* are
assumed independent identically distributed random variables on a common sample space. The expected-
posterior prior can be seen as a hierarchical prior with the first- stage prior being =V (|z*) and the second
stage being m™*(z*) with z* viewed as an hyperparameter. One possibility to deal with expected-posterior
priors, proposed by Pérez and Berger (2002), is then to introduce z* as a latent variable and consider joint
generation of @ and z* from the density

(0,2%|z) = 7(0|z,2") m*(z")
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that is proportional to®
f(20) 7 (8]2*) m*(z*) = f(2|0) f(z*|0) = (8) m*(z*) /m™ (z*)

where m™ (z*) = [ f(z*|@) 7V (8) d@ is the marginal density of z* under =V (8). Given the observations
z and starting values for @ and z*, the following Gibbs sampler will generate dependent random variables
from this target distribution

- generate 8%) from 7 (8|z, z*(-V);
- generate z*() from f'(z*|0W) o m*(z*) f(z*|0©) /mN (z*);
- repeat until convergence.

A Metropolis- Hastings algorithm may be required to generate z*.

This method can also be useful, for example, to introduce the knowledge of the geologist: it is easier to
give values for the expected results than to define prior distributions for the unknown parameters.

3.3.3 Prediction of Z,

As we want to highlight the importance of accounting for parameters uncertainty we will use the conditional
distribution f(z¢|z, A, 3, a, ) that was given in (3.22) for predictions. However, observe that given the prior
distributions that were considered it is possible to obtain f(z¢|z, A,v). As (B|z, A, @, v) has a gaussian
distribution, it follows that

(g)\(Z())‘Z, /\7 «, V) ~ Nk:(M)\,I/a ail E)\,V)

where
M)‘al/ = LVKU_IQ/\(Z) + (FO - LI/KIJ_IF)bC

and
Sy = (Ny — LK, 'LT) + (Fo — LK, 'F) S. (Fo — LK, 'F)T.

We then have that

k _1 07
ol Ay auw) ot 50,1 exp (=5 llon(an) — M

@);L) J(A7z0)'
Note that for A = 0, for simplicity let £ = 1, the optimal predictor, that is®

1
E[Zo‘z, a, V] = €exp (M)\ZO,V + %EA:O,V>

8Note that
z|0) 7V (0]z%) m*(z*)

m(z)

f(z10) 7 (8]z")

m(z)

m(0,z"|z) = A

and 7(0|z,z") =

°If Z isalog- normal random variable, that is Z = exp(Y) with Y ~ AN (my,a%) then E[Z] = exp(my + 0% /2) and
Var[Z] = E[Z]* (exp(ay) — 1)
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and the corresponding predictive variance, that is

1
Var(zg |z, o, v] = E[zg|z, a, v]? (exp (—Z)\_O,,,) - 1)
a

are easily found. If 8 was known, the predictor

1
E[zy|z, B, a,v] = exp <M)\—0”37,/ + %E)\—O,/j’y)

would correspond to the log- normal kriging predictor which in this case would be optimal under the mean
squared prediction error. Note that here also the predictor depends on «. Thus the predictor will be sensitive
to both changes in « and v. The Bayesian approach permits to avoid the problems encountered with the
optimality of the log- normal kriging predictor for 8 unknown (see Chilés and Delfiner, 1999; pp 190-192).
Note that the mean squared error is not a useful measure for asymmetric distributions. The median may be
preferred. However, the Bayesian framework provides the entire predictive distribution.

As in the previous section we can integrate f(zo|z, A, ., ) with respect to the precision «. We have that
(g)\(ZQ)|Z, >‘a V) ~ tU(M)\,I/a 3% Z)\,l/)

which is a t density with n degrees of freedom, with location parameter M , and scale parameter s3%, .
Therefore

+k
f(zolz, A\, v) o< |2a2: E/\,u|_% [1+ (gr(z0) — Mau)" (2a22 Z,) " (92 (z0) — M/\,u)]_?7T J(X\, z0).

The integration of A and v cannot be done analytically.

Example

This example is introduced to show the effect of taking into account the uncertainty on the transformation
parameter. Simulations are carried out to obtain a 1 dimensional data set, z, of 30 observations from a log-
normal random variable Z = exp(Y'), where Y is a gaussian random variable of mean 1.5 and variance 1.
A nugget effect of 0.4 and an exponential covariance with sill 0.6 and scale parameter 30m are defined. The
data are simulated on a grid of 290m with a mesh of 10m. The mean of the data is 4.78 and the variance is
13.14. If the log- transformation is considered, the mean of the transformed data is 1.31 and the variance
is 0.72. A constant mean 8 and an exponential covariance model of precision « and scale parameter v are
defined. Note that the model does not take the nugget effect into account.

The noninformative Box and Cox prior distribution is taken. In particular, for v a discrete uniform prior
is defined between 10 and 150. For A a discrete uniform prior is defined between -1 and 1. The algorithm
used to sample from the parameters posterior distribution consists of the following steps

1. choose an initial value for A in the range specified by the prior.
2. Update v

- compute the approximate discrete posterior distribution in the support chosen for v, that is
T (v|z, A);
- choose a new value, v/, from 7 (v|z, A).
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3. Update A

- compute the approximate discrete posterior distribution in the support chosen for A, that is
7(A|z,v);

- choose a new value, X', from 7 (\|z, v).

Steps 2-3 were repeated until convergence was reached. Then we sampled («|z, A,v) and (5|z, A, o, v)
every kth (= 50) realisation of the chain. The resulting posterior distributions are presented in Figure 3.26.
The mean values of the posterior distributions are 0.05 for A, 1.38 for 3, 0.35 for o and 44.25 for v. The log-
transformation, that corresponds to A equal to 0, is strongly supported by the data. However, the uncertainty
on )\ is important and, as it can be seen in Figure 3.27, the histograms of the transformed data for two values
of X that have a high posterior probability, that is -0.1 and 0.2, are quite different.

It is difficult to define a prior distribution that assumes the parameters are dependent. The Box and Cox
prior is arbitrarily defined. For this we considered a prior distribution that assumes the parameters are a
priori independent. The non informative prior is taken for g and «. The priors defined previously for A
and v are used. The dashed line in Figure 3.26 represents the posterior distributions obtained with this in-
dependent prior. The mean values of the posterior distributions are 0.10 for A, 1.44 for 3, 0.32 for « and
46.50 for v. The posterior distributions obtained either with the Box and Cox prior or the independent prior
are very similar. Figure 3.28 compares the correlations between the transformation parameter and the other
parameters using the samples from the posterior distributions for the Box and Cox prior and the independent
prior. No significative difference is remarked.

The independent prior is finally kept. Figure 3.29 shows the predictive distributions for o = 55m and
xo = 350m. The Bayesian and the plug- in predictive distributions are compared. The importance of
accounting for the uncertainty on the model parameters is highlighted. In particular the two distributions
greatly differ for the isolated point o = 350m. Note that the Bayesian distribution has heavier tails. Figure
3.30 compares the Bayesian and the plug- in predictive distributions for xo = 55m. In particular, Figure
3.30(a) highlights the importance of accounting for the uncertainty on the transformation parameter . The
continuous line represents the Bayesian predictive distribution, the dashed line represents the predictive dis-
tribution with A = 0 and the covariance parameters unknown and the dotted line represents the predictive
distribution with A = 0 and 3, « and v fixed at their posterior mean. This last curve corresponds to log-
normal kriging. The Bayesian predictive distribution has heavier tails as it accounts for the uncertainty on
the transformation. Figure 3.30(b) presents the effects of misspecifying the transformation parameter. The
continuous line represents the Bayesian predictive distribution, the dashed line is obtained with A = —0.5
and the covariance parameters unknown and the dotted line is obtained with A = —0.5 and the covariance
parameters fixed at their posterior mean. If X is not correctly specified, not only the variance of the predic-
tions but also the predictions may be erroneous. In particular the distributions are different for low values
whereas they behave similarly for high values. Note that the plug- in distributions have tails heavier than
the Bayesian distribution. This is due to the fact that the transformation parameter is not correctly specified.

This example highlighted the effect of taking into account the uncertainty on the model parameters. This
mostly influences the prediction variance.

The uncertainty on the parameters is not important if the transformation parameter is defined correctly
and interest lies in the prediction. On the contrary, taking into account the uncertainty on the parameters has
a strong impact if the variance and the tails of the predictive distribution are of interest. This is particularly
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true when isolated points are concerned. Moreover, this model permits to check, for example, the hypothesis
of log- normality.

3.3.4 Application to the test case

The results for the lower part of the orebody are now presented. For the non informative independent prior,
the following marginal prior distributions were defined

- adiscrete prior for v on the interval (10, 100). More weight is given to values in the interval (20, 40),
so that the mean is 30 and

- a uniform discrete prior for A on the interval (—1,1).

The algorithm used to sample from the parameters posterior distribution was described in the previous ex-
ample. Figure 3.31 presents the samples of (A, B, a,v) given z and the evolution, as a function of the
number of iterations, of the Monte Carlo estimates of these parameters. The chains seem stationary. Figure
3.32 presents the correlation between the parameters: as expected, there is a strong dependence between the
parameters « and v. Although Figure 3.25 showed a strong dependence between 8 and A and between « and
A, here no correlation is highlighted. This is due to the relatively small range over which the transformation
parameter A varies. Figure 3.33 shows the posterior distribution for the model parameters. The posterior
mean and variance of A are 0.13 and 0.002, respectively. The uncertainty on X is small and the histograms
obtained with A = 0.05 and A = 0.18, for example, are very similar. However, this analysis provides
additional insight into the lognormal quest. It reveals that the posterior mean of A is not 0, but it is closer
to 0 than to 1. It is closer to being lognormal than normal. However, no strong evidence of lognormality
is observed: the posterior distribution of A suggests other choices than lognormal. The posterior mean of
B is (—1.250, —0.014, —8.24 x 10~°)7, of the precision « is 0.31 and of the correlation parameter v is
31.98. Note that the Monte Carlo estimate of the precision « is much smaller than the value obtained with
the gaussian model. It must be noted that a physical interpretation of the estimated parameters is difficult.

The results for the non informative independent prior are now compared to the results for the prior defined
through the training sample and for the informative prior. Figure 3.34 presents the posterior distributions
obtained with a training sample to define the conditional prior 7(8, o, v|A). The predictive measure m*
was defined with 8 = (—0.5,0,0)7, @ = 1 and v = 30. The prior samples z* were simulated on a regular
grid with coordinates in the upper part of the deposit. The size of this training set is 30. The posterior mean
and variance of A are 0.21 and 0.005, respectively. The variance is higher than with the non informative
independent prior. The posterior mean of B is (—0.850, —0.008, —5.19 x 10~5)T, of the precision « is
0.58 and of the correlation parameter v is 22.49. The posterior distribution of the drift parameters is less
dispersed than with non informative independent prior. This is also the case for the correlation parameter v.
On the contrary, the posterior distribution of « has a higher variance.

Figure 3.35 shows the posterior distribution for the model parameters. As we expected these posterior
distributions and the corresponding Monte Carlo estimates of the parameters are quite different than the
ones obtained with the non informative independent prior. The prior distribution seems to have a much
more important role here than in the gaussian case. This is due to the fact that in this case we actually
used the upper data to compute the prior distribution. The posterior distributions have thus a smaller vari-
ance. The posterior mean and variance of A are 0.23 and 0.001, respectively. The posterior mean of 3 is
(—0.156,3.83 x 1073, —7.97 x 10~6)T, of the precision « is 0.86 and of the correlation parameter v is
14.10. With the exception of « the posterior variances are smaller with the informative prior distribution
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than with the non informative independent prior. The results obtained with the training sample lie in be-
tween those of the non informative independent and the informative priors. The precision tends to be higher
with an informative prior distribution.

The posterior distribution is sensitive to the choice of the prior distribution. However, here we compared
two extreme priors: a vague and an informative prior. If a prior that accounts for the dependence between
the parameters needs to be defined, the expected- posterior prior should be used instead of the Box and Cox
prior. However, this requires not only the choice of a prior for the training sample but also the spatial loca-
tion of this training sample. The influence of these choices on the parameters posterior and the predictive
distribution must be checked.

We continue to work with the results from the informative prior. To obtain the Bayesian predictive dis-
tribution, we sample from f(Z(zo)|z, A, B, «,v) for each (A, B, a, v) obtained previously. For this we
compute the approximate discrete predictive distribution in the support of Z(z). Figure 3.36 presents the
predictive distributions at the 4 selected locations presented in Figure 3.19. Three predictive distributions are
compared: the continuous line represents the Bayesian predictive distribution that is with all parameters un-
known, the large dashed line represents the predictive distribution with all parameters unknown but X fixed
at its posterior mean (the simulations were carried out again with A = 0.23) and the dotted line represents
the plug-in distribution with all parameters fixed at their posterior mean. As expected, this last distribution is
the less dispersed. The difference between the Bayesian predictive distribution and the plug-in distribution
is important. This is for taking into account the uncertainty on the transformation parameter. In general,
the Bayesian predictive distribution tends to be more dispersed than the distribution with X fixed, but it is
not always the case as in Figure 3.36(b) and (d). This could be due to the fact that the Bayesian predictive
distribution is a weighted mean of the plug- in distributions.

3.4 Conclusions

The full Bayesian approach allows to mitigate the consequences of misspecification of the correct trans-
formation and hence obtain a more robust inference. However, Bayesian inference for the transformed
Gaussian model demands the specification of a joint prior distribution for the model parameters. Because
the interpretation of the other parameters depends on the value of the transformation parameter, it makes
little sense to use independent priors. However, as we have seen in the Example, the results did not differ
particularly whether the Box and Cox prior or an independent prior was used. It is difficult in practice to
elicit dependent priors. In particular, the parameters posterior distribution seems sensitive to the choice of
the prior. Moreover, the approach may be problematic if we are interested in a physical interpretation of the
fitted parameters. In any case, we recommend it as a first tool to analyse non- gaussianity in geostatistical
data. For example, it can help deciding whether the log- transformation is appropriate or not for the data
under study.

A critical point for the use of the Box- Cox family of transformations in Bayesian analysis is that as the
parameter A changes the range of the transformed data changes.

Two issues for the implementation of the Bayesian model were not considered. One is the selection of
the covariance function, and how much this choice influences the predicting performance of the model. The
second refers to the selection of the family of transformations.
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As we have seen under the gaussian assumptions the resulting prediction methodology has a very close
relationship to classical geostatistical kriging methods, but the treatment of unknown parameters departs
markedly from the classical geostatistical approach. The classical approach uses curve- fitting methods to
match empirical and theoretical variograms, whereas the Bayesian approach emphasises the use of the like-
lihood function for parameter estimation. The Bayesian approach has the attractive property that uncertainty
in the values of model parameters is recognised leading to a more honest assessment of prediction error. It
is true that it is difficult to define the priors. This is particularly important when few data are available and
the prior’s weight has in this case a strong influence in the results.

The application of the Bayesian approach to the case study to obtain the reserves is described in the next
chapter. We will consider the anamorphosis function used for conditional simulations to transform the data
in normally distributed values. The gaussian model will then be defined for these transformed data. This
will permit to compare the Bayesian approach and conditional simulations highlighting the importance of
accounting for the uncertainty on the covariance parameters. It is a more general approach than that pro-
posed by De Oliveira et al. (1997).
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Figure 3.24: Histogram of the upper data and of these data transformed for 3 different values of . The mean and
variance of these transformed data are: -0.83 and 3.35, respectively, for A = 0, -0.49 and 2.48, respectively, for
A = 0.2, and finally 0.02 and 2.66, respectively, for A = 0.6
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Figure 3.25: Prior distributions: on the left the prior (8g|z*,A\,a = 1,v = 30) is presented and on the right the
prior (a|z*, A, v = 30) is presented. Three different values of A are considered. The continuous line is obtained with
A = 0, the dashed line with A = 0.2 and the dotted line with A\ = 0.6. Note that the mean of 3¢ depends on the
transformation parameter, while its variance just depends on the location of the data and not on their value. For a
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Figure 3.27: Histogram of the transformed data for two different values of \: A\ = —0.1 (on the left) and A = 0.2 (on
the right). The mean and variance of the transformed data with A = —0.1 are 1.21 and 0.40, respectively. The mean
and variance of the transformed data with A = 0.2 are 1.57 and 0.91, respectively



TRANSFORMED RANDOM FIELDS 81

o o
e “
I 0
[S) o
] ]
Bo Bo
E o € o
o o
I 0 H
=] =}
T T -
o o
i ~
i 1
-2 0 2 4 6 -2 0 2 4 6
beta (Box and Cox prior) beta (independent prior)
o o
e “
" 0
[S) o
] ]
Bo Bo
E o £ o
o o
I 0 .
=] o
T T
o o
i ~
i 1
0.0 05 1.0 15 20 0.0 0.5 1.0 15 20
alpha (Box and Cox prior) alpha (independent prior)
o o
e “
.
" 0
[S) o
] ]
Bo Bo
E o £ o
o o
© ©0
& ‘ 7
o o
i ~
i 1
20 40 60 80 100 120 20 40 60 80 100 120
nu (Box and Cox prior) nu (independent prior)
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Figure 3.31: Time series plot of the MCMC output every 50th iteration of the model parameters given z and the
evolution of their estimates as a function of the number of iterations. The chains seem stationary. The Monte Carlo
estimate of the posterior mean of « is 0.31 and of v is 31.98
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Figure 3.32: Correlation between the parameters using samples from the posterior distribution. As expected, there is
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Figure 3.33: Posterior distribution for the model parameters given the non informative independent prior. The Monte
Carlo estimate of the posterior mean of « is 0.31 and of v is 31.98
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Figure 3.36: Predictive distributions at (a) zq
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Chapter 4

Recoverable reserves

This chapter is devoted to the calculation of the reserves and the choice of an exploitation hypothesis to
define the quantity of ore and waste exploited each year. Section 1 describes the Bayesian approach that
is used to obtain the reserves. Section 2 gives the reserves and compares them to the results obtained
with the plug-in approach, that is conditional simulations, given in Chapter 2. Section 3 describes the
exploitation hypothesis. Section 4 finally presents a first evaluation of the three development options using
the valorisation formula that was defined in Chapter 1 and the NPV approach. An example that highlights
the value of managerial flexibility is also given.

4.1 The model

The data, after transformation, are assumed to be realizations of the same gaussian random function Y with
constant mean m and covariance K. Finally, we decided to transform the data using the same anamorphosis
function defined for multiple simulations. Thus for both conditional simulations and the Bayesian approach
the multigaussian assumption of Y is made. Once the simulations are carried out, the data are back- trans-
formed.

To simplify the calculations we decided to fix a priori 15 covariance models and compute their inverse
once and for all. They are assumed equally likely. They are composed of a spherical® and two exponential
components. The spherical component has a short range and is included as an alternative to the exponen-
tial to model short scale variability. It exhibits a linear behavior near the origin. Figure 4.1 highlights the
behaviors of the spherical and exponential models near the origin. As the minimum distance between data
is of 5m, no information is available to guide us in defining this part of the model. Thus the 15 covariance
models differ in the sill of this spherical component of the model and in the range and sill of the exponential
components. In particular, taking into account the uncertainty on the parameters of the second exponential

1The spherical model has the general form

The corresponding variogram reaches its sill at A = v. The nugget- effect model can be considered as a particular case of
the spherical covariance function with an infi nitely small range. There is an important difference: the nugget effect describes a
discontinuous phenomenon while the spherical covariance represents a phenomenon that is continuous, but not differentiable

89
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component is interesting as they may describe the relationship between the upper and lower data. These
models are presented in Table 4.1. The model defined in Table 2.5 is also included (model 14 in Table 4.1).
As we have seen in the previous chapter the uncertainty on the variance parameter does not have a large
influence on the predictive distribution. Thus the total variance is fixed at 1 for all the models. It is true that
certain of these models are very similar: models 1 and 2 or models 8 and 9, for example. The models chosen
fit graphically the experimental variogram (Figure 2.9). Although it is not a rigorous Bayesian approach,
this simplified approach still permits to let some flexibility in the definition of the variogram model.

The prior distribution for m is taken noninformative. No prior information was available to be introduced in
the estimation process. The Bayesian approach is considered to allow some uncertainty on the covariance
parameters. Let K; denote the ith model for the covariance. To be more general and account for different
short scale behaviours we could have used the Matérn class of correlation functions.

As we have seen in the previous chapter with a noninformative prior for m we can get an analytical ex-
pression for the posterior probability for model K;, w(K;|y). The algorithm for simulations is then

e simulate from 7(K;|y) o f(y|K;) 7(K;);
e simulate from ©(mly, K;) < f(y|m, K;) w(m);

e simulate from (Yy|m, K;,y) ~ N (M, %), where M, that was given in (3.17), is a function of y and
of both m and K; and X3, that was given in (3.18), is a function of K.

Figure 4.2 presents the histogram of the simulated covariance models. Note that although the maximum a
posteriori is model 5, models 1, 2, 6 and 14 have a high posterior probability and are very similar. Figure
4.3 presents the simulated values of the mean m and the evolution of its Monte Carlo estimate. The Monte
Carlo estimate of the mean is -0.34.

Given the covariance models and the values of m we need to sample from (Yy|m, K;,y). Given the di-
mension of y, to carry out the simulations of Y, we proceed exactly as for conditional simulations that is
a neighborhood is defined. The same grid defined for kriging and conditional simulations is considered.
Taking into account the uncertainty on the mean and covariance parameters of the anamorphosed grades,
thus not imposing they are values from a standard gaussian distribution which is the usual assumption, is a
way to introduce some uncertainty on the anamorphosis function that is important mostly when a zone with
few data is simulated.

The data are finally back- transformed to obtain the realisations of Z. That is classic conditional simu-
lations are carried out. Here for each conditional simulation a different mean and covariance model is
defined (simple kriging is used to condition instead of ordinary kriging). This model is more general than
the gaussian transformed model by De Oliveira et al. (1997).

Figure 4.4 compares the plug- in and Bayesian predictions and prediction variances for the small pit. The
Bayesian predictions do not differ too much from the plug- in predictions. However, there are differences in
the prediction variances. Note that the plug- in variances tend to slightly over- estimate the variance of the
predictive distribution. As we have seen in the previous chapter, the larger the nugget effect (here the spher-
ical component) the larger the prediction variance (of course only for non- isolated points). The Bayesian
predictive distribution is a weighted mean of distributions with a nugget effect and without a nugget effect.
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Sill Range1(m) Range2(m) Range 3 (m)

Spherical 0.1 5 5 5

Exponential 1 | 0.7 95 95 60
Exponential 2 | 0.2 350 350 100
Spherical 0.1 5 5 5

Exponential 1 | 0.7 110 110 50
Exponential 2 | 0.2 350 350 100
Spherical 0.1 5 5 5

Exponential 1 | 0.8 110 110 60
Exponential 2 | 0.1 350 350 100
Spherical 0.1 5 5 5

Exponential 1 | 0.9 150 150 60
Exponential 1 | 0.9 120 120 50
Exponential 2 | 0.1 350 350 100
Spherical 0.2 5 5 5

Exponential 1 | 0.7 120 120 50
Exponential 2 | 0.1 350 350 100
Spherical 0.2 5 5 5

Exponential 1 | 0.6 120 120 60
Exponential 2 | 0.2 350 350 100
Spherical 0.1 5 5 5

Exponential 1 | 0.6 85 85 60
Exponential 2 | 0.3 350 350 100
Spherical 0.1 5 5 5

Exponential 1 | 0.6 80 80 50
Exponential 2 | 0.3 350 350 100
Exponential 1 | 0.8 80 80 50
Exponential 2 | 0.2 350 350 100
Spherical 0.3 5 5 5

Exponential 1 | 0.5 150 150 80
Exponential 2 | 0.2 350 350 100
Exponential 1 | 0.7 80 80 50
Exponential 2 | 0.3 350 350 100
Spherical 0.3 5 5 5

Exponential 1 | 0.6 150 150 80
Exponential 2 | 0.1 350 350 100
Spherical 0.1 5 5 5

Exponential 1 | 0.7 100 100 60
Exponential 2 | 0.2 350 350 100
Exponential 1 | 0.6 70 70 70
Exponential 2 | 0.4 350 350 100

Table 4.1: Variogram parameters of the 15 fitted models (the main directions of the orebody are obtained through a
rotation of (-165, 45, 150) that is indicated in the geological convention, relative to east)

Additional information

The model parameters are updated when the additional information z, that is the rich, average or poor data
set, is available. Using Bayes’ Theorem we have

f(z0|z,z1,0) X f(Z()|Z,0) f(ZI|Z0,Z,B).



92 CHAPTER 4. RECOVERABLE RESERVES

This means that f(zg|z, @) can be seen as a prior for zy and when z; is available it is updated. Thus to
generate samples from f(z¢|z, z1, @) we could use f(zo|z, @) as the transition probability in the Metropolis-
Hastings algorithm and accept z{, with probability

Py s f(Z]|Z6,z,0)
a(zo,2y) = min {1, Farlz0.2.9) } .

This has the advantage of not having to carry out the simulations given the observations (z,z). However
the acceptance rate may be very small if the two distributions have a quite different support. This is our
case, as the additional data, rich and poor, modify the beliefs about the grade distribution. For this reason
when the data set z; is considered the computations are repeated given (z,z;).

4.2 Recoverable reserves: Bayesian versus plug-in

Table 4.2 presents the number of blocks with average grade above cutoff. We observe that

- for the large pit and the lower part of large pit: the expected number of blocks above cutoff is slightly
higher given the rich and average additional information. This can also be seen in Figure 4.5. The
standard deviation of the number of blocks above cutoff is smaller given the rich additional informa-
tion than given just the initial data: the rich extra information helps better defining the project.

- for the small pit: given the number of simulated blocks we can say that the expected number of blocks
above cutoff is more or less the same given the initial data or given the initial data + extra information.
In particular, note that the standard deviation is much smaller given the rich data set.

These results and the ones obtained in Table 2.8 with the plug-in approach can be compared. The expected
tonnages obtained with the Bayesian approach or the plug-in approach are very close, while the dispersions
differ greatly. For the lower part of the deposit the results obtained with the Bayesian approach are less dis-
persed (except for the average additional information). This can also be seen in Figure 4.5. On the contrary
for the whole large pit and the small pit they are more dispersed.

Table 4.3 presents the recovered average grade. We note that

- for the large pit and lower part of large pit: the uncertainty on the recovered average grade is larger
given the rich additional information than given the initial data. Whereas it is smaller given the
average and poor extra data. The additional information has a large impact on the expected recovered
average grade. This is also shown in Figure 4.6.

- for the small pit: the expected recovered average grade and its standard deviation are more or less the
same given the initial or the initial + extra information.

These results and the ones obtained in Table 2.9 can be compared. As it was noted earlier the Bayesian and
the plug-in predictive distributions differ particularly in the tails and this is highlighted taking the values
above a cutoff. Given the initial data the results for the recovered average grade for the large and mostly
for the small pit are very similar. It is reassuring as the upper part of the deposit is densely sampled and the
uncertainty is small. The Bayesian approach gives slightly less dispersed values. The results for the lower
part of the large pit obtained with the Bayesian approach are also less dispersed. Looking at Figure 4.6 we
can see that the plug-in approach gives a larger weight to the high values.
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Initial 90 drill-holes
Min  Max Mean Stddev 10% 50% 90%
Large pit | 17782 24118 21397 1328 19843 21378 22896
Lower part | 3678 5993 4743 554 4001 4633 5601
Small pit 13645 18155 16117 1009 14792 16157 17436

Initial 90 drill-holes + rich fictive data
Min  Max Mean Stddev 10% 50% 90%
Large pit 18921 24753 21442 1077 20107 21506 22781
Lower part | 4186 5767 4945 390 4464 4951 5547
Small pit | 14295 18842 15942 844 14882 15843 16891

Initial 90 drill-holes + average fictive data
Min  Max Mean Stddev 10% 50% 90%
Large pit 18621 24673 21504 1456 19736 21391 23239
Lower part | 3670 7001 4944 587 4264 4898 5663
Small pit | 13981 18215 16049 1094 14614 15941 17645

Initial 90 drill-holes + poor fictive data
Min  Max Mean Stddev 10% 50% 90 %
Large pit | 18319 24033 21232 1319 19665 21061 22905
Lower part | 3624 5611 4737 498 3974 4784 5373
Small pit | 13814 18332 15940 1039 14619 15859 17148

Table 4.2: Simulations results: tonnage for the whole large pit, lower part of large pit and small pit. The size of the
blocks is 10m x 25m x 10m

Finally the recoverable reserves can be computed for both approaches. They are presented in Figures 4.7
and 4.8 for the small and large pit, respectively. As expected, the results for the small pit are more or less
the same whether they are obtained given the initial data or the initial 4+ extra data. On the contrary, the
results for the large pit are quite different whether the additional information is obtained or not. Moreover,
the distributions, and in particular their tails, differ whether the Bayesian or the plug- in approach is used.

Consequently, and as we will see in Section 5.4, the evaluation of the large pit will differ whether the
Bayesian approach or conditional simulations is used to calculate the reserves. In particular, the difference
is not expected to be important for the poor data set as the reserves distributions are close as it can be seen
in Figure 4.8.
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Thus although enough data seemed available to choose the variogram parameters, the Bayesian approach
still permits to account for their misspecification.

Initial 90 drill-holes
Min Max Mean Stddev 10% 50% 90%
Large pit 284 343 3.08 0.12 294 3.06 3.26
Lower part | 2.86 4.19 341 0.30 3.01 338 380
Small pit | 279 330 3.00 0.11 285 299 312

Initial 90 drill-holes + rich fictive data
Min Max Mean Stddev 10% 50% 90%
Large pit | 297 379 324 0.16 3.05 324 340
Lower part | 3.35 5.73 3.92 0.41 349 388 431
Small pit | 285 339 3.06 0.13 290 3.03 323

Initial 90 drill-holes + average fictive data

Min Max Mean Stddev 10% 50% 90%
Large pit | 2.88 344 3.12 012 297 312 3.28
Lower part | 3.15 4.12 3.50 027 321 343 385
Smallpit | 274 332 3.05 012 293 3.04 317

Initial 90 drill-holes + poor fictive data

Min Max Mean Stddev 10% 50% 90 %
Large pit 275 335 3.04 0.13 288 3.04 319
Lower part | 290 3.85 3.27 0.22 3.03 324 356
Smallpit | 274 335 299 014 285 296 319

Table 4.3: Simulations results: recovered average grade above a cutoff of 1g/t for the whole large pit, lower part
of large pit and small pit. The size of the blocks is 10m x 25m x 10m. The recovered average grade has a higher
variance given the additional information than given the initial data (the coefficients of variation for the lower part of
large pit are: 0.088, 0.105, 0.077, 0.067 given the initial data, the rich, average and poor information, respectively)

421 Adrift?

To let the model be more flexible a drift could be defined instead. This assumption will have a larger impact
on the lower part of the deposit as it is sparsely sampled. As we have seen in Figure 2.3 the upper part of
the deposit has a higher mean grade than the lower part. A drift, that is a function of the depth, that takes
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this into account could be considered. Also given the rich, average and poor extra data, the introduction of a
drift that looks at the different behaviour of the lower part with respect to the upper part (Figure 2.11) may
be considered. We thought of a quadratic drift, in the place of a simple linear drift, as the top of the upper
zone of the deposit has a low mean grade. Figure 4.9 presents the estimated quadratic drift?. The vertical
line is the estimated constant mean. The presence of a drift seems plausible as the quadratic term is clearly
non zero. Additional information may help better defining the drift. Figure 4.10 presents the estimated drift
given the three sets for additional information. Note that the lowest part of the deposit is considered rich
and thus interesting only given the rich extra data.

Figure 4.11 shows the interest for the Bayesian approach. The two drifts presented in the figure are es-
timated with a different covariance model. Both models could have been chosen graphically.

Note that in the model it is the drift for the gaussian data that must be defined. The average grade of
the gaussian data for each depth and the estimated quadratic drift are presented in Figure 4.12.

Figure 4.13 presents the simulated values of the mean 8 and the evolution of the Monte Carlo estimates.
The histograms of these samples are presented in Figure 4.14. Note that the posterior distributions support
the presence of a drift. To get a sample of 50 the last values are kept. The Monte Carlo estimate of 3 is
(—0.32,8.28 x 1074, —2.55 x 10~%)”". The variance is 0.12, 5.12 x 10~7 and 3.75 x 10~*2 for By, 81 and
Ba, respectively.

Gaussian conditional simulations were then carried out. Finally the values were back- transformed. Ta-
bles 4.4 and 4.5 present the number of blocks with average grade above cutoff and the recovered average
grade, respectively. It can be noted that the results for the number of blocks above cutoff differ greatly from
the results obtained with a constant mean. If the drift was assumed for the original data this could be due
to the assumed drift function: from Figure 4.9 we observed that in the top and lower parts of the deposit
the drift is much smaller than the constant mean. Although in the central part the drift is much higher than
the constant mean, the constant mean is around 1g/t and thus close to the cutoff. Thus the expected number
of blocks with average grade above cutoff would be expected to be smaller for the results obtained with
the drift. Figures 4.15 and 4.16 compare two simulations obtained either assuming a constant mean or a
quadratic drift for two different depths in the top and lower parts of the deposit. It can be noted that in
these two zones the number of blocks with grade above cutoff is much smaller for the simulations obtained
assuming the presence of a drift. This is also shown in Figures 4.17 and 4.18. The results for the recovered
average grade, although those obtained with the drift are more variable, can be compared. This is because
in the central zone of the deposit for blocks above cutoff the predicted grade is much higher when the drift
is allowed for.

As we have seen it is extremely important to check the stationarity hypothesis and define correctly the
drift function. Remark that the quadratic drift highlights the limits of the deposits. However, it gives a very
rich central zone. The most delicate zone is 100m down as it is scarcely sampled. In particular the zone
from Om to 100m is poor and sparsely sampled. Although the Bayesian results support the presence of a
drift, we decided to keep a constant mean as it is the simplest model. If a priori a constant mean seemed

2The drift coeffi cients 3 are estimated through minimum least squares, that is
B=F"K'F) " (FTK '2),

where F' isthe matrix of the known covariates and K is the covariance matrix



96 CHAPTER 4. RECOVERABLE RESERVES

realistic, a prior distribution with a large weight for 8y could have been defined. The hypothesis of a drift
or a constant mean plays an important role in the zones with few data. For this decision the opinion of an
expert, as the geologist, for example, may be crucial.

Initial 90 drill-holes
Min  Max Mean Stddev 10% 50% 90%
Large pit 3424 21885 11365 4842 4727 11222 17786
Lower part | 1364 6105 3538 1266 1965 3614 5166
Small pit 1875 15224 7540 3584 2555 7161 12872

Initial 90 drill-holes + rich fictive data
Min  Max Mean Stddev 10% 50% 90 %
Large pit | 1802 29679 11018 5190 6346 10063 15983
Lower part | 436 6085 2593 1127 1571 2384 4084
Small pit | 1303 22708 8165 4027 4751 7413 11690

Initial 90 drill-holes + average fictive data
Min  Max Mean Stddev 10% 50% 90 %
Large pit | 3466 23303 11474 4255 6300 10952 16612
Lower part | 954 5393 2620 942 1677 2556 3697
Small pit | 2129 17491 8605 3328 4416 8081 13014

Initial 90 drill-holes + poor fictive data
Min  Max Mean Stddev 10% 50% 90%
Large pit | 4304 21236 11350 3855 6514 10757 15612
Lower part | 615 4334 2314 917 1130 2237 3607
Small pit | 3290 16321 8803 3044 4935 8788 12595

Table 4.4: Simulations results with the quadratic vertical drift: tonnage for the whole large pit, lower part of large
pit and small pit. The size of the blocks is 10m x 25m x 10m

4.3 Exploitation hypothesis

Different exploitation hypotheses could have been considered. We assumed a constant tonnage, that is a
constant ore tonnage and a constant waste tonnage, and average grade per year. The lifetime of the deposit
is supposed fixed. Thus once the simulations are carried out, the blocks with a recovered average grade
above cutoff are selected and the ore tonnage is computed. The annual ore tonnage is then given by the total
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Initial 90 drill-holes
Min Max Mean Stddev 10% 50% 90 %
Large pit | 2.66 3.78 3.06 0.25 278 3.03 3.42
Lower part | 3.11 4.80 3.73 0.39 331 363 422
Small pit | 230 3.33 2.85 0.21 262 285 3.09

Initial 90 drill-holes + rich fictive data
Min Max Mean Stddev 10% 50% 90%
Large pit | 259 453 331 0.39 285 330 3.78
Lower part | 3.00 5.39 3.84 0.48 338 378 441
Small pit | 237 435 321 0.40 2.67 3.26 3.66

Initial 90 drill-holes + average fictive data

Min Max Mean Stddev 10% 50% 90%
Large pit | 254 3.63 2.98 021 277 294 325
Lower part | 2.72 4.08 3.15 026 289 312 346
Smallpit | 249 351 292 021 270 287 322

Initial 90 drill-holes + poor fictive data

Min Max Mean Stddev 10% 50% 90%
Large pit | 2.64 3.42 290 0.16 271 288 3.09
Lower part | 281 3.74 3.13 0.19 293 3.07 3.36
Small pit | 259 3.45 290 0.17 271 287 3.15

Table 4.5: Simulations results with the quadratic vertical drift: recovered average grade above a cutoff of 1g/t for the
whole large pit, lower part of large pit and small pit. The size of the blocks is 10m x 25m x 10m

ore tonnage divided by the number of years. The annual average grade is the average grade above cutoff.
This implies that blocks above cutoff can be mined irrespectively of where they are located. This is far from
what is possible in reality. It is perhaps too simplistic given the size of the deposit and the possible presence
of a vertical drift. But it allows to calculate approximate ore and waste tonnages and grades quickly avoiding
having to schedule the mining sequence.

If the vertical drift was considered, a more realistic exploitation hypothesis would have to take it into ac-
count. A constant tonnage per year as in the first hypothesis and thus a fixed number of years would be
defined. But the average grade per year would not be constant. It would vary as the hypothesis of free
selection is not considered and according to the drift. This would have to be done for each simulation.
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Whether the drift function is considered or not the results may be very different for the project evaluation.
If we defined a vertical drift, the lowest part of the deposit would not be exploited (Figure 4.9) reducing the
costs and duration of the project.

4.4 Development options

For the moment consider the three following development options
1. develop the small pit immediately, with a sure profit;
2. develop the large pit immediately, with the chance of a larger profit;

3. first carry out additional drilling which would reduce the uncertainty on the grades in the lower part
of the orebody, but would be costly and would delay the start of the project. Then choose whether to
develop the small or large pit.

The objective is to choose the optimal development option, that is develop the deposit immediately or after
having obtained additional drilling, and the optimal project, that is develop the small or large pit.

The value of the two projects: a first approximation

Suppose that the only source of uncertainty in the evaluation of this mining project comes from the unknown
reserves. With the notation introduced in Chapter 1, let U; be develop the large pit and U, be develop the
small pit. The optimal project maximizes the expected profit E[Vy/], that is the conventional income net of
fixed costs. It is given by

arg max E[Vy].

In this case we now have all the information necessary to evaluate the 3 development options and choose
the optimal project. Let

S = $320 per ounce troy of gold (that is $ 320/31.103 per g of gold) be the expected gold price;
FC = $100 million be the fixed costs;

- VCy1 = $5.5 and VCpyo = $4.5 be the cost per ton of waste for project U; and for project Us,
respectively;

- IC = $10 million be the cost of additional drilling.

A cost is associated to the extraction of waste. This cost is higher for U; as it is harder to extract the waste
in the lower part of the deposit. Given the recovered average grade and number of blocks with grade above
cutoff the reserves B and quantity of waste W are easily computed® (to obtain the respective tonnages
just multiply by the volume of the block, 2500 m3, and by the ore density, 2 t/m?3). The Monte Carlo
approximation of the expected profit of project U is given by

L
1
ElVy] ~ 7 > (8B, - VCyW,) — FC — IC

=1

3In W the waste that has to be removed to access the mineralised zone (see Figure 2.1) isincluded. It was estimated by ordinary
kriging using al the data
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where L is the number of Monte Carlo simulations that are carried out (that is L = 50). Table 4.6 presents
these Monte Carlo estimates obtained with the Bayesian approach for the two projects. The optimal project
is Uy, that is develop the large pit. However, the two project values are very close and the risk of developing
the large pit is high: the uncertainty on the reserves is larger for the large pit than for the small pit. As it
can be seen in Figure 4.19, the probability of both a negative or small profit (< $ 200 million) and of a high
profit (> $ 800 million) is higher for U than for Us. Figure 4.20 compares the 2 project values for each of
the 50 simulations: U, is preferred to Us in 50% of the simulations. Observe that the expected value of the
positive differences is more or less the same as that for the negative differences. This can be seen in Figure
4.21 which also compares the 2 project values.

Project value
Available data Large pit (U1) Small pit (Us)
Bayesian approach
Initial data 448 431
Rich new data set 612 447
Average new data set 494 455
Poor new data set 363 397
plug-in approach
Initial data 428 404
Rich new data set 657 476
Average new data set 515 416
Poor new data set 377 395

Table 4.6: Value of the two projects in $ million. The results for both the Bayesian and plug-in approach are
presented. The optimal projects given the initial and initial 4+ additional data are highlighted

Given the supplementary observations the distance between the two project values is larger, that is the
additional data reduce the risk of taking the wrong decision. But is it enough to justify the cost of additional
data? The value of additional information is

new value of project - old value of project.

As the cost of getting more information is incorporated in the new value, it is worthwhile obtaining it if
this difference is positive. The project value with average additional information is slightly higher than with
just the initial data. Figure 4.19 compares the two project values given the average additional information.
Project U; is still optimal. Note that the average additional information does not help choosing the optimal
project: the two histograms are more or less the same as the ones obtained given just the initial data. Figure
4.19 also compares the two project values given the poor additional information. The optimal project shifts
to Uy, that is develop immediately the small pit. In this case the additional information permits to avoid
incurring in a loss as the expected project value is not as great as expected. The optimal project remains U1
given the rich scenario for additional data. From Figure 4.21 observe that the rich additional information
best discriminates between the 2 projects: given this information the development of the large pit is strictly
preferred to the development of the small pit. The average and poor extra data do not help choosing the
optimal project.

We can compute the expected project value integrating with respect to the additional information although
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it is an approximation as we chose and fixed 3 scenarios. Suppose that 0.25, 0.50 and 0.25 are the proba-
bilities of the rich, average and poor scenarios, respectively. We assume they represent 25 %, 50 % and 25
%, respectively, of the possible extra data sets. The expected value of additional information is then $ 51.25
million. It augments the value of the project by 11.44 %. Thus it is worthwhile to obtain it.

Table 4.6 also presents the results obtained with conditional simulations. Note that the optimal projects
are the same as the ones obtained with the Bayesian approach. The project values are different with the
exception of the poor data set which gave the closest Bayesian and conditional simulations reserves distri-
butions (Figure 4.8). The expected value of additional information is $§ 92.50 million that is it augments
the value of the project by 21.61 %. Thus the value of the projects and the expected value of additional
information obtained with the Bayesian or plug-in approach differ.

The comparison of the project values computed given just the initial data and given the initial 4 additional
data permits us to check whether the cost of additional information is justified by a better definition of the
project or not. To value additional information the change in the risk of undertaking the optimal project due
to the extra-holes should also be taken into account. We need to define a loss function and a corresponding
risk function. These will be specified in the next chapter.

Note that in order to obtain additional information the project must be delayed. Moreover, to evaluate
this project and choose the best development option the uncertainty on gold price and the time factor must
be taken into account.

For comparison purposes, we computed the project values for the drift reserves. They are negative. How-
ever, note that the results cannot be compared as assuming the presence of a drift the large and small pit
must be re- defined as well as the exploitation hypothesis.

...The NPV approach
Present value discounting recognizes time preference. The general equation for the NPV is

CF;
(1+r)

NPV =

where CF; is the cash flow realized at a future time ¢ and r is the discount rate which represents the decision
maker’s attitude toward time value of money.

The expected price is still used, but the discounting is now considered with rate » = 2%. We will dis-
cuss in the next chapter the choice of the discount rate. The life of the mine is fixed at 7" = 7 years if the
large pit is developed, and at T' = 5 years if the small pit is developed. In addition if the extra information
is obtained, we must wait for 1 year to develop the pit. The Monte Carlo estimate of the NPV is

L T—1
1 1
EE{; W(SBl _VCUWZ)} - FC-1IC

where B and W are now the annual reserves and waste. Table 4.7 presents the project values calculated with
the NPV approach for the Bayesian reserves. Note the reduction of the 2 expected project values due to the
discounting. The optimal project given the initial information is U;. Note that the 2 project values are very
close. As it can be seen in Figure 4.22 the NPV of project Us is less dispersed and thus project Us should be
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chosen. Given the rich and the average additional information the optimal project is still U;. The difference
between the 2 projects is now higher. However, Figure 4.22 shows that the average extra data does not help
discriminating the 2 projects. Given the poor additional information the optimal project is Us. The expected
value of additional information is $ 39 million that is it augments the value of the project by 9.35 %. Thus
it is worthwhile to obtain it.

Project value
Available data Large pit (U;) Small pit (Us)
Bayesian approach
Initial data 417 410
Rich new data set 558 415
Average new data set 449 423
Poor new data set 328 368
plug-in approach
Initial data 398 384
Rich new data set 599 443
Average new data set 468 386
Poor new data set 340 366

Table 4.7: Expected NPV of the two projects in $ million. The results for both the Bayesian and plug-in approach
are presented. The optimal projects given the initial and initial + additional data are highlighted

Table 4.7 also presents the results obtained with conditional simulations. Note that the optimal projects are
the same as the ones obtained with the Bayesian approach. The expected value of additional information is
$ 77.25 million that is it augments the value of the project by 19.41 %. Thus the value of the projects and
the expected value of additional information obtained with the Bayesian or plug-in approach differ.

The uncertainty on the gold price has to be taken into account. For this a stochastic process could be
defined. However, the NPV approach fails to capture all sources of value associated with the irreversible
investment opportunity. It does not value future investment and operating paths that are optional. It cannot
give value to the option for active or strategic management in response to evolving price and reserves in-
formation. If the price drops, for example, management can decide to abandon the project temporarily or
permanently. Without taking into consideration these options the investment will then be undervalued. The
added value comes from managerial flexibility.

... Towards real options

Real options to value the case study project is the subject of the next chapter. Here we introduce an example
to highlight the value of flexibility.

Suppose a manager embed an option to invest in a project in 1 year by a cost of § 10 million. The NPV is
of $ -50 million if the project is undertaken today and in future the same value is expected. The manager
decides to acquire the option to investment. Why? The traditional DCF approach would not recommend to
embed an option to invest which is expected to be negative. But the investment is an option, not an obliga-
tion. Rational managers will not exercise the option at ¢ = 1 year in case of bad news and will exercise only
in case of good news. As the option will be exercised only if the NPV > 0, the NPV of the project is now $
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90 million. This is the real option value. Figure 4.23 compares the histograms of the static NPV and of the
NPV with flexibility.

In the case study, as in the previous example, management can decide to abandon the project if the re-
serves are found to be too low. Real options will be applied to our project in the next chapter. From now on
we will use the reserves obtained with the Bayesian approach.

4.5 Conclusions and perspectives

The Bayesian approach is clearly more interesting when few data are available and the uncertainty regarding
the quantities of interest is large. If prior information, that is external but related information, is available,
the Bayesian approach permits to combine it with the data in the prediction process. Although the data
set we work on is large, we have seen that accounting for the uncertainty on the covariance parameters is
important, particularly in the lower part of the deposit.

In the place of the Box- Cox family of power transformations, the anamorphosis function was considered.
The uncertainty on the covariance parameters was taken into account. Alternatively, we could have used the
lognormal model, for example, if it was appropriate, which corresponds to A = 0 in the Box- Cox family of
transformations. This model did not seem a realistic model for the data in our test case. Letting the mean
and covariance parameters unknown in the Bayesian approach permits to leave some uncertainty on this
transformation. And most importantly, compared to log- normal kriging the Bayesian method allows to find
the optimal predictor. Thus we could have supposed that

log(Z(z)) = oY (z) + p
where Y () is a standard gaussian random variable,
p = Ellog(Z(x))] = 8" f(z) and o = Varllog(Z(z))] = a~".

This model is interesting as there is permanence of log- normality (Chilés & Delfiner, 1999; p 433): when
Z(z) has a log- normal distribution, Z(v) is still log- normal (as long as v is small).

We assumed that the exploited ore tonnage per year is constant. If the drift function was defined and the
average grade was exploited according to the drift the evaluation of the 2 projects would be very different
of the one we obtained.

A first evaluation of the two projects, development of the large pit and development of the small pit, was
presented and the difference in the results computed with either the Bayesian method or conditional simu-
lations was highlighted. Note that, although the optimal project is the same, the results obtained with the
Bayesian and plug- in approaches and the expected values of additional information are quite different. We
have seen that the reserves distributions principally differ in the tails leading to different expected values for
the 2 projects. Thus accounting for the reserves uncertainty is important.
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Figure 4.1: Behavior of the spherical (green) and exponential (red) models near the origin. They have the same sill
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Figure 4.2: Histogram of the simulated covariance models K;. Models 1, 5 and 14 have the highest posterior
probability. Model 14 corresponds to the plug-in model. Model 1 is very similar to model 14. Model 5 does not have
a nugget effect
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Figure 4.3: A Monte Carlo simulation of the mean parameter 3. The figure also presents the evolution of its Monte
Carlo estimate as a function of the number of iterations. To get a sample of 50 the last 50 values are kept. The Monte
Carlo estimate of the mean is -0.34
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Figure 4.4: Comparison of the plug- in and Bayesian predictions (left) and prediction variances (right) for the small
pit
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Figure 4.5: Lower part of large pit: histograms of the number of blocks above cutoff. The histograms on the left
are obtained with the Bayesian approach. The histograms on the right are obtained with the conditional simulations
approach. The vertical line represents the mean. The expected number of blocks above cutoff is more or less the same
whether the Bayesian or plug- in approach is used. Given the initial data the plug-in distribution gives a slightly
larger weight to the tails
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Figure 4.6: Lower part of large pit: histograms of the recovered average grade (g/t) above cutoff. The histograms on
the left are obtained with the Bayesian approach. The histograms on the right are obtained with the conditional simu-
lations approach. The vertical line represents the mean. Given the rich additional information the plug-in distribution
gives smaller weight to the low values. Given the average additional information the plug-in distribution gives larger
weight to the high values
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Figure 4.7: Small pit: histograms of the reserves (g/t). The histograms on the left are obtained with the Bayesian
approach. The histograms on the right are obtained with the conditional simulations approach. The vertical line

represents the mean. As expected, the two histograms are very similar. The expected reserves obtained given only the
initial data or given the extra data is more or less the same. The expected reserves obtained with the plug- in or the
Bayesian approach is more or less the same. An exception are the rich extra data
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Figure 4.8: Large pit: histograms of the reserves (g/t). The histograms on the left are obtained with the Bayesian
approach. The histograms on the right are obtained with the conditional simulations approach. The vertical line
represents the mean. Note that the expected values are more or less the same whether the Bayesian or plug- in
approach is used. The histograms differ. In particular, note that they differ in the tails giving different weight to large
or small values. An exception are the poor extra data: the 2 histograms are very similar
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Figure 4.9: Estimated quadratic drift, that is 8o + $123 + B222 where x5 is the vertical coordinate and Sq, (1, B2 are
the drift coefficients. The vertical line is the estimated constant mean. The presence of a drift seems plausible. It helps
highlighting that the zone between 50m and 300m is the richest (see Figure 2.3) and that also the lower part from Om
to —150m is interesting. On the contrary, the top zone from 300m up and the lowest zone from —150m down do not
seem interesting
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Figure 4.10: Estimated quadratic drifts given the initial data (continuous curve), the initial data + rich additional
information (large dashed curve), the initial data + average additional information (dashed curve) and the initial
data + poor additional information (dotted curve). Note that the rich extra data are the richest for the lower zone not
for the upper zone
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Figure 4.11: Estimated quadratic drifts given the initial data. The continuous curve is obtained with a covariance

model without nugget effect. The dashed curve is obtained with a covariance model with a nugget effect. Observe that
without a nugget effect we force the continuity of the phenomenon
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Figure 4.12: The average grade of the gaussian variable is computed for each depth. The estimated quadratic drift
and constant mean are also presented
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Figure 4.13: A Monte Carlo simulation of the mean parameter 8. The figure presents the evolution of the Monte Carlo

estimates as a function of the number of iterations. The Monte Carlo estimate of 3 is (—0.38,7.13 x 10=%, —2.27 x
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Figure 4.15: Comparison of 2 simulations obtained with a constant mean (on the left) and with a quadratic drift (on

the right): horizontal section with depth fixed at 305m
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Figure 4.16: Comparison of 2 simulations obtained with a constant mean (on the left) and with a quadratic drift (on

the right): horizontal section with depth fixed at -175m
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Figure 4.17: Histograms of the mean of the 50 simulations obtained with a constant mean (on the left) and with a
quadratic drift (on the right) for the depth fixed at 305m. The vertical line represents the cutoff grade
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Figure 4.19: Histograms of the Monte Carlo project values for U; (on the left) and Us (on the right) given the initial,
the average and poor data sets. The vertical line represents the expected project value. As expected, the results for
U, are less dispersed. The probability of a high profit (> $ 800 million) is higher for U;. However, the probability of
a negative or small profit (< $ 200 million) is also higher for U;. Given the average additional information the two
projects are very close. Although the expected profit of U; is higher, project U, could be preferred as it is less risked.
However, the probability of a high profit for Uy is still higher than for U,. This information does not help choosing the
optimal project. Given the poor information project U; is not interesting as the probability of a high profit (> $ 800
million) is the same as that for project U,. The expected profit for Us is now higher
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Figure 4.20: Histogram of the differences of the 2 project values. Note that for 25 of the 50 simulations project U; is
preferred to project Us, that is it has an higher expected value than U,. Thus the risk of taking the wrong decision is
high
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Figure 4.21: Comparison of the 2 project values ($ million) given the initial data and given the initial + rich, average
and poor extra data. Given the rich additional information, project U; can be strictly preferred to U,. The average
additional information does not help choosing the optimal project. The expected profit of Uy is still higher than that
of Us, but the risk of taking the wrong decision is still high. Given the poor extra data the two projects are even closer
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Chapter 5

Real options

5.1 Introduction

In the 1970s and the 1980s, developments in the valuation of capital investment opportunities based on op-
tion pricing revolutionized capital budgeting. Managerial flexibility to adapt and revise future decisions in
order to capitalize on favorable future opportunities or to limit losses has proven vital to long-term corporate
success in an uncertain and changing market place such as in mineral and energy markets.

Nowadays it is widely recognised that traditional discounted cash flow approaches fail to capture the impact
of two important factors: uncertain costs and prices, and managerial flexibility. Decision trees and Monte
Carlo simulations were developed to estimate the probability distribution of future cash flows, but they have
difficulties to incorporate future decision possibilities or contingencies in project value (Trigeorgis, 1996).

The similarity between real and financial decision making was first recognized by Brennan and Schwartz
(1985) and McDonald and Siegel (1985). They extended the financial option theories of Black and Scholes
(1973) and Merton (1973) to evaluate irreversible real investments, such as those in mining. Investment
opportunities are viewed as options. This led to the development of real options analysis.

The motivation for using an option-based approach to capital budgeting arises from its potential to con-
ceptualize and quantify the flexibility component value that arises from active management and strategic
interactions. This value is seen as a collection of real options embedded in investment opportunities having
as underlying asset the gross project value of discounted expected cash flows. It must be noted that the real
options approach is not a substitute for traditional discounted cash flow analysis, but an enhancement of
discounted cash flow principles that allows to properly value managerial flexibility.

Trigeorgis (1996) identified four basic sources of flexibility. These are

- initiation flexibility (defer options): this refers to the possibility of waiting until more information has
become available. The possibility to decide when, or if, to start can be of great value to a mine or
oil development project. The major gain from a postponement comes from the benefit of getting new
information. One example is the possibility to wait and observe the gold price if the current price
happens to be low. By being able to wait, the project can utilise information that arrives and take
advantage of better knowledge. This necessarily adds value to the project. For example, consider a
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mineral property that is uneconomic if developed immediately, as its NPV is negative. Given that
there is some probability that prices will rise in the future, this project is negative only because of
the assumption that development and operations must begin immediately. The managerial option to
delay development until prices rise, gives some properties a positive expected present value. “ This is
why we see unattractive undeveloped projects trading in the market at positive values, and then sitting
dormant for years ” (Davis, 1996). Initiation flexibility, also called investment timing flexibility, is
similar to having an American call option on the value of the project. The investment cost is the
exercise price of the option, while the last possible time to start the project is the option’s expiration
date. Instead of using a positive NPV as criterion for project initiation, the decision rule is now to
defer the start until the price has reached a given level.

Operating flexibility includes

- termination flexibility (abandonment options): this offers the possibility to make the investment in

stages, deciding at each stage, based on the newest information, whether to proceed further or whether
to stop. In fact, it may not be optimal to continue operations if events, either internal or external, with
a negative impact on the project occur. The value of being able to terminate can then be substantial,
in particular for projects with a long expected remaining lifetime. As the development project evolves
the value of the termination flexibility declines. Again the similarity to financial options must be noted
where the value of the option decreases as the time to expiration (the maturity date) approaches. For
the development project the remaining life time corresponds to the time to expiration.

Contraction/ expansion flexibility or stop/ start flexibility: this represents the possibility to adjust the
scale of the investment depending on whether market conditions turn out favorably or not. The possi-
bility of starting and stopping the project during its operation can be of significant value. Suppose, in
the case of a mine, that management optimally shuts the mine during periods of sufficiently low prices
and that management optimally reopens the mine when prices have risen to a sufficiently profitable
level. The value of the project will then be higher than the value obtained through the flat price DCF
technique. However, it must be noted that the cost of starting and stopping the project can be high,
making the flexibility less valuable. Managers prefer keeping mines open even if the actual ore price
is low.

Capacity flexibility (switching options): this allows changing to a different technology. In mining, it
is, for example, equivalent to varying cutoff rates. Increasing the cutoff grade raises the average grade
of ore produced but shortens the mine’s life.

It must be observed that the value of different flexibility types is not in general additive (Lund, 1999). This
work focuses on a special case of the first option (defer) in which the company has the possibility to wait
and obtain additional information on key parameter values. This option has been analysed among others by
Lund (1999), Galli et al. (2001) and Dias (2002).

The chapter is structured as follows. In Section 2 we review traditional discounted cash flow (DCF) and
decision trees, explaining their advantages and disadvantages. Section 3 is devoted to real options. In
Section 4 we present contingent claims analysis and stochastic dynamic programming, the two equivalent
procedures to evaluate real options. In Section 5 we review applications that have used contingent claims
analysis in mining and applications that have used dynamic programming. Section 6 describes information
flexibility. In Section 7 the model used to value flexibility is presented and applied to evaluate the gold
mining project.
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5.2 Discounted cash flow methods and decision trees

The fundamental idea of the discounted cash flow approach is that the value of a project is defined as “
the future expected cash flows discounted at a rate that reflects the riskiness of the cash flow ” (Smith and
Nau, 1995). Major problems with the DCF methods concern its ability to estimate future cash flows, the
possibility to properly value management flexibility and the determination of the appropriate discount rate.
Traditional discounted cash-flow approaches make implicit assumptions concerning an expected scenario of
cash flows and presume management’s passive commitment to a certain static operating strategy. In order
to implement DCF analysis, we need estimates of expected future cash flows and a discount rate deemed
appropriate to their risk. Discounted cash flow only uses information that is known at the time of the ap-
praisal. This approach neglects the stochastic nature of prices (instead of the distribution of future prices
their expected value is considered) and of possible managerial responses to price variations leading to sub-
optimal investment decisions. Traditional DCF approaches to the appraisal of capital investments projects,
the net present value rule for example, do not properly capture management’s flexibility to adapt and revise
later decisions in response to unexpected market developments. In the real world which is characterized
by change, uncertainty and competitive interactions, cash flows differ from what management expected at
the outset. As new information arrives and uncertainty about market conditions and future cash flows is
gradually resolved, management may have valuable flexibility to alter its initial operating strategy in order
to capitalize on favorable future opportunities or to react so as to mitigate losses. For example, management
may be able to defer, expand, contract, abandon, or alter a project at various stages of its useful operating
life. This means that management may truncate the distributions of risk on the downside and augment the
upside distribution of the chances for success (Trigeorgis, 1996). Thus, when applied to systems operating
in an uncertain environment, the DCF procedures fail to recognize that effective management of the risks
enhances the value of the system.

The value of active management is better captured by using a decision tree. Flexibility is modelled through
decision nodes allowing future managerial decisions to be made after some uncertainty has been resolved
and more information has been obtained, before proceeding to the next stage. However, some problems
are quite cumbersome to solve as decision trees. Dynamic programming can then be used to evaluate flex-
ible decision models. Moreover, the presence of flexibility embedded in future decision nodes changes the
payoff structure and the risk characteristics of an actively managed asset in a way that invalidates the use
of a constant discount rate. Unfortunately, decision tree analysis does not provide any recommendation
concerning the appropriate discount rate.

5.3 Real options

Managerial flexibility is likened to financial options. Its quantification was first solved by Brennan and
Schwartz (1985) using option pricing techniques. If price uncertainty is assumed to be the only source of
uncertainty, an investment opportunity is analogous to an American call option, not yet exercised, on a com-
mon stock: it gives the right- but not the obligation- to acquire the gross present value of expected cash flows
by making an irreversible investment on or before the date the opportunity ceases to be available. Using the
analogy with options on financial assets, such investment flexibility is called a real option. Real options have
value when investment involves an irreversible cost in an uncertain environment. The beneficial asymmetry
between the right and the obligation to invest under these conditions is what generates the option’s value. In
order to exercise a real option, one must pay the exercise price. Table 5.1 compares a call option on stock to
a real option on project.
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Call option on stock Real option on project

Current value of stock | Gross present value of expected cash flows
Exercise price Investment cost

Time to expiration Time until opportunity disappears

Stock value uncertainty | Project value uncertainty

Riskless interest rate Riskless interest rate

Table 5.1: Comparison between a call option on a stock and a real option on a project

Moreover, as with options on financial securities, management, after an initial investment, can gather more
information about project progress, market characteristics and competitive reactions and, based on this in-
formation, change its course of action. The value of this managerial flexibility enhances the project value by
improving its upside potential while limiting downside losses relative to the initial expectations of a passive
management. Brennan and Schwartz found that, for mineral assets, the additional value created through
optimally executed managerial flexibility can be priced just as American stock options are priced. The
manager owns managerial options that add value to the asset, that is

Expanded value = DCF value + option premium

where the expanded value is in fact the asset’s option price (Trigeorgis, 1996). The magnitude of the nonneg-
ative option premium derived from managerial flexibility, the option value, depends on the characteristics
of the underlying asset.

The real options approach recognizes the value of flexibility in the context of uncertainty, especially when
system operators can manage this uncertainty. As Davis (1996) observes, in financial option pricing, the
value of an option depends critically on several parameters. First, the more volatile the underlying asset,
the more valuable the option written on that asset. By analogy, the more volatile the price of the mineral
being produced, the more valuable the option to manage the mineral asset. If future prices were certain, the
option premium associated with managerial flexibility would become zero. Hence, managerial flexibility is
worth more for mineral assets with high price volatility. Second, “ financial options that are at or near the
money have more value than those well out of the money and unlikely to be exercised prior to expiration?.
From this, the more marginal the mineral asset, where the operating options are at or near the money, the
more valuable managerial flexibility ”. Finally, longer time to expiration increases an option’s value. Anal-
ogously, managerial flexibility is worth more when the time frame of that flexibility is extended.

The real options method of valuation provides a useful framework for strategic decision making. One key
insight generated by this approach to investment is that *“ higher uncertainty in the payoffs of the investment
increases the value of managerial flexibility, or the value of real option ” (Dixit and Pindyck, 1994). As
Huchzermeier and Loch (2001) observe, * the intuition is clear- with higher payoff uncertainty, flexibility

1An in the money option is one that would lead to a positive cash fbw to the holder if it were exercised immediately. An at
the money option would lead to zero cash fow if it were exercised immediately, and an out of the money option would lead to a
negative cash fow if it were exercised immediately
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has a higher payoff potential of enhancing the upside while limiting the downside ”. An important man-
agerial implication is that the more uncertain the project payoff is, the more effort should be made to delay
irreversible commitments and maintain the flexibility to change the course of action. Moreover, the tools
from finance theory including stochastic calculus and dynamic programming can be used.

Although there are many similarities between real and financial options, there are also important differ-
ences. Several implications flow from the fact that real options deal with physical projects

- most real-life projects are equivalent to a sequence of options whose values may interact (see Tri-
georgis (1996) for more details on compound options). For example, acquiring a property gives the
owner the option to explore, obtaining information from the exploration phase gives him the option to
develop, and developing gives him the option to extract. Moreover, after a mine is fully operational,
the owner has the option to mothball or to abandon. These are in general valued separately. An early
exception is the work of Brennan and Schwartz (1985), who determine the combined value of the
options to shut down (and restart) a mine and to abandon it for salvage.

- Managers make decisions about whether to acquire a real option, for example to exploit a mine, only
once.

- Whereas the analysis of options on commodities and stocks can be based on years of data on the
volatility of these assets, the analysis of real options may have little historical data to draw upon.
Fortunately, as de Neufville (2001) states, managers of technological systems, for example, do not
require great accuracy because they typically only need to make choices, not precise judgements. In
making a choice, one only needs to know the relative value of alternatives, not their precise value.
To decide whether to undertake a R&D process that will lead to a real option on the launch of a new
product, for example, managers only need to know if the value of the option is greater than the cost to
acquire it. Options analysis is thus quite different for managers than for financial analysts who have
to decide on a precise price to pay for options, as they trade them day after day.

- In addition, a real option analysis must take account of both technical and market considerations. In
particular, a specific mine project, for example, is not traded in the market. The use of similar mines
is an approximation. By contrast, financial options are simply paper trades.

Real options is particularly interesting for R&D activities and in general activities that proceed through a
linear developmental process. For example, each of the steps in the discovery and exploitation of natural
resources can be thought of as an option on the next phase. Thus a lease on the mineral rights to an area
is an option on subsequent exploration, which is in turn an option on eventual exploitation. Real options
analysis may be used to value such projects and to determine the optimal policies for developing, managing
and abandoning them.

Applications to natural resources

Many applications focus on valuation problems in the context of the oil industry and mining facilities (for
example, Paddock et al., 1988; Stensland and Tjgstheim, 1989; Gibson and Schwartz, 1990, 1993; Smith
and McCardle, 1998, 1999; Cortazar and Casassus, 1998; Lund, 1999; Slade, 2000; Moel and Tufano,
2000, 2002). The evaluation of mining and oil projects is made particularly difficult by the high degree of
uncertainty in the prices and the output quantities. In the early literature, researchers often adopted simpli-
fying assumptions: the reserves were supposed perfectly homogeneous and known, the cost were supposed
known, and they usually modelled price as a geometric Brownian motion (non stationary model). More
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recently, researchers have begun to consider a mean reverting model for the price (Gibson and Schwartz,
1990; Slade, 2000; Moel and Tufano, 2000). But as Slade (2000) observes, different models for prices are
estimated and compared, but no tests of stationarity are performed. As far as the uncertainty on reserves
is concerned, researchers have just started to take it into consideration. Moel and Tufano (2002) study the
opening and closing of 285 developed North American gold mines (period 1988-1997). The authors confirm
that the probability that a mine is open is related to both market factors (level and volatility of gold price
and interest rate) and mine specific factors (its fixed costs, variable costs and reserves).

The possibility to revise the initial predictions on the reserves, as new information is available, is rarely
considered. Exceptions are the works of Kemna (1993), Chorn and Carr (1997), Chorn and Croft (1998)
and, as was said earlier, Lund (1999), Galli et al. (2001) and Dias (2002). This will be seen in more detail
in Section 6.

In practice, decision makers do not often apply real options. Moyen et al. (1996) conducted a survey
to determine how mining companies evaluate projects. The authors interviewed vice presidents in charge of
corporate development and treasurers of Canadian mining companies. They found out that

- all firms use some form of DCF calculation to evaluate projects. The base calculation is often supple-
mented with sensitivity analysis for key parameters such as price.

- Most firms use a long-run commaodity price, that is they replace the random variable with its expected
value. In addition, there is substantial agreement concerning this price.

- Most firms make adjustments to their DCF calculations, the most important being an increase in the
discount rate to reflect risk. The most common rate is 15%.

- Very few decision makers had heard of real options theory and had used it.

This is also the case of petroleum companies that use the DCF approach as a finance tool to value undevel-
oped reserves (Connell, 2002). However, several global technological companies are beginning to use real
options to re-frame the way they think about technology management, innovation and system development
(de Neufville, 2001). This is recent, dating only from the mid 1990’s.

Following Dixit and Pindyck (1994) we recognise two equivalent methods to evaluate real options and
obtain optimal investment rules: contingent claims analysis and stochastic dynamic programming. Both
take from decision tree analysis the use of decision nodes in modelling flexibility. But in contrast to the
conventional decision analysis that works with a predetermined set of possible decisions, the real options
approach seeks to identify new possible paths (i.e. insert additional decision nodes into the tree to reflect
the options) to change the decision tree by adding in flexibility. In addition, contingent claims analysis uses
NPV’s notion of a comparable security to properly price risk.

5.4 Two approaches to evaluate real options

There are two equivalent procedures for evaluating options and risky projects where managerial flexibility
plays an important role: one is decision analytic, based on stochastic dynamic programming, and the other is
option pricing theory (or contingent claims analysis), based on the no-arbitrage theory? of financial markets.

2The no-arbitrage principle states that: two investments with the same payoffs at all timesand in al states must have the same
value
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The two methods are identical in modeling flexibility, but they differ in valuing risky cash flows.

5.4.1 Contingent claims analysis

Contingent claims analysis (CCA) builds on ideas from financial economics. The firm that owns the right
to an investment opportunity, owns an asset that has a value. The idea behind CCA is to value an option
not on his own, but as part of a riskless portfolio. If, for example, the underlying security is a stock, it is
possible to take a long position in the stock option and a short position in the underlying asset (the stock).
Both positions are affected by the same source of uncertainty: the stock price. Moreover, the capital gains
associated with one investment are completely offset by the losses associated with the other. The rate of
return on the portfolio is thus riskless and should equal the risk-free rate (see Appendix D.2 for more details
on Options and Options valuation). If this asset is not traded directly on the market, it can be related to other
assets that are traded. A combination or a portfolio of traded assets that will exactly replicate the pattern
of returns from the investment project, at every future date and in every future uncertain eventuality is thus
needed. The value of the investment project must equal the total value of that portfolio. The fundamental
assumption underlying this approach is that the value of a nontraded project is “ the price the project would
have if it were traded ” (Smith and Nau, 1995). The required rate of return® on the asset is derived as an
implication of the overall equilibrium in capital markets. Only the riskless rate is taken to be exogenous.
Thus this approach offers a better treatment of the discount rate. But in order for a portfolio that is long
in the mine and short in futures contracts to be riskless, there must be a deterministic relationship between
commodity spot and futures price. This relationship is determined by the convenience yield* that is associ-
ated with owning the commodity (Moyen et al., 1996).

The usual assumptions (Black and Scholes, 1973; Merton, 1973) are that trading and decision making
take place in continuous time and that the underlying sources of uncertainty follow Brownian motions.

The similarities between financial and real options arise because the ability to control or manage a cash
flow stream represents an option, and, more importantly, equivalent martingale pricing techniques are ap-
propriate to both. The major difference is that the rights to controllable cash flows typically cannot be
reduced to claims on traded assets: they are contingent on state variables that are not traded. For example,
costs include human capital that is not bought and sold (Slade, 2000). This makes the determination of the
equivalent martingale measure or risk adjustment more problematic than in the case for financial options.
To overcome this difficulty Slade uses the method that was developed by Brennan and Schwartz (1982),
Cox et al. (1985) and Gibson and Schwartz (1990) which consists of adjusting the drift of each stochastic
process by an amount that reflects a process specific risk premium, where the risk premium is obtained from
an equilibrium model of financial markets. Future expected cash flows can then be discounted using the
risk-free rate. Therefore, unlike conventional real-option models of traded natural resource assets, it is not
necessary to model the convenience yield that is associated with holding each asset. An alternative proce-
dure is to adjust the discount rate to reflect risk. But then the risk that is associated with different sources of
uncertainty is discounted by the same factor (Slade, 2000).

The weakness of this approach is its lack of generality. The risks of research projects, for example, are

3The risk- adjusted discount rate transl ates expected values of future cash flows at a specifi ed risk into market values today
4« Convenience yield is the fow of services that accrues to the owner of aphysical commodity but not to the owner of acontract

for future delivery of the commodity ” (Brennan and Schwartz, 1985). The role played by convenience yield in rea option pricing
issimilar to the role played by dividends in fi nancial option theory
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project-specific and cannot be replicated by securities traded in financial markets (Dixit and Pindyck, 1994;
Smith and Nau, 1995). In particular, technical risks (failure of an experiment, ...) are not correlated with
any asset traded in the financial market. For example, when valuing an oil property, it is reasonable to as-
sume that price risks can be hedged by trading oil futures contracts, but it seems unreasonable to assume
that reservoir specific uncertainties can be hedged by trading securities (Smith and McCardle, 1998).

In other words, options pricing is difficult to apply directly. This explains the result of a recent survey
which showed that real options pricing has not found wide usage in practice because managers find it too
technical and based on unrealistic assumptions (Loch and Bode-Greuel, 2001).

5.4.1.1 Modeling the value of a real option

The papers by Brennan and Schwartz (1985) and McDonald and Siegel (1986) have set the assumptions that
have been the starting point for much of the work on real options.

McDonald and Siegel (1986) assume that the project value obeys a GBM. Consider a derivative asset whose
value, F', is a function of the value of a single underlying asset, V', and time, ¢; F' = F'(V,t). In real option
analysis, F' might be the value of an American call option to irreversibly invest in a project that would cur-
rently be worth V' if installed, or the value of an American put option to abandon a project currently worth
V', where V is the expected present value of net income from the project. The goal of real option pricing is
to determine the option value F' given a stochastic process for V.

A standard approach to valuing these types of options is to assume that the value of the project fluctuates
according to an Ito process®,

dvi = o, (V,t)dt + ol,(V,t)dz, j=1,A, (5.1)

where a{,(V, t) is the expected instantaneous rate of drift in the value of the project, a{,(V, t) is the instan-
taneous volatility of the value of the project, and dz is the increment of a standard Wiener process. The
index j indicates that these drift and volatility functions depend on whether the project underlies the inves-
ment option ( = I) or abandonment option (j = A). The most popular form of this process is geometric
Brownian motion,

dvi = aVV dt + U{,V dz, (5.2)

where a{, and oJV are constant. Constructing a riskless hedge portfolio (as in Appendix D.2 to value a call),
applying Ito’s Lemma and the no-arbitrage condition to the function F'(V,t) creates the partial differential
equation
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where r is the risk-free rate of interest, D7 (in general, D! = 0 and D4 > 0) is the instantaneous net
cash flow per unit time paid to the holder of the call or put option, and 5{'/ is the dividend yield (or rate of
return shortfall), that represents the extent to which the percentage change in project value a",, falls short
of the percentage return required on an investment of this risk class, d,, 67 = A{/ — o, (Davis, 1998).

The parameter &7, translates expected values of future cash flows of a specific risk class into current market
values. This process is used, for example, by Majd and Pindyck (1987), Paddock et al. (1988), Dixit and
Pindyck (1994), and Trigeorgis (1996).

+ DI =rF, (5.3)

Ssee Appendix D.1
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Standard numerical techniques, such as tree/ lattice, finite difference or Monte Carlo simulation methods,
are used to solve Equation 5.3 for F, taking into account boundary conditions for the specific option being
valued. The solution technique requires values for of, and &7,. These parameters are generally unobservable
in the market. In addition, an historical time series of project market values is seldom available as the project
is rarely a traded asset or has a twin asset. Thus, in most applications ad hoc methods are used: o, is taken
to be equal to the average percentage standard deviation of stock market equity (McDonald and Siegel, 1986;
Majd and Pindyck, 1987; Dixit and Pindyck, 1994); 47, is set equal to the convenience yield associated with
the project’s output good®, or to an arbitrary value and the sensitivity of the option calculation to the value
used is tested (Majd and Pindyck, 1987), or to zero (Trigeorgis, 1990). Davis (1998) demonstrates that
o1, can be estimated from the volatility of the unit price of the project’s output, which can be calculated
from published historic price series, and formalizes the calculation of 6{, linking it to observable financial
characteristics of the project.

The approach developed by Brennan and Schwartz (1985) is different. They assume that the spot price
follows a GBM. And the project value is a function of the spot price. This because the underlying asset
can be hedged in the market. They introduced the convenience yield. For a non dividend paying stock the
expected price gain is equal to the appropriate risk- adjusted discount rate. If it were not, investors would
not be willing to hold the stock. This explains why the parameter ¢y, appears in the valuation models for
commodities. Most commodities are stored in some quantity. In order to explain storage of commaodities, it
is assumed that the storers have an advantage from the storage itself. The results were also found by Mc-
Donald and Siegel (1985). They used the Merton’s formula instead of the Black and Scholes’s for valuing
an European call option where the stock pays a dividend yield (see Appendix D.2).

The papers which have been published in relation to the pricing of real options relating to natural resources
fall in these two groups.

5.4.2 Stochastic dynamic programming

In the decision analysis approach, risky projects are valued by constructing a decision tree (or dynamic
program) that describes the sequence of decisions and uncertainties surrounding the project. Technical
(geological) uncertainties can be easily allowed for. The decision maker’s beliefs about the project are cap-
tured by assessing probabilities for the uncertainties and preferences for the project cash flows are captured
by using a risk-adjusted discount rate. Project values and optimal strategies are then determined through
stochastic dynamic programming which is a very general tool for dynamic optimization.

The sequential decision problem can be formulated as a stochastic dynamic program with the following
value function

W(Z) = max {Rt(i,at)At + E[W+At|at,‘i]} , Vi, t
ag

1+ pAt
where

V4(4) is the maximum expected value in state ¢ at time ¢,

81f the output of the project is a storable commodity, the convenience yield from storage is defi ned as the fow of benefi ts (less
storage costs) that the marginal stored unit provides. These benefi ts can include an increased ability to smooth production, avoid
stockouts and facilitate the scheduling of production and sales (Dixit and Pindyck, 1994, p.179). The dividend yield is then the
convenience yield
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Ry (i, ay) is the rate of the profit flow obtained by taking action a, in state i,
p is the rate of return per unit of time.

The expectation is conditioned on the current state ¢ and decision a;. This leads to a decomposition of the
optimisation problem into an immediate return function and a continuation value that describes the conse-
guences of all subsequent decisions, starting with the position that results from the immediate decision. This
implies that only the immediate control a; must be chosen optimally at time ¢, since the remaining optimal
strategy is subsumed in the continuation value. It must be noted that to compute V(%) the access to the next
stage value for all possible future states for each action is needed.

In the case of a finite planning horizon,
Vr(i) = max {Rr(i,ar)}, Vi
ar

and the very last decision can be found using standard static optimization methods. This solution then pro-
vides the valuation function appropriate to the penultimate decision. That in turn serves for the decision two
stages from the end, and so on all the way to the initial decision (that is, standard backward recursion; for
more details see Appendix E). In fact, in practice a discrete grid of values of ¢ must be chosen to calculate
the solution. In the case of an infinite horizon, there is no final value function from which to work backward.
Instead the problem gets a recursive structure and brings the previous value function to be independent from
t. Of course the current state 7 matters. This works provided the return R, the discount rate p and the transi-
tion probabilities are independent of ¢. The problem is then solved by an iterative procedure (see Appendix
E).

Now, assuming, as for CCA, that the project value follows a GBM, F(V,t) is found to vary according
to the following equation

_+VaV_+§UVV W‘F =p

(see Dixit and Pindyck, 1994, p.117). This can be compared with (5.3). In CCA the exogenously specified
discount rate p is replaced by the risk- free rate r and the growth rate « is replaced by r — &7,. In this case
SDP can be used discounting at the riskless rate but assuming that the project value V' follows a GBM with
growth rate r — §7,. The two approaches give then the same results. Dixit and Pindyck (1994) state that this
is an instance of equivalent risk- neutral valuation and the explicit hypothesis of a replicating portfolio is not
needed.

The strength of this approach is its generality. It provides a framework, for example, for medical treatment
decisions, decisions involving environmental risks and investment decisions. But in investment contexts,
it rarely takes into account market opportunities to hedge project risks by trading securities even though
these opportunities may have an impact on the project values and on the optimal investment startegy (Smith
and McCardle, 1998). Since firms are not assumed to be able to hedge all risk, the risk free rate must be
replaced by a rate of return that is adjusted to reflect risk. The drawback of this approach is thus that it
does not address the question of the correct risk-adjusted discount rate. It requires an exogenously specified
discount rate that reflects the decision-maker’s risk attitude. It seems that one of the advantages of option
theory over DCF analysis is lost. However, as we have seen, if a replicating portfolio can be defined, the
difference between CCA and SDP is more apparent than real.
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5.4.3 Comparing CCA and SDP

The two approaches are closely related and are commonly considered in the literature as alternatives. They
can be applied to similar problems (see Dixit and Pindyck (1994) for several examples of investment prob-
lems solved by both CCA and SDP). As we have seen, the value function of SDP and the asset value in CCA
satisfy very similar partial differential equations. The optimality equation of dynamic programming has an
interpretation in terms of asset value and the willingness of investors to hold the asset (Dixit and Pindyck,
1994, p.105 and 120). Analogously, equivalent partial differential equations are obtained if, following Bren-
nan and Schwartz (1985), it is the metal price that follows a GBM. In this case if only price is uncertain and
commodity futures market exist the two approaches lead to identical results.

As we have seen, stochastic dynamic programming and contingent claims analysis make different assump-
tions about financial markets, and, in particular, the discount rates used to value future cash flows. No
method can claim to be superior for all problems. However, specific problems normally favour one of the
methods. CCA should be used where investments are dominated by market priced or public risks, and dy-
namic programming should be used where investments are dominated by private risks.

Smith and Nau (1995) define full decision tree analysis as traditional decision tree analysis including market
opportunities to borrow and trade, and utility functions to capture time and risks preferences. They demon-
strate that full decision tree analysis and contingent claims analysis lead to identical results for valuing risky
projects when complete markets exist. In addition, they demonstrate that when complete markets do not
exist (incomplete or partially complete markets) and option pricing methods can only produce bounds on
project value, full decision tree analysis gives a solution between those bounds. The key to this approach
is to recognize market opportunities to trade by including them in the decision analysis model. Smith and
McCardle (1998) apply this integrated approach for oil exploration projects. They use option pricing for
risks that can be replicated in the market’ and dynamic programming for risks that cannot be priced. They
insist that both of these risks are important and that management has a great deal of flexibility to adapt as
these uncertainties are resolved. Though this extended approach utilises market information to value market
risk, the analysis still requires the use of subjective preferences and beliefs.

5.5 Applications using contingent claims analysis

As was said earlier, many applications of real options analyze projects for which the underlying state vari-
able is a commodity price. The reason for this is the existence of forward or future markets for many
commodities allows a simple and direct calculation of the equivalent martingale measure. The equivalent
martingale measure for commodity prices is obtained in the same way as in the Black- Scholes model for
stock prices, except that the convenience yield on the commaodity plays the role of the dividend yield on the
stock.

Davis (1998) values the option to develop a precious metal reserve. The value of the developed mine is
approximated by a GBM with constant drift and volatility. Davis notes that this assumption is unrealistic.
Indeed, under a GBM the value of the project cannot become negative, whereas real projects can be worth
less than zero. The author studies timing flexibility. He does not consider technical uncertainty. Assuming

"It is assumed that the decision maker may buy or sell as many shares of securities as desired at market prices without incurring
any transaction costs. Similarly, the decision maker may borrow and lend in any desired amount at arisk-free interest rate r. This

is modeled by assuming the existence of arisk-free security whose time t priceis given by e™"*
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that the price of the project’s output good follows a GBM (although recognizing that it is inconsistent with
the hypothesis that the project’s value follows a GBM), Davis presents a set of equations that can be used to
estimate the volatility and dividend yield.

Slade (2000) applies CCA to value managerial flexibility in a copper mine project. She focuses on op-
erating flexibility. The remaining reserves, unit costs and copper price are assumed to follow Ito processes.
To model cost and reserve uncertainty that does not arise with respect to price, the author, following Brennan
and Schwartz (1982) and Cox et al. (1985), subtracts a vector of asset-specific risk premia from the drifts
of the three processes and discounts expected future profit at the risk-free rate. The risk premia are obtained
from a capital asset pricing model (CAPM).

Moel and Tufano (2000) value the right to develop a copper deposit as a call option. They consider the
developed mine as a claim on a traded underlying asset, where the traded underlying is a set of forward con-
tracts on copper and zinc. The mine owner enters into forward contracts to sell the mine output in the future
at fixed prices, the price risk is thus eliminated and the relevant discount rate is the risk-free rate (Bren-
nan and Schwartz, 1985). To value the mine they use a Monte Carlo simulation model with a number of
simplifying assumptions: only investment timing flexibility is considered (operating flexibility is ignored),
the probability distribution of ore quantity is characterized by three discrete outcomes with a known prob-
ability of occurring, copper and zinc prices and their convenience yields follow a joint diffusion process
(Gibson and Schwartz, 1990; Schwartz, 1997). The authors generate 10,000 Monte Carlo simulations of
price and convenience yield. These values are used to generate the forward prices for copper and zinc in
future periods. These forward prices are then used to derive the cash flows in the three DCF scenarios. In
the second part of the article, they describe the bidding rules that bidders were required to follow. In partic-
ular, each bid was required to specify the minimum amount that the bidder would spend on developing the
property if he decided to go ahead. This is equivalent to specifying the exercise price of the development
option. Moel and Tufano show that this could induce the successful bidder to make uneconomic investments.

Cortazar et al. (2001) develop a real options model for valuing natural resource exploration investments
(copper) when there is joint price and geological- technical risk. Geological- technical risk factor can be
for example the amount of mineral in a mine. Continuous time Brownian motions are used to model both
uncertainty processes. In particular, the risk- neutral price is considered. And possible mine- types and their
probabilities of occurrence are defined. Each possible mine is valued as a function of the metal price using
the model by Brennan and Schwartz (1985). Finally using the conditional probabilities for each mine type
the expected mine value is obtained. The model is relatively simple as it collapses price and geological
technical uncertainty into a one- factor model. It is convenient because it allows for representing many
geological- technical factors by their joint effect on mine value. Both timing and operating flexibility are
valued.

Connell (2002) values an oil project allowing for price and volume uncertainties. Assuming that they are
independent both are modelled by a GBM. The reserve distribution changes during exploration. As more
seismic surveys are conducted and appraisal wells drilled, information acquired reduces uncertainty about
the reserves. Reserve estimates also change as new technological and technical information is acquired.
Two perpendicular binomial trees are used to approximate the joint bivariate lognormal distribution. Nodal
risk- neutral probabilities are calculated for each independent binomial tree (the reservoir volume is assumed
to have zero drift). Thus this model relies upon risk- neutral valuation. However, as the author observes,
oil reserves are not traded in the market. Therefore, the creation of a replicating portfolio, as suggested
in Trigeorgis (1996), is impossible. Connell (2002) assumes that cashflows are estimated as if they were
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traded in the market8.

Dickens and Lohrenz (1996) observe that careful consideration should be given to any strategic decision
based on option pricing valuations. They valued an oil and gas asset using the Black-Scholes option pricing
model and compared the results with traditional NPV valuations. The bottom line is that option valuation
analysis leads to accept decisions more often- whether the decision is correct or not. The authors suggest
that where the downside risk is limited by commaodity prices that cannot drop below zero, the downside un-
certainty of a mineral project is almost unlimited. Thus the option pricing techniques will tend to overvalue
mineral assets since they ignore a substantial and real aspect of downside risk.

Although not explicitly stated the CCA papers make the replicating- portfolio assumption. However, no
empirical evidence regarding the validity of the assumption is presented. A more realistic alternative, al-
though equivalent, is to assume that cashflows are estimated as if they were traded in the market.

5.5.1 Applications using dynamic programming or decision trees

Smith and McCardle (1998) apply the integrated procedure developed by Smith and Nau (1995), to value
and manage oil properties. In particular, they value termination flexibility. Production rates and oil prices
are both uncertain and follow a geometric Brownian motion. The problem is separated into an investment
problem that focuses exclusively on the project at hand, and a financing problem that focuses exclusively
on securities, specifically how many oil futures contracts and shares of the risk-free security to buy. The
decision maker’s problem is to choose projects and trade securities so as to maximize his expected util-
ity of consumption. The net cash flows are the sum of the cash flows generated by the oil property and
those generated by trading. In order to apply this approach Smith and McCardle place some restrictions
on the form of the decision maker’s utility function and, as we have seen, on the structure of the securities
market. In their case study three assumptions are made about the securities market: the security market is
arbitrage-free; the security market is partially complete®; the security market is efficient?. Using this valua-
tion procedure the decision maker’s probabilities for the market uncertainties or his time preferences are not
needed. The authors assume that there are two securities available: a risk- free security and an oil futures
contract. These two securities are sufficient to give partially complete markets: “any project whose payoffs
are a deterministic function of oil prices can be replicated by trading oil futures contracts and the risk- free
security. This implies the existence of a unique risk- neutral oil price process” (see Appendix D.2). No
assumptions are then needed about its drift rate. The basic idea is to use subjective beliefs and preferences
to determine project values conditioned on the occurrence of a particular market state and then use risk-
neutral valuation to evaluate these market- state contingent cash flows. Both uncertainties are allowed for as
in Connell (2002). However, Connell assumes the market is complete.

8Thisis called Market Asset Disclaimer. It is convenient because it is a disclaimer rather than an assumption. For more details

see the references in Connell (2002)
The uncertainties in the model can be categorized as either market or private uncertainties. Market uncertainties are risks that

can be perfectly hedged by trading securities. For example, if oil prices were the only uncertainty the oil project’s cash flbws could
be exactly replicated by buying and selling oil futures contracts and shares of the risk- free security (Smith and McCardle, 1998).
Private uncertainties are risks that cannot be perfectly hedged by trading. For example, there are no securities whose payoffs are

tied to the production rate of a specifi ¢ project
1Given the current security prices, the decision maker believes that future prices are independent of the current private informa-
tion
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Lund (1999) considers a stochastic dynamic programming model for project evaluation under uncertainty.
Both market risk and reservoir uncertainty are handled by the model, as well as different flexibility types.
The types of flexibility presented are: initiation, termination, start/stop, information and capacity flexibil-
ity (that is, change the production capacity of the production unit or change the production capacity of the
reservoir). A GBM is used to model oil price. Reservoir volume and well rate are assigned a discrete proba-
bility for high, average and low scenarios. The author considers the theoretical problems in extending option
pricing theory to incorporate market risk which can be hedged, and technical uncertainty which can not be
hedged. He argues that "without spanning assets it is not possible to replicate the uncertainty of project
perfectly in the market. A risk- free portfolio that contains the project can then not be obtained and there
is then no theory for determining the correct value of the discount rate”. Having said that, he chooses the
discount rate to use by saying that "the major oil companies can be conveniently conceived of as risk neutral,
and it is therefore reasonable to apply a risk free rate in the model™. Given the size of major oil companies,
it is effectively reasonable to consider them to be risk neutral, but this does not necessarily apply to small
companies such as junior mining companies. We will come back to this point in Section 7.4.

Loch and Bode-Greuel (2001) value a pharmaceutical R&D project using a decision tree as the major risks
of research projects are typically project specific and cannot be replicated in external markets. A decision
tree explicitly represents risks and decision points where flexibility is valuable. They recall that a decision
tree is equivalent to option pricing for risks that can be priced on the financial markets (if trading of se-
curities is explicitly included), and it can incorporate risks and flexibility that are not traded in financial
markets via an explicit utility representation. The pharmaceutical group needed to choose between three re-
search projects. The authors show that recognizing strategic options is the key to correctly evaluating risky
projects. Timing and abandonment flexibilities are considered. The company, as a whole, is supposed to be
risk neutral toward the projects, but individual managers are often supposed to be risk averse. Risk aversion
is included in the analysis using an exponential utility function in all decision nodes with risky payoffs.

Huchzermeier and Loch (2001) consider a dynamic programming approach to evaluate operating flexibility
in an R&D investment as it does not require asset replication which often does not apply in R&D projects,
because risks are typically uncorrelated with financial markets. A risk-neutral attitude toward the project is
assumed and discounting is done at the risk-free rate. The authors introduce the real option of improving the
project, that is * the capability of an operational midcourse correction during the execution of the project
7, This represents an additional source of value. In the model in addition to the market payoff, operational
variables such as budget, product performance, market performance requirement and schedule are subject
to uncertainty. Huchzermeier and Loch demonstrate that operational uncertainty may reduce the real option
value. “ If operational uncertainty is resolved before decisions are made and costs or revenues are incurred,
flexibility can be applied to protect the project against a downside. In this case more uncertainty enhances
the option value of managerial flexibility. However, if operational uncertainty is resolved after decisions are
made or reduces the probability that flexibility is useful, more variability reduces the ability to respond and
diminishes the option value of flexibility ”. They indicate when it is most important to delay commitments.

In the SDP articles the data for the 2 uncertainties, market and technical, is based on subjective assess-
ment.

To value the case study gold deposit we want to account for both price and reserves uncertainty. The SDP
approach allows to easily visualize and describe the project highlighting management flexibility in response
to price and reserves changes. However, as we have seen, it does not use market information and requires
an exogenous discount rate. For this we believe that the approach by Smith and Nau (1995) and Smith and



5.6. INFORMATION FLEXIBILITY 131

McCardle (1998) which combines option pricing and dynamic programming must be considered. We will
see that the approach is similar, under certain conditions, to that by Connell (2002) and to that by Cortazar
et al. (2001).

5.6 Information flexibility

The investment in additional information before the development of mine deposits or petroleum reserves is
an important alternative to the earlier development and the waiting for better market conditions. If there is
no technical uncertainty, the choice is reduced to immediate investment and the wait and see policy.

Kemna (1993) works on a timing option for developing a new lease area in which the company is obliged to
drill extra wells. He assumes extra wells do not provide additional information.

Chorn and Carr (1997) state that the purchase of information about a project has considerable value and
can be treated as purchasing an option on the project. As with options on equities™*, if the information leads
to the expectation of a positive investment outcome, the project should be funded. The authors consider
an offshore gas field development and show how option pricing techniques can be used to value informa-
tion surrounding a production capacity decision. Both gas price and recoverable volume uncertainties are
considered in this analysis. Chorn and Carr model the evolution of reserve estimates over time using a
stochastic process. The changes of the reserves due to additional information are modelled as a continuous
process. As Galli et al. (2001) observe, although it may be appropriate for a field in production, it is not
during the exploration phase when reserves change after each revision at discrete time intervals. In addition,
the authors suppose that more information leads to a reduction of the variance of the estimated reserves.
However, although more information leads to a better understanding of the reserves, it does not necessarily
reduce the variance.

Chorn and Croft (1998) also consider a petroleum application. The authors compare three scenarios each
with increasing levels of characterisation knowledge, and compare the value of those development ap-
proaches to one that represents perfect reservoir knowledge. They suppose that the uncertainty represented
by well productivity can be approximated with a discrete probability distribution whose standard deviation
decreases with increasing characterisation knowledge. The perfect knowledge is represented by all devel-
opment wells producing at the expected rate. NPV values are then calculated and compared for the different
scenarios. By increasing the knowledge level surrounding the reservoir, the uncertainty regarding well pro-
ductivity and the potential for poor investment outcomes are reduced. The evolution in the probabilities
should depend on the results of the new wells.

Lund (1999) considers the possibility to drill additional exploration wells. The author supposes the in-
formation received from the wells is binary and either indicates a low volume (the wells do not hit oil) or
a high volume (the wells hit oil). This information is used to update the prior prediction of the reservoir
volume. A priori the volume can take three values. Through Bayes’ theorem the posterior probability is then
computed. Information is found to have value in particular when the prior variance is large. Lund’s results
highlight that with a low degree of uncertainty on the volume it is optimal to accept the uncertainty without

UEquities are traditional stocks. If you own an equity, then you own stock in acompany, and you own part of that company. The
term stock is often used to include equities and other products which are traded in a manner similar to equities. The term equities
is used to make clear that real stocks are considered
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making any adaptations; for a higher uncertainty on the volume it is optimal to accept the uncertainty taking
actions to limit any undesirable consequences; as the variances increases it is optimal to try to reduce the
uncertainty.

Galli et al. (2001) value a satellite close to a large gas field in the North Sea. The development options
considered include the possibility to drill one or two extra wells before deciding to go into production. The
authors compute the value of the project conditional to the new information (for example, the height of the
reservoir at the new well): this information would be available to management at that time.

Martzoukos and Trigeorgis (2001) introduce a model of learning with path- dependency and investigate
the optimal timing of actions of information acquisition that result in reduction of uncertainty in order to
enhance model option value. They suppose that the underlying asset value, related to the price, can change
in unpredictable ways. And this change can be treated as a random variable with a known probability dis-
tribution. Learning is modeled as a jump of random size activated by the management, that is it is an event-
driven process.

Dias (2002) studies the selection of the best alternative for the investment in information with different
costs and different revelation powers, that is the expected percentage of variance reduction induced by the
new information for the expectation of the uncertain parameter. Whereas Martzoukos and Trigeorgis focus
on the timing of learning, Dias focuses on the distribution of expectations (jump size) after the investment
in information and the selection of the best project to investment in information. We suppose that the in-
vestment in information can be done only once at the start of the project, that is before development. The
information will help deciding which of the two projects is more interesting and this must be known at the
start of the project. We did not follow the approach by Dias as we are interested in extreme cases for addi-
tional information (P10 and P90) and not just on the expected value of additional information. The approach
we followed is more similar to that of Lund and Galli et al.. Different scenarios for the extra information
are defined, then geostatistical simulations or Bayesian prediction are used to update the reserves.

5.6.1 Measure of the value of information

The primary goal of an investment in information is to reduce the uncertainty on the parameters and to
reduce the risk of the decision if, as in our case, one of two projects has to be chosen. Note that additional
information does not necessarily imply a reduction of the parameter variance. For example, in the test case,
with the rich additional information the reserves are more variable. However, as we will see, the risk will be
reduced as, even though the uncertainty is larger the information is richer.

We need to define a loss function. Let & € © denote the unknown technical parameters, for example
the recoverable reserves. Let V(0,d) denote the expected NPV value of taking decision d € D for each
value of the reserves @ (that is the expected value is taken with respect to the gold price). A loss function is
defined on © x D. Itis convenient to define the following loss function

L(0,d) = max V(8,d) -V (8,d)
which measures the amount of loss by not taking the optimal decision for every @, that is it corresponds

to the cost of uncertainty when decision d is taken and @ is observed. It is a positive valued function as
maxgy V(0,d") > V(8,d). It quantifies the decision maker’s preferences. Let

R(d) = Ey[L(8,d)] = Ey[max V(0,d')] - Eg[V(0,d)]
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be the risk function. The optimal decision d* is taken to minimize the risk*2, that is d* = arg ming R(d).
The underlying assumptions are

(i) sup;V(0,d) < o0,VO € O;
(i) argsupy V (0, d) admits a unique solution V@ € ©.

Given a decision problem and a loss function L, it is possible to measure the value of an observation z in
terms of reduction of risk induced by this information. Suppose that additional information is obtained at
t = 0. The value of additional information z; is given by the difference

9(2s) = min R(d) — min R(d(zs)|zs), (5.4)

that is the difference between the optimal risk given the initial data and the optimal risk given the initial
data + additional information. Observe that g(zs) > 0. This can be compared to the cost of additional
information. The difference in (5.4) gives the value of statistical information of z, (Mouchart in Droesbeke
et al.; 2002). Note that if the data z yield the same optimal decision as the initial data, its value is zero.
This presupposes that if d = d(z,) then R(d) = R(d|zs). The expected value of this quantity with respect
to z4 can then be computed giving the expected value of statistical information, EVIS, of the experiment
considered.

The expected gain due to perfect information on @ is given by R(d*), which represents the expected cost
of uncertainty of the initial distribution. It is called the expected value of perfect information, EVIP. The
efficiency of an experiment can be measured by

EVIS
EVIP

which takes values in [0, 1]. The closer to 1 is this ratio, the higher is the value of information. An experi-
ment with a cost greater than EVIS will never be considered.

Note that in our case the time factor has to be taken into account: the start of the project must be de-
layed to obtain additional information and the cost (gain) of delaying the project must be included in the
model. We will consider the NPV values when optimal responses of management to negative NPV have
already been taken into account, that is the NPV with operating flexibility. Thus we have two different risk
functions and

g(zs) = mdinR(d) - mdin R (d(zs)|zs).- (5.5)

The available decisions d are to develop the large pit (U1) or the small pit (Uz). Note that even if the optimal
decision is the same with the new information as without it, the value of the information is not necessarily
zero because R # R; (i.e. it may still reduce the risk). The difference in (5.5) can be positive or negative.
We will call the value of information or information flexibility the reduction of risk induced by additional
information. It will be equal to zero if it is optimal to develop the project immediately or without extra
information. The expected value of (5.5), with respect to z,, can then be computed giving the expected
value of information.

The difference in expected project values with and without additional information, that is

Ey[Vs(0,d(25))] — Eg[V (8, d)],

2The minimisation of the expected loss is equivalent to the maximisation of V'
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gives a measure of the value of additional information. The two values of information differ as in (5.5) the
risk of taking the wrong decision is considered not insisting only on the value of the project. On the con-
trary, the difference in project values highlights the fact that additional information permits to better define
the project. The values of information will differ, but the conclusions, that is whether it is worthwhile or not
to get the additional data, do not differ. Both measures will be considered.

The dynamic real option model could include a penalty factor for the lack of information, which causes
sub-optimal development.

5.7 Application to the case study

The objective is to evaluate the mining project taking into consideration management flexibility to react to
changes in the metal price and in the reserves. Thus two stochastic variables are considered: the gold price
that is supposed to follow a GBM and the reserves that were obtained by Monte Carlo methods in Chapters
2 and 4. We suppose that the uncertainty regarding the reserves does not evolve over time. Additional
drilling is obtained at the start of the project and the reserves distribution is then updated. Once the reserves
distribution is fixed the approach is equivalent to the one used by Cortazar et al. (2001). If the uncertainty
on the reserves was assumed to evolve with time the approach by Connell (2002) could be used. However,
the author assumes that this uncertainty follows a GBM. As Connell observes it is a simplifying hypothesis:
the variance of the GBM increases with time! An alternative model should be considered.

The exploration of the mine is supposed over. The economic assessment is made before tax.

In particular, as the exploration phase is over, additional information to reduce the uncertainty surround-
ing the reserves could be obtained either by additional drilling or by production. For simplicity and as we
are interested in the value of extra holes, we suppose that no information is obtained from the production
phase. To value information flexibility, that is to decide if it is worthwhile to carry out new drilling we must
be able to quantify the value of this new information. In Chapter 2 simulations were carried out to define
different possible scenarios. The additional information was supposed to be of type rich, average or poor. In
Chapters 2 and 4 conditional simulations of the reserves were computed either with the plug- in or Bayesian
approach. This gives possible mine- types and their probabilities of occurrence. If additional information is
obtained these probabilities may be modified. In Chapters 2 and 4 conditional simulations of the reserves
given additional drilling were computed either with the plug- in or Bayesian approach. Additional informa-
tion may be obtained at the start of the project. Once the additional information is obtained, the uncertainty
regarding the reserves does not evolve over time. Finally using the probabilities for each mine- type the
expected mine value is obtained. The risk- neutral price process is used and combined with the subjective
probabilities for the technical or private uncertainties.

Stochastic dynamic programming is considered to value the project. The model is an optimisation model
consisting of discrete stages, where a sequential decision is made in a stochastic environment. The operator
wants to maximise the expected net present value of the development project, and the model provides de-
cision support by identifying the optimal development strategy. As we have seen SDP can be equivalent to
CCA when the same hypotheses regarding the discounting are made.
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5.7.1 The model

The model is a Markov decision process: the transition probability from the current state of the process to
the next state only depends upon the current state. A Markov decision process is an optimisation model
described by its state space, the stages, the action space, the transition probabilities and the reward function.

The state identifies the status of the system at each stage. At each stage the system considered is sub-
ject to control. The actions taken at one stage become effective at the next stage. The length of the decision
epoch represents a time lag for the consequence of an action to materialise. All costs and incomes are related
to the start of the decision epochs and are discounted at the risk-free rate. The transition from one state to
the next is determined by the action taken and the transition probabilities. By taking an action a reward is
accrued, and the objective is to optimise the discounted sum of all rewards. The rewards can be both positive
and negative, corresponding to sales income and production costs.

Once the mine life is chosen, the problem has a finite horizon. Seven years is assumed to be the mine
life. In particular, if the large pit is developed the life time is of 7 years, but if only the small pit is devel-
oped the life time is of 5 years. The orebody must be exploited within 8 years. Eight decision epochs are
considered.

We now describe the state variables, and in particular the GBM, and its discrete approximation, for the
price, the stages and decision variables, the transition probabilities and the equation of optimality.

State variables

The state variables that identify the status of the development project at each stage, are the recoverable re-
serves, the production per year, the gold price and the costs. They capture all relevant information available
to the operator as background for his decisions.

Reserves. The reserves are defined by the recovered average grade and the tonnage of ore. The Bayesian re-
sults are used. The distribution and the updated distribution of the recovered average grade and the tonnage
of ore were given in the previous chapter in Tables 4.2 and 4.3, respectively. Let B denote the reserves and
W the tonnage of waste.

Blocks are exploited without any order, that is the selection of blocks above cutoff is free. It would have
been more interesting or realistic to suppose that high grade blocks are exploited first or that blocks are
exploited in order to reach high grade blocks first.

Production. For simplicity we assume that the production of ore per year is constant. It equals the total
guantity of ore divided by the mine life.

Gold price. Two commonly assumed stochastic price processes are
- geometric Brownian motion and
- mean reverting.

Geometric Brownian motion is the most widely used model of price behavior. This model gives prices that
fluctuate randomly around an exponential trend. Mean reversion is the term used to describe the fact that
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commodity prices in general tend to oscillate around an estimated long- run, or mean, price'3. Supply and
demand responses to deviations from the long run price provide the mechanism by which mean reversion is
likely to continue*. This is the case for basic commodities such as copper and oil (Slade, 2000; McCarthy
and Monkhouse, 2003) but not for gold. For this we selected the geometric Brownian motion. It usually
requires many years of data to determine with any degree of confidence whether a variable is indeed mean
reverting. According to Dias (1997), it is difficult to statistically distinguish between a random walk and
a mean-reverting process for a price horizon of up to 30 years of data. As both the geometric Brownian
motion and the mean reverting process are acceptable it would be of interest to see how the choice of the
stochastic process affects the value of flexibility. However, it must be noted that for 5 or 7 years, that is the
time life of the small and large pit, respectively, the monthly price series (Figure 5.6) cannot be said to be
stationary. This can be seen in Figure 5.7 which presents the variogram for the monthly price series.

We assume that metal is sold at the spot price. This is modelled as a geometric Brownian motion
dSt = OtStdt + aStdzt

where dz; is the increment of a standard Wiener process (of mean 0 and variance t), « is the expected return
and o is the standard deviation of the instantaneous, annualised rate of return. The price S; is made of
two components. First, there is an exponential trend that grows with a «% rate. Second, there are random
fluctuations around this trend. These variations increase over time because of higher prices. We can observe
that E[dS;] = adt and Var[dS;] = o2S2dt, that is S, is not stationary. Using Ito’s Lemma the explicit
formula for S is

St — SO e(a—02/2)t+azt’

where Sy is assumed known (see Appendix D for more details). As the geometric Brownian motion is a
continuous time process, its continuous time formulation must be transformed into a discrete formulation,
before it can be applied in the SDP model.

Approximation of the geometric Brownian motion. We use the binomial model first proposed by Cox,
Ross and Rubinstein (1979) to approximate the geometric Brownian model. Let S be the initial gold price.
The assumptions of the binomial model are

(AL) the price over each period of time At can either move up to «.S or go down to dS with 0 < d < w.

(A2) The probability of a movement up or down is p and 1 — p, respectively (Figure 5.1).

(A3) The expected return is
E[St-i—At] = St eaAt. (56)

13| n other words, price increases tend to be followed by price declines as the price of the commodity revertstoitslong- run level.
Thisreversion to along- run priceis observed in historical price data and, based on futures prices, it is expected to continue in the

future
The key question for most commodities is the strength of mean reversion (see Appendix D for more details on mean reverting

processes). The signifi cance of mean reversion in commodity pricesisthat it implies a saturation of price risk. If the commodity
price risk is a signifi cant contributing factor to a company’s systematic risk, the discount rate for the project should decline over
time. But at lower levels of mean reversion, that is the expected deviations from the mean become greater (in the extreme case it
becomes a GBM), the decline in the discount rate over time will be less pronounced
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The parameters u, d and p are determined so that the mean and variance of the discrete binomial model are
consistent in the limit with their continuous counterparts (Trigeorgis, 1996)°. In addition, an arbitrary third
equation is imposed

ud=1 (5.8)

which reflects a symmetry between upward and downward movement of the price. The parameters « and d
are given by (up to terms of higher order)

1
VAL and d=— =e o VA!
u

u=e’

and p is
eaAt —d
P= u—d
The symmetry of (5.8) is apparent in that after two time steps the value S repeats (Figure 5.13). It can also
be noted that the binomial approach defined by (A1) reflects exponential growth or decay of S. In addition
when using this model it is implicitly assumed that » and d are constant during the period T'.

(5.9)

One objection to this discrete binomial valuation approach is that in reality prices may take on more than
just two possible values at the end of a given period, since actual trading in the market takes place almost
continuously. However the length of a period can be chosen to be arbitrarily small by successive subdivi-
sions. And as the time interval, At, approaches zero, the approximation approaches the geometric Brownian
motion.

15A consequence of assumptions (A1) and (A2) is
E[Siyat] =p Siu+ (1 —p) Sid

Equating with (5.6) gives

e =pu+(1-p)d
and
_eaAt_d
P=—r—a

To be avalid model of probability, 0 < p < 1 must hold. Thusd < e*?t < u.
From the continuous model we have
E[S?, a4) = S7 2ot AL, (57
Equations (5.6) and (5.7) combine to
Va[Sesad] = 82 €2t (72 — 1),

The discrete model satisfi es

Var[Siyat] = E[StQ+At] - (E[St+At])2
= p(Swu)’ + (1 —p)(Sid)® — 87 (pu+ (1 — p)d)°.

Equating variances leads to
2

eQaAt (60' At 1) _ pu2 + (1 _p)d2 _ (eaAt)2,

that is

2
Q2o Attt AL _ pu2 ra —p)d2
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The size of the binomial model is reduced by using a recombining tree, that is an up movement followed by
a down movement leads to the same price as a down movement followed by an up movement (for u d = 1).
At expiration time T' = N At, the price St can only take N + 1 discrete values

Sou¥ I, j=0,1,....,N

with probability
C(Na])pN_J(l_p)Ja jZO,].,...,N

where C(N, j) indicates the combinations of size j from N. The random variable St follows a binomial
distribution. This considerably reduces the number of nodes on the tree. There are only N (N + 1)/2 nodes
in this tree, whereas there are 2V — 1 nodes in the non recombining tree.

This approximation should be applied with some care since one of the probabilities could become nega-
tive for some combinations of o, o and At, that is if |av/At| > o. For practical purposes the possibility of
negative probabilities is not regarded as a major problem, since the ratio of the drift rate to the volatility rate
is normally small.

uS
P
S
1=p>~ys
|
St St+At

Figure 5.1: Binomial price process: either the price will go to .S with probability p or it will go to d.S with probability
(1-p)

Costs. Costs consists of fixed operating costs which are independent of the production level and of variable
costs which are associated with extracting and processing ore and with extracting waste. These latter costs
are given per produced ounce and per extracted ton of waste. The cutoff grade z. is chosen so that the quan-
tity of metal recovered from a block of grade z. pays for its marginal mining and processing costs. We add
a variable cost to extract waste while letting z. include extraction, marginal mining and processing costs for
blocks above cutoff. In addition, at the start of the project an initial investment must be made. We include
this investment in the fixed operating costs. Costs are supposed known.

Decision epochs and decision variables

The development project is seen as a sequential problem with a finite number of phases. The project is di-
vided into stages to reflect the sequential pattern of decisions and the uncertainty characteristics at different
levels. Decisions are made annually?®.

®Thisis different from the time step of 1 month that will be used to approximate the GBM in SDP
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The flexibility types considered are: initiation, termination and information. The available initial decisions
are then

abandon,

develop only the small pit,

develop the large pit immediately,

wait one year before taking a decision,

wait one year and carry out additional drilling before taking a decision,

start to develop the large pit but with the possibility to go back to the small pit.
Once the project is started, the options available to management are

- abandon,

- continue the development.

We are particularly interested in the value of additional drilling. It will be given by the optimal value of the
entire tree with the possibility of drilling the extra holes minus the optimal value of the entire tree without
the possibility to drill the extra holes. We do not consider capacity flexibility. We define a constant produc-
tion rate. We do not take into consideration the start/stop option either. It is questionable whether a mine
can be stopped and started to follow commaodity price fluctuations. Exceptions are, as Armstrong and Galli
(1997) note, low cost dredging operations and low cost quarries and mines extracting industrial minerals.
But capital intensive open pits and most underground mines are not flexible in stopping and starting opera-
tions.

The decision variables describe the operator’s possible reactions to a changing environment. The action
space at stage n consists of the following decision variables

Ii(n) = 1 if additional information is obtained in period n Vi
0 else
1 if ore is produced in period n

Ip(n) = { 0 else P P vn

Ta(n) = { (1) g;ze project is abandoned in period n Vi

and the action vector, a(n), is then
a(n) = {Ir(n), Ir(n), La(n)}.

One additional variable must be defined

5, = { 0 if the project is abandoned Vi

1 else

This defines the status of the development project at stage n.
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Transition probabilities

The transition probabilities of going to one state to another are

ps(p, q): element (p, q) in the transition probability matrix for the gold price between two stages, that
is the probability that price at stage n + 1 is equal to ¢ given that price at stage n is p;

P2, (1, k): element ({, k) in the transition probability matrix for the additional information between two
stages, that is the probability that additional information z; at stage n + 1 is k given that information
z at stage m is [. In particular, we suppose that the additional information is obtained at the start of the
project (¢ = 0). We then need to define

p(z; = rich|z)
P, = | p(zr = average|z)
p(z; = poor|z)

that is the probability of obtaining the additional information z; given the initial data z. The distri-
bution of the reserves must be updated given the new information. If no additional information is
obtained p,, = 1.

Note that the transition probability for the additional information depends on the action taken by the operator.
Finally the total transition probability, p;;(a,), between two stages is simply given by

- fort = 0: pij(a0) = ps(p, q) - P2y
- fort > 0: pZ](an) :p5(p7 q)

We will assume that

0.25 if z; = rich
p.; = plzr|z) = ¢ 0.50 if z; = average
0.25 if z; = poor

which is an approximation as the rich, average and poor information were the P90, P50 and P10 scenarios,
respectively. As we could not work with the 100 simulated data sets, we chose 3 to represent a rich, an
average and a poor scenario and we supposed they represented respectively 25 %, 50 % and 25 % of the
possible extra data sets.

The fundamental equation of optimality

Let the parameters used in the model be
T time horizon (in years) for the development project,
Sy initial gold price,
r risk-free rate,
z. cutoff grade,

V C variable operating costs per unit of waste extracted,
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FC fixed operating costs,
AC abandonment costs (early abandonment),
IC cost of additional information.

The fundamental equation of optimality is then

1
(I+7)

an

i) = { Balison) + BVt lansi)

. 1 . .
= IICIL%X Rn(z,an) —I—mpr(an) Vn+1(j) VZ,’I’L: 1,...,N— 1.
J

where
R, (i, ay) is the immediate return from taking action a,, in state ¢ at stage n,
V. (@) is the maximum expected value in state  at stage n.

For the final stage (n = T') we have
Vr(i) = max {Rr(i,ar)}

The immediate return function, R, is the net income at the present stage for a given state and action. The
return function for an arbitrary stage n and state is

Ry (ap) = 0n[Ip(n) By Sy — Ip(n) W, - VC — It(n) IC — I14(n) AC]

where B, and W,, denote the annual reserves and waste, respectively. Fixed costs are assigned at the start
of the project. If the project is delayed half of the fixed costs will be assigned at ¢ = 0 and half at ¢ = 1.
The cost of additional drilling is assigned at ¢ = 0. That is I7(n) can be equal to 1 just at ¢ = 0.

Now, to make the model consistent, decisions taken at a stage must be compatible with previous decisions
and with the realised stochastic values. For this the following constraint is imposed

-0p=1- Z?;ll I4(5), n=1,...,T (if the project was abandoned in a previous period, the project
status is zero in the present and all subsequent periods).

This constraint means that once abandoned the project can not be started again.

5.7.2 Financial parameters

In this section we define the parameters for the gold price process, the riskfree rate and the constants used
in the model. Then we present the results for the development of just the lower part of the large pit as its
reserves are highly uncertain. The initiation and termination options are evaluated. The information flexi-
bility is considered and its value is highlighted. Finally, in Section 7.4, we compare the results for the small
pit and the large one, and determine the optimal strategy.

Gold price parameters. The present price of gold, Sy, is assumed to be $ 320 per ounce. It was the current
price of gold when we started this project as it can be seen in Figure 5.8. As the price is modelled using a
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geometric Brownian motion we require estimates of the drift rate and volatility. These are estimated from
historical data, via the logs. Over a finite time interval At, the change in the logarithm of S is normally
distributed” with mean (o — $02) At and variance o At. Let S; denote the gold price at time ; and suppose
we have n + 1 observations. Given the data series

Ui = -Fi-f-l - F’L = log(SH-l) - log(sl)7 1= 17 EEEN L

its sample mean, U, and variance, V2, are computed. These statistics are estimates of (a — %aQ)At and
o2 At, respectively. Thus
w and 6 = L

At VAL
It is not easy to choose an appropriate value for n. More data lead to more accuracy; but o changes over
time and data that are too old may not be relevant for predicting the future. This is confirmed by Figure 5.6
which shows the monthly average price of gold in US dollars per ounce from 1968 to 2002. The question is

to choose a period that is long enough to be statistically meaningful but short enough to be relevant.

o=

Hull (1993) suggests to use closing prices from data over the most recent 90 to 180 trading days*®. Figure
5.8 shows daily gold prices in US dollars per ounce for the period from 2001 to 2002. The last 180 data
were used to estimate these parameters. This gave o = 0.11 and o = 12.52%. Figure 5.9 shows the daily
series of gold price in bold type together with the estimated trend. In addition 10 simulated series are shown
(dotted lines). Figure 5.10 presents the estimated trend for the same model for 10 years. As can be seen the
drift rate is unrealistically high.

As the minimum life time of the deposit is 5 years, we estimated the model parameters using the data
of the last 5 years of the monthly series. The parameters are « = 0.02 and ¢ = 11.41%. Figure
5.11 presents the estimated trend and 10 realisations of this process. Figure 5.12 presents the estimated
trend for the same model for 10 years and 10 realisations of this process. Is it reasonable to take a con-
stant volatility of 11.41%? The implied volatility'® of gold was around 13 % at the end of 2001 (source:
http://www.pmpublishing.com/volatility/gc.html).

For the binomial model to give a good approximation the period Atz must be chosen sufficiently small.
Comparing Figures 5.13 and 5.14 the importance of the choice of At in the approximation emerges. By
definition, the mean of .S, obtained with a discrete approximation, for any At, is the same as the mean of
the GBM. On the contrary, as it can be seen in Table 5.2, the standard deviations differ. Increasingly smaller

Y et F(S) = log(S). Since dF/dt = 0, 0F/8S = 1/S and 8 F/3S* = —1/S?, we have using Ito’s Lemma (see Equation
D.4)

1 1

= adt+odz— %ozdt= (a — 302)dt+odz

(ds)?

BT here are 250 trading days per year
Implied volatility is the current volatility of a stock, as estimated by its option price. If the price of an option is known, then

the implied volatility can be deduced from it. Because there are many options on a stock, each option can have a different implied
volatility. It isthen necessary to cal cul ate arepresentative implied volatility for astock. Thisisan average of theimplied volatilities
of the different options on that stock (usually at the money optionsfor the next few expirations are used). Note that implied volatility
isthe only not directly observable parameter in option pricing



5.7. APPLICATION TO THE CASE STUDY 143

values of At were considered and the respective parameters and project values were compared. We finally
set At equal to 1/12 year. This gives u = 1.03 and p = 0.51.

1/4 year | 1/12 year | 1/144 year | GBM
T = 1year 36.85 36.93 36.96 37.00
T =2years | 52.82 52.92 52.97 53.02
T =3 years | 65.56 65.68 65.74 65.81

Table 5.2: Standard deviations of the price for the binomial approximation for different At with So = $320, o =
0.02, 0 = 11.41%. In bold type the theoretical values of the GBM are given. It is obvious that as At goes to 0 the
approximation gets better

The risk- free rate. The risk free rate is measured by the 6-month LIBOR (London Interbank Offer Rate)
which has fluctuated over the last 10 years between 1 % and 7 % (Figure 5.15). In the model an annual rate
of return of 2 % is used. It was the value of the 6-month LIBOR when we started this project.

Note that using the risk- neutral valuation we do not need to specify the drift rate « for the gold price
process. This is replaced by 2°. This gives the risk- neutral probability p = 0.51 (see Appendix D.2).

Parameter values. The parameters used in the model are

T = 8 years,

So = $320 per ounce of gold,

r = 0.02,

z. = 1 git,

VCy =$5.5and VCy = $4.5 per ton,
FC = $100 million,

AC = $5 million,

IC = $10 million.

5.7.3 Results for the lower pit

Two years is assumed to be the life of the lower pit, that is the lower part of the large pit. We assume that
the pit must be developed in at maximum 3 years. For such a short period of time the uncertainty on the
price is small (Figure 5.12). This allows to highlight the importance of accounting for the uncertainty on the
reserves.

First the uncertainty on gold price is considered while the reserves are assumed known, that is they are
fixed at their expected value. Then both the price and reserves are supposed unknown.

D)n particular it isreplaced by r — 8, where § isthe convenience yield for gold. The convenience yield for gold is approximately
zero (Casassus and Dufresne, 2001)
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Uncertainty on gold prices

The only source of operating flexibility included in the model is the option to abandon the project (termina-
tion flexibility). The initial decisions we defined are

- abandon the project,
- develop the pit immediately,
- wait for one year (to resolve price uncertainty) before to develop the pit.

Different versions of the model have been considered to illustrate the importance of including flexibility in
the evaluation of the project. The first one is a deterministic version of the model: the gold price is replaced
by its initial value and is considered constant. In the second version of the model the stochastic represen-
tation of the price is considered, but no flexibility is included. The deterministic model is expected to give
a lower project value than the stochastic model as the drift rate is positive. The third version of the model
allows for flexibility, that is taking actions, during the project. It is expected to give an equal or higher value
than the stochastic model. The results obtained are presented in Table 5.3. The project is evaluated for the
different initial decisions. Note that if the project is abandoned at ¢ = 0, its value is 0.

The optimal initial decision is develop the pit immediately for the deterministic model. Whereas the op-
timal initial decision is wait for the stochastic models. Thus the deterministic model leads to a non optimal
initial decision. If the initial decision is based on the deterministic model, we incurr in an expected loss of §
7 (182 - 175) million. The option to wait one year has value: $ 7 million. This corresponds to an increase in
project value of 4.00 %. Comparing the stochastic model with no flexibility and the model with flexibility,
it can be noted that operating (termination) flexibility has in this case no value.

Project evaluation model \ Expected value (NPV)
Initial decision: start to develop the pit immediately
deterministic model (Sy) 169
stochastic model: no flexibility 175
stochastic model: flexibility 175
Initial decision: wait
deterministic model (Sp) 164
stochastic model: no flexibility 182
stochastic model: flexibility 182

Table 5.3: Expected value of the project in $ million (r = 0.02, 0 = 11.41%)

These results can be compared to the results presented in Davis (1996) who studied the flexibility values
found in the literature for mineral and oil projects: operating flexibility has little or no value, while initiation
flexibility can amount to a significant increase in the NPV.

Uncertainty on gold prices and reserves

In addition to the previous initial decisions there is the possibility to
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- wait for one year to carry out additional drilling before to develop the pit.

The first decision node of the tree is presented in Figure 5.2. As it was said previously, once the project is
started every year we can decide whether to continue the development or abandon the project. If we wait 1
year at ¢ = 2 we can decide whether to start the project or abandon it. This second decision node is also
presented in Figure 5.2.

abandon the project
q
abandon the project
<
start to develop the pit immediately
continue the development
abandon the project
<
wait one year passively
start to develop the pit
abandon the project
q
wait one year to obtain extradrilling
start to develop the pit

Figure 5.2: First and second decision nodes

The value of information will be given by the optimal value of the entire tree with the possibility of drilling
the extra holes minus the optimal value of the entire tree without the possibility to drill the extra holes.

As previously, different versions of the model have been considered to illustrate the importance of including
flexibility in the evaluation of the project. The first one is the deterministic version of the model and the
uncertain variables are replaced by their expected value. In the second version of the model the stochastic
representation of the two uncertain variables is considered, but no flexibility is included. The third version of
the model allows for flexibility, that is taking actions, during the project but it does not consider the possibil-
ity of getting new information. And finally version four is defined so that management has the flexibility to
make adjustments as the project proceeds including the possibility to obtain more information. The results
obtained are presented in Tables 5.4 and 5.5.

As it can be seen in Table 5.4 the deterministic model gives a lower project value, as we expected, than the
stochastic model. Comparing the initial decisions abandon the project, start to develop the pit immediately
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Project evaluation model

| Expected value (NPV)

Initial decision: start to develop the pit immediately

deterministic model (Sp) 169
deterministic model (E[S;]) 175
stochastic model: no flexibility 180
stochastic model: flexibility 185

Initial decision: wait passively

deterministic model (Sp) 164
deterministic model (E[S;]) 181
stochastic model: no flexibility 187
stochastic model: flexibility 192

Table 5.4: Expected value of the project in $ million for the initial decisions start to develop the pit immediately and
wait passively (r = 0.02, o = 11.41%)

and wait for the 3 models, the optimal initial decision is start to develop the pit immediately for the determin-
istic model with Sy, that is the current gold price. Whereas it is wait for the deterministic model with E[S;]
and the two stochastic models. Initiation flexibility has value: $ 7 (192-185) million. This corresponds to
an increase in project value of 3.78 %. By including flexibility- without the possibility to get additional
information- the expected present value is higher and thus the value of flexibility is in this case greater than
zero. The value of operating flexibility (termination flexibility) is $ 5 (192-187) million. This corresponds
to an increase in project value of 2.67%.

Introducing the uncertainty on the reserves increases the value of flexibility. Note that as the gold price
has a positive drift it is the uncertainty on the reserves that mostly gives value to flexibility.

Project evaluation model

| Expected value (NPV)

Initial decision: wait and get additional information

Additional information: rich
stochastic model: no flexibility 328
stochastic model: flexibility 328
Additional information: average
stochastic model: no flexibility 222
stochastic model: flexibility 224

Additional information: poor

stochastic model: no flexibility

126

stochastic model: flexibility

133

Table 5.5: Expected value of the project in $ million for the initial decision wait 1 year and get additional information

(r = 0.02,0 = 11.41%)
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Additional information

Table 5.5 presents the value of the project given additional information. This value depends on whether the
new information turns out to be richer, average or poorer than expected. The value of operational flexibility
is the highest for the poor scenario as the probability of poor reserves is in this case the highest (Figure 4.19).
Itis § 7 (133-126) million, that is an increase in project value of 5.56 %. It should be noted that although
the additional information reveals that the project is poorer than anticipated, it is still worthwhile to develop
the pit because the expected value of this project is greater than 0. Thus it remains optimal to develop the
deposit. But is it better to develop it immediately or is it better to wait to get additional information on the
reserves and then develop it? It would be worthwhile to obtain this information if it helps better defining the
project and if it changes, for example, the optimal initial decision leading it to abandon the project. In our
case it is always optimal to develop the deposit.

Now, suppose the poor additional information is obtained. The expected value of the project would then
be $ 133 million, whereas the expected value of the project without this information is $ 192 million.
Knowing before developing the pit that the reserves are poor is perhaps better than finding it out when the
development of the deposit has started. Figure 5.16 compares the histograms of the project values with flex-
ibility given the initial data and given the initial data + poor information. In this last case, the uncertainty
on the project value is smaller. The probability of a high value (> $ 400 million) is zero, whereas the proba-
bility of a low project value is higher. This information would allow management to better define the project.

Suppose that the rich, average and poor scenarios have a probability of occurring of 0.25, 0.50 and 0.25,
respectively. The expected NPV value with respect to the additional information is then: $ 0.25 x 328 +
0.5 x 224 + 0.25 x 133 = 227.25 million, which is higher than the expected NPV value without additional
information. The expected value of additional information is $ 35.25 million, that is additional information
increases the project value of 18.36 %. Thus it is worthwhile to obtain it. The optimal development strategy
is then wait, obtain additional information and then develop the pit.

An alternative approach to value information could be to consider the changes in flexibility due to extra
information. Observe that the value of flexibility can be, at one extreme, zero if the additional information
is rich and, at the other, it can be quite high if the additional information is poor. In these cases it seems
worthwhile to obtain the additional data. To compute the value of additional information in helping decide
whether a project must be carried on or not, we consider the expected change in flexibility values. This
implies that an information is worthwhile to be obtained if it greatly increases or diminishes the flexibil-
ity value. Note that the approach presented in Section 6.6 cannot be considered when deciding whether a
project must be carried on or not. The risk value is zero as operating flexibility eliminates the possibility of
a negative NPV.

The value of flexibility is $ 5 million given the initial data and it is $ 0, 2 and 7 million given the rich,
average and poor scenarios, respectively. The expected value of the change in flexibility is $ 5 — 0.25 x 0 —
0.5 x 2 —0.25 x 7 = 2.25 million. It is reduced by 45 %. Thus it is worthwhile to wait and get additional
information.

Considering the changes in flexibility is not a valid approach to measure the value of information, because
it does not take into account the value of the project and the fact that additional information helps better
defining the project. In this case it overestimates the value of information.
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Note that only the expected values are considered and not the dispersion of the project values.

Another potential gain from additional information that we did not take in consideration is that it helps
in exploiting optimally the reserves. As Dias (2002) observes, this is particularly important if the additional
information turns out to be rich. For this a penalty factor could have been introduced in the model.

Sensitivity to the initial gold price

A sensitivity study was carried out to measure the impact of the initial gold price on the project value and
the value of flexibility. The initial price is altered over the range from $ 100 to 320. Figure 5.17 shows the
value of initiation flexibility. The optimal initial decision is wait and thus the value of initiation flexibility is
greater than zero. It increases as the price increases.

Figure 5.18 shows the value of operating flexibility. The dashed line shows that for gold prices below $
220, it is not worthwhile to start the project without flexibility. The solid line shows that for the project
with flexibility the threshold gold price drops to $ 125. As expected as the gold price rises, the difference
between the lines decreases, showing that the value of flexibility decreases. However, the option to run the
mine would then be strongly-in-the money. So for low prices the termination flexibility is of high value; on
the contrary for high gold prices it is of little value.

Figure 5.19 presents the expected value of additional information for initial gold prices varying in the in-
terval from $ 100 to 400. For low initial prices (up to $ 175), information flexibility has no or little value.
For higher prices the value of information flexibility increases. As the optimal decision among start to de-
velop the pit immediately and wait passively is always wait passively, it is optimal to wait and get additional
information.

Uncertainty on gold prices, on reserves and on costs

So far costs were supposed known. However, sometimes costs are more uncertain than prices and payoffs
(Slade, 2000). One care point in mining is the unpredictable cost of obtaining environmental approval. Ex-
amples in other industries include nuclear power plants for which construction costs are hard to predict due
to engineering and regulatory uncertainties, the development of a newline of aircraft, urban construction
projects, and many R&D projects, such as the development of a new drug by a pharmaceutical company
(Dixit and Pindyck, 1994).

For projects that take time to complete and involve a sequential investment problem, Dixit and Pindyck
describe two different kinds of cost uncertainty: technical uncertainty and input cost uncertainty. The first
relates to the physical difficulty of completing the project: how much time, effort and materials will be re-
quired? Technical uncertainty can be resolved only by undertaking the project. The second arises when the
prices of labor, land and materials needed to build a project fluctuate unpredictably, or when unpredictable
changes in government regulations change the cost of construction. Prices and regulations change regardless
of whether or not the firm is investing. These two types of uncertainty affect the investment decision differ-
ently and it could be important to incorporate both in the analysis (for more details see Dixit and Pindyck,
1994, p. 346). Here we do not differenciate these two kinds of costs. The objective is to introduce some
uncertainty on the costs into the model and check the value of flexibility.

For this we assume that gold prices and costs are uncorrelated. Both fixed and variable costs are assumed
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to follow geometric Brownian motions with zero drift and 10 % volatility. For simplicity, we assume that
these two variables are perfectly correlated. Thus two perpendicular binomial trees are used to approximate
the joint bivariate lognormal distribution. The time step, At, is still equal to 1/12 year. The combination of
these two processes is represented in Figure 5.3.

1 u150 P2 ’U,QFCO, ’ILQVC()

So FCO, VCy
=P~ 4.5, 1=p2™ 4,7 Cy, &V Cy

gold price increases by u; fi xed and variable costsincrease by w» with
with probability p; or de- probability p» or decrease by ds with1—p,
creasesby d; with1 — py

N2
f(u1So, ua FCy,uVCy)

puu
Dud f(u180,d2FCy, d2V Co)

f(507 FCOa VCO) du
dd f(d1So, ue F'Cy, u2VCy)

f(d1So,d2FCy,d2V Cp)

function of gold price, fi xed and variable costs

Figure 5.3: One period value tree

Nodal probabilities are calculated as in Cox, Ross and Rubinstein (1979) for each independent binomial tree
and are then multiplied together according to probability rules, that is

Puuw = DP1P2,

pua = p1(1—p2),

paw = (1—p1)pa,

paa = (1—p1)(1—p2)

where p1/ (1 — p1) is the risk- neutral probability of an up/ (down) movement for the price and po/ (1 — p2)
is the risk- neutral probability of an up/ (down) movement for costs. Note that as a zero drift is taken for
costs there is no risk- neutral adjustment for costs.
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The results are presented in Table 5.6. The uncertainty on the fixed costs does not have a marked im-
pact as the fixed costs are assigned at the start of the project (i.e. either att = 0 or at £ = 1 year). The
optimal initial decision among: start to develop the pit immediately, wait and abandon is wait. Initiation
flexibility has value: $ 5 (190-185) million. This corresponds to an increase in project value of 2.70 %. The
value of operating flexibility is $ 6 (190-184) million that is 3.26 % of project value.

Project evaluation model \ Expected value (NPV)
Initial decision: start to develop the pit immediately
stochastic model: no flexibility 180
stochastic model: flexibility 185
Initial decision: wait passively
stochastic model: no flexibility 184
stochastic model: flexibility 190
Initial decision: wait and get additional information
stochastic model: flexibility (rich) 324
stochastic model: flexibility (average) 221
stochastic model: flexibility (poor) 130

Table 5.6: Expected value of the project in $ million with unknown costs modelled as GBM’s with zero drift and
volatility of 10 % (r = 0.02, 0 = 11.41%)

The expected value of additional information is now $ 34 million, that is an increase in project value of
17.89%. We can compare these values with the ones in Tables 5.4 and 5.5. Note that the project values are
equal or smaller than the values obtained with known costs. This is due to the fact that as time increases
the GBM qgives a higher probability to high costs than to low costs. The uncertainty on costs reduces the
value of initiation flexibility. The introduction of the uncertainty on costs increases the value of operating
flexibility. Because the project is more uncertain, flexibility has a higher value. The value of information is
slightly smaller than the expected value of information with known costs.

Taking into account the uncertainty on costs increases, although just slightly in this case, the value of flexi-
bility and modifies the expected NPV. As we do not have any data to define the random process for costs we
will suppose them known. Moreover, the uncertainty on costs makes the hypothesis of a replicating portfolio
dubious. Costs, as well as development strategy, depend on the geological uniqueness of the reserve. In this
case a SDP approach should be used and an adjusted discount rate defined.

5.7.4 Value of the four development options

In this section we compare the small pit and the large one, and determine the optimal project and the optimal
strategy. As we have seen previously the four development options available to management are

1. develop the small pit;
2. develop the large pit;

3. carry out additional drilling and then choose between the large or small pit;
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4. start to develop the large pit with the possibility to revert to the small pit.

At first we evaluate the project defined by the development options 1, 2 and 3. Then we will evaluate the
entire project defined by the four options and finally value additional drilling.

The first node of the decision tree is presented in Figure 5.4.

abandon the project

develop the small pit immediately

develop the large pit immediately

wait one year passively

wait one year to obtain extradrilling

Figure 5.4: First decision node

We present the results for the small and large pit separately to highlight the value of flexibility which is
expected to be higher for the large pit as its reserves and the the gold price are more uncertain.

The value of project U; (develop the large pit) and of project U, (develop just the small pit) are presented in
Table 5.7. Recall that the large pit is not given by the small pit plus the lower part of large pit. Comparing
the initial decisions abandon the project, start to develop the pit immediately and wait, the optimal initial
decision is wait and the optimal project is U;. Initiation flexibility has then value: $ 36 (595 - 559) million.
This corresponds to an increase in project value of 6.44 %. Note that the fact of waiting 1 year before start-
ing the development increases the difference between the 2 project values.

Expected value (NPV)

Project evaluation model Large pit (U1) Small pit (Us)

Initial decision: start to develop the pit immediately
deterministic model (E[S;]) 544 472
stochastic model: no flexibility 548 475
stochastic model: flexibility 559 476

Initial decision: wait 1 year before to develop the pit
deterministic model 578 495
stochastic model: no flexibility 582 497
stochastic model: flexibility 595 499

Table 5.7: Expected value of the project in $ million for the initial decisions start to develop the pit immediately and
wait 1 year beforeto develop the pit (r = 0.02, 0 = 11.41%)
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In the model with flexibility the options available to management are: continue or abandon the project. That
is every each year management can decide to continue or abandon the project in response to low gold prices
and/or low reserves. The value of operating flexibility is for U;: $ 13 (595-582) million, that is an increase
in project value of 2.23 %. The value of operating flexibility is for Us: $ 2 (499-497) million, that is an
increase in project value of 0.40 %. The value of flexibility is higher, as it was expected, for Uy, as the
uncertainty on its reserves and on the price is higher. Figure 5.20 presents and compares the histograms
of the expected values for the two projects without and with flexibility. Note that flexibility enhances the
project value. Note that project U; can be strictly preferred to Us,: the probability of low profit values is just
slightly higher for U; than for Us. The risk of taking the wrong decision is small. This can also be seen in
Figure 5.21 which compares the expected values, computed without flexibility, for the two projects for each
simulation. Observe that when project U; is preferred to Us it is strongly preferred.

Expected value (NPV)
Project evaluation model Large pit (U1) Small pit (Us)
Initial decision: wait 1 year and get additional information
Additional information: rich
stochastic model: no flexibility 747 513
stochastic model: flexibility 754 515
Additional information: average
stochastic model: no flexibility 629 522
stochastic model: flexibility 640 524
Additional information: poor
stochastic model: no flexibility 499 464
stochastic model: flexibility 516 466

Table 5.8: Expected value of the project in $ million for the initial decision wait 1 year and get additional information
(r =0.02, 0 = 11.41%)

Additional information

Table 5.8 presents the value of the project if additional information is obtained. For the 3 different scenarios
the project is still worthwhile to be undertaken. Note that the expected values of project U, given the initial
data or given the initial data + additional information are very similar. The differences are due to the statis-
tical fluctuations of the simulations and to the few extra data that test the upper zone. The optimal project is
U, for the rich, average and poor data.

The value of operating flexibility is higher for the case of poor additional information: it is of $ 17 (516-499)
million, that is an increase in project U of 3.41 %.

Now we must choose the optimal strategy: is it worthwhile or not to get the additional data to better define
the 2 projects and choose between them? We need to quantify the value of this additional information. The
expected value of information, computed as the difference between the project values with and without in-
formation and assuming that the high scenario has a probability of 0.25, the average of 0.50 and the poor of
0.25, is $ 42.50 million. It increases the project value of 7.14 %. Thus it is worthwhile to obtain it.
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Moreover, the reduction of risk due to additional information can be taken into account. Looking at Figure
5.21 note that the rich extra data discriminates best between the 2 projects. The average and poor data sets do
not help choosing the optimal project. Observe that given the poor extra data the 2 projects are now closer.
Consider, for example, the poor scenario. First we present the risk values with the additional information
available in ¢ = 0. This is to compute the value of additional information at ¢ = 0.

Data Optimal initial decision | Risk | Value of additional information
initial data develop the large pit 27 -
additional information: rich develop the large pit 1 26
additional information: average develop the large pit 21 6
additional information: poor develop the small pit 35 0

Table 5.9: Risk and value of additional information ($ million)

The risk values are presented in Table 5.9. It can be noted that although the posterior distribution of the
recovered grade given the rich additional information had the highest variance (Table 4.3), the rich addi-
tional information discriminates best between the two projects. It has the lowest risk value and provides the
decision maker with the most sure scenario. On the contrary the average and poor additional information
have a high risk value. In particular the poor extra data gives the less sure scenario as the expected values of
the two projects are the closest. Note that as we have defined a constant production rate the gain procured
by additional information is also the optimal definition of this rate.

If we assume that the high scenario has a probability of 0.25, the average of 0.50 and the poor of 0.25,
the expected value of additional information is $ 0.25 x 26 + 0.5 x 6 + 0.25 x 0 = 9.5 million. The
experience is thus worthwhile to be undertaken. The efficiency of getting new information is given by
9.5/27 = 0.35. Note that the more efficient the experience the more this value is close to 1. Thus if at
the start of the project we had to choose between develop immediately the large pit given the initial data or
given the initial 4 extra data at a cost of $ 10 million, the optimal decision would be to develop the large pit
after having obtained additional information. The extra data help discriminating the two projects.

Now as the additional information is not available at ¢ = 0 we need to take in consideration the time
factor. As we have seen the option to wait has value: the optimal initial decision is wait and then develop
the large pit. The risk values are presented in Table 5.10. Note that the risk values are smaller than in the
previous table. This is due to the discounting and to the fact that it is optimal to wait. Here the highest risk
corresponds to the poor additional information as the two project values are the closest.

If we assume that the high scenario has a probability of 0.25, the average of 0.50 and the poor of 0.25,
the value of additional information is $ 0.25 x 21 + 0.5 x 5 + 0.25 x 0 = 7.75 million. Additional infor-
mation reduces the risk by 37 %. The efficiency of getting new information is 7.75/21 = 0.36. It is then
worthwhile to obtain it.

Sensitivity to the initial gold price

A sensitivity study is performed to measure the impact of the initial gold price on the project value and on
the value of flexibility. The initial price is altered over the range from $ 180 to 320.
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Data Optimal initial decision | Risk | Value of additional information
initial data develop the large pit 21 -
additional information: rich develop the large pit 0 21
additional information: average develop the large pit 16 5
additional information: poor develop the small pit 28 0

Table 5.10: Risk and value of additional information ($ million)

Develop immediately or wait? Figure 5.22 compares the value of the 2 projects for different initial prices.
The initial price is altered over the range from $ 180 to 320. For the initial decision develop immediately
project U; becomes more interesting than U, for prices around $ 260. For the initial decision wait project
Uy becomes more interesting than Uy for prices around $ 240. Figure 5.23 compares the value of the two
projects given the poor additional information. For prices around $ 280 or larger project U; becomes more
interesting than Us.

Initiation flexibility. A sensitivity study is performed to measure the impact of the initial gold price on
the initial decision (develop immediately/ wait) for project U;. Figure 5.24 presents the value of initiation
flexibility: the option to wait has value for all the prices in the interval considered. For lower prices it has
little value.

Operating flexibility. A sensitivity study is performed to measure the impact of the initial gold price
on the value of operating flexibility. Figure 5.25 shows the operating flexibility value. For prices smaller
than $ 180 the project valued with flexibility is not worthwhile to be undertaken, while for prices smaller
than $ 230 the project valued without flexibility is not worthwhile. It can be noted that near the break- even
gold price of $ 230 the option value is at his peak. As the gold price increases the option value decreases.

Information flexibility. The development of the large pit is considered. Figure 5.26 presents the expected
value of additional information for initial gold prices varying in the interval from $ 190 to $ 420. Additional
information has value.

Figure 5.27 also shows the expected value of additional information for different initial gold prices. The
initial gold prices vary in the interval from $ 150 to 450. For prices around $ 270 the value of information
is at its peak. Thus, in the presence of costly learning, there exists an upper and a lower critical boundary
within which it is optimal to exercise the learning action. QOutside this range it is not optimal to pay a cost
to learn. These results are consistent with the results of Martzoukos and Trigeorgis (2001).

Sensitivity to the variable cost of waste

Figure 5.28 highlights the value of flexibility as a function of the variable costs. They are altered over the
range from $ 5 to 10 per ton of waste. It can be noted that near the break- even cost of $ 7.5 per ton of waste
the option value is at its peak. The minimum and maximum costs for flexibility to have value are around $
5and $ 10 per ton of waste.
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Choice of the discount rate

In Section 5 we saw that several authors including Lund (1999), consider that private risk (such as uncer-
tainty on the reserves) can not be hedged and that consequently the discount rate has to be increased to
account for this. This is why we decided to vary the rate.

Figure 5.29 compares the 2 projects for varying interest rates. The small pit becomes more interesting
for rates greater than 17 %. Figure 5.29 also presents the value of initiation flexibility for different interest
rates. The development of the large pit is considered. The option to wait does not have value for interest
rates greater than 7 %. This highlights the importance of correctly defining the discount rate. It greatly
influences the project values and the optimal strategy. Thus if a SDP approach was considered with a risk
adjusted discount rate the results could be quite different.

Suppose that the discount rate, p, is 7 %. It is higher than the risk free rate as it must account for the
project’s risk. We have seen that in the case of a risk- neutral valuation the drift rate for the price process is
replaced by the risk- free rate. Here, on the contrary, we need to define the drift rate for the price process. It
can be estimated using historical data. This was done in Section 7.2. Table 5.11 presents the project values
for the initial decisions start to develop the pit immediately and wait 1 year before to develop the pit. The
optimal decision is now develop the large pit immediately. Initiation flexibility has no value. Operating
flexibility increases the project of 2.97 %.

Expected value (NPV)

Project evaluation model Large pit (U1) Small pit (Uz)

Initial decision: start to develop the pit immediately
stochastic model: no flexibility 404 393
stochastic model: flexibility 416 395

Initial decision: wait 1 year before to develop the pit
stochastic model: no flexibility 389 375
stochastic model: flexibility 404 377

Initial decision: wait and get additional information
stochastic model: flexibility (rich) 527 389
stochastic model: flexibility (average) 438 396
stochastic model: flexibility (poor) 339 348

Table 5.11: Expected value of the project in $ million (p = 0.07, @ = 0.02, 0 = 11.41%)

Note that the two projects are now closer. This is due to the higher discount rate. The table also presents the
results for additional information. In particular, note that if the deposit turns out to be poor it is now optimal
to develop the small pit. The expected value of additional information is $ 21.75 million. It increases project
value by 5.23 %, which is worthwhile. However, its value is smaller than that obtained with the risk- neutral
approach as here the optimal initial decision is to develop immediately the large pit.

The two approaches, risk- neutral valuation or risk- adjusted SDP, lead to different results. The major
drawback of the risk- adjusted SDP is that it gives no indication on how to define the rate. Moreover, here
we would need to define a rate for the development of the large pit and one for the small pit as their risks
are different. Observe that, the risk- neutral approach, if not appropriate, overvalues the project.
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Option to shift from large pit to small pit?

We now add the possibility to shift from project U to Us, that is we suppose that if the large pit is developed
immediately management can decide after one year (at ¢ = 1) to revert to the small pit if the project is not
as interesting as expected. The first node of the decision tree is shown in Figure 5.5.

abandon the project

develop the small pit immediately

develop the large pit immediately

wait one year passively

wait one year to obtain extradrilling

develop immediately the large pit with the
possibility to revert to the small pit

Figure 5.5: First decision node

The results are shown in Table 5.12 and are compared to the results obtained for the development of the
large pit but with no option to shift to the small pit. The cost of reverting to the small pit is $ 2 million, that
is smaller than the cost of abandoning the project. The value of the project with this additional flexibility
is $ 621 million, that is an increase of 11.24 % in project value, for the immediate development. It is $
654 million, that is an increase of 9.83 % in project value, for the delayed development. Thus, if additional
information cannot be obtained, the optimal initial decision is wait 1 year and then start to develop the large
pit with the possibility to revert to the small pit.

Now, if additional information is obtained and the large pit is developed, at year ¢ = 2 management can
decide whether to continue developing the large pit or shift to the small pit. The value of the project is $ 763
million if the information is rich, that is an increase of 1.22 % in project value. The value of the project is $
693 million if the information is average, that is an increase of 8.26 % in project value. And finally, if the
information is poor the value of the project is $§ 584 million, that is an increase of 13.17 % in project value.
The expected value of additional information is $ 29 million, that is information increases the project value
of 4.51 %. It is obtained comparing the optimal value of the entire tree with the possibility of drilling extra
holes and the optimal value of the tree without the possibility of drilling extra holes.

The risk values of taking the optimal initial decision is clearly reduced. The opportunity to modify the
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Expected value (NPV)

Project evaluation model Option to shift  No option to shift

Initial decision: start to develop the pit immediately
stochastic model: flexibility \ 621 \ 559

Initial decision: wait 1 year before to develop the pit
stochastic model: flexibility \ 654 \ 595

Initial decision: wait and get additional information
stochastic model: flexibility (rich) 763 754
stochastic model: flexibility (average) 693 640
stochastic model: flexibility (poor) 584 516

Table 5.12: Expected value of the project in $ million (r = 0.02, 0 = 11.41%)

project after one year, that is to revert to the small pit, greatly reduces the risk of the project. Here it is
0 while it was of $ 21 million without this additional flexibility. The initial risk is small and extra infor-
mation is not useful to help choosing between the 2 projects. Additional information helps better defining
the project as it augments the project value by 4.51 % and is thus worthwhile to be obtained. The optimal
development strategy is then wait 1 year and get additional information, then develop the large pit with the
possibility to revert to the small pit.

What if the plug-in reserves were used?

Up to this part, the values of the reserves were those computed using the Bayesian approach. As an aside, we
consider what would have happened had we used the plug- in reserves (Chapter 2). As we saw the reserves
distributions for the two approaches, Bayesian and plug- in, mostly differ in the tails. Thus, although the
optimal project is expected to be the same whether the Bayesian or the plug-in results are considered, the 2
projects, and in particular the development of the large pit, are expected to differ. Table 5.13 presents the
values of project U; for the initial decisions start to develop the pit immediately, wait passively and wait 1
year and get additional drilling for both approaches.

Table 5.13 shows that for the development of the large pit the value of flexibility is slightly higher for the
plug-in reserves: $ 18 million (that is an increase in project value of 3.20 %) while it was of $ 13 million
(2.23 %) for the Bayesian reserves. This is due to the fact that in this case the plug-in gives slightly larger
weight to the low values as it was seen in Figure 4.8.

The value of initiation flexibility is essentially the same whether the plug-in approach or the Bayesian
approach is used, even though the absolute values of the project are different.

Having said that, there is a significant difference between the expected value of information. For the plug- in
approach, the expected value of information is $ 81.25 million (0.25 x 798 + 0.5 x 661 + 0.25 x 529 — 581),
that is an increase in project value of 13.98 %. It almost doubles the value obtained with the Bayesian
approach. This shows that the model for the reserves is important.
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Expected value (NPV) of large pit
Project evaluation model Plug- in Bayesian
Initial decision: start to develop the pit immediately
stochastic model: no flexibility 525 548
stochastic model: flexibility 545 559
Initial decision: wait
stochastic model: no flexibility 563 582
stochastic model: flexibility 581 595

Initial decision: wait 1 year and get additional information
Additional information: rich

stochastic model: no flexibility 792 747
stochastic model: flexibility 798 754
Additional information: average
stochastic model: no flexibility 651 629
stochastic model: flexibility 661 640
Additional information: poor
stochastic model: no flexibility 512 499
stochastic model: flexibility 529 516

Table 5.13: Expected value of the development of the large pit in $ million (r = 0.02, 0 = 11.41%)

5.8 Conclusions

In this chapter we have presented the real option methodology for evaluating natural resource projects sub-
ject to both market and technical risk. Its strong point compared to NPV is that it can be used to value
flexibility inherent in projects. Stochastic dynamic programming has been used to carry out the computa-
tions because it allows us to value early exercise options. The initial decisions that have been considered
are

1. start immediately,
2. wait one year passively,
3. wait one year to acquire new information by extra drilling
while the development options considered are
1. develop the small pit,
2. develop the large pit,
3. start developing the large pit but revert to the small one if results are not promising.

The results highlighted the value of managerial flexibility, which can be substantial. In particular, the option
to shift to the small pit greatly enhances the project value. Initiation flexibility is found to have value, but
operating flexibility has little value. The importance of accounting for reserves uncertainty was also high-
lighted. For this we focussed on the lower part of the deposit as it is the most uncertain zone. Moreover, the
comparison of the results obtained with the Bayesian and conditional simulation approaches permitted us to
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highlight the importance of the reserves distribution in the project evaluation.

One of the main aims of this work was to build a model that evaluates the option wait and obtain addi-
tional information. We measured the value of information as the difference between the project values with
and without additional information and as the expected reduction of risk. The first quantity highlights the
fact that additional information permits us to better define the project. The second quantity highlights the
fact that additional information allows to better discriminate the 2 projects. We showed that it is worthwhile
to obtain extra data although it is expensive. In particular, the rich additional information has the highest
value as discriminates best the 2 projects. Whereas the poor extra holes have the lowest value. However,
note that, even without getting extra information on the reserves, the optimal initial decision is wait. As we
have seen for the decision approach with p = 7% it is worthwhile to obtain additional information although
it delays the start of the project. Immediate investment is justified if additional information will not change
the investment decision or information will not be available before the investment must be taken or aban-
doned. Thus purchase information that will impact the upcoming decisions, if the value increase justifies
the cost of the information. Or invest now or abandon the project if there is no information to be gained
(or its expense is too great) that will significantly change the project’s outcome or impact the investment’s
decision process. Information has value not only if it leads us to modify the initial decisions: it allows to
better define the project.

One generalisation of the model used would be to take into account the possibility for technical risk to
evolve over time. This could be particularly important in the production phase. For this Connell (2002) used
a GBM. Cortazar et al. (2001) suggested that this could be also important in the exploration phase and in
our case for the lower zone of the deposit which is sparsely sampled. For this Cortazar et al. used a GBM.
However, note that during the exploration phase the reserves change at discrete time intervals.

In a mining project other sources of flexibility may be valuable. The rate of production was assumed
constant per year and all the amount produced was assumed sold. The possibility to vary the production or
the cutoff grade in response to varying prices or costs could be considered. Of course the complexity of the
decision problem would then increase.

The rate of return is important to the analysis. It is true that the existence of a replicating portfolio and
thus the use of the riskfree rate is dubious and must be checked. In decision or SDP models little interest
is given to its determination. The rate of return could be obtained using relevant market information for the
gold price. If a replicating portfolio is defined, the risk neutral valuation can be applied and then in the SDP
equation the drift rate o will be replaced by r — § where § is the convenience yield. Thus the results are
quite different whether market information is used or not to define market uncertainties. In addition, note
that we used a constant interest rate. This is an acceptable assumption when the life of the project is short
(less than one year). Models that include a stochastic interest rate could be used. To develop practical val-
uation models and risk management strategies around physical assets, treated as options, one must first and
foremost set limits on what is practical and achievable. We believe that for projects that are dominated by
market risk CCA should be used, whereas for projects that are dominated by private risk SDP should be used.

The results depend strongly on the model that is chosen for the price and on its parameters. It could have
been interesting to compare the results obtained with the GBM with a mean reverting process. However, as
it was seen in Figure 5.6, for a period of time of 10 years or shorter, as it is our case, it is difficult to choose
between a GBM or a mean reverting. Note that from an economic point of view there are reasons why the
GBM cannot be expected to hold for natural resources such as copper and oil (Stensland and Tjgstheim,
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1989). This model essentially asserts that past price information can be neglected given today’s price. Al-
though this is a reasonable assumption for most stock markets, for natural resources one would believe that
it is of interest for the decision making to know the price history prior to the present price. The supply of
a raw material is affected by a change in the price after a time lag. The memoryless property of this model
neglects the nature of the production process. High prices will bring more mines into production, and this
will again lower the price. This tends to produce a negative autocorrelation in the price process. Further-
more the future price in a raw material market could be both higher and lower than today’s spot price. For
example, the price of storage may be so high that it pays to buy on future contracts, thus putting pressure on
this price so that it exceeds the spot price. In contrast, buyers will often need the resource in consumption
and production on an immediate basis. They cannot wait for lower prices, and thus the firms producing in
periods with high prices will make profit that they cannot expect to make if they store the raw material for
future sale. In this way it is possible that the future price is lower than the present spot price. Such a situation
is not likely to occur in stock markets. Who will buy a stock now when it is possible to buy it cheaper on
future contracts (Karma, 1982).
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Figure 5.6: Monthly price of gold in US dollars per ounce (the data are the monthly average prices) from 1/1968 to
11/2002. In the mid 80’s and 90’s the price of gold in US dollars has fallen drastically
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Figure 5.7: Experimental variogram of the monthly series of the gold price
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Figure 5.8: Daily price of gold in US dollars per ounce (PM closing values) for the years 2001 and 2002 (from
2/1/2001 to 16/12/2002)
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Figure 5.9: Daily series of gold price (bold) and GBM’s estimated trend with o = 0.11 and ¢ = 12.52%. Also 10
realisations of this process are presented (So = $271.1)
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Figure 5.10: GBM’s estimated trend with « = 0.11 and ¢ = 12.52% and 10 realisations of this process for 10 years
(So = $271.1, ty = 2/1/2001)
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Figure 5.11: Monthly series of gold price (bold) and GBM’s estimated trend with o = 0.02 and ¢ = 11.41%. Also
10 realisations of this process are presented (So = $289.45)
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Figure 5.12: GBM'’s estimated trend with & = 0.02 and o = 11.41% and 10 realisations of this process (So =
$271.1, o = 2/1/2001)
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Figure 5.13: Binomial tree with So = $320, At = 1/4 year,a = 0.11 and o0 = 12.52%
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Figure 5.14: Binomial tree with Sy = $320, At = 1/12year,« = 0.11 and o = 12.52%
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Figure 5.15: 6-month LIBOR (last trading day of each month) series from 6/1993 to 6/2003
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Figure 5.16: Development of the lower part of large pit. Histograms of the project values given the initial data and
given the initial data + poor additional information. The projects are valued with flexibility

100 150 200

expected NPV ($ million)

50

100 150 200

250 300

Figure 5.17: Initiation flexibility for the development of lower part of large pit as a function of the initial price Sp.
The continuous line represents the project value for the initial decision wait passively. The dashed line represents the
project value for the initial decision develop the pit immediately
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Figure 5.18: Operating flexibility for the development of lower part of large pit for different initial gold prices. The
continuous line represents the project value for the stochastic model with flexibility. The dashed line represents the
stochastic model without flexibility
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Figure 5.19: Value of additional information for the development of lower part of large pit as a function of the
initial gold price. The continuous line represents the project value for the initial decision wait and get additional
information. The dashed line represents the project value for the initial decision wait passively. The projects are
valued with flexibility
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Figure 5.20: Histograms of the 2 projects values computed without flexibility (above) and with flexibility (below).
The initial decision is develop immediately. Project Uy, on the left, is, as expected, more uncertain than project Us,
on the right. The variation coefficients are 0.50 and 0.38 for U; and Us, respectively. For U; the probability of low
values (< $200 million ) is slightly higher than for U,. Whereas the probability of high values (> $ 800 million) is
much higher. Taking into account flexibility the frequence of small NPV decreases for U;. It is unchanged for Us.
The variation coefficients are now 0.45 and 0.37 for Uy and Us, respectively. Taking into account flexibility enhances,
although slightly in this case, the project value
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Figure 5.21: Comparison of the NPV values ($ million) of the 2 projects given the initial data and given the initial +
the rich, average and poor extra data. Given the rich additional information, project U; can be strictly preferred to
Us
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Figure 5.22: Comparison of the 2 projects for different initial gold prices. The projects are valued with flexibility for
the initial decisions develop immediately the pit and wait. The continuous line represents project U; and the dashed
line represents project Us. In the figure on the left project Uy becomes more interesting than Us for prices around $
260. In the figure on the right project U; becomes more interesting than Us for prices around $ 240
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Figure 5.23: Comparison of the 2 projects for different initial gold prices given the poor additional information.
The continuous line represents project U; and the dashed line represents project U,. The projects are valued with
flexibility. For prices around $ 280 project U; becomes more interesting than Uz

expected NPV ($ million)
200 300 400 500 600

100

180 200 220 240 260 280 300 320
S0

Figure 5.24: Initiation flexibility for the development of large pit for different initial gold prices. The projects are
valued with flexibility. The continuous line represents the project for the initial decision wait and the dashed line
represents the project for the initial decision start the development immediately. The option to wait has value for all
the prices in the interval considered. Its value is small for low prices
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Figure 5.25: Operating flexibility for the development of large pit for different initial gold prices. The initial decision
is wait. The continuous line represents the project valued with flexibility and the dashed line represents the project
valued without flexibility. It looks like a standard option payoff diagram
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Figure 5.26: Value of additional information for the development of large pit as a function of the initial gold price.
The continuous line represents the project valued with additional information and the dashed line represents the
project valued without additional information. As the optimal initial decision is wait it is worthwhile to to wait and
get extradata
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Figure 5.27: Information flexibility as a function of Sq. The continuous line represents the expected risk for the initial
data + additional information. The dashed line represents the risk given the initial data. Note that for low or high
prices the value of information is small, that is the project is either too bad or too good to invest in order to learn more
or to worry about possibly lower realized cash flows
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Figure 5.28: Operating flexibility as a function of the variable cost. The large pit is developed at ¢t = 1. The contin-
uous line represents the stochastic model with flexibility and the dashed line the stochastic model without flexibility.
The value of flexibility is higher for higher costs and reaches its maximum for around $ 7.5 per ton of waste. Then
flexibility starts to decrease again to a maximum cost of around $ 10 per ton of waste
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Figure 5.29: Choice of the project and initiation flexibility as a function of the interest rate. The projects are valued
with flexibility. In the graphic on the left the continuous line represents U; and the dashed line Us. In the graphic on
the right the continuous line represents U; for the initial decision wait and the dashed line for develop immediately



174 CHAPTER 5. REAL OPTIONS



Chapter 6

Conclusions and perspectives

The problem that motivated this work was the evaluation of an open pit gold mine project, and in particular
the selection of the best development option. At the time we started this work it was common practice to
run conditional simulations of the deposit and combine them with the NPV approach or to consider a fixed
scenario for the reserves and combine it with the real options framework. This thesis focuses on modelling
the gold reserves using conditional simulations or a Bayesian approach and on the financial evaluation of
the project using real options.

Conditional simulations were used because they are well accepted by the mining industry (Dowd, 1994;
Sanguinetti et al., 1997; Thwaites, 1998). However, strong hypotheses on the covariance function are
needed. For this the Bayesian framework was introduced. A Bayesian approach to modelling was consid-
ered for the reserves of the orebody for the available information: the upper part of the deposit has been
densely sampled and the orebody seems to continue downwards. Although the continuity between the upper
and lower parts was assumed, the Bayesian approach permitted to leave some uncertainty on the covariance
structure.

A central concern in spatial statistics by gaussian random fields is the identification of the covariance struc-
ture. The kriging procedure is widely used for prediction in mining because it produces optimal predictions
when the covariance structure of the random field is known. In reality the covariance is not known and
needs to be estimated. The optimality of kriging is then questionable. The Bayesian paradigm provides
a framework in which to analyse the performance of the kriging predictor. As important as the quality
of the predictor itself is the quality of the measure of uncertainty attached to that predictor. Bayesian pre-
diction is based on the complete predictive distribution that accounts for the variability of model parameters.

The gaussian model was described. The importance of accounting for the uncertainty on the model pa-
rameters was highlighted through several examples and the application to the test case. For the gaussian
random fields accounting for the uncertainty on the correlation parameter greatly influences the predictive
distribution, while accounting for the uncertainty on the variance parameter does not have a large influence.
The most critical point seems to be the behavior at small distances for which there is no available informa-
tion. Although we would expect a larger variance for the case where all parameters are unknown it is not
always the case.

The size of data sets in earth sciences is usually large- very large. This makes calculations time con-
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suming. For example, the conditional simulations of the deposit had to be run overnight in batches of 20.
The Bayesian approach is even heavier as it needs in addition to simulate the unknown parameters and the
covariance matrix has to be inverted for each value of the correlation parameters.

As the data are not gaussian, the transformed gaussian model proposed by De Oliveira et al. (1997) was
considered. The Box- Cox family of power transformations is combined with the Gaussian random field
model. The Bayesian framework allows to easily take into account the uncertainty on the transformation.
However, this model is difficult to use as the range of the transformed data depends on the transformation
parameter. Another major difficulty of this model is the definition of the joint prior distribution for the model
parameters. Moreover, the physical interpretation of the parameters is problematic.

In any case, we recommend the transformed gaussian model as a first tool to analyse non- gaussianity in geo-
statistical data. Then it would be possible either to use a simple transformation (as the log -transformation,
which can be used for positive skewed data, although this hypothesis must be checked carefully) or, as
Christensen et al. (2001) state, when the sampling mechanism suggests a specific non Gaussian distribu-
tional assumption, to incorporate this within the framework of the generalised linear mixed model. We
underline that the Bayesian framework provides the optimal predictor for the log- normal model while it is
not the case for kriging when the mean in unknown. The transformed gaussian model can help deciding
whether the log- transformation, for example, is appropriate or not for the data under study. And more
generally, it can avoid the selection of an incorrect transformation due, for example, to the influential effect
of a few observations.

The most critical point of the Bayesian approach is the definition of the prior distribution. It has an impor-
tant role, as expected, for small samples. Several prior distributions, either noninformative or informative,
were defined and the sensitivity to the prior of the parameters posterior distribution and of the predictive
distribution was checked. Note that noninformative distributions are often improper distributions: it is then
necessary to verify whether the posterior distribution is a proper distribution or not. The transformed gaus-
sian model seems sensitive to the prior that is chosen.

A more general Bayesian approach was defined to evaluate the reserves of the case study. The results
were then compared to ones obtained with the plug- in approach. As it is usual practice in geostatistics, the
gaussian anamorphosis function was used instead of the Box and Cox trasformation to transform the data
in normally distributed values. The gaussian model was then defined for the transformed data. We recall
that the hypotheses for the Bayesian framework are stronger than for kriging. The spatial distribution of the
variable of interest must be specified. However, the approach we followed required, as for conditional sim-
ulations, only the gaussianity of a transformation of the random function under study. Both a constant mean
and a quadratic vertical drift were introduced in the model. A noninformative prior was considered for the
mean parameters. Several covariances were fixed a priori and were assumed equally likely. This permitted
us to invert the covariance matrix only once in the sampling algorithm. The geometric anisotropy was easily
allowed for in the model. For each Monte Carlo sample of the mean and covariance, classic geostatistical
conditional simulations were carried out. The importance of taking into account the uncertainty on the co-
variance parameters was highlighted. The Bayesian and plug- in distributions of the reserves mostly differ
in the tails.

In conclusion, we recommend the Bayesian approach, but it should be applied with some care as it is
situation dependent, for example, for the definition of the prior distributions. We feel that this is a strength
of the approach as it forces one to look critically at the problem under study.
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The real options framework was presented for evaluating natural resource projects subject to both market
and technical risk. Its strong point is that it can be used to value flexibility inherent in projects. Neglecting
flexibility can lead to undervalue projects and consequently to refuse projects that could be profitable.

The risk- neutral valuation was considered. Gold price was assumed to follow a geometric Brownian mo-
tion. It is a non stationary process. It is true that for short periods of time, relative to the mean reversion
time, it is difficult to differenciate a GBM from a mean- reverting process. We used a stochastic dynamic
programming approach to carry out the computations as it allows us to value early exercise options. The
binomial model was used to discretise the GBM.

The model allowed for initiation flexibility, operating flexibility and information flexibility. Initiation flex-
ibility is found to have value. Operating flexibility has little value: as expected the more uncertain the
reserves and the costs, the larger the value of flexibility. The importance of accounting for the uncertainty
on the reserves was also highlighted comparing the Bayesian and plug- in approaches. They provide more
or less the same results, that is the same optimal project. However, the value of information flexibility differ
greatly. Our principal interest was information flexibility. Given the initial information the optimal decision
was to delay the start of the project of 1 year and then develop the large pit. The value of the rich additional
information was high as it allowed to well differenciate the two projects that is the development of the large
pit is found to be much more interesting than the development of the small pit. The reduction of risk due to
the average and poor additional information was smaller as the two projects were still close. The additional
data reduced the risk by 40 % and so it is worthwhile to obtain it. Information has value not only if it brings
to modify the initial decisions, but also if it allows to better define the project.

Sensitivity of the flexibility value to the initial gold price was checked. Initiation flexibility, that is the
option to wait, has value for high gold prices. Information flexibility has little value for either very low or
very high prices. That is it is not worthwhile to double the information on the lower part of the deposit if
the gold price is either very low or very high.

The option to shift to the small pit if the lower part of the large pit is not interesting greatly enhances
the project value.

The risk- neutral valuation should be used if a replicating portfolio can be defined or equivalently if cash-
flows are assumed to be traded in the market. This is a dubious hypothesis when valuing real options as
a mine (or oil) project has risks that are project specific and are not traded in the market. We considered
a decision approach with a fixed discount rate representing the risk of the project. As expected the results
are quite different from the results obtained with the risk- neutral approach: the development strategy is
different. It is thus really important to correctly define the discount rate.

What is interesting about this thesis is that it combines geostatistical methods and financial tools to value
a mine project. In particular, conditional simulations and Bayesian analysis were combined to obtain the
reserves. We think that it is important to use a model that takes both technical and market uncertainty into
consideration when evaluating natural resource projects. Moreover, the Bayesian approach we finally used
is more general than the model proposed by De Oliveira et al. (1997). The difficulties for defining the prior
distribution do not arise. And the range of the gaussian variable is well defined.
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6.1 Perspectives for future work

We resume the principal limitations of this work and suggest alternatives that could have been explored.

The additional information was simulated. This permitted to work with different scenarios, but on the
other side it is time consuming. For this we chose only 3 of the 100 simulated data sets and supposed they
represented 25 %, 50 % and 25 % of the possible extra data sets. Moreover, in the place of fixing the lo-
cation and number of extra holes, a strategy for the optimal location and number of extra holes could be
defined. Alternatively, as Dias (2002), we could consider different scenarios for the reduction in variance of
the reserves due to extra data. In this case we would have to carry out only the simulations conditional on
the initial data set. However, note that additional data does not necessarily imply a reduction of the variance.

An important part of this work is dedicated to the choice of the model for prediction. The model would
have been more general if a family of covariance functions was taken instead of choosing a specific model.
The Matérn class of covariance functions which include the exponential model could have been considered.
It would have permitted to account for different behaviours at the origin.

The Bayesian approach we have considered strongly relies on the gaussian assumption. For data that do
not seem to follow a gaussian distribution but that still retain some broad similarity with it, the skew normal
distribution (Azzalini and Dalla Valle, 1996) could be defined instead. This is a quite manageable distri-
bution allowing ample flexibility in skewness and kurtosis. Thus when the histogram of the data presents
a continuous and not too skewed distribution a gaussian transformation is appropriate. But, although the
anamorphosis transformation can be applied to any continuous variable, if the histogram is skewed and has
long tails a gaussian transformation will limit the amplitude of large values and magnify unimportant dif-
ferences between low values. This could be interesting, if, for example, the proportion of zero values is
important.

The model allowed for the uncertainty on the reserves and on the gold price. Unknown costs were con-
sidered to value the lower part of the large pit. Other sources of uncertainty could have been included in
the model, as for example the rate of production and the cutoff. This would increase the complexity of the
decision problem. In addition it could be interesting to introduce in the model the correlation between the
production and the gold price or analogously between the cutoff and the gold price or between the cutoff
and the costs. Higher prices lead to lower cutoff grades. And at higher prices the company could sell more
and thus shorten the mine’s life (Lane, 1991).

We assumed that the reserves were updated only if additional drilling was obtained. It could be interesting
to consider continuous updating of the reserves that would be due to the production information. For this
Connell (2002) introduces a GBM to model reserves uncertainty evolving over time. However, this implies
that the reserves variance grows with time.

One drawback of the approach considered is that it does not address the question of the correct risk- ad-
justed discount rate. The discount rate should then account for both market and technical risks. A risk
premium that accounts for private risk should be added to the risk- free rate. The approaches by Smith and
Nau (1995) and Slade (2000), although different, define risk- adjusted rates.

In addition note that the hypothesis of a constant discount rate is acceptable when the life of the project
is short (less than 1 year). Models that include stochastic discount rate could be used.
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The approach considered could take into account market opportunities to hedge the project risks by trading
securities. It could be interesting to value the test case assuming that, for example, 50 % of the annual pro-
duction is hedged. The gold derivatives market has grown rapidly over the last decade (Neuberger, 2001).
Mining companies are often hedging a certain proportion of their production forward so that financial in-
stitutions are sure debts will be repaid. That is mining companies use the derivative market to hedge their
production and the principal reason is risk reduction or risk control. In practice, few companies sell more
than a small fraction of their reserves forward. Following Neuberger forward sales amount to less than two
years future production. Management knows that a strategy of forward selling (forward contract) which
looks like prudent risk management over a period in which the gold price has fallen would look very foolish
in a period in which the gold price has risen sharply. The full hedged producer derives no benefit from the
improvement in the price of its main product. Another possibility for the mine company is to acquire a put
option. Derivatives increase the flexibility of managing the reserves.

More information on the company exploiting the deposit could help in better defining the decision rule
for the optimal project. We assumed that the decision maker was risk- neutral and thus the project with
the highest expected profit was chosen even if more uncertain. A small company which is risk- adverse or
conservative would prefer a more certain project rather than a project with higher value but with a greater
uncertainty. On the contrary, a big company that has interests in more projects would not hesitate in choosing
the project with the higher payoff although more risky. Utility theory should be used for decision analysis
for a conservative risk attitude. Utility is a measure of value reflecting the preferences of the decision maker
based upon beliefs. The decision rule is then to choose the alternative having the highest expected utility.
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Appendix A

Conditional simulations of a gaussian
random function

The method used to simulate from a gaussian random function Y given observations of Y in certain points is
called conditioning by kriging: a non conditional simulation is first obtained and it is then conditioned using
kriging. The turning bands algorithm is used to carry out non conditional simulations. For a description of
this algorithm see Matheron (1973) and Chilés and Delfiner (1999).

Let {Y(z),z € D}, D C R? be the gaussian random field of interest and Y7 = (Y (21),...,Y (z,))T
a set of n observations from a single realisation of this random field, where z;,7 = 1,...,n are known
distinct locations in D. We look for a conditional simulation of Y at points o = (zo1,-..,zom)’ based
on the data z;, that is Yy. Let m be the mean of Y and C its covariance matrix. Denote by mq and m; the
mean of Y} and Y7, respectively. Denote by Ci*™ the covariance of Yy, C7,*" the covariance of ¥; and
Ccy " = C1, the covariance between Yy and Y;. It is known that the conditional distribution of Y given Y;
is gaussian (Mardia et al., 1992). The mean of this distribution is

Yy = E[Yo|V1] = Co1C,' Y1 + (mo — Co1 Cpftma),

that is the simple kriging predictor of Y; given Y; with known mean m and covariance C, and the kriging
error Yo — Y has zero mean and covariance

Coo — 00101_116'31.
The fact that Y and Yy — Y;; are independent suggests the following decomposition
Yo =Yy + [Yo - 5.

The kriging error is unknown as Yy is unknown. Conditioning by kriging consists of simulating the error
Yy — Yy and adding it to the kriging predictor Y. The algorithm is finally

o simulate the error W with zero mean and covariance C;
e compute W given Wry;

e add the simulated error Wy — W to Y.
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The conditional simulation is then

T() == YO* ‘I‘ [W() - W(;(].
Since kriging is an exact interpolator, at a sample point z we have Y*(z) = Y (z) and W*(z) = W (z),
so that T'(z) = Y (z). In the case of an unknown but constant mean the algorithm is exactly the same with
ordinary kriging replacing simple kriging.



Appendix B

Grid parameters for simulations

Direction X; | Direction X5 | Direction X3
Origin (m) 16995 23050 -200
Mesh size (m) 5 5 5
N nodes (m) 41 121 131
Min (m) 16995 23050 -200
Max (m) 17195 23650 450

Table B.1: Grid parameters for the punctual simulations (where Min and Max indicate the area estimated)

Direction X; | Direction X5 | Direction X3
Origin (m) 16905 229125 -195
Mesh size (m) 10 25 10
N nodes (m) 65 32 65
Min (m) 16900 22900 -200
Max (m) 17550 23700 450
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Table B.2: Grid parameters for block simulations (where Min and Max indicate the area estimated)
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Appendix C

Bayesian analysis

The basic notions and tools of Bayesian analysis that are used in the thesis are introduced. Section 1
presents the notation. Section 2 describes the basic notions of Bayesian inference and the two widely used
prior distributions: the noninformative and conjugate. Finally Section 3 presents the idea of Markov Chain
Monte Carlo algorithms and in particolar Gibbs sampling.

C.1 Notation

Let u,v and w be three random variables or vectors. Let f(-) denote any density under study where the
arguments identify the random variables in question. Then, f(u,v), f(u|v) and f(u) denote respectively
the joint density of (u, v)T, the conditional density of u given » and the marginal density of «. The following
properties will be repeatedly used

- the Bayes’ Theorem
flulv, w) fvjw)
flulw) 7

- the decomposition of joint densities as products of conditional densities

f(u,vlw) = f(ulv, w) f(v]w);

f(vlu, w) =

- the computations of marginal densities from joint densities
flulw) = [ Fasoh)do = [ fulo,w) f(olw) do

We will often write
f(u|v,w) o< h(u,v,w)

for some function h(-), where h(u,v,w) is considered a function only of u, with (v,w)7 fixed and the
proportionality constant does not depend on u,

flu|v,w) = c(v,w) h(u,v,w)

for some function c(-).
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Let now Z denote the data and & = {6,...,6,} denote the vector containing the unknown quantities:
for example, model parameters and future observations. From a Bayesian view point there is no distinc-
tion between observables, Z, and unobservables, 8: all are considered random variables, and uncertainty
at any stage is quantified in terms of probability density functions. Inference about the uncertain quantities
0 requires setting up a probability model for the joint distribution f(Z, ), which is usually determined by
f(Z10), called the likelihood function when viewed as a function of @, and f(#), called the prior distribu-
tion. This distribution can be specified with the help of parameters which are called hyperparameters. If a
hierarchical Bayesian analysis is considered then the uncertainty on the prior is modeled by a distribution
on these parameters. After having observed the data, z, inference about 8 is based on the conditional density
of 8 given Z = z, called the posterior distribution, which from Bayes’ Theorem is given by

f0) f(210) _ f(0) f(2]6)
J 1(0) f(2]0) db f(2)
o< f(0) f(216).

The posterior distribution combines the prior beliefs about # with the information about € contained in the
sample z.

f(0lz2)

Note that the marginal posterior distribution of 8;, j = 1,...,p, is
1631 = [ 16,6088 = [ 16,160, 1 012) do?

where 87 = {6;,i # j}. The full conditional distribution of ; is

: f0]2) f(0]2)
9' Z, 9'7 == = - .
T010) = Ti 1) d8; = 70772)
As we will see later in this chapter, this distribution plays an important role in the application of Markov
chain Monte Carlo methods.

(C.1)

We will denote by m(-) the marginal density of Z, and by 7 (-) the density function of the model parameters.

The notions presented here come from Zellner (1971), Berger (1985) and Robert (1992).

C.2 Bayesian inference

Inference problems concerning @ can easily be dealt with using Bayesian analysis. The idea is that, since the
posterior distribution contains all the available information about 8, both sample and prior information, any
inferences concerning € should consist solely of features of this distribution. Bayesian inference consists
of reporting the entire posterior distribution 7(6|Z). And a visual inspection of the graph of this posterior
provides the best insight concerning 6.

However, the simplest inferential use of the posterior distribution is to report a point estimate for 6 with
an associated measure of accuracy.

To estimate ¢, a number of classical techniques can be applied to the posterior distribution. The most
common is maximum likelihood estimation, which takes, as the estimate of 8 the value # which maximizes
the likelihood function L(0|Z) o« f(Z|6). The analogous Bayesian estimate is defined as follows.
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Definition 1 The generalized maximum likelihood estimate of 6 is the mode of 7(0]Z), that is the value &
which maximizes = (0|Z).

It is the most likely value of 8 given the prior and the sample z. It is called the maximum a posteriori.

Other common Bayesian estimates of @ include the mean (which is optimal under squared error loss) and
the median (which is optimal under absolute error loss) of 7(0|Z). In some cases these are better estimates
of @ than the mode. For example, if the posterior is strongly skewed the median might be a more sensible
measure of location.

The customary Bayesian measure of the accuracy of an estimate is the posterior variance of the estimate
which is defined as follows

Definition 2 If ¢ is a real valued parameter with posterior distribution 7(6|Z), and  is the estimate of 6,
then the posterior variance of 6 is
Var[d| Z] = E[(6 — 6)?|Z]. (C.2)

When 4 is the posterior mean, § = E[6|Z], then Var[f] Z] = Var[f| Z] which is called the posterior variance.
The posterior mean minimizes (C.2) and is the estimate with smallest standard error. For this reason, gen-
erally the posterior mean is used as the estimate of @ and the posterior standard deviation as the standard
error.

C.2.1 Prior distributions

The most critical and criticized point of Bayesian analysis is the definition of prior distributions. The prior
distribution is the key to Bayesian inference. But it seldom occurs that the available prior information is
precise enough to lead to an exact determination of the prior distribution. The prior is a tool summarizing
available information as well as uncertainty related with this information and ungrounded prior distributions
produce unjustified posterior inference.

Noninformative priors

Bayesian analysis is used even when no prior information is available. In these situations a noninformative
prior is needed. A noninformative prior is a prior which “favors” no possible values of 6 over others. A
noninformative prior is frequently an improper prior, that is, it has infinite mass.

Various suggestions have been advanced for determining a noninformative prior. The most widely used
method is that of Jeffreys which is based on the expected Fisher information,

dlog £(216)]
|

This, under commonly satisfied assumptions, is given by

. [82 logf(Z|0)] |

1(9):15[

06?

The corresponding law is
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in the 1 dimensional case. If 6 is a vector Jeffreys suggests the use of
w(0) = [1(0)['/*

where I(0) is the Fisher information matrix and |I(6)| is its determinant. For example, if Z is a N(8,0?)

and § = (3, o) is unknown, then
1
] I
m(0) x =
which is improper as it does not integrate to one. Alternatively, 8 and o can be assumed independent a
priori and the one- dimensional Jeffreys prior for each of the parameters can be used. This gives

m(0) x — (C3)
g
which is the noninformative prior recommended by Jeffreys. It is standard practice to use (C.3) as the non-
informative prior for a location-scale problem (Berger, 1985).

A proper posterior distribution can be obtained even if 7(#) is an improper prior.

Jeffreys’ prior is invariant under reparametrisation. If we have no information about 8, we also have no
information about, for example, 1/6. In addition, the choice of this law is justified by the fact that 7(0) is
accepted as a measure of the quantity of information contained in the model on 6. The prior must give a
larger weight to the values of § with a larger 1(#). This is equivalent to minimize the influence of the prior
and is thus as noninformative as possible.

Often the results, estimate and standard error, from Bayesian analysis with a noninformative prior coincide
with the results from classical approaches (maximum likelihood, for example). Of course the interpretations
differ, but the values are the same. It is argued that when the two approaches give the same results, it con-
solidates or gives strength to the classical approaches, but when they differ, the classical approach suffers in
the comparison.

Conjugate families

In general, m(Z) and =« (6|Z) are not easily calculable. As Berger states, a large part of the Bayesian
literature is devoted to finding prior distributions for which 7(8|Z) is easily calculated. These are the
conjugate priors.

Definition 3 Let F denote the class of density functions f(Z|@). A class P of prior distributions is said to
be a conjugate family for F if 7(6|Z) is in the class P for all f € F and = € P.

For a given class of densities F, a conjugate family can be determined by examining the likelihood func-
tions L(6|Z), and choosing as a conjugate family, the class of distributions with the same functional form as
these likelihood functions. The resulting priors are called natural conjugate priors. Conjugate priors allow
to begin with a certain functional form for the prior and end up with a posterior of the same functional form,
but with parameters updated by the sample information. This provides an easy way of seeing the effect of
prior and sample information.

In general, when dealing with conjugate priors there is no need to explicitly calculate m(Z). The reason is
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that since 7(6|Z) = = (0) f(Z|0)/m(Z), the factors involving € in w(#|Z) must be the same as the factors
involving @ in 7(8) f(Z]6). Hence it is only necessary to look at the factors involving 8 in 7(8) f(Z|6), and
see if these can be recognised as belonging to a particular distribution. If so, 7(6|Z) is that distribution.

The use of conjugate priors should not be justified only by their attractive properties but if a conjugate
prior can be chosen which gives a reasonable approximation to the true prior. However, many Bayesians
argue that in dealing, for example, with a normal mean, the class of normal priors is rich enough to include
approximations to most reasonable priors. Berger doubts this belief, observing that using a normal prior
can sometimes result in unappealing conclusions. Moreover, in order to overcome problems with improper
priors, proper priors, and in particular conjugate priors, are often used as approximations to improper priors:
a normal distribution with a large variance, for example. This is not always a good solution as the prior can
dominate the data. In conclusion, the prior should be chosen according to the problem at hand. In Berger
(1985; chapter 4.7) the robustness (or sensitivity) of Bayesian analysis to possible misspecification of the
prior distribution is studied and examples are presented to show the importance of the prior distribution.
Several robust Bayesian techniques are introduced. To investigate robustness one simple technique is to try
different reasonable priors and see what happens. This is called sensitivity analysis.

Generally if, conjugate priors are not, or cannot, be used, the computation of the posterior law, or of its
mean and variance, cannot be done analytically.

C.3 Markov chain Monte Carlo

The notions presented here come from Gilks et al. (1996) and Robert (chapter 6 in Droesbeke et al., 2002).
In the following sections we present the tools we used and are widely used in Bayesian analysis.

C.3.1 Monte Carlo integration

Monte Carlo methods are used to approximate an integral of the form

/@ 9(0) 7(8]2) 6 = Ey[g(0)). (C4)

As 7(0|z) is a density function, the idea is to generate 61, . .., 6; independently from 7. The large numbers
law ensures that

1

l
1200 = [ o w00

as | — oo. Itis not necessary to simulate from 7 (6|z) to approximate (C.4). Let h be an arbitrary density
function on ©, the importance sampling algorithm (Geweke, 1989) consists of

- generate 64,...,6; from h and

- approximate (C.4) by
Sy 9(0;) w(b;)
Zz’L:1 w(6;)

where w(6;) = m(6;) f(2]6:)/h(6:).
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As

[ o) 110y x(6) b = / z"’ ©) 1(0) ds

the large numbers law ensures that this approximation converges to (C.4). And thus

J90) f(210)7(0)d0 >, g(6:) w(by)
Er[g(0)|z] = ~ = . (C.5)
00~ S = )
The choice of the importance function A is crucial: it must be easy to simulate and it must be relatively close

to w(0|z) to reduce the variability of (C.5) and for the weights w(#;) to be not too low. Note that the tails of
h should be at least as heavy as the tails of 7(6|z) for the convergence to be not too slow.

In general drawing samples {6;} independently from = (-) is not feasible and determining or choosing h(-) is
not easy. However the {6;} need not necessarily be independent. The {6;} can be generated by any process
which draws samples throughout the support of 7(-) in the correct proportions. This can be done through a
Markov chain having (-) as its stationary distribution. This is then Markov chain Monte Carlo. We start by
introducing the 2 most used MCMC algorithms: the Gibbs sampler and the Metropolis- Hastings algorithm.
The main theoretical concepts of the markovian simulation method are then described. The problem is to
simulate a random variable X = (XM, X ..., X)) with distribution 7(-) within the state space E. As
there is no known efficient direct method to solve this problem an iterative method has been built.

C.3.2 The Gibbs sampler

It was given its name by Geman and Geman (1984) and it originated in the context of image restoration. The
Gibbs sampler permits to generate random variables that follow approximately the distribution of interest
m(-) so that the importance function 4 is obtained directly from 7 (-).

The Gibbs sampler succesively and repeatedly simulates from the conditional distributions of each com-
ponent given the other components, that is

Algorithm 1
1. propose a starting value xq = (:c(() ), :c(() ). ,:c(()l));
2. e simulate z{") from the conditional (zV|z{?,...,z{);
e simulate x(2) from the conditional (z(® |J;1 ,:1:(()3), . g));
e ...
o simulate 2" from the conditional (z®|z{", 2%, ..., z{"Y);

3. iterate this procedure.

This means that the full conditionals are completely known and can be sampled from. The realisations x 1,
X2, ... Obtained from iterating step 2 are simulated from a Markov chain. Under weak regularity condi-
tions?, convergence of this chain to the stationary distribution = (z(V),...,z®) is guaranteed, so that for

Hf r(XP|X@)) > 0 over E, j # 4, {X(n)} is an ergodic Markov chain with stationary distribution 7 (Robert, p. 168 in
Droesbeke et al., 2002)



C.3. MARKOV CHAIN MONTE CARLO 193

sufficiently large k, the values (ac,(cl), . ,xfcl)), e, (x%l), . ,a;%l)) can be regarded as realisations from this

distribution. The initial value x¢o has no importance.

In our case the vector X represents the parameter vector or the vector of predictions. The application of
the Gibbs sampler is natural in Bayesian problems which exhibit conditional conjugacy, that is the full con-
ditional distributions are available. Often it is not possible to sample directly from these conditional distri-
butions, in this case the following Metropolis- Hastings algorithm is used in the Gibbs sampler (Metropolis
within Gibbs).

It must be observed that if the components X1, X2 ___ X exhibit heavy dependence, the algorithm
will converge slowly and give highly serially correlated output.

C.3.3 The Metropolis- Hastings algorithm

Let g(z,y) be any arbitrary transition probability, that is ¢(z,y) is the probability density of moving to y
from z, and from which simulation is direct. The Metropolis- Hastings algorithm is

Algorithm 2

1. propose a transition z — y following the g(z, -) law;

2. calculate a(z,y) = min {1, %} then accept the proposal y with probability a(z,y), other-
wise keep z;

3. iterate this procedure.

The advantage of this algorithm over the Gibbs sampler is that it is not necessary to know all the conditional
distributions. However, the transition mechanism now depends on a proposed transition ¢ and a subsequent
step of evaluation of this proposal. If ¢ is poorly chosen, then either the proportion of rejections can be high,
or the constructed Markov chain might move around the space too slowly giving a very low efficiency of
the Monte Carlo estimation. A useful monitoring device of the method is given by the average percentage
of iterations for which moves are accepted. The success of the method depends on having a reasonable
acceptance rate. On the contrary, making the chain move very slowly so that the acceptance probability is
close to 1, makes the chain take many iterations to converge as the whole parameter space must be visited.
Note that a particular choice of ¢ might work well on one target density, but be extremely poor on another.

The Metropolis- Hastings framework is very general since it does not impose any restriction on the form
of g except some weak regularity conditions that are required to ensure irreducibility and aperiodicity. All
currently used MCMC algorithms can be expressed in this form.

Examples

Canonical forms of proposal distributions are

- the independence sampler: the simplest choice for the proposal distribution is g(z,y) = ¢(y), that

does not depend on z. This gives
a(x,y) = min {1’ w(y) } 7

w(z)
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where w(z) = =(z)/q(z) (it is the importance weight function that would be used in importance
sampling to weight a sample from ¢ toward the distribution 7).

The Metropolis dynamic: ¢(y,z) = q(z,y) Vz,y is a symmetric proposal and gives

ofe.y) = min {1, 70

()

For example, g(-,y) might be a multivariate normal distribution with mean z and a constant covariance
matrix.

Single- component Metropolis- Hastings: it is often more convenient and computationally efficient to
divide X into components, X = {X1), x@ . XD} = {X():j = 1,...,d}, and update these
components one by one. Let X7 be the variable composed with all the X () components of X except
for the jth one, X7 = {X®W:4 = 1,...,d;i # j}. The candidate y(/) is generated from a proposal
distribution g;(y?)|2(9), 7), where in 27 the components 1, ..., j—1 have been already updated. The
Jth proposal distribution g; generates a candidate only for the jth component of X', ad may depend
on the current values of the components of X. This gives

S . (9) |3 () |qy4) i
a(z?, 29, y0)) = min{l, m(yV|a?) gz ]y, z )}
™

(20 |29) ¢(yD |2, 29)

where (29 |7) is the full conditional distribution of X (/) (it was given in (C.1)).

Gibbs sampling: it is a special case of the single- component Metropolis- Hastings. The proposal dis-
tribution for updating the jth component of X is g;(y) |z, 27) = n(y()|z7). It gives an acceptance
probability of 1.

C.3.4 Markov chains simulations

We follow the introduction to general state space Markov chain theory by Tierney (chapter 4 in Gilks et al.,
1996). The distribution 7 is defined on a set E. Often E = R<. The only technical requirement is that the
collection & of subsets of £ on which  is defined must be a countably generated sigma algebra. All subsets
of F and all functions defined on E are assumed to be £- measurable.

Definition 4 A Markov chain {X;k > 0} on the state space E is specified by its initial state X and its

transition kernel @,

Q(z, 4) = P(Xy € A|X)_1 = )

forallz € Eand A C E. Thatis, Q(z, ) is the distribution of the Markov chain after one step given that

it starts at z.

For a probability distribution » on E, define the distribution »Q by

vQ(4) = / Q(z, A)v(dz)
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which is the distribution of the Markov chain at time % if the transition kernel is ¢ and the distribution at
time £ — 1 is v. A Markov chain has invariant (or stationary) distribution 7 if 7QQ = 7. The product PQ of
two transition kernels P and Q is the transition kernel defined by

PQ(w.A) = [ Plo.dy) Qlu. 4
forall z € E and A C E. Using this notation we can write
P(Xy, € A|Xo = z) = Q*(z, A)

forany k > 0. To study the convergence of the chain the total variation distance for two probability measures
141 and V92,

|1 — va|| = 2sup(vi(A) — va(A)),
A

is introduced. If Q*(z,-) — =(-) for =- almost all z, as k — oo, under the total variation distance, then the
chain is called ergodic and it admits 7 as its stationary law. Ergodicity implies invariance of =

/ Q(z, A)r(dz) = 7(A),
E

that is starting from any value generated from 7, the probability of getting to A after a transition with K is
m(A). A sufficient, but not necessary, condition for a transition kernel to produce Markov chains that are
invariant is reversibility. Reversibility implies that?

Q(z, dy) w(dzx) = Q(y, dz) 7 (dy)

which balances the probability of going from z to y with that of going from y to . Reversibility implies
that 7 is a stationary distribution since

Q(dy) = / Qa, dy) m(dz) = / Qy, dz) (dy) = n(dy).

Definition 5 A Markov chain is ¢-irreducible for a probability distribution ¢ on E if ¢(A) > 0 implies
that Py(74 < o0) > 0for all z € E where 74 is the time of the first return to A. A chain is irreducible if it
is -irreducible for some probability distribution ¢.

Irreducibility means that all interesting sets can be reached. This is equivalent to imposing the existence of
an integer n such that @™(z, A) > 0. Irreducibility implies the unicity of the invariant distribution 7

Theorem 1 If the Markov chain is irreducible and has invariant distribution 7, then the chain is w-irreducible
and 7 is the unique invariant distribution of the chain.

It can be shown that irreducibility implies convergence of the proportion of time spent in a set A to 7(A).
Stronger distributional results are possible but the additional condition of aperiodicity is necessary. An m-
cycle for an irreducible chain with transition kernel @ is a collection {Ey, ..., E,,—1} of disjoint sets such
that Q(z, E;) = 1 for j =i+ 1modm and all z € E;. The period d of the chain is th largest m for which
an m- cycle exists. The chain is aperiodic if d = 1. Irreducibility and aperiodicity imply ergodicity.

2Q (=, dy) isthe probability of moving to asmall measurable subset dy € E given that the move Starts at «
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Theorem 2 (Ergodic theorem) If X is irreducible, aperiodic with transition kernel ¢ and invariant distri-
bution 7, then X is ergodic.

The Ergodic theorem does not give any information on the convergence rate: how close the marginal distri-
bution 7™ of the current iteration n is to the target distribution 7()? We will not discuss this issue, although
extremely important.

The simulation of a law 7 using Markov chains consist of constructing a Markov chain with stationary
distribution 7. Now the samples we obtain from « by the means of a Markov chain are not necessarily
independent. However, under ergodicity the convergence of the Monte Carlo integral is preserved. If X is
an irreducible Markov chain with invariant law 7, then using the Ergodic theorem we have

o~ | =

l
> g(z:) = Exlg]
=1

as! — oo.

Example: Metropolis- Hastings dynamic

Let g be an irreducible and aperiodic transition law on E. Let a be the acceptance function, E x E — (0, 1]:
(z,y) — a(x,y), where a(z,y) describes for a couple of states (x,y) the acceptance probability of the
transition z — y.

The acceptance- rejection algorithm works in two steps

Algorithm 3

1. propose a transition z — y following the ¢(z, -) law;
2. accept this transition with the probability a(x,y), otherwise stay at x.

The transition kernel @ of this algorithm is thus

_ q(m,y) a(a:,y) If:z:#y
Uery) = { a(z.2)+ [ a(e,y) (1 - a(e,y))dy = 1 - [ q(e,y) alz,y)dy otherwise

and there are two independent random variables to draw: one following the transition law ¢ on E and the
second following an uniform law U on [0, 1]. If U < a(z,y) the transition z — y is accepted. Otherwise
there is no transition.

For the transition kernel @ to be reversible, the acceptance function a(z,y) must verify

Vz,y € B,z #y:7(z)q(z,y) a(z,y) = 7(y) q(y, 7) a(y, z),

or equivalently

Some classic acceptance laws are
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- the Barker dynamic: a(z,y) = ) q(”w (g)):{(g(;g )

- the Metropolis- Hastings dynamic: a(z,y) = min {1, %}

As g is irreducible and aperiodic, so is Q3.

3|f the support of g includes the support of =, the chain is irreducible, ergodique and has stationary distribution = (Robert, p.
164 in Droesbeke et al., 2002)
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Appendix D

Notions of finance

Section 1 presents the Wiener process and a broad class of continuous- time stochastic processes, called
Ito processes. Section 2 introduces the main concepts about Options and describes the Black and Scholes’
formula to value a European call option. These notions are fundamental to follow Chapter 5.

D.1 Wiener process

A Wiener process (or a Brownian motion) z; is a continuous time stochastic process with the following
properties

1. 20 =0;

2. zz ~ N(0,t), Vt > 0. That is, for each ¢ the random variable z; is normally distributed with mean
E[z] = 0 and variance Var[z;] = E[z7] = t.

3. Theincrements Az, on non-overlapping time intervals are independent. They are normally distributed
with a mean of 0 and a variance that increases linearly with the time interval, Var[Az;] = At. That is
the increments Az; can be obtained from standard normally distributed random variables e

Azt =€V At.

By letting At become infinitesimally small, we can represent the increment of a Wiener process, dz,
in a continuous time as dz = e v/dt. 1t must be noted that a Wiener process is non stationary.

A Wiener process, z, is then a Markov process: the probability distribution for all future values of the
process depends only on its current value and is unaffected by past values of the process or by any other
information, that is the current value of the process is all one needs to make the best forecast of its future
value.

Brownian motion with drift

It is represented by
dr =adt+odz

199
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where dz is the increment of a Wiener process, « is called the drift parameter and o the variance parameter
or volatility. Over any finite interval, At, the change in z, Az, is gaussian with mean o At and variance
o2 At. It can be observed that the trend is the dominant determinant of Brownian motion, whereas in the
short run, the volatility of the process dominates.

Generalized Brownian motion- 1to processes
An Ito process, x4, is a continuous time stochastic process represented by
dz = oz, t) dt + o(z,t) dz (D.1)

where dz is the increment of a Wiener process, a(z,t) and b(z, t) are known (non random) functions. The
drift and variance coefficients are functions of the current state and time.

Since E[dz] = 0, E[dz] = a(z,t)dt. The variance of dz is equal to E[dz?] — (E[dz]?), which con-
tains terms in dt, in (dt)? and in (dt)(dz), which is of order (dt)®/2. For dt infinitesimally small, terms in
(dt)? and (dt)3/? can be ignored, and to order dt the variance is Var[dz] = o2(z, t) dt.

Geometric Brownian motion

A special case of equation (D.1) is the geometric Brownian motion with drift
der =azdt+oxdz (D.2)
Here, a(z,t) = az and o(z,t) = o z, where « and o are constants.

The percentage changes in z, dz/z, are normally distributed. Since these are changes in the natural log-
arithm of z, absolute changes in z, dz, are lognormally distributed. The expected value of z at time ¢, if
currently z(0) = =y, is given by

E[z;] = zg e

and the variance is given by
Var[z;] = z2 %t (e“% —1).

Figure D.1 shows three sample paths of equation (D.2), with a drift rate of & = 0.08, that is 8% per year,
and o = 0.18, that is 18% per year. The time interval is 1 month. Then z, is calculated using the equation

Ty — — ) Ti— —F— Tt_1 €
t 12 t—1 \/ﬁ t—1 €t

where ¢; is drawn from a standard normal distribution. The starting value is £59 = 100. The trend line is
also presented.

It can be observed that a gold price that follows a geometric Brownian motion tends to move away from its
initial value (if the drift rate is not zero). The variance increases with time, giving a higher probability for
high values. Figure D.2 presents 50 realisations of this model.
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Mean-reverting process

Although it can be argued that the prices of commaodities- such as copper or oil- should be related to long-
run marginal production costs, they are often modelled as geometric Brownian motions, which tend to
wander far from their starting points. In fact, while in the short run the price of oil, for example, might
fluctuate randomly up and down, in the longer run it ought to be drawn back towards the marginal cost of
producing oil. Thus the price of oil should be modelled instead as a mean reverting process. The simplest
mean-reverting process, the Ornstein-Uhlenbeck process, is

de =n (T —z)dt+odz (D.3)

where 7 is the speed of reversion (and controls the correlation distance for the prices) and 7 is the level to
which z tends to revert (if z is a commodity price, then Z might be the long-run marginal cost of production
of this commodity). This process, although satisfying the Markov property, does not have independent
increments®. If the value of z is currently z, then its expected value at any future time ¢ is

Elz)) =7+ (z0—7) e ™
and the variance of (z; — ) is

— 7 = ‘7_2 — e 2t
Var[z; — T| = 5 (1 —e ™).
n

It can be observed that as ¢ becomes large the expected value of =, converges to T and the variance converges
2 .
to g—n In addition

- asn — oo: Var[z;] — 0, which means that = can never deviate from z; and
- asn — 0: = becomes a simple Brownian Motion, and Var[z;] — o?t.

Figure D.3 shows three realisations of an Ornstein-Uhlenbeck model with initial value x50 = 100 and mean
of 130. This model is calmer than the geometric Brownian motion. The volatility gives the amplitude of the
fluctuations. Figure D.4 presents 50 realisations of this model with scale parameter equal to 5 years.

It can be observed that equation (D.3) is the continuous-time version of the first-order autoregressive process
in discrete time. Specifically equation (D.3) is the limiting case as At — 0 of the following autoregressive
process of order 1 (AR(1))

zt—T1=2(1—e M+ (e"=1)zt—1 + €

where ¢; is normally distributed with mean zero and standard deviation o, and

2
O = g_ﬂ(l —e ).

1The expected change in = depends on the difference between z and Z. If z is greater (less) than z, it ismore likely to fall (rise)
over the next short interval of time
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Ito’s Lemma

The Ito process of equation (D.1) is continuous in time, but is not differentiable in the usual sense. To
differentiate or integrate functions of Ito processes we need to make use of 1to’s Lemma.

Suppose that z(t) follows the process of equation (D.1), and consider a function F'(z,t) that is at least
twice differentiable in z and once in ¢. The total differential of this function is
oF oF 1 0*°F

dF = —dt + —dr + -

oL 2
ot oz 5 9 (97) (D-4)

where (dz)? = o?(z, t) dt.

Example: Geometric Brownian motion

Let F(z) = log(x). Since 0F/0t = 0, OF /0x = 1/z and §?F/8xz? = —1/z?%, we have from equation
(D.4)
1

1
F = = _ 2
d dz 252 (dz)

= adt+odz— %O’th =(a-— %J%dt-i-adz,

so over a finite time interval ¢, the change in the logarithm of z is normally distributed with mean («— %02)15
and variance o?t. The exact formula for z; is then

— 1,2
T = T e(a 50 )t—f—ozt.

The discrete time analog is

_ 1,2
Ty = T4y e(oe 507)+oe

where € is a white noise process consisting of independent identically distributed standard gaussian random
variables. Thus

1
F—F_ = (a— 502) + o€ (D.5)

is a white noise process with mean § = a — %02, whereas F} is a random walk process? with drift 4. Using

standard statistical procedures the parameters § and o may be estimated from discrete data points.

An important difference between the two stochastic processes is the dependence of the state space on the
number of periods. While the maximum state space for the approximated Ornstein-Uhlenbeck process is
independent of the number of stages, the random walk representation of the geometric Brownian motion
implies that the state space grows linearly with an increase in stages.

D.2 Options

We now describe some basic concepts in options theory. The notions presented in this section are repro-
duced according to Hull (1993).

2A random walk is the discrete anal ogue of a Wiener process
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A derivative security (or contingent claim) is a security whose value depends on the values of other more
basic underlying variables. An option is a derivative security. The underlying assets include stocks, stock
indices, foreign currencies, debt instruments, commodities, and future contracts. Options are contracts.

There are two basic types of options. A call option gives the holder the right to buy the underlying as-
set by a certain date for a certain price. A put option gives the holder the right to sell the underlying asset
by a certain date for a certain price. The price in the contract is known as the exercise price (or strike price);
the date in the contract is known as expiration date (or maturity). If the option can be exercised before
maturity, it is called an American option; if only at maturity, a European option. The returns from an option
are asymmetric: the holder has the right to do something, but he does not have to exercise this right. This
distinguishes options from forwards and futures contracts, where the holder is obligated to buy or sell the
underlying asset. Note that to enter an option contract an investor must pay, while it costs nothing to enter
into a forward or futures contract. The final outcome of a simple option can be a net loss of the limited cost
of acquiring the option. The key feature of an option is that the cost of exercising it is defined in advance
and does not depend on later conditions. It is in this respect that an option has value. Options are attractive
because they offer the prospect of high gains with limited losses.

Option analysis consists of a set of procedures for calculating the value of options. Essentially, they es-
timate the expected value of the asymmetrical distribution of possible outcomes associated with options.

The decision whether to exercise an option or not is reflected by the formula
C = max(S — E,0),

where C is the value of the option, S is the current price of the underlying asset and E is the exercise price.
If the exercise price of a call option is higher than the stock price at the moment of decision (£ > S), the
option will be worthless and will not be exercised. Unlike call options, which increase in value with favor-
able movements in the underlying asset price, put options -just like an insurance- pay off when the asset
drops in value (Trigeorgis, 1996). It is assumed that the decision maker can cash the value immediately.

Financial options are usually priced using some variant of the CCA that was developed by Black and Sc-
holes (1973) and Merton (1973). The idea is to value a financial option as part of a riskless portfolio. For
example, suppose that the underlying security is a stock, it is possible to take a long position in the derivative
security (the stock option) and a short position in the underlying asset (the stock). That is with a short (long)
position in the futures market, the investor promises to sell (buy) an asset at a fixed price (the futures price)
on a fixed date. Since both positions are affected by the same source of uncertainty (the stock price), the
capital gains associated with one investment are exactly offset by the losses associated by the other. The rate
of return on the portfolio is thus riskless and should therefore equal the risk-free rate. The building block of
the Black and Scholes method is a partial differential equation that relates the expected future value of the
option to the price of the underlying asset and the riskless rate (Hull, 1993, p.219). It is assumed that the
price of the underlying asset follows a geometric Brownian motion.

The Black and Scholes’ formula for a European call option

Black and Scholes showed that the value of a European call option of maturity 7" on a non-dividend paying
stock, C(S, t; E), satisfies the following partial differential equation
oCc  o0?8% 9°C oC

E—FTW—H"Sﬁ—rC:O (D6)



204 APPENDIX D. NOTIONS OF FINANCE

where C(T') = max(S — E,0), obtained constructing a riskless hedge portfolio
SN-C=B (D.7)

by selling short one call option, purchasing N = 9C/dS shares of the underlying stock at the price .S and
borrowing B at the riskless rate. The value of the call option is

C(S,t: E) = SN'(dy) — BEe " T"YN (dy)

where
5 = In(S/E) + (r + 0%/2)(T — t)
b o/ (T — 1) ’

do = (di — o+/(T —t)), r is the risk-free rate of return (continuously compounded), (7' — ¢) the time
to option expiration, and A () is the cumulative standard normal distribution function. The call option is
equivalent to a levered position in the stock where the number of shares of the stock held in the replicating
portfolio, NV, is here given by A (d;), and the amount borrowed is B = Ee~"(T=Y) \/(dy). N and B fluctuate
continuously with the underlying stock price and with time and require frequent adjustment to maintain the
above equivalence. If the future return of the stock is certain, that is o2 equals zero, the Black and Scholes
formula becomes
C=8—Ee T4,

Now the value of the call equals the current stock price minus the present value of the exercise price. When
the future price is uncertain, the Black and Scholes formula will use the weights A (d;) and N (ds) for S
and Ee~"(T—1) respectively.

One key property of the Black and Scholes differential equation is the risk-neutral valuation: the equation
does not involve variables that are affected by the risk preferences of investors. In particular, it does not
involve the expected return on the stock, «, which does depend on risk preferences. Thus any set of risk
preferences can be used when valuing C.

The Black and Scholes formula can be applied to options on stocks paying a continuous dividend yield
at a constant rate §2. This was derived by Merton (1973). The payment of a dividend causes a stock price
to drop by an amount equal to the dividend. It follows that the payment of a continuous dividend yield rate
¢ causes the growth rate in the stock price to be less than it would otherwise be by an amount . Thus a
European option on a stock with price S paying a continuous dividend yield of § has the same value as the
corresponding European option on a stock with price Se (%) that pays no dividend. To value the option
it is simply necessary to reduce the current stock price from S to Se=%("—%) and use the Black and Scholes
formula. The expected proportional growth rate in the stock price is r — 6.

It is this Black and Scholes formula that is used to value real options.

Merton (1973) considered the valuation of options when the interest rate is stochastic. 1ts model is the
same as the Black and Scholes model with

- the instantaneous interest rate r replaced by the interest on a riskless bond maturing at the same time
as the option;

3The dividend yield is the yearly dividends divided by the stock price
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- the stock price volatility, o, is replaced by & which is a function of o, of the bond volatility assumed
to be a function of time and of the instantaneous correlation between the stock and bond prices. For
most traded options it can be shown that & is close to o (Hull, 1993, p.436).

The binomial tree approach

The risk-neutral valuation principle states that any security dependent on a stock price can be valued on the
assumption that the world is risk neutral. Thus to value an option we can assume that

- the expected return from all traded securities is the risk-free interest rate;
- future cash flows can be valued by discounting their expected values at the risk-free interest rate.

When using the binomial model the risk neutral valuation principle can be used and the expected value of
the price at the end of a time interval At will be Sye™t. Thus (5.9) becomes*

erAt —d

u—d
This gives the risk- neutral probability of S. Now we use the binomial model to value a call with an
expiration date one year away. Let C be the current call price, C, be its value next period if the stock
price goes to u.S, and Cy be its value next period if the stock price goes to dS. If the price goes to .S,
the value of the call will be C,, = max(uS — E,0). Likewise, if the price goes to dS, the value will be
Cy = max(dS — E,0). The portfolio in (D.7) replicates exactly the option’s value

p:

Cy,=uSN —¢"B
p

C—SN-B
=P~ —asn—_¢B

We have two equations with two unknowns, N and B. Solving for these unknowns we would define our
duplicating portfolio. Having defined it, we could then determine its current value. As it has exactly the
same value as our option, we would also have determined the option’s value. The number of shares is found
to be
N = Cu - Cd

(u—d)S

and the quantity that must be borrowed is

dC, —uCy

— €
u—d

The current value of the call is obtained substituting for N and B in C = SN — B. Alternatively, the risk

neutral valuation can be used to value the call. The probability p can be determined from the information
available about S. The value of the call is then simply given by

-

B=

C=@Cy+(1—-p)Cye".

4If dividends are considered the expected value of the price at the end of atimeinterval At will be Sye(" =94t
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Options are evaluated by starting at the end of the tree (time T") and working backward. The value of the
option is known at time 7" (for a call: max(St — E,0), for a put: max(E — St,0)). Since a risk neutral
world is assumed, the value at each node at time 7" — At can be calculated as the expected value at time 7’
discounted at rate r for a time period At. Similarly, the value at each node at time T'— 2At can be calculated
as the expected value at time 7" — At discounted at rate r for a time period At, and so on (Hull, 1993). If
the option is American, it is necessary to check at each node to see whether early exercise is preferable to
holding the option for a further time period At. Finally, by working back through all the nodes, the value of
the option at time zero is obtained.
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Figure D.1: Sample paths of geometric Brownian motion with initial value 100, drift rate 8%, volatility 18% (T" = 50
years, At = 1/12year). The continuous line represents the trend. Because the spot price has a lognormal distribution,
the upward swings are more marked than the downward ones
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Figure D.2: Fifty simulations of a geometric Brownian motion with initial value 100, drift rate 8%, volatility 18%
(T =20 years, At = 1/12 year)
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Figure D.3: Sample paths of mean- reverting process. The process for n (1/scale factor) — 0 tends to a simple
brownian Motion without drift. It tends to wander far from its initial value of 100. While the larger n(= 1/10,1/2)
the less it tends to drift away from Z(= 130) (T' = 50 years, At = 1/12 year)
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Figure D.4: Fifty simulations of a mean- reverting process with initial value 100, z 130, volatility 2, scale factor 5
years (T' = 20 years, At = 1/12 year)



Appendix E
Dynamic programming

Stochastic dynamic programming is a solution technique with numerous applications within the field of
operations research. Due to the recursive solution technique, SDP provides an efficient method to value
flexibility.

E.1 Sequential decision process: finite horizon

At any stage a decision has to be made which will have an influence, an immediate return or cost, on the
system’s state at the subsequent stage. Given the initial state of the system the objective is to choose the
sequence of decisions over time so as to maximise (or minimize) some given function of the immediate re-
turns for all stages and states the system goes through. Information is not available all at once but at different
moments. Dynamic programming is the set of algorithms and mathematical tools to study the sequential
decision process and compute the eventual optimal strategies.

The following variables are naturally associated to the system’s dynamic evolution

- the time variable, ¢, taking discrete values in the interval [0, 77;

- the state variable, z, with z(¢) € R™, representing a point at ¢ of the system’s trajectoire (identifying
the status of the project at each stage);

- the decision variable, a, with a(t) € R™, describing the operator’s possible reactions to a changing
environment.

It is assumed that the evolution of the system is described by the following state equation

2(t+1) = f(z(t),a(t), 1).

Suppose the current date is ¢ and the current state is z;. Let F;(x;) be the expected net present value when
the firm makes all decisions optimally from this point onwards. Let m(x¢,a;) be the immediate profit
flow when the firm chooses a;. At the next period (¢ + 1), the state will be z;,;. Optimal decisions will
yield Fyiq(zi41). This is random from the perspective of period ¢, so we must take its expected value
Ey[Fiy1(ze41)|7t, ag], that is called the continuation value. Discounting back to ¢, the sum of the immediate
payoff and the continuation value is

1
Ti,ar) + —— FEy|Fiyq(x Tt, Qtl.
(24, at) T t[Fr1 (e41) |20, @]
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The firm will choose a; to maximize this, and the result will be F}(z;). Thus

Fy(zy) = n}gx {ﬂ't(ivt, at) + T+

Bl (o)l | E1)

This is formally stated in Bellman’s principle.

The Bellman principle

The optimality principle was expressed by Bellman as follows: An optimal policy has the property that
whatever the initial state and initial decision are, the remaining decisions must constitute an optimal policy
with regard to the state resulting from the first decision.

Equation E.1 is called the Bellman equation or the fundamental equation of optimality. It must be noted
that it is not a linear equation. The optimal decision a; depends on all the values F; weighted by their
appropriate probabilities. To solve this problem, as it is of finite horizon, we start at 7" and work backward.
At T we have

Fr(zr) = n;gx {mr(zT,a1)} -

AtT — 1 we have

ar—1

Fr_i(zr-1) = max {WT—l(IET—h ar—1) + ET_1[FT(£BT)]} .

1+p
Thus we know the value function at 7" — 1, that in turn allows us to solve the maximization problem for
ar—_9 leading to Fr_s(zp_2), and so on.

E.2 Sequential decision process: infinite horizon

In this setting, the problem one period hence looks exactly like the problem now, except for the new starting
state. Therefore the value function is common to all periods, although it will be evaluated at different points
z¢. The function F'(z;) can then be written without any time label. Moreover since z; and z,1 could be
any of the possible states, we get

F(z) = max {7‘(’(.’13,&) + ?1PE[F($')|x,a]} . (E.2)

To find F(z) an iterative procedure is needed. Start with any guess for the true value function, F!(z).
Use it on the right-hand side of (E.2) and find the corresponding optimal choice rule a'. Substituting it
back, the right-hand side becomes a new function of z, F2(z), which is used as the next guess of the true
value function, and repeat the procedure. Convergence is guaranteed no matter how bad the initial guess:
the factor 1/(1 + p) scales down any errors in the guess from one step to the next. For a comprehensive
description of the procedure and other references see Dixit and Pindyck (1994).
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