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Summary

Comparing different scales in space or time the correlation between regionalized quantities
can change substantially. Coregionalization models incorporate a description of the variation
and covariation of a set of variables at different characteristic scales either in space or in time.
Such models can be used as a device to explore the structure of multivariate spatial or
temporal data in the framework of a regionalized multivariate data analysis.

We review the work done using the classical Linear Model of Coregionalization (LMC)
which is adequate to model sets of variograms and cross variograms as well as sets of
covariance functions with even cross covariance functions. We also present a new general-
ization of the LMC due to Grzebyk (1993), the Bilinear Model of Coregionalization (BMC),
which is suitable for modeling a coregionalization in space or along the time axis using cross
covariance functions which are not even.

1 Introduction

We do not want to open the Pandora’s box of space-time models, i.e. we shall not consider
covariance functions (or variograms) which depend on both space and time. The two classes
of models, the LMC and the BMC, are suitable to be applied either to multivariate spatial
data or to multiple/multivariate time series.

The LMC implies even cross covariance functions. It can thus be formulated in a frame-
work with variograms implying a less restrictive definition of stationarity: only the in-
crements of the random functions are assumed to be jointly stationary. The use of cross
variograms (even cross covariance functions) excludes deferred correlations which are how-
ever less likely to occur between spatial variables. Thus the LMC underlying a variogram
matrix model can be appropriate for spatial multivariate data.
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The BMC allows for uneven cross covariance functions. It is interesting for modeling
second order stationary multivariate spatial data as well as multiple /multivariate time series
with deferred correlations. Deferred correlations can be thought of as effects of one variable
on other variables which occur with a certain delay in time (or space). Deferred correlations
(like correlations in general) do not follow an equivalence relation and their modeling is thus
not trivial.

In Section 2 we define the set of variograms and cross variograms for random functions
with jointly stationary increments. We also write down the simplest LMC, the intrinsic
correlation model, in which multivariate correlation does not depend on spatial/temporal
scale. In Section 3 we expose briefly the steps of structural analysis: the geostatistical way of
choosing a nested model and its parameters for fitting a variogram to values computed on
data. As an example we discuss a standard model from geochemical exploration. Section 4
generalizes the concept of a nested variogram model to the multivariate case and shows its
association with the LMC. In Section 5 various implementations of the LMC for the purpose
of regionalized multivariate data analysis are reviewed.

Section 6 is about an alternate generalization of the cross variogram called the “pseudo
cross-variogram” (Myers, 1992) and which is not an even function. We explain why we do
not use this approach and why we prefer the classical cross covariance functions, which are
formally defined in Section 7.

Section 8 presents a model for real covariance function matrices obtained by taking the
real part of a complex intrinsic correlation model. Section 9 describes a nested version of this
covariance function model and the underlying BMC. Section 10 discusses the BMC from the
point of view of structural and regionalized multivariate analysis. Sections 11 to 13 finally
give different implementations of the BMC for the cases of deferred correlation, different
support and variables being the derivatives of others.

2 The matrix of direct and cross variograms

Let Z;(x),7 = 1,..., N be random functions, D be a closed portion of space (or an interval
of time) and x, x+h be two points in D. The set of random functions {ZZ(X)} is said to
be intrinsically stationary of order 2 if the following two assumptions about the increments
Zi(x+h) — Z;(x) are true (Matheron, 1965):

¥x € D,V : E[Zi(x—l-h) - ZZ»(X)] ~0 (1)
Vx € D,Vi,j:  cov (Zi(x—l—h) ~ Z4(x), Z;(x+h) — Zj(X)) — 2+, (h) @)
The translation invariant function

) = SB[ (Z0etn) - 209 - (Z0x4) - Z1(x)) | ®
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is called the direct variogram (or variogram) for := j and the cross variogram for : # j. The
direct and the cross variograms are even functions.

We can define a matrix of variograms I'(h) = [%]« (h)] with the direct variograms on the
diagonal and the cross variograms off-diagonal.

The simplest coregionalization model is the intrinsic correlation model

I'(h) = Cy(h) = [c;]y(h) (4)

in which a positive semi-definite matrix of coefficients ¢;; multiplies a variogram ~(h). In
this model the correlation r;; between variables does not depend on spatial scale (hence the
term ‘intrinsic”)

7i;(h) S E—— for any h (5)

7ii(h) 755 (h) V/Cii G

The linear model of coregionalization associated with intrinsic correlation is a decompo-
sition of the form

Zi(x) = ey v(x) ©)

where the intrinsically stationary random functions Y,(x) have the same variogram ~(h),

where different Y, (x) are pairwise orthogonal and where ¢;; = Z;VZI o), al. In a Principal
Component Analysis of C the loadings !, are computed as o, = /), ¢, where ), is an

eigenvalue and ¢! is an element of an eigenvector ¢, of C.

3 Geostatistical structural analysis

The interpretation of sample values of the variogram of a variable Z(x) is called a structural
analysis. It consists in choosing and fitting a variogram model y(h) to the experimental
variogram values. The interpretation of the behavior at the origin of the variogram (discon-
tinuous, continuous or differentiable) as well as the behavior at large distances (bounded or
not) are fundamental steps of the geostatistical approach (Matheron, 1970; Journel and Hui-
jbregts, 1978). They determine the generic model (equivalence class of random functions),
its type and its parameters (Matheron, 1989).

Geostatistical structural analysis leads usually to the choice of more than one elemen-
tary variogram model: we have a nested variogram model consisting of several elementary
variograms 7, (h) (withu = 0,1, ..., .5) multiplied by coefficients ¢,

yh) = Y (b )
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A typical nested model in geochemical exploration may consist of three structures de-
scribing three characteristic scales of the spatial (or temporal) variation

v(h) = cro(h) +eryi(h) + 2 72(h) (8)
with, for example:

e a first structure modeling a discontinuity at the origin of v(h) (the so called nugget
effect). The model for this discontinuity is a constant ¢, times an indicator function
Yo(h) (nil for |h| = 0 and one for |h| > 0). This structure catches the micro-variability
at scales lower than the sampling mesh size.

e a second structure describing short range variation. Typically such a function steadily
increases from the origin and rapidly reaches a sill ¢; at a range d;. The value of this
second structure then equals ¢, for all distances |h| > d;. This structure reflects the
small-scale variations associated with spatial objects of a diameter lower or equal to d;.

e a third structure of the same type as the previous with a sill ¢, and range d; much larger
than d; to account for long range (i.e. large-scale) variation.

The concept of a nested variogram is since long time in use (Serra, 1967) and is analogue
to the spectral decomposition of geophysics (Spector and Grant, 1970). The basic idea is that
the variation due to uncorrelated processes Y, (x) acting at different scales of a spatial (or
temporal) phenomenon add up in a simple manner to form a linear model of regionalization

2(x) = Y o Vilx) 9)

where each Y, (x) has a different variogram ~,(h) and the increments of different Y, (x) are
pairwise orthogonal. The coefficients ¢, of the nested variogram model (7) are the squares
of the coefficients «,.

4 Multivariate nested variogram model

When dealing with several variables Z;(x) stemming from the same region we can consider
a structural analysis using uncorrelated factors Y,?(x) that build up the variables at different
scales of index u. This leads to a combination of models (6) and (9) into a single model, the
classical linear model of coregionalization (LMC) as in Marbeau (1976), Journel and Huijbregts
(1978)

Zi(x) = Y3 YI(x) (10)

u=0 p=1
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The variogram model that goes with the LMC is the multivariate nested variogram

S

') = Z_: Cuyu(h) =Y [cf]7u(h) (11)

u=0

N al, al . The flexibility of

p=1 “pu “pu*
this model should not be underestimated. If for example a structure +,(h) is not present

with positive semi-definite matrices C,, of coefficients c}; = 3°

on a particular variogram or cross variogram ;;(h) this simply implies a corresponding
coefficient ¢;; equal to zero. Goulard (1988, 1989), Goulard and Voltz (1992) have proposed
several fitting procedures.

5 Regionalized multivariate analysis

In a short note Matheron (1982) discussed the possibility of using the linear model of core-
gionalization as a basis for performing a truly regionalized multivariate data analysis. In
particular the cokriging equations for estimating the regionalized factors Y,”(x) were pre-
sented. This proposal led to several dissertations on the subject (Wackernagel, 1985; Goulard,
1988; Goovaerts, 1992a) and to many publications in the fields of geochemical prospection
(Sandjivy, 1984; Wackernagel, 1988; Bourgault and Marcotte, 1991; Wackernagel and San-
guinetti, 1993), in soil science (Wackernagel et al. 1988; Goovaerts, 1992b; Goulard and Voltz,
1993; Raspa et al., 1993), in hydrogeology (Rouhani and Wackernagel, 1990; Goovaerts et al.
1993), in mining (Sousa, 1989) and in image processing (Daly et al., 1989).

Various methods of data analysis can be adapted for decomposing the coregionalization
matrices C, (Wackernagel et al., 1989). The methods generally used are either Principal
Component Analysis or Factor Analysis (with varimax rotation), but methods for analysing
two groups of variables like Canonical Analysis or Redundancy Analysis (Goovaerts, 1994;
Lindner and Wackernagel, 1993) were also applied. The approach has been combined with
Cluster Analysis to solve classification problems (Sousa, 1989; Raspa et al., 1993).

A fundamental question when analysing multivariate spatial data is to check whether
the variables are intrinsically correlated (Wackernagel, 1994). If the answer is positive, the
coregionalization model (10) reduces to the model (6). As a consequence the factors Y),(x)
can be determined at sampling locations by classical non-regionalized multivariate methods
and subsequently kriged instead of cokriged at unsampled locations of the region of interest.

6 About the pseudo cross-variogram

The cross variogram is an even function. It is thus inapropriate when there is some shift in
the correlation between two variables: like in time series when the variation of one variable
has a delayed effect on another variable. An alternate generalization of the variogram,
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the pseudo cross-variogram =;;(h), has been proposed by Myers (1991) and Cressie (1991)
by considering the variance of the cross increments instead of the covariance of the direct
increments as in Equation (2). This function has the advantage not to be even. Assuming for
the expectation of the cross increments

Vx € D, Vi, - E[Zi(x+h)—Zj(x)] ~0 (12)

the pseudo cross-variogram comes as

2
mih) = 5 B[ (Z0cth) - 2,00) | (13)
The assumption (12) of stationary cross increments is unrealistic: it usually does not
make sense to take the difference between two variables measured in different physical
units. Papritz et al. (1993), Papritz and Fliithler (1994) have experienced limitations in the
usefulness of the pseudo cross-variogram and they argue that it applies only to second-order
stationary functions.
Another drawback of the pseudo cross-variogram function is that it is not adequate for
modeling negatively correlated variables.
For these reasons we shall not consider further this approach and switch to the classical
cross covariance function (Cramer, 1940).

7 The matrix of direct and cross covariance functions

The random functions Z;(x),: = 1,...,N are said to be jointly stationary of order 2 if the
following two assumptions are true:

¥x € D,V : E[Zi(x)] —m (14)
Vx € D,Vi,j:  cov (Zi(x—l—h), Zj(X)) — Cyi(h) (15)

The translation invariant function
Cyi(h) = E[ (Zi(x—l—h) _ m) - (Zj(x) _ mj) ] (16)

is called the centered direct covariance function (or covariance function) for := j and the cross
covariance function for ¢ # j.

We can define a matrix of covariance functions C(h) = [CZ» (h)] with the direct covariance
functions on the diagonal and the cross covariance functions off-diagonal.

The direct covariance functions C;;(h) are even, but, unlike the cross variograms, the
cross covariance functions are not even in general. For this reason, the intrinsic correlation
(4) and (6) model and the classical LMC (10) and (11) are in general not appropriate to model
multivariate data sets using covariance functions since they lead to even cross covariance
functions.
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8 A model for the covariance function matrix

In order to introduce a model of covariance function matrices, it is possible to make use of
complex covariance functions. Let c¢(h) be a complex covariance function. A simple model of
complex covariance function matrix is

C(h) = Ce(h) = [e;]e(h) 17)

in which C is a hermitian positive semi-definite matrix of coefficients ¢;; (in particular,
¢ji = Cij)-

Then, the real part of this complex covariance function matrix is a real covariance function
matrix which can be written (Grzebyk, 1993) :

C.(h) = Af(h)—Byg(h) = [a,] f(h) - [b,] g(h) (18)

with C = A +iB, Vi, ¢;; = a;; +ib;; and ¢(h) = f(h) +ig(h).

The direct covariance functions are C;;(h) = a;; f(h). As the imaginary part ¢g(h) of the
complex covariance function c¢(h) is odd, the cross covariance functions have an even and
an odd part: when ¢ # j, C;;(h) = a;; f(h) — b;; g(h).

Regarding the random functions, this covariance function matrix corresponds to the
following decomposition (Grzebyk, 1993). Let {Xp(x)} and {Yp(x)} be two sets of N random
functions, stationary of order 2, such that they verify the conditions:

(A) the factors X,(x) or Y,(x) have the same covariance function f(h),

(B) the factors are pairwise orthogonal, except for the pairs (X,(x),Y,(x)),
for which the cross covariance function is g(h).

Then, the random functions
N . .
Zi(x) = Z(a; X,(x) + ﬁ;}/p(x)) fori=1,...,N (19)

p=1

in which oz; and 6; are real constants, have the covariance function matrix (18) with

N _
cij = Y (o, +i8,)(ap +15) (20)
p=1
and a;; = Y alad 4+ 5.3 by = > alf — plal (21)
p=1 p=1

The covariance between Z;(x) and the factor X, (x) is a} f(0), the one between Z;(x) and
Y,(x) is 3. f(0). They can be computed as o, +if3 = \/)\7,(7“; +1s%), where ), is an eigenvalue
and r}, + is! is an element of the eigenvector of C associated to A,,.
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Actually, this model is based on the sum of two correlated LMCs as written in (6), whose
factors have the same covariance function f(h), and which are correlated through each
pair of factors (X,(x),Y,(x)). Furthermore, the correlation between these two factors is
very special: their cross covariance function g(h) is odd. The crucial point of this model is
that these two covariance functions (direct and cross) have only to verify the property that
c(h) = f(h) + ig(h) is a complex covariance function. Several classes of parametric complex
covariance functions are proposed by Lajaunie and Bejaoui (1991) and Grzebyk (1993).

These conditions on the correlations between each pair of factors (X, (x), Y,(x)) might be
considered too strong; other models could be developped, using also two LMCs, but with
less restricting conditions on this correlation. For example, the cross covariance function
could be assumed not to be odd. Furthermore, the covariance function of each set of factors
X,(x) and Y, (x) could be different functions. These conditions generate other models for
covariance function matrices than (18), but also imply additional practical and theorical
difficulties.

9 The Bilinear Model of Coregionalization

The concept of a nested covariance function for several variables leads to the formulation
of the Bilinear Model of Coregionalization (Grzebyk, 1993). It uses several sets of factors
{X b (x)} and {Yup (x) }, corresponding to different scales of index u. For each scale of index v,
the factors {X{j(x)} and {Yup(x)} fullfil the conditions (A) and (B), with f,(h) for the direct
covariance function and ¢, (h) for the cross covariance function.

The Bilinear Model of Coregionalization is built up as:

s N
20 = 323 (oh X200 + 5,200 @
whose covariance function matrix is:
s s
Ch) = (A f) - Bun ) = 3 (el A - Belom) @

with positive semi-definite matrices C, = A, + iB,, of coefficients s = ad; +1ib} connected
to the coefficients !, and j3;, through the relations (20) and (21).

Several fitting procedures are proposed in Grzebyk (1993).
10 Decomposition into factors and structural analysis

The factors of the two sets of random functions {X 5(){)} and {Yup(x)} are pairwise orthog-
onal, except for each pair (X?(x), Y/?(x)), for which the cross covariance function is an odd
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function ¢, (h). Furthermore, as with the LMC, they can be gathered according to their direct
covariance function f,(h) so that Z; can be rewritten:

s N
200 = Y20 with 200 = L[N+ g0000) e
u=0 p=1
For each real variable Z;(x), the components Z!(x) act independently at different scales of
the spatial or temporal phenomenon, with cross covariance functions proportional to f,(h)
and ¢, (h).

Again, the BMC can be used to perform a regionalized data analysis, by estimating
(cokriging) the regionalized components Z(x) as well as the factors X?(x) and Y?(x).

With its decomposition into independent components, the BMC can be infered on the basis
of structural analysis, by choosing the elementary covariance functions ¢, (h) = f,(h)+ig,(h).
In fact, because of the splitting into two terms (the even and the odd ones) of the covariance
function matrix, two structural analyses have to be performed. The structural analysis of the
even part is similar to that described in section 3 and leads to the determination of the real
parts f,(h) of the complex covariance functions, describing the characteristic scales of the
spatial variation. The structural analysis of the odd part only acts on the cross covariance
functions. However, its physical interpretation (in terms of structure or characteristic scale)
is difficult.

In the general case, the correlation between two variables can be of a much different
nature than that of the BMC. Three examples are given below: the deferred correlation,
the correlation produced by variables whose support are different and the correlation of
variables and their derivatives.

11 Deferred correlations

The correlation is said to be deferred when the extreme value of the cross correlation between
two variables Z;(x) and Z;(x) does not occur at the origin, but for some h;; # 0.

Consider the following simple model (Journel and Huijbregts, 1978). Let Y,(x) be N
stationary random functions of order 2 having the same covariance function f(h), pairwise
orthogonal; let (h;) be NV vectors of the space, and («}) real coefficients. Then the random
functions Z;(x) = >.0L, o} Z,(x + h;) have the covariance function matrix

in which the coefficients ¢;; = Z;VZI oz;oz% form a real positive semi-definite matrix C, such
as in (4). The extremum of correlation between Z;(x) and Z;(x) occurs ath = h; — h;. The

covariance between Z;(x) and Y, (x) is no more o, f(0) but o, f (h;).
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In fact this is a shifted intrinsic correlation model since the variables Z;(x — h;) are
intrinsically correlated, with the real covariance function matrix C(h) = Cf(h). Note that in
order to be interpreted as a shifted intrinsic correlation model, the shifting h;; of the deferred
correlations have to follow the conditions of compatibility (some h; might be nil)

h;; =h;—h; Vi,j (26)

In this case the shifted covariance function matrix (25) can be used, or more generally, a
nested model of such shifted covariance function matrices.

In the contrary (when h;; cannot be written h; —h; for all : and j), the deferred correlations
cannot be interpreted as resulting from a spatial (or temporal) shifting of all variables. For
instance, with three variables, there might be a deferred correlation between 7, (x) and Z;(x),
but no deferred correlation between Z;(x) and Z3(x) as well as between Z,(x) and Z5(x).
Then the covariance function matrix cannot be modeled by the shifted covariance function
matrix (25). Sometimes, the plain BMC can be used or else a more specific model has to be
developped.

12 Variables with different supports

Up to now, the variables were assumed to be punctual. Otherwise the way they are collected
(variables integrated on different lengths, surfaces, volumes, intervals, or using a device
which convolutes them) does matter. This can have a greatimpact on the covariance function
matrix, especially when the size of these supports is very different. The modelling has to take
these different supports into account. The LMC (for the variogram) and the BMC (for the
covariance) have to be slightly modified. To be more precise, only the underlying punctual
variables can be assumed to follow the LMC or the BMC.

Let Z;(x),2 = 1,..., N be the underlying punctual variables whose matrix of covariance
functions is C(h) = [Cz(h)] The measured variables are Z;(x) = (Z; * p;)(x), where p;(x)
is the function which characterizes the support of the variable Z;(x). Then, the matrix of
covariance functions is

C(h) = [(Cij*pi*p;)(h)] (27)

If the set of punctual variables {Z;(x)} is modeled using the BMC, as in (22) and (23), it
corresponds to the decomposition of the measured variables:

Jix) = Zz(a;u<pim5<x>>+ﬂ;u<pi*Yf(x))) 8)

u=0 p=1

and the matrix of covariance functions:

C(h) = [Cj;(h)] (29)



with
S
Cij(h) = > al (pi*p;* fu)(h) + 6% (pi * p; * gu)(h) (30)

u=0
Again, the matrices C,, of coefficients ci = al + 1b“ given by (20) is hermitian positive semi-
definite. Note that the covariance functlons (dlrect or cross) are no more linear combinations
of the same functions.
The functions p;(x) characterizing the supports have to be known to perform this adap-
tation. Provided this is true, it is then possible to study the spatial or temporal variations of
the ponctual variables, eliminating the effects of the support of the measures.

13 Variables and derivatives

When physical laws (implying formal equations) link the different variables of a coregion-
alization, crucial benefits can be gained when taking them into account. Examples are
described in Chauvet et al. (1976) who use wind data to estimate the geopotential, Dong
(1990) who treats different problems of flow in hydrogeology and Renard and Ruffo (1993)
who estimate a topographic surface using its depth and its gradient.

As an illustration, consider the simple example of a variable defined along a line (the
time axis for instance) and its derivative. Let Z;(x),? = 1,..., N be random functions jointly
stationary of order 2. Assume that 7, (x) is mean square differentiable; the random functions
Zi(x),1=1,..., N, Z](x) arejointly stationary of order 2. If C;;(h) is the covariance functions
between Z;(x) and Z;(x), the covariance functions of Z{(x) verify:

COV(Z{(Hh),Zi(X)) = COl(h), fori=1,...N (31)

COV(Z{(Hh),Z{(X)) _ _CY(h) (32)

It is still possible to use the BMC to model this coregionalization in a way which takes into
account the link between 7;(x) and its derivative Z;(x). Whereas there are N + 1 variables,
each regionalized component needs only N pairs of factors (X2(x), Y?(x)); if

200 = 303, X200+ 5,37 3)

u=0 p=1

then,

Zx) = ZZ( 0+ 21 (34

u=0 p=1

and the covariance functions for:,; = 1, ..., N are
s

Colh) = 3 ([a;;] fu(h) = b gu<h>) 35)

u=0
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whereas

cor (AL A)) = = Sl 7/ (36)
cor(Zitx4 0.2 = 3 (1o 1200 - 1t @)

14 Conclusion

The structural analysis determines different characteristic scales of the spatial or temporal
variation. They can be used through the LMC (with variograms) or the BMC (with covariance
functions) to perform regionalized data analysis. These two models are very attractive
because they are simple to implement. Whereas the LMC is already widely in use, the BMC
must still find its way to applications. Its strong point is the possibility to take into account
asymmetric spatial or temporal relations between the variables (through the cross covariance
functions). However, the physical meaning of the asymmetry is not yet fully understood.
The simplest case of asymmetry is shifted intrinsic correlation for which formulations of the
LMC and the BMC exist.

The adaptation of these models to variables measured on different supports as well as
the example of the correlation between a variable and its derivatives are illustrations of the
fact that the spatial relations between variables may be more complex than those allowed by
a plain LMC or BMC. Conversely, when physical relations between variables are known, it
is still possible to integrate them into these linear models.
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