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The Ensemble Kalman Filter (EnKF) has been successfully applied in petroleum engineering during the

past few years to constrain reservoir models to production or seismic data. This sequential assimilation

method provides a set of updated static variables (porosity, permeability) and dynamic variables

(pressure, saturation) at each assimilation time. However, several limitations can be pointed out. In

particular, the method does not prevent petrophysical realizations from departing from prior

information. In addition, petrophysical properties can reach extreme (non-physical) values. In this

work, we propose to combine the EnKF with two parameterization methods designed to preserve

second-order statistical properties: pilot points and gradual deformation. The aim is to prevent the

departure of the constrained petrophysical property distributions from prior information. Over/under

estimations should also be avoided. The two algorithms are applied to a synthetic case. Several

parameter configurations are investigated in order to identify solutions improving the performance of

the method.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The Ensemble Kalman Filter (Evensen, 1994) is a sequential
assimilation method adapted to non linear dynamic problems. An
ensemble of model realizations is used to represent the uncer-
tainties in the model at hand. The model is propagated through
time according to a dynamic system and, whenever measure-
ments are available, new model estimates are computed follow-
ing a variance minimization scheme (Evensen, 2007). This
technique has been widely used in different fields of science such
as oceanography (Haugen and Evensen, 2002), meteorology
(Evensen and van Leeuwen, 1996), hydrogeology (Margulis
et al., 2002) and petroleum engineering.

In petroleum applications, the model under consideration is
the reservoir model. The state of this model changes with time
because of fluid displacements. According to governing flow
equations (Aziz and Settari, 1979), the reservoir state is charac-
terized at each time by two sets of variables populating every grid
block of the numerical reservoir model: on one hand, the static

variables such as petrophysical properties (porosity, permeabil-
ity), and, on the other hand, the dynamic variables that include
pressures and fluid saturations. History matching then consists in
perturbing the static variables in order to reproduce as best as
possible the data collected during the life of the reservoir:
ll rights reserved.
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production data at wells or seismic data for instance. The initial
petrophysical property realizations are generated with respect to
a prior geostatistical model deduced from geological data. It is
characterized by a mean, a variance and a variogram, which
describes the spatial variability of the properties. A correct
definition of this model is crucial for the success of the history
matching process. This is valid for variational history matching
techniques, but also for EnKF since the updated models are linear
combinations of the initial models. Several papers in the literature
highlight the need for an appropriate initial ensemble to ensure a
good match.

Other characteristics of the EnKF can impede its performance
for history matching: the finite size of the ensemble, the Gaussian
distribution assumption for the static and dynamic variables or
the nonlinearity of the relation between measurements and
variables. In particular, they can lead to extreme, nonphysical
values for petrophysical properties (see Heidari et al. (2011) for
instance). Indeed, the method does not prevent realizations from
departing from prior information, yet playing an important role in
the history matching process.

Let us note that other techniques have been investigated to
quantify uncertainty in history-matching problems. One can refer
for instance to Oliver et al. (2001), Dostert et al. (2006) or Romary
(2009). A detailed review on reservoir history matching techni-
ques can be found in Oliver and Chen (2011).

In this paper, we aim to constrain petrophysical realizations to
honor prior information all along the assimilation process in order
to avoid over/under estimation. The main idea is to combine the
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EnKF with parameterization techniques designed for perturbing
realizations while preserving their spatial variability. More pre-
cisely, the EnKF is applied to a set of parameters used to perturb
an ensemble of fixed background realizations. The resulting
ensemble of realizations evolves through assimilations and is
used to perform fluid flow simulations. The parameterization
techniques considered here are the pilot point method (de
Marsily et al., 1984) and the gradual deformation method (Hu,
2000). However, the proposed approach can be extended to other
techniques. For gradual deformation, parameters are weights
used to combine realizations from the background ensemble.
For pilot points, EnKF is used to update values of petrophysical
properties at selected locations of the reservoir. The perturbed
values are then propagated to the background realizations by
kriging.

The proposed algorithms are described in Section 2 and
applied to a synthetic reservoir in Section 3. For both parameter-
ization techniques, various parameter configurations are studied.
The choice of pilot point locations is crucial for the performance of
the history-matching process. For gradual deformation, we inves-
tigate the size of the background ensemble. Local deformations
are also considered, in an attempt to provide more flexibility.
2. Combining EnKF with parameterization methods

The general combination algorithm is described in Section 2.1.
Its specific implementation for pilot points and gradual deforma-
tion is given in Sections 2.2 and 2.3, respectively.

2.1. General algorithm

The basics of the algorithm are presented in Fig. 1. Three
ensembles are considered:
�
 a ‘‘background’’ ensemble of realizations for each petrophysi-
cal property of interest,
�
 an ensemble of parameters,

�
 a ‘‘simulation’’ ensemble with the petrophysical property

realizations obtained when applying each set of parameters
to the background ensemble.

The members of the background ensemble are generated
according to prior information. At each assimilation time, the
members of the simulation ensemble are forecasted in time. The
resulting dynamic states are then constrained to production data
in the EnKF update jointly with the parameters.
Parameters

E
up

Background
ensemble

Simulation ensemble For
Parameterization

technique

Fig. 1. Overview of the algorithm combining the EnKF and parameter
The algorithm, which can be directly extended to any number
of petrophysical properties, is the following:
1.
nKF
dat

eca

izat
Generate M realizations Zk,k¼1,...,M of the petrophysical
property of interest (porosity, permeabilityy) using the prior
information: they form the background ensemble.
2.
 Select P perturbation parameters and generate N initial sets of
values for these parameters ya,0

i ¼ ðy
a,0
i,1 ,:::,ya,0

i,P Þ, i¼ 1:::N. They
will be considered as static variables in the assimilation
process.
3.
 Then, for each new assimilation time tn,n40,

a.
 apply the parameterization technique to the background

ensemble using successively the N sets of parameter values
ya,n�1

i , i¼ 1:::N. This results in N realizations of the property
of interest Yn�1

i ¼ f ðya,n�1
i ,Z1,:::,ZMÞ, i¼1...N, defining the simu-

lation ensemble.

b.
 compute the forecast from time tn�1 to time tn for each

member Yn�1
i of the simulation ensemble. This provides a set

of forecasted dynamic variables Sf ,n
i , i¼ 1:::N and production

responses at wells Df ,n
i , i¼ 1:::N.
c.
 apply the analysis step of EnKF to the vector ðya,n�1
i ,Sf ,n

i ,
Df ,n

i Þi ¼ 1:::N . The resulting updated vector ðya,n
i ,Sa,n

i ,Da,n
i Þi ¼ 1:::N is

used as the initial state for the forecast at the next assimila-
tion. A detailed description of the EnKF analysis step is given in
Evensen (2007).

When considering several petrophysical properties, perturba-
tion parameters should be chosen for each of them. Note that, in
the traditional application of EnKF for history matching, the
parameters and simulation ensembles are the same: the analysis
step is applied to the petrophysical properties at all grid blocks
(see also Fig. 1).

2.2. EnKF and pilot points

The pilot point method was first considered as an estimation
method in the work by de Marsily et al. (1984) about the
interpretation of interference test data. The purpose was to
generate a smooth permeability model applying kriging to per-
meability values assigned to some points called pilot points. This
method was further extended to condition permeability realiza-
tions to pressure data (RamaRao et al., 1995) by minimizing an
objective (cost) function.

In order to understand the principle of the pilot point method,
let us consider an unconditional realization y of some petrophy-
sical property and n pilot points. y can be conditioned to new
values at pilot point locations by conditional simulation through
e

st

EnKF
update

Simulation ensemble Forecast

ion methods (left). Comparison with traditional EnKF (right).
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kriging (Chil�es and Delfiner, 1999):

ycðuÞ ¼ ypp
K ðuÞþ½yðuÞ�yK ðuÞ�
Fig. 3. (a) Maximum injection rate planning (b) Reference bottom hole pressure (c) Ref

assimilation process.

Fig. 4. Configurations for pilot point locations (black dots). (a) C
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Fig. 2. Reference ln(Kh) field.
u indicates location. ypp
K ðuÞ is the kriging estimate built from

the new values imposed to the n pilot points, and yK(u) is the
kriging estimate computed from the values of the unconditional y

realization at pilot point locations.
The pilot point method can be used as a parameterization

technique in history matching processes: the values of the petro-
physical properties at pilot points are considered as independent
uncertain parameters. Depending on the location of pilot points and
on the values attributed at these points, the spatial variability of the
perturbed realization may depart from the prior information. Among
possible solutions, one can impose a minimal distance between pilot
point locations and a confidence interval on the values. More details
on the use of pilot points for history matching can be found in
RamaRao et al. (1995), Gomez-Hernandez et al. (1997), de Marsily
et al. (2000) and Oliver and Chen (2011).

The use of pilot points in the algorithm described above simply
consists in updating petrophysical properties at pilot point loca-
tions using EnKF. The background ensemble contains M¼N

realizations of the petrophysical property of interest. These
realizations are conditioned to P pilot points on the basis of
kriging to generate the simulation ensemble.
erence surface oil rate (d) Reference water cut. Solid dots indicate data used in the

onfiguration 2, (b) Configuration 3 and (c) Configuration 4.
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2.3. EnKF and gradual deformation

The gradual deformation method was first introduced by
Hu (2000). Let us consider two independent Gaussian random
functions, Y1 and Y2 with the same mean m and covariance C.
Hu proposed an adequate weighted combination of these func-
tions, which results in a Gaussian random function Y satisfying the
same statistical properties. For any parameter y, Y is defined as

Y�m¼ ðY1�mÞcosðpyÞþðY2�mÞsinðpyÞ ð1Þ

y is the gradual deformation parameter. The above formula is
periodic in y, with a range of �1 to þ1. For y¼0, Y is the same as
Y1; for y¼0.5, Y is the same as Y2. Continuous perturbations of y
result in continuous changes in Y. The same formulation can be
applied to any two realizations y1 and y2 of Y1 and Y2 (respec-
tively) to yield a realization y.

Eq. (1) can be extended to any number of realizations. Let us
consider M independent Gaussian random functions Y1,...,YM with
mean m and covariance C. Then, with any set of deformation
parameters y1,...,yM–1,

Y�m¼
YM�1

i ¼ 1

ðY1�mÞcosðpyiÞþ
XM�1

i ¼ 1

sinðpyiÞ
YM�1

j ¼ iþ1

cosðpyjÞðYiþ1�mÞ

ð2Þ

defines a Gaussian random function Y with mean m and
covariance C.

The gradual deformation can be applied to Gaussian white noise
realizations. This can be used in particular to combine gradual
deformation to Gaussian and non-Gaussian simulation algorithms
such as the FFT-MA algorithm proposed by Le Ravalec et al. (2000),
sequential simulations or object-based Boolean simulations.

In order to get more flexibility, different deformation parameter
values can be assigned to non overlapping regions of the reservoir
grid. In this case, the gradual deformation is said to be ‘‘local’’ (Hu,
2000).

Let us now consider the integration of gradual deformation in
the algorithm of Section 2.1. The perturbation parameters are the
gradual deformation parameters, so that necessarily P¼M�1.
The background ensemble contains M realizations of the petro-
physical property of interest or eventually Gaussian white noise
realizations. In both cases, the combination in (Eq. (2)) is applied
to the members of this ensemble. Gaussian white noise realiza-
tions are then transformed into petrophysical realizations with
mean m and covariance C using a geostatistical algorithm. In the
following, the FFT-MA method will be considered.

The initial set of deformation parameters ya,0
k ¼ ðy

a,0
k,1,:::,ya,0

k,PÞ,
k¼ 1:::N is generated randomly from a uniform distribution
before being submitted to a normal score transformation (as
EnKF requires Gaussian distributions).

Finally, the algorithm can be easily extended to local gradual
deformations when considering the Gaussian white noise realiza-
tions as the background ensemble. In such a case, a set of
deformation parameters is defined per region. The members of
the background ensemble are then combined in each grid cell
according to (Eq. (2)), considering the value of the deformation
parameters associated to the region the grid cell belongs to.
Fig. 5. Bottom hole pressure (left) and water cut (right) simulated at well PROD2

with the initial ensemble (first row) and the final ensemble obtained for configurations

1 to 4. Reference data are plotted in red. The black dashed vertical line separates the

history-matching period (0–516 day) from the forecasting period (517–1612 day).

(a) Initial ensemble, (b) Initial ensemble, (c) Final ensemble - Configuration 1, (d) Final

ensemble - Configuration 1, (e) Final ensemble - Configuration 2, (f) Final ensemble -

Configuration 2, (g) Final ensemble - Configuration 3, (h) Final ensemble - Configura-

tion 3, (i) Final ensemble - Configuration 4 and (j) Final ensemble - Configuration 4.

(For interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)
3. Numerical experiment

In this section we propose to apply the previous methods to a
synthetic case study. It consists of a two dimensional, two phase
flow (water and oil), water flooding synthetic reservoir. The
uncertain parameter is the horizontal permeability field. The
other properties such as the porosity, the relative permeability
curves, etc., are assumed to be known. The aim of the experiment
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is then to generate a set of permeability fields constrained to
production data using the algorithms proposed above.
3.1. Case study description

The numerical model for the 2D case study is built over a
50�50 grid. The dimensions of grid blocks are 10 m�10 m. For
simplicity, the porosity is equal to 0.18 everywhere. See Fig. 2 for
the reference realization of the logarithm of the horizontal
permeability Kh. It was generated using the Fast-Fourier Trans-
form-Moving Average (FFT-MA) algorithm (Le Ravalec et al.,
2000) with a mean of 5, a variance of 2.5 and an anisotropic
spherical variogram. The main anisotropy direction is defined by
an angle of 301 with respect to the X-axis. The correlation lengths,
i.e. the practical ranges of the variogram, are 200 and 40 m.

Five vertical wells are located in the field: one water injector (INJ1)
in the center and one producer in each corner (named PROD1 to
PROD4, clockwise). The top depth of the reservoir is 2200 m and the
initial reservoir pressure is 250 bars. We consider here a two phase
(water and oil) black-oil model. Relative permeability curves follow a
Corey law (Corey, 1977) with an exponent of 2. The residual water
saturation is set to 0.15 and the residual oil saturation to 0.2. Water
and oil compressibility equal 0.10�10�4 and 0.10�10�3 bar�1,
respectively. The corresponding densities are 1.05 and 0.9 g/cm3.

The production schedule is defined over 4.5 years. All producers
are imposed a 10 m3/day rate. The flow rate constraint is changed to
a bottom hole pressure (BHP) control when BHP drops below 50
bars. The primary constraint for the injection well is the maximum
water injection rate, initially set to 40 m3/day. It is changed to
50 m3/day and 60 m3/day after 90 and 151 day of production,
respectively (see Fig 3(a)). The secondary constraint for this well is
the allowed maximum injection pressure, which is set to 300 bars.

The bottom hole pressure (BHP), surface oil rate (SOR) and water
cut (WCT) simulated at the wells for the reference permeability
field are considered as reference production data in the following.
All fluid-flow simulations are performed using the reservoir simu-
lator PumaFlowTM (see for instance Gratien et al. (2007)).
Fig. 6. Mean (first row) and variance (second row) of the ln(Kh) realizations in the i

(a) Initial, (b) Initial, (c) Final – Configuration 1, (d) Final – Configuration 1, (e) Final –

Configuration 3, (i) Final – Configuration 4 and (j) Final – Configuration 4.

Table 1
Effect of pilot points: final RMS1 error for each type of production response

normalized to the value obtained with EnKF.

RMS for bottom
hole pressure

RMS for surface
oil rate

RMS for
water cut

Configuration 1
(EnKF—2500 points)

1 1 1

Configuration 2 (37 points) 7.61 3.41 3.39

Configuration 3 (13 points) 7.48 3.68 3.66

Configuration 4 (5 points) 10.7 3.65 3.58
For the assimilation process, the reference permeability field is
assumed to be unknown. The aim of the experiment is thus to
obtain a set of permeability realizations constrained to the
production data. The history matching interval consists of the
first 17 months (516 day), with data assimilation at the end of
each month. The corresponding reference data are plotted in
Fig. 3(b)–(d). The period from days 517–1612 is used to assess the
forecast capabilities of the constrained models.

The measurement errors are assumed to be independent and
Gaussian distributed with a standard deviation set to 5% of the
measured values. An initial ensemble of N¼50 sets is generated
for the P parameter values. The state vector updated with the
EnKF analysis is the following:
�

nitia

Con

F

Parameters yi,1,y,yi,P (static variables)

�
 Pressure P1,i,y,P2500,i and water saturation S1,i,y,S2500,i in all

grid cells (dynamic variables)

�
 Bottom hole pressures BHPi,k,k¼1y5 in all wells, surface oil

rate SORi,k,k¼1...4 and water cut WCTi,k,k¼1y4 at producers.

In the following, the quality of the results will be assessed using in
particular the RMS error on the reference production data and
permeability field. This value estimates the departure of the simu-
lated production data or permeability realizations from the reference
values as

RMS1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i ¼ 1

1

Nt

XNt

j ¼ 1

1

N
tj

data

XN
tj

data

k ¼ 1

ðdk
obsðtjÞ�dk

i ðtjÞÞ
2

vuuut ðproduction dataÞ ð3Þ
l ensemble (left) and the final ensembles obtained with configurations 1–4.

figuration 2, (f) Final – Configuration 2, (g) Final – Configuration 3, (h) Final –

ig. 7. RMS2 error on the ln(Kh) realization during the assimilation process.
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and

RMS2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i ¼ 1

1

Ngrid

XNgrid

p ¼ 1

ðlnðKhÞip�lnðKhÞref
p Þ

2

vuut ðpermeability fieldÞ ð4Þ
Fig. 8. Experimental variogram computed in the main anisotropy direction on all the

configurations (blue dots). The blue lines correspond to a spherical variogram with the

(b) Configuration 1 (2500 points – EnKF), (c) Configuration 2 (37 points), (d) Configu

references to color in this figure legend, the reader is referred to the web version of th

Fig. 9. Experimental variogram computed in the second anisotropy direction on all th

configurations (blue dots). The blue lines correspond to a spherical variogram with th

(b) Configuration 1(2500 points - EnKF), (c) Configuration 2(37 points), (d) Configur

references to color in this figure legend, the reader is referred to the web version of th
N is the ensemble size, Ngrid the number of grid blocks, Nt the
number of data assimilation time steps, N

tj

data the number of
production data collected at time tj. i is the ensemble member
index, p the grid block index, j the time index and k the production
realizations of the initial ensemble and updated ensembles considering the four

range of the reference model (200 m) and a variance of 2.4. (a) Initial ensemble,

ration 3 (13 points) and (e) Configuration 4 (5 points). (For interpretation of the

is article.)

e realizations of the initial ensemble and updated ensembles considering the four

e range of the reference model (40 m) and a variance of 2.4. (a) Initial ensemble,

ation 3(13 points) and (e) Configuration 4(5 points). (For interpretation of the

is article.)
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response index. dk
obsðtjÞ is the kth observed data at time tj and dk

i ðtjÞ

is the kth data simulated at time tj with the ith ensemble member.
Finally, lnðKhÞref

p denotes the reference petrophysical property
lnðKhÞ in grid block p.
3.2. ENKF and pilot points

When considering the combination of EnKF with the pilot point
method as described in Section 2.1, the nature of static parameters
is the same as in traditional EnKF. Using one pilot point per grid
cell appears equivalent to EnKF since kriging is not applied in this
Fig. 10. Bottom hole pressure simulated at well PROD2 with the initial ensembles (col

applying the EnKF to the gradual deformation parameters and N¼50 or 100, M¼100

separates the history-matching period (0–516 day) from the forecasting period (51

(d) N¼100, M¼2500. (For interpretation of the references to color in this figure legen
case. The main issue here is the choice of pilot point locations,
which is crucial for the efficiency of the history matching process.

Four configurations are considered in this study. The first one
consists of one pilot point per grid block and is thus equivalent to
EnKF. For the others, points are removed progressively, trying to
keep the locations influencing production responses while increas-
ing the distance between points to better preserve spatial varia-
bility. In the second configuration (Fig. 4(a)), 37 pilot points are
considered: the injector location plus a regular gridding including
producers. The entire reservoir is then almost covered. 13 pilot
points are considered in the third configuration (Fig. 4(b)). They
are located at wells and at almost even intervals between the
umns 1 and 3) and the corresponding final ensembles (columns 2 and 4) obtained

, 1000 or 2500. Reference data are plotted in red. The black dashed vertical line

7–1612 day). (a) N¼50, M¼100, (b) N¼50, M¼1000, (c) N¼50, M¼2500 and

d, the reader is referred to the web version of this article.).
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injector and the producers. With this setting, we try to capture
heterogeneities in the flow direction. Finally, well locations only
are considered in the last configuration (Fig. 4(c)).

A background ensemble of 50 models is generated using the FFT-
MA algorithm with the same statistical properties as the reference
model. The values of these realizations at pilot point locations form
Fig. 11. Water cut simulated at well PROD2 with the initial ensembles (columns 1 and

EnKF to the gradual deformation parameters and N¼50 or 100, M¼100, 1000 or 2500. R

matching period (0–516 day) from the forecasting period (517–1612 day). (a) N¼5

(For interpretation of the references to color in this figure legend, the reader is referre
the 50 members of the initial parameters ensemble. The background
and initial simulation ensembles are thus identical.

As can be seen in Fig. 5(a)–(b) production responses simulated
at well PROD2 with the initial ensemble members can differ
strongly from the reference data (red curve). Performing the
assimilation enables to get rid of outliers and to reduce the
3) and the corresponding final ensembles (columns 2 and 4) obtained applying the

eference data are plotted in red. The black dashed vertical line separates the history

0, M¼100, (b) N¼50, M¼1000, (c) N¼50, M¼2500 and (d) N¼100, M¼2500.

d to the web version of this article.)
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spread within responses (Fig. 5(c)–(j)). However, a degradation of
the match and predictions is observed from configurations 1 to 4.

The RMS error on the production data (Eq. (3)) computed for
the final ensembles described above is given in Table 1. A value is
computed per production response type (bottom hole pressure,
surface oil rate and water csut). Also, values computed for
configuration 1 (EnKF) are used to normalize the results. One
can observe that the RMS values tend to decrease when the
number of pilot points increases.

The final mean and variance are represented in Fig. 6 for each
configuration. From configuration 1 to 4, we can observe a
smoother mean and a higher variance, which mainly reduces near
pilot points. More precisely, the mean permeability obtained with
the first configuration (traditional EnKF, Fig. 6(c)–(d)) reproduces
some features of the reference field (Fig. 2). However, the variance
within the ensemble is very low, and it seems to have almost
converged towards a model different from the reference one. On
the contrary, the mean permeability obtained with configuration
4 is homogeneous and variance has only decreased near wells
Table 2
Effect of gradual deformation: average RMS1 error on the two ensembles

considered for each configuration.

RMS for bottom
hole pressure

RMS for
surface oil rate

RMS for
water cut

N¼50, M¼100 5.471 0.3111 0.0308

N¼50, M¼1000 5.7744 0.2881 0.0283

N¼50, M¼2500 4.228 0.2443 0.0245

N¼100, M¼1000 4.477 0.2154 0.0215

N¼100, M¼2500 3.176 0.2028 0.0203

5 zones, N¼50, M¼100 3.0879 0.2295 0.0229

100 zones, N¼50, M¼100 1.3428 0.2326 0.0232

Fig. 12. Bottom hole pressure (left) and water cut (right) simulated at well PROD2 wit

(columns 2 and 4) obtained applying the traditional EnKF to the initial simulation ens

dashed vertical line separates the history matching period (0–516 day) from the foreca

figure legend, the reader is referred to the web version of this article.)
(pilot points). For the two other configurations, we can observe
some heterogeneities of the mean while variance remains at a
satisfactory level. Fig. 7 shows the evolution of the RMS error on
lnðKhÞ during assimilations (Eq. (4)). Its value decreases during the
assimilation process: the higher the number of pilot points, the
larger the decrease in RMS. However, the variance among the
ensemble members decreases at the same time and reaches a very
low value for EnKF although the RMS error is not null.

Thus, the EnKF method provides here very similar realizations
with a good match on the data, but different from the reference
one. Pilot points utilization preserves more heterogeneity among
h the initial ensembles (columns 1 and 3) and the corresponding final ensembles

embles, N¼50 and M¼100 and 2500. Reference data are plotted in red. The black

sting period (517–1612 day). (For interpretation of the references to color in this

Fig. 13. RMS2 error on the ln(Kh) reference field during the assimilation processes.
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the members of the ensemble than traditional EnKF. Some models
provide as good matching results as EnKF. Some others can still be
improved.
Fig. 14. Mean of the initial (top) and final (bottom) ln(Kh) realizations within ensembles

and 2500 (N¼50). (a) M¼100, (b) M¼1000 and (c) M¼2500

Fig. 15. Variance of the initial (top) and final (bottom) ln(Kh) realizations within ensem

1000 and 2500 (N¼50). (a) M¼100, (b) M¼1000 and (c) M¼2500.
Finally, the experimental variograms computed over the initial
and updated ensembles are shown in Fig. 8 and Fig. 9 considering
the main anisotropy direction and the orthogonal one. The blue
obtained applying the EnKF to gradual deformation parameters and M¼100, 1000

bles obtained applying the EnKF to gradual deformation parameters and M¼100,
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lines correspond to a spherical variogram with the ranges of the
reference model and a variance of 2.4. As can be seen, the variance
computed on the initial ensemble is slightly lower than the
theoretical one, equal to 2.5. This is probably due to the finite
size of the ensemble and could be improved by selecting the initial
models among a larger ensemble. The variograms computed for
the ensembles updated with the proposed method remain close to
the initial one. With EnKF, we observe that the variogram departs
from the theoretical one. This may be due to spurious correlations
introduced by the filter. The very low variance within the EnKF
ensemble may also induce these results.

To conclude, it seems that considering the permeability values
at some points only in the update step provides a higher
variability among ensemble members. The quality of the match
turns out to be strongly dependent on the pilot points location
and number. As a general rule, points should be considered in
regions influencing the production response. Then, it seems that
the larger the number, the better the quality of predictions. An
optimal configuration of pilot point location is thus required to
obtain a good balance between variability preservation and
production data match. This problem is case dependent and was
already addressed for variational history matching. A review can
be found in Oliver and Chen (2011) for instance.
3.3. EnKF and gradual deformation

In a first set of experiments, we consider background ensem-
bles of Gaussian white noise realizations with increasing size:
M¼100, 1000 and 2500. These ensembles are transformed into
simulation ensembles of N¼50 permeability realizations using
Fig. 16. Reservoir partitioning for local gradual deformation. (a) 5 zone config-

uration and (b) 100 zone configuration.

Fig. 17. Experimental variogram computed on all the realizations of the initial and upd

The blue line corresponds to the theoretical variogram of the reference model. (a) 100

ensemble. (For interpretation of the references to color in this figure legend, the reade
the FFT-MA algorithm and the same statistical properties as the
ones characterizing the reference model.

Two background ensembles were considered for each value of
M. The bottom hole pressure and the water cut simulated over the
whole production history in well PROD2 with the initial simula-
tion ensembles and the final permeability fields for M¼100, 1000
and 2500 are given in Fig. 10(a)–(c) and Fig. 11(a)–(c). As a
general trend, we observe that the spread within the simulated
responses is reduced. The match of production data seems better
with M¼2500 than M¼100, what could be linked to the increas-
ing size of the background ensemble, or equivalently the
search space.

This trend is also visible on the average RMS error on the
production data (Eq. (3)) computed for the final ensembles
described above (Table 2): its value tends to decrease for an
increasing size of the background ensemble.

With the present method, the permeability models of the
initial simulation ensembles are obtained from the combination
of the same Gaussian white noise realizations. They are thus
correlated and the variance in many grid blocks can be quite low
(see Fig. 15). This is probably one of the reasons why the method
shows much sensitivity to the choice of the background ensemble
and initial gradual deformation parameters. Also, the results
obtained after assimilation with standard EnKF from the initial
simulation ensembles are not so good (Fig. 12).

The evolution of the RMS error on the reference permeability
field (Eq. 4) during the assimilation processes is given in Fig. 13. A
global decreasing trend is observed, but quite chaotic. Fig. 14 and
Fig. 15 represent the mean and variance of the initial and final
lnðKhÞ realizations obtained for some of the previous experiments.
The mean value becomes more heterogeneous. The variance gets
lower, but keeps a higher level than with EnKF.

The size of the simulation ensemble is an important factor for
the quality of the results obtained with traditional EnKF. There-
fore, in a second set of experiments, the size of the simulation
ensemble was increased from 50 to 100. Again, we consider two
background ensembles for M¼1000 and M¼2500. The bottom
hole pressure and the water cut simulated over the whole
production history in well PROD2 with the initial simulation
ensembles and the final permeability fields are given in
Fig. 10(d) and Fig. 11(d). The RMS results for the production
response (Eq. (3)) are reported in Table 2. We can observe that the
final average RMS error tends here to decrease for both an
increasing size of the simulation ensemble and an increasing size
of the background ensemble.

In the last set of experiments, we introduce local deformations
to add more flexibility. Two simple configurations for reservoir
ated ensembles with 5 and 100 zones in the main anisotropy direction (blue dots).

zones - initial ensemble, (b) 100 zones – final ensemble and (c) 5 zones – final

r is referred to the web version of this article.).
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partitioning are set up, but more complex ones could also be
envisaged. In the first one (Fig. 16, left), the grid is split into 5 non
regular zones surrounding wells. The regions around producers
are made up of 481 grid blocks. The middle one contains 576 grid
blocks. In the second configuration (Fig. 16, right), the grid is
divided into 100 squares of 5�5 grid blocks. The assimilation
scenario is the same as before. A background ensemble with
M¼100 Gaussian white noise realizations is used to generate a
simulation ensemble of N¼50 ln(Kh) realizations.

RMS results for the production response (Eq. (3)) are reported
in Table 2. Increasing the number of zones in the reservoir and
consequently the size of the search space leads to a global
decrease of the RMS error.

Finally, the experimental variogram in the main anisotropy
direction computed over the initial and final simulation ensem-
bles are displayed in Fig. 17. It remains very close to the
theoretical variogram of the reference model (blue line).

To conclude, the results presented here for gradual deforma-
tion are of interest. Better results can be obtained considering a
larger background ensemble, a larger simulation ensemble or
local deformations. However, the method shows much sensitivity
to the initial background ensemble and seems to lack stability in
terms of quality of the results for a given configuration. Other
ways to combine gradual deformation with EnKF may improve
the results.
4. Conclusions

In this paper, we have proposed a technique to perform
sequential assimilation with the EnKF combined to parameteriza-
tions of the petrophysical property realizations designed for
preserving the prior two-order statistics. A set of parameters
updated with the EnKF has been used to perturb a fixed back-
ground ensemble of realizations. These parameters can be gradual
deformation parameters or values of petrophysical properties at
pilot points.

The resulting algorithms were applied to a 2D synthetic case
study. The performance of the algorithm combining the EnKF and
the pilot point method strongly depends on the number and
location of pilot points. Considering too few points will lack
efficiency in terms of data match. However, ensemble members
show less variability when increasing the number of points. A
balance needs thus to be found between data match and varia-
bility preservation, and other configurations should be investi-
gated. Finally, this technique could be very valuable for facies
models and requires further tests on more complex case studies.
For gradual deformation, results can be improved with an
increased flexibility provided by larger background ensembles,
larger simulation ensembles or local deformations. However, the
quality of the results remains very sensitive to the initial back-
ground ensemble.
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