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Summary

Comparing different scales in space or time the correlation between regionalized quantities

can change substantially. Coregionalizationmodels incorporate adescription of the variation

and covariation of a set of variables at different characteristic scales either in space or in time.

Such models can be used as a device to explore the structure of multivariate spatial or

temporal data in the framework of a regionalized multivariate data analysis.

We review the work done using the classical Linear Model of Coregionalization (LMC)

which is adequate to model sets of variograms and cross variograms as well as sets of

covariance functions with even cross covariance functions. We also present a new general-

ization of the LMC due to Grzebyk (1993), the Bilinear Model of Coregionalization (BMC),

which is suitable for modeling a coregionalization in space or along the time axis using cross

covariance functions which are not even.

1 Introduction

We do not want to open the Pandora’s box of space-time models, i.e. we shall not consider

covariance functions (or variograms)which depend on both space and time. The two classes

of models, the LMC and the BMC, are suitable to be applied either to multivariate spatial

data or to multiple/multivariate time series.

The LMC implies even cross covariance functions. It can thus be formulated in a frame-

work with variograms implying a less restrictive definition of stationarity: only the in-

crements of the random functions are assumed to be jointly stationary. The use of cross

variograms (even cross covariance functions) excludes deferred correlations which are how-

ever less likely to occur between spatial variables. Thus the LMC underlying a variogram

matrix model can be appropriate for spatial multivariate data.
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The BMC allows for uneven cross covariance functions. It is interesting for modeling

second order stationarymultivariate spatial data aswell asmultiple/multivariate time series

with deferred correlations. Deferred correlations can be thought of as effects of one variable

on other variables which occur with a certain delay in time (or space). Deferred correlations

(like correlations in general) do not follow an equivalence relation and their modeling is thus

not trivial.

In Section 2 we define the set of variograms and cross variograms for random functions

with jointly stationary increments. We also write down the simplest LMC, the intrinsic

correlation model, in which multivariate correlation does not depend on spatial/temporal

scale. In Section 3 we expose briefly the steps of structural analysis: the geostatistical way of

choosing a nested model and its parameters for fitting a variogram to values computed on

data. As an example we discuss a standard model from geochemical exploration. Section 4

generalizes the concept of a nested variogram model to the multivariate case and shows its

association with the LMC. In Section 5 various implementations of the LMC for the purpose

of regionalized multivariate data analysis are reviewed.

Section 6 is about an alternate generalization of the cross variogram called the “pseudo

cross-variogram” (Myers, 1992) and which is not an even function. We explain why we do

not use this approach and why we prefer the classical cross covariance functions, which are

formally defined in Section 7.

Section 8 presents a model for real covariance function matrices obtained by taking the

real part of a complex intrinsic correlation model. Section 9 describes a nested version of this

covariance function model and the underlying BMC. Section 10 discusses the BMC from the

point of view of structural and regionalized multivariate analysis. Sections 11 to 13 finally

give different implementations of the BMC for the cases of deferred correlation, different

support and variables being the derivatives of others.

2 The matrix of direct and cross variograms

Let Zi(x), i = 1; : : : ; N be random functions, D be a closed portion of space (or an interval
of time) and x, x+h be two points in D. The set of random functions nZi(x)o is said to
be intrinsically stationary of order 2 if the following two assumptions about the incrementsZi(x+h)� Zi(x) are true (Matheron, 1965):8x 2 D;8i : E�Zi(x+h)� Zi(x) � = 0 (1)8x 2 D;8i; j : cov�Zi(x+h)� Zi(x); Zj(x+h)� Zj(x)� = 2 
ij(h) (2)

The translation invariant function
ij(h) = 12 E� �Zi(x+h)� Zi(x)� � �Zj(x+h)� Zj(x)�� (3)
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is called the direct variogram (or variogram) for i= j and the cross variogram for i 6= j. The
direct and the cross variograms are even functions.

We can define a matrix of variograms �(h) = h
ij(h)i with the direct variograms on the
diagonal and the cross variograms off-diagonal.

The simplest coregionalization model is the intrinsic correlationmodel�(h) = C 
(h) = [cij] 
(h) (4)

in which a positive semi-definite matrix of coefficients cij multiplies a variogram 
(h). In
this model the correlation rij between variables does not depend on spatial scale (hence the
term ‘intrinsic’) 
ij(h)q
ii(h) 
jj (h) = cijpcii cjj = rij for any h (5)

The linear model of coregionalization associated with intrinsic correlation is a decompo-

sition of the form Zi(x) = NXp=1�ip Yp(x) (6)

where the intrinsically stationary random functions Yp(x) have the same variogram 
(h),
where different Yp(x) are pairwise orthogonal and where cij = PNp=1 �ip �jp. In a Principal
Component Analysis of C the loadings �ip are computed as �ip = q�p qip where �p is an
eigenvalue and qip is an element of an eigenvector qp of C.
3 Geostatistical structural analysis

The interpretation of sample values of the variogram of a variable Z(x) is called a structural
analysis. It consists in choosing and fitting a variogram model 
(h) to the experimental
variogram values. The interpretation of the behavior at the origin of the variogram (discon-

tinuous, continuous or differentiable) as well as the behavior at large distances (bounded or

not) are fundamental steps of the geostatistical approach (Matheron, 1970; Journel and Hui-

jbregts, 1978). They determine the generic model (equivalence class of random functions),

its type and its parameters (Matheron, 1989).

Geostatistical structural analysis leads usually to the choice of more than one elemen-

tary variogram model: we have a nested variogram model consisting of several elementary

variograms 
u(h) (with u = 0; 1; : : : ; S) multiplied by coefficients cu
(h) = SXu=0 cu 
u(h) (7)
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A typical nested model in geochemical exploration may consist of three structures de-

scribing three characteristic scales of the spatial (or temporal) variation
(h) = c0 
0(h) + c1 
1(h) + c2 
2(h) (8)

with, for example:� a first structure modeling a discontinuity at the origin of 
(h) (the so called nugget
effect). The model for this discontinuity is a constant c0 times an indicator function
0(h) (nil for jhj = 0 and one for jhj > 0). This structure catches the micro-variability
at scales lower than the sampling mesh size.� a second structure describing short range variation. Typically such a function steadily
increases from the origin and rapidly reaches a sill c1 at a range d1. The value of this
second structure then equals c1 for all distances jhj > d1. This structure reflects the
small-scale variations associated with spatial objects of a diameter lower or equal to d1.� a third structure of the same type as the previouswith a sill c2 and range d2much larger
than d1 to account for long range (i.e. large-scale) variation.
The concept of a nested variogram is since long time in use (Serra, 1967) and is analogue

to the spectral decomposition of geophysics (Spector and Grant, 1970). The basic idea is that

the variation due to uncorrelated processes Yu(x) acting at different scales of a spatial (or
temporal) phenomenon add up in a simple manner to form a linear model of regionalizationZ(x) = SXu=0�u Yu(x) (9)

where each Yu(x) has a different variogram 
u(h) and the increments of different Yu(x) are
pairwise orthogonal. The coefficients cu of the nested variogram model (7) are the squares
of the coefficients �u.
4 Multivariate nested variogram model

When dealing with several variables Zi(x) stemming from the same region we can consider
a structural analysis using uncorrelated factors Y pu (x) that build up the variables at different
scales of index u. This leads to a combination of models (6) and (9) into a single model, the
classical linear model of coregionalization (LMC) as in Marbeau (1976), Journel and Huijbregts

(1978) Zi(x) = SXu=0 NXp=1�ipu Y pu (x) (10)
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The variogram model that goes with the LMC is the multivariate nested variogram�(h) = SXu=0Cu 
u(h) = SXu=0[cuij] 
u(h) (11)

with positive semi-definite matrices Cu of coefficients cuij = PNp=1 �ipu �jpu. The flexibility of
this model should not be underestimated. If for example a structure 
u(h) is not present
on a particular variogram or cross variogram 
ij(h) this simply implies a corresponding
coefficient cuij equal to zero. Goulard (1988, 1989), Goulard and Voltz (1992) have proposed
several fitting procedures.

5 Regionalized multivariate analysis

In a short note Matheron (1982) discussed the possibility of using the linear model of core-

gionalization as a basis for performing a truly regionalized multivariate data analysis. In

particular the cokriging equations for estimating the regionalized factors Y pu (x) were pre-
sented. This proposal led to several dissertations on the subject (Wackernagel, 1985; Goulard,

1988; Goovaerts, 1992a) and to many publications in the fields of geochemical prospection

(Sandjivy, 1984; Wackernagel, 1988; Bourgault and Marcotte, 1991; Wackernagel and San-

guinetti, 1993), in soil science (Wackernagel et al. 1988; Goovaerts, 1992b; Goulard andVoltz,

1993; Raspa et al., 1993), in hydrogeology (Rouhani andWackernagel, 1990; Goovaerts et al.

1993), in mining (Sousa, 1989) and in image processing (Daly et al., 1989).

Various methods of data analysis can be adapted for decomposing the coregionalization

matrices Cu (Wackernagel et al., 1989). The methods generally used are either Principal
Component Analysis or Factor Analysis (with varimax rotation), but methods for analysing

two groups of variables like Canonical Analysis or Redundancy Analysis (Goovaerts, 1994;

Lindner and Wackernagel, 1993) were also applied. The approach has been combined with

Cluster Analysis to solve classification problems (Sousa, 1989; Raspa et al., 1993).

A fundamental question when analysing multivariate spatial data is to check whether

the variables are intrinsically correlated (Wackernagel, 1994). If the answer is positive, the

coregionalization model (10) reduces to the model (6). As a consequence the factors Yp(x)
can be determined at sampling locations by classical non-regionalizedmultivariate methods

and subsequently kriged instead of cokriged at unsampled locations of the region of interest.

6 About the pseudo cross-variogram

The cross variogram is an even function. It is thus inapropriate when there is some shift in

the correlation between two variables: like in time series when the variation of one variable

has a delayed effect on another variable. An alternate generalization of the variogram,
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the pseudo cross-variogram �ij(h), has been proposed by Myers (1991) and Cressie (1991)
by considering the variance of the cross increments instead of the covariance of the direct

increments as in Equation (2). This function has the advantage not to be even. Assuming for

the expectation of the cross increments8x 2 D;8i; j : E�Zi(x+h)� Zj(x) � = 0 (12)

the pseudo cross-variogram comes as�ij(h) = 12 E� �Zi(x+h)� Zj(x)�2 � (13)

The assumption (12) of stationary cross increments is unrealistic: it usually does not

make sense to take the difference between two variables measured in different physical

units. Papritz et al. (1993), Papritz and Flühler (1994) have experienced limitations in the

usefulness of the pseudo cross-variogram and they argue that it applies only to second-order

stationary functions.

Another drawback of the pseudo cross-variogram function is that it is not adequate for

modeling negatively correlated variables.

For these reasons we shall not consider further this approach and switch to the classical

cross covariance function (Cramer, 1940).

7 The matrix of direct and cross covariance functions

The random functions Zi(x); i = 1; :::; N are said to be jointly stationary of order 2 if the
following two assumptions are true:8x 2 D;8i : E�Zi(x) � = mi (14)8x 2 D;8i; j : cov�Zi(x+h); Zj(x)� = Cij(h) (15)

The translation invariant functionCij(h) = E� �Zi(x+h) �mi� � �Zj(x)�mj� � (16)

is called the centered direct covariance function (or covariance function) for i= j and the cross
covariance function for i 6= j.
We can define amatrix of covariance functionsC(h) = hCij(h)iwith the direct covariance

functions on the diagonal and the cross covariance functions off-diagonal.

The direct covariance functions Cii(h) are even, but, unlike the cross variograms, the
cross covariance functions are not even in general. For this reason, the intrinsic correlation

(4) and (6) model and the classical LMC (10) and (11) are in general not appropriate to model

multivariate data sets using covariance functions since they lead to even cross covariance

functions.

24



8 A model for the covariance function matrix

In order to introduce a model of covariance function matrices, it is possible to make use of

complex covariance functions. Let c(h) be a complex covariance function. A simple model of
complex covariance function matrix isC(h) = C c(h) = [cij] c(h) (17)

in which C is a hermitian positive semi-definite matrix of coefficients cij (in particular,cji = cij).
Then, the real part of this complex covariance functionmatrix is a real covariance function

matrix which can be written (Grzebyk, 1993) :Cre(h) = A f(h) �B g(h) = [aij] f(h)� [bij] g(h) (18)

with C = A + iB, 8i; j cij = aij + ibij and c(h) = f(h) + ig(h).
The direct covariance functions are Cii(h) = aii f(h). As the imaginary part g(h) of the

complex covariance function c(h) is odd, the cross covariance functions have an even and
an odd part: when i 6= j, Cij(h) = aij f(h) � bij g(h).
Regarding the random functions, this covariance function matrix corresponds to the

following decomposition (Grzebyk, 1993). Let
nXp(x)o and nYp(x)obe two sets ofN random

functions, stationary of order 2, such that they verify the conditions:

(A) the factorsXp(x) or Yp(x) have the same covariance function f(h),
(B) the factors are pairwise orthogonal, except for the pairs (Xp(x); Yp(x)),
for which the cross covariance function is g(h).

Then, the random functionsZi(x) = NXp=1 �ipXp(x) + �ip Yp(x)! for i = 1; :::; N (19)

in which �ip and �ip are real constants, have the covariance function matrix (18) withcij = NXp=1(�ip + i�ip)(�jp + i�jp) (20)

and aij = NXp=1�ip�jp + �ip�jp bij = NXp=1�jp�ip � �jp�ip (21)

The covariance between Zi(x) and the factor Xp(x) is �ipf(0), the one between Zi(x) andYp(x) is �ipf(0). They can be computed as �ip + i�ip = q�p(rip+ isip), where �p is an eigenvalue
and rip + isip is an element of the eigenvector of C associated to �p.
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Actually, this model is based on the sum of two correlated LMCs as written in (6), whose

factors have the same covariance function f(h), and which are correlated through each
pair of factors (Xp(x); Yp(x)). Furthermore, the correlation between these two factors is
very special: their cross covariance function g(h) is odd. The crucial point of this model is
that these two covariance functions (direct and cross) have only to verify the property thatc(h) = f(h) + ig(h) is a complex covariance function. Several classes of parametric complex
covariance functions are proposed by Lajaunie and Bejaoui (1991) and Grzebyk (1993).

These conditions on the correlations between each pair of factors (Xp(x); Yp(x))might be
considered too strong; other models could be developped, using also two LMCs, but with

less restricting conditions on this correlation. For example, the cross covariance function

could be assumed not to be odd. Furthermore, the covariance function of each set of factorsXp(x) and Yp(x) could be different functions. These conditions generate other models for
covariance function matrices than (18), but also imply additional practical and theorical

difficulties.

9 The Bilinear Model of Coregionalization

The concept of a nested covariance function for several variables leads to the formulation

of the Bilinear Model of Coregionalization (Grzebyk, 1993). It uses several sets of factorsnXpu(x)o and nY pu (x)o, corresponding to different scales of index u. For each scale of index u,
the factors

nXpu(x)o and nY pu (x)o fullfil the conditions (A) and (B), with fu(h) for the direct
covariance function and gu(h) for the cross covariance function.
The Bilinear Model of Coregionalization is built up as:Zi(x) = SXu=0 NXp=1 �ipuXpu(x) + �ipu Y pu (x)! (22)

whose covariance function matrix is:C(h) = SXu=0 Au fu(h)�Bugu(h)! = SXu=0 [auij] fu(h) � [buij] gu(h)! (23)

with positive semi-definite matrices Cu = Au + iBu of coefficients cuij = auij + ibuij connected
to the coefficients �ipu and �ipu through the relations (20) and (21).
Several fitting procedures are proposed in Grzebyk (1993).

10 Decomposition into factors and structural analysis

The factors of the two sets of random functions
nXpu(x)o and nY pu (x)o are pairwise orthog-

onal, except for each pair (Xpu(x); Y pu (x)), for which the cross covariance function is an odd
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function gu(h). Furthermore, as with the LMC, they can be gathered according to their direct
covariance function fu(h) so that Zi can be rewritten:Zi(x) = SXu=0Zui (x) with Zui (x) = NXp=1 �ipuXpu(x) + �ipu Y pu (x)! (24)

For each real variable Zi(x), the components Zui (x) act independently at different scales of
the spatial or temporal phenomenon, with cross covariance functions proportional to fu(h)
and gu(h).
Again, the BMC can be used to perform a regionalized data analysis, by estimating

(cokriging) the regionalized components Zui (x) as well as the factorsXpu(x) and Y pu (x).
With its decomposition into independent components, theBMCcanbe inferedon the basis

of structural analysis, by choosing the elementary covariance functions cu(h) = fu(h)+igu(h).
In fact, because of the splitting into two terms (the even and the odd ones) of the covariance

function matrix, two structural analyses have to be performed. The structural analysis of the

even part is similar to that described in section 3 and leads to the determination of the real

parts fu(h) of the complex covariance functions, describing the characteristic scales of the
spatial variation. The structural analysis of the odd part only acts on the cross covariance

functions. However, its physical interpretation (in terms of structure or characteristic scale)

is difficult.

In the general case, the correlation between two variables can be of a much different

nature than that of the BMC. Three examples are given below: the deferred correlation,

the correlation produced by variables whose support are different and the correlation of

variables and their derivatives.

11 Deferred correlations

The correlation is said to be deferred when the extreme value of the cross correlation between

two variables Zi(x) and Zj(x) does not occur at the origin, but for some hij 6= 0.
Consider the following simple model (Journel and Huijbregts, 1978). Let Yp(x) be N

stationary random functions of order 2 having the same covariance function f(h), pairwise
orthogonal; let (hi) be N vectors of the space, and (�ip) real coefficients. Then the random
functions Zi(x) = PNp=1 �ipZp(x+ hi) have the covariance function matrixC(h) = "Cij(h)# with Cij(h) = cijf(h + hi � hj) (25)

in which the coefficients cij = PNp=1 �ip�jp form a real positive semi-definite matrix C, such
as in (4). The extremum of correlation between Zi(x) and Zj(x) occurs at h = hi � hj . The
covariance between Zi(x) and Yp(x) is no more �ipf(0) but �ipf(hi).
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In fact this is a shifted intrinsic correlation model since the variables Zi(x � hi) are
intrinsically correlated, with the real covariance function matrixC(h) = Cf(h). Note that in
order to be interpreted as a shifted intrinsic correlation model, the shifting hij of the deferred
correlations have to follow the conditions of compatibility (some hi might be nil)hij = hi � hj 8i; j (26)

In this case the shifted covariance function matrix (25) can be used, or more generally, a

nested model of such shifted covariance function matrices.

In the contrary (whenhij cannot bewrittenhi�hj for all i and j), the deferred correlations
cannot be interpreted as resulting from a spatial (or temporal) shifting of all variables. For

instance, with three variables, theremight be a deferred correlation betweenZ1(x) andZ2(x),
but no deferred correlation between Z1(x) and Z3(x) as well as between Z2(x) and Z3(x).
Then the covariance function matrix cannot be modeled by the shifted covariance function

matrix (25). Sometimes, the plain BMC can be used or else a more specific model has to be

developped.

12 Variables with different supports

Up to now, the variables were assumed to be punctual. Otherwise the way they are collected

(variables integrated on different lengths, surfaces, volumes, intervals, or using a device

which convolutes them) doesmatter. This can have a great impact on the covariance function

matrix, especially when the size of these supports is very different. Themodelling has to take

these different supports into account. The LMC (for the variogram) and the BMC (for the

covariance) have to be slightly modified. To be more precise, only the underlying punctual

variables can be assumed to follow the LMC or the BMC.

Let Zi(x); i = 1; :::; N be the underlying punctual variables whose matrix of covariance
functions is C(h) = hCij(h)i. The measured variables are ~Zi(x) = (Zi � pi)(x), where pi(x)
is the function which characterizes the support of the variable Zi(x). Then, the matrix of
covariance functions is ~C(h) = h(Cij � pi � �pj)(h)i (27)

If the set of punctual variables fZi(x)g is modeled using the BMC, as in (22) and (23), it
corresponds to the decomposition of the measured variables:~Zi(x) = SXu=0 NXp=1 �ipu (pi � Xpu(x)) + �ipu (pi � Y pu (x))! (28)

and the matrix of covariance functions:~C(h) = [ ~Cij(h)] (29)
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with ~Cij(h) = SXu=0 auij (pi � �pj � fu)(h) + buij (pi � �pj � gu)(h) (30)

Again, the matricesCu of coefficients cuij = auij + ibuij given by (20) is hermitian positive semi-
definite. Note that the covariance functions (direct or cross) are no more linear combinations

of the same functions.

The functions pi(x) characterizing the supports have to be known to perform this adap-
tation. Provided this is true, it is then possible to study the spatial or temporal variations of

the ponctual variables, eliminating the effects of the support of the measures.

13 Variables and derivatives

When physical laws (implying formal equations) link the different variables of a coregion-

alization, crucial benefits can be gained when taking them into account. Examples are

described in Chauvet et al. (1976) who use wind data to estimate the geopotential, Dong

(1990) who treats different problems of flow in hydrogeology and Renard and Ruffo (1993)

who estimate a topographic surface using its depth and its gradient.

As an illustration, consider the simple example of a variable defined along a line (the

time axis for instance) and its derivative. Let Zi(x), i = 1; : : : ; N be random functions jointly
stationary of order 2. Assume that Z1(x) is mean square differentiable; the random functionsZi(x); i = 1; : : : ; N; Z 01(x) are jointly stationary of order 2. IfCij(h) is the covariance functions
between Zi(x) and Zj(x), the covariance functions of Z 01(x) verify:cov�Z 01(x+ h); Zi(x)� = C 0ij(h); for i = 1; :::; N (31)cov�Z 01(x+ h); Z 01(x)� = �C 0011(h) (32)

It is still possible to use the BMC tomodel this coregionalization in awaywhich takes into

account the link between Z1(x) and its derivative Z 01(x). Whereas there are N + 1 variables,
each regionalized component needs only N pairs of factors (Xpu(x); Y pu (x)); ifZi(x) = SXu=0 NXp=1 �ipuXpu(x) + �ipu Y pu (x)! (33)

then, Z 01(x) = SXu=0 NXp=1 �1puXpu 0(x) + �1pu Y pu 0(x)! (34)

and the covariance functions for i; j = 1; :::; N areCij(h) = SXu=0 [auij] fu(h)� [buij] gu(h)! (35)
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whereas cov�Z 01(x+ h); Z 01(x)� = � SXu=0[au11] f 00u (h) (36)cov�Z 01(x+ h); Zi(x)� = SXu=0 [au1j] f 0u(h)� [bu1j] g0u(h)! (37)

14 Conclusion

The structural analysis determines different characteristic scales of the spatial or temporal

variation. They canbeused through theLMC(withvariograms) or theBMC(with covariance

functions) to perform regionalized data analysis. These two models are very attractive

because they are simple to implement. Whereas the LMC is already widely in use, the BMC

must still find its way to applications. Its strong point is the possibility to take into account

asymmetric spatial or temporal relations between the variables (through the cross covariance

functions). However, the physical meaning of the asymmetry is not yet fully understood.

The simplest case of asymmetry is shifted intrinsic correlation for which formulations of the

LMC and the BMC exist.

The adaptation of these models to variables measured on different supports as well as

the example of the correlation between a variable and its derivatives are illustrations of the

fact that the spatial relations between variables may be more complex than those allowed by

a plain LMC or BMC. Conversely, when physical relations between variables are known, it

is still possible to integrate them into these linear models.
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Cramer, H. (1940) On the theory of stationary random processes. Annals of Mathematics, 41,

215–230.

Cressie, N. (1991) Statistics for Spatial Data. Wiley, New York, 900p.

Daly, C., Lajaunie, C. and Jeulin, D. (1989)Application ofmultivariate kriging to theprocess-

ing of noisy images. In: Armstrong, M. (Ed.) Geostatistics, 749–760, Kluwer Academic

Publisher, Amsterdam.

30



Dong, A. (1990) Estimation Géostatistique des Phénomènes régis par des Equations aux
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