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ABSTRACT

History matching is to integrate dynamic data in the reservoir model–building process. These
data, acquired during the production life of a reservoir, can be production data, such as well
pressures, oil production rates or water production rates, or four-dimensional seismic–related
data. The ensemble Kalman filter (EnKF) is a sequential history-matching method that inte-
grates the production data to the reservoir model as soon as they are acquired. Its ease of
implementation and efficiency has resulted in various applications, such as history matching
of production and seismic data.

We focus on the use of the EnKF for history match of a synthetic reservoir model. First,
the method of ensemble Kalman filtering is reviewed. Then the geologic and reservoir char-
acteristics of a case study are described. Several experiments are performed to investigate the
benefits and limitations of the EnKF approach in building reservoir models that reproduce the
production data. Last, special attention is paid to the sensitivity of the method to a set of
parameters, including ensemble size, assimilation time interval, data uncertainty, and choice of
initial ensemble.

INTRODUCTION

A reservoir model relies on two sources of data: static
data and dynamic data. Although static data (e.g., geo-
logic observations, measurements on cores, logs, etc.)
are constant through time, dynamic data change with
time. They include production data measured at wells,
such as pressures and oil production rates. As static
data are too sparse to deterministically describe the spa-

tial variation in transport properties (porosity and per-
meability) within the reservoir, they serve to character-
ize the parameters of a geostatistical model. Therefore,
we refer to a stochastic framework in which reservoir
models are viewed as realizations of a random function.

Accounting for dynamic data in reservoir models
is not straightforward, and this process is known as
‘‘history matching’’ in the literature. It consists of build-
ing a numerical reservoir model, which consists of a
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grid populated by porosity and permeability values
that reproduce the production behavior observed in
the field. Among the various methods proposed for per-
forming history matching, the ensemble Kalman filter
(EnKF) has recently provided promising results in
terms of reservoir characterization and uncertainty
quantification. It has beenwidelyused indifferent fields,
such as oceanography (Haugen and Evensen, 2002), me-
teorology (Evensen and van Leeuwen, 1996), hydrol-
ogy (Margulis et al., 2002), and petroleum engineering
(Naevdal et al., 2002).

The EnKF is a variation of the well-known KF
(Kalman, 1960) for dealing with highly nonlinear prob-
lems (Evensen, 1994), as is the case of fluid flow in po-
rous media. These filters represent, with error covari-
ance matrices, the uncertainties in the reservoir model,
with respect to properties such as porosity, permeabil-
ity, pressure, saturation, and so on. The model and its
uncertainties are propagated through time according
to a dynamic system describing fluid flow in porous
media. Whenever measurements are available, a new
estimate for the model and its uncertainties is calculated
by a variance minimization scheme (Evensen, 2007).

Kalman filters are sequential, meaning that the avail-
able dynamic data are sequentially integrated in the
modeling as soon as they are obtained. Time is divided
into successive steps or assimilation intervals; each
time step begins at the end of the previous one and
lasts until the next measurements are available. Dur-
ing each time step, the filter acts according to two stages.
The first stage is forecasting: its purpose is to propagate
the reservoir model by running the flow simulation
through the time step of interest. The second stage is
analysis (or updating): the reservoir model is updated
by adjusting the numerical flow responses with the
measurements.

In the EnKF, the model uncertainties are represented
by an ensemble, that is, a group, of realizations for
model parameters and for model states. Model param-
eters are properties such as porosity and permeability
that do not change with time, whereas model states are
properties such as pressure and saturations that do
change with time. The mathematical formulation of
the EnKF (Evensen, 2007) requires the computation of
the first and second statistical moments, that is, mean
and variance for the reservoir parameters and states
that are derived from an empirical average over a finite-
size ensemble of realizations.

Several EnKF applications illustrate the method’s
merits and shortcomings that motivated the current
efforts to improve filter performance. The first appli-
cation of the EnKF in petroleum engineering was pre-
sented by Naevdal et al. (2002) on a two-dimensional
near-well reservoir model, where permeability mod-

els were predicted. The EnKF proved to provide better
parameter estimations and, consequently, improved
predictions. Gu and Oliver (2005) applied EnKF to
the three-dimensional PUNQ-S3 model. They found
the EnKF method more efficient than other history-
matching methods in terms of computational burden.
In the literature, there exist similar applications of the
EnKF on the PUNQ-S3 test case (Lorentzen et al., 2005;
Gao et al., 2006). The EnKF was also applied to a facies
history match by Liu and Oliver (2005), who concluded
that the EnKF was more computationally efficient and
easier to use than gradient-based minimization meth-
ods. Real field history matching using the EnKF was
performed by Haugen et al. (2008) and Evensen et al.
(2007), who consider the EnKF to provide a powerful
history-matching method. Although the EnKF is gen-
erally regarded as a successful method of data assim-
ilation, several scientists (Floris et al., 2001; PUNQ-S3
test case, 2010) have sought to improve its performance.
These improvements concern several assumptions in
the mathematical formulation of the filter that are not
satisfied in practical applications. The four following
paragraphs provide an overview of the main problems
and corresponding proposals.

The EnKF relies on the use of a finite ensemble to
describe the model uncertainties. However, this may
lead to spurious correlations in the covariance matrix;
unexpected high correlations can be observed for the
points located far from observation points. In the at-
mospheric data assimilation literature (Hamill and
Whitaker, 2001; Houtekamer and Mitchell, 2001), a
distance-dependent correlation function is used to con-
dition the covariance matrix. The idea is to limit the
effect of each observation by considering a cutoff ra-
dius beyond which the correlations are negligible.
Devegowda et al. (2007) performed a covariance lo-
calization based on a streamline-derived function. Its
advantage is to relate the localization function directly
to the physics of flow in porousmedia. Anderson (2001)
discussed the sampling error inherent in the EnKF and
suggested, as a simple remedy, to multiply the covari-
ance matrix by a small factor, slightly larger than 1.
More sophisticated methods dealing with the prob-
lem of spurious correlations can be found in Anderson
(2007), Wang et al. (2007), and Fertig et al. (2007).

Another improvement concerns the Gaussian as-
sumption for parameters and states in all KFs, includ-
ing the EnKF. In reality, nature commonly departs from
a Gaussian distribution. For instance, parameters such
as permeability or state variables like water satura-
tions commonly do not approximate a Gaussian distri-
bution. In addition, even if the initial distributions are
Gaussian, the nonlinearity of the dynamic model, that
is, the fluid-flow equations, may result in non-Gaussian

250 HEIDARI ET AL.



distributions (Chen et al., 2009). Zafari and Reynolds
(2007) applied EnKF to two simple nonlinear problems
to investigate the two problems previously mentioned
and concluded that the EnKF provides poor uncer-
tainty characteristics when the Gaussian assumption
is violated. Several methods were proposed (Bertino
et al., 2003; Vabø et al., 2008; Moreno et al., 2008) to
modify the EnKF algorithm so that the Gaussianity
requirement is better satisfied.

Next, the use of KFs implies that a linear relation-
ship exists between measurements and model param-
eters and states, but such an assumption does not hold
in fluid flow in porous media (Gu and Oliver, 2007).
Wen and Chen (2005) proposed to add a confirmation
step after the updating step in the EnKF algorithm;
after each updating step, the fluid-flow simulation is
performed for the current time step with the set of
updated model parameters so that the dynamic vari-
ables are consistent with the model parameters. Zafari
and Reynolds (2007) reconsidered the confirmation step
and found it inappropriate within the framework of
the EnKF. They argued that even for a linear problem,
the update of dynamic variables with confirming EnKF
misses some terms obtained by previous time step up-
dates. However, Liu and Oliver (2005) suggested an
iterative process to respect the nonlinear constraints
that occur when dealing with facies. Gu and Oliver
(2007) suggested that the EnKFworkflow be combined
with Gauss-Newton iterations within each time step.
This method is appropriate whenever the differences
between the measurements and the corresponding
numerical responses are large.

Last, in the EnKF method, a representative spread
should be preserved between ensemble members to
avoid excessive variance reduction or ‘‘inbreeding.’’
This can be achieved by increasing the size, that is, num-
ber of members, of an ensemble, but at the expense of
higher computational costs. Houtekamer and Mitchell
(1998) argued that inbreeding comes from the fact that
the ensemble used to calculate the covariance matrix
was also the one updated through the EnKF update
step. Therefore, they suggested using two ensembles
so that the covariance calculated from one ensemble
was used to update the other ensemble and vice versa.
Moreover, for small ensemble sizes, more coupled en-
sembles would be necessary.

In this chapter, we apply the EnKF for history
matching a variant of the well-known reservoir model,
PUNQ-S3 (Floris et al., 2001). We first present the res-
ervoir case study and then the implementation of the
EnKF to perform a history match of production data.
Moreover, to assess the advantages and shortcomings
of the EnKF, we perform a set of sensitivity tests and
investigate the influence of parameters such as the size

of the ensemble, the uncertainty in the measurements,
the assimilation time step, and the choice of the initial
ensemble. Details on the mathematical formulation of
the EnKFmethodology can be found in Evensen (2007).

OVERVIEW OF THE PUNQ-S3 CASE

The PUNQ-S3 case study (PUNQ-S3 test case, 2010) is a
standard small-size reservoir engineering model set up
by the PUNQ project (Production forecasting with
UNcertainty Quantification) and commonly used for
performing benchmarks. It is based on a real field that
has been operated by Elf Exploration andProduction.A
full description of this case study can be found on the
PUNQ-S3 Web page (PUNQ-S3 test case, 2010) and in
Floris et al. (2001).

Geologic Description

The PUNQ model encompasses five layers with dif-
ferent petrophysical properties because of various de-
positional environments whose main characteristics
are summarized as follows:

1. Layers 1, 3, and 5 correspond to fluvial channels
encased in flood-plain mudstone. They consist of
a low-porosity shale matrix (porosity <5%) with
linear streaks of high-porosity sand (porosity
>20%). These two sandy and shaly facies are rep-
resented by an ‘‘effective’’ facies with good reser-
voir properties.

2. Layer 2 consists of marine or lagoonal shales with
distal mouth bars. This results in a low-porosity
shaly matrix (porosity <5%) with a few higher po-
rosity patches. Again, an effective facies with poor
reservoir properties is used to represent this layer.

3. Layer 4 is a lagoonal delta, encased in lagoonal clay.
It results in a low-porosity matrix (porosity <5%)
with a more intermediate porosity region (porosity
�15%). This layer is then populated by an effective
facies with intermediate reservoir properties.

Reservoir Model

The numerical model is built over a 19 � 28 � 5 grid.
The dimensions of each grid block in the X and Y di-
rections are 180 � 180 m2 (1938 � 1938 ft2), and the
thickness is defined according to the database data set.
A total of 1761 active cells are present and the reser-
voir is produced from six wells named PRO-1, PRO-4,
PRO-5, PRO-11, PRO-12, and PRO-15. Figure 1 displays
the top structure (layer 5) and the six well locations.
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The field is bounded by a fault to the east and south
and by a strong aquifer to the west and north. Because
of the strength of the aquifer, injection wells were not
needed for pressure maintenance.

Petrophysical Properties

Porosity and horizontal permeability realizations are
stochastically drawn to populate the five layers of the
reservoir, and their statistical properties are reported
in Table 1. Vertical permeability is assumed to be the
same as the horizontal one. The data used to generate
the realizations differed slightly from those provided
by the PUNQ-S3 Web page (PUNQ-S3 test case, 2010)
to enlarge the possible variations when performing sen-
sitivity tests with the EnKF. In addition, the spatial var-
iations in porosity and permeability are characterized

by a spherical variogram, whose main axes and anisot-
ropy ratios are given in Table 1. All realizations (in-
cluding the reference reservoir model) were generated
on the basis of the fast Fourier transformmoving average
algorithm (Le Ravalec et al., 2000) without any condi-
tioning to data at well locations. One of the resulting
porosity and permeability models, which are used as
the reference models in this study, is displayed in
Figures 2 and 3.

Production Schedule

The original PUNQ-S3 case involves three-phase flows
in the reservoir. In this chapter, we consider a simpler
two-phase (oil and water) black-oil case, which has the
advantage of providing more readable results. The
original pressure-volume-temperature (PVT) datawere
modified to account for this change, whereas aquifer
data remained unchanged. Relative permeability was
generated according to the charts available in our
database, and capillary pressure was assumed to be neg-
ligible. We kept a production schedule similar to the
one developed for the original model, which is the
same regardless of the production well. It consists of
the following phases (Figure 4):

1. 1 yr of extended well testing with four 3-monthly
production periods with production rates of 100,
200, 100, 50 m3/day, respectively;

2. 3 yr of well shut-in;
3. 4 yr of production; a well shut-in test is performed

during the last 2 weeks of every year to collect
shut-in pressure data. During the rest of the year, a
constant production rate of 100 m3/day is set up.

Figure 1. Top structure and well locations: PUNQ-S3 model
from the PUNQ-S3 Web page (PUNQ-S3 test case, 2010).
GOC = gas-oil contact; OWC = for oil-water contact.

Table 1. Facies properties.*

Layer 1 2 3 4 5

Facies A B C D E

Porosity mean 0.1722 0.0802 0.1677 0.1615 0.1892
Porosity variance 0.0078 0.0004 0.0050 0.0006 0.0049
ln(kh) mean 2.18 1.41 2.24 2.47 2.49
ln(kh) variance 3.14 0.74 3.26 5.64 3.72
Correlation
length (m)

3500 750 6000 1500 3750

First anisotropy
ratio

0.286 1.0 0.25 0.50 0.333

Azimuth
(degrees)

30 0 45 �30 60

*Porosity; logarithm of horizontal permeability, ln(kh); and vario-
gram data.
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This flow rate constraint switches to a bottomhole
pressure (BHP) constraint when pressure drops to
120 bars.

The study period spans between January 1, 1967,
and January 15, 1975, that is, 8 yr, and it is referred to as
the history-matching interval in the remainder of this
chapter. The period is extended to July 1, 1983, to per-
form 8.5 yr of forecasting, and this additional period
is termed the prediction interval. During the history-
matching interval, measurements are obtained at ir-
regular intervals. The noise levels that is, the standard
deviations of the normal distribution defining the mea-
surement uncertainties, were set to 2 bars for pressure,
2 m3/day for surface oil rate (SOR), and 0.02 for water
cut (WCT).

HISTORY MATCH

We designed a twin experiment to investigate the use-
fulness of the EnKF for performing history match on
our modified version of the PUNQ-S3 case. We followed
the production schedule previously described to simu-
late production data during the history-matching inter-
val for our reference reservoir model (Figures 2, 3): the
resulting reference production data are the BHP, the
SOR, and the WCT. The reference production data ob-
tained for the six target producers yield the observa-
tions that need to be reproduced through the history-

matching process and they are shown for wells PRO-5
and PRO-15 in Figures 5 and 6, respectively (red curves).

The reference porosity and permeability fields are
assumed to be unknown contrary to the reference pro-
duction data and the primary purpose of the EnKF ap-
proach is to identify a set of realizations conditioned to
these production data.

The history-matching intervals are split into 13 suc-
cessive time steps, the end of each time step being as-
sociated to a change in the flow rate. These intervals or
assimilation steps are displayed in Figure 4 on top of
the expected SOR variations against time. For each time
step, 18 reference data are available: 6 BHPs, 6 SORs,
and 6 WCTs.

The size of the ensemble is set to 50: for each of the
layers in the model, 50 realizations are generated for
both porosity and permeability. These realizations have
the same statistical properties (e.g., mean and vario-
gram) as the reference reservoir model, whereas the
other parameters, such as the relative permeability
curves, the initial pressures, and the initial water satu-
rations, are assumed to be known without uncertainty.
Each ensemble member is updated according to the as-
similation timing previously defined. This ensemble is
denoted ensemble 1 in the following.

Because the number of active cells is 1761, 1761 un-
known porosity and permeability values are present.
Similarly, 1761 pressure and water saturation values are
also present. Permeability and porosity are deemed as
static parameters, whereas water saturation and pres-
sure are dynamic variables, so that the state vector for

Figure 2. Reference porosity (in fractions) fields for the five layers in the model.

Figure 3. Logarithm of reference permeability (md) fields for the five layers in the model.
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Figure 5. Production data simulated for well PRO-5 with an ensemble of size 50 during the history-matching and prediction
periods. First row: Initial ensemble. Second row: Final ensemble updated with the ensemble Kalman filter. The black dashed
vertical line at 2936 days indicates the time limit between the history-matching interval (0–2936 days) and the prediction
interval (2936–6025 days). The gray curves correspond to the ensemble members, the red curves to the reference model, and
the blue curves to the results obtained with the reservoir model computed as the mean of the ensemble.

Figure 4. Evolution of the surface
oil rate scheduled at the production
wells during the history-matching
interval. The vertical red lines indi-
cate the assimilation times.
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the jth ensemble member at the kth time step is defined
by

 k;j ¼ ½transð�k;j;1Þ; . . . ;transð�k;j;Na
Þ;transðkhk;j;1Þ; . . . ;

transðkhk;j;Na
Þ;Pk;j;1; . . . ;Pk;j;Na

; Swk;j;1; . . . ;

Swk;j;Na
;dk;j;1; . . . ;dk;j;Nd

�

Na is the total number of active grid blocks in the res-
ervoir model and Nd is the total number of data. The
variables �k;j;i, khk,j,i, Pk,j,i, and Swk,j,i are the porosity,
horizontal permeability, pressure, andwater saturation
in grid block i, respectively; dk,j,i stands for the i-th
reference production data, that is, BHP, SOR, or WCT
for the six production wells. Function trans defines a

transformation applied to state parameters, which en-
sures that these parameters still have physical values at
the end of the updating step. These transformations are

1: Porosity transð�Þ ¼ log
�

1� �

� �

2: Permeability transðkhÞ ¼ logðkhÞ

Results for Production Data

We now compare the performance of the initial with
the corrected models in terms of production data, that
is, BHP, SOR, and WCT, and focus on two wells: well
PRO-5 and well PRO-15 (Figures 5, 6). The production

Figure 6. Production data simulated for well PRO-15 with an ensemble of size 50 during the history-matching and prediction
periods. First row: Initial ensemble. Second row: Final ensemble updated with the ensemble Kalman filter. The black dashed
vertical line at 2936 days indicates the time limit between the history-matching interval (0–2936 days) and the prediction
interval (2936–6025 days). The gray curves correspond to the ensemble members, the red curves to the reference model, and
the blue curves to the results obtained with the reservoir model computed as the mean of the ensemble.

ð1Þ
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responses are simulated for the two intervals previously
described: the history-matching interval (0–2936 days)
and the prediction interval (2936–6025 days). The limit
between these two intervals is highlighted by the black
dashed vertical line. The first column in each of the two
graphs represents the BHP, the second column, the SOR,
and the last one, the WCT. The first row in each graph
corresponds to the initial ensemble, that is, the ensem-
ble without any assimilation and the second row to the
final ensemble, that is, the ensemble updated after all
data assimilations. For the final ensemble, the updated
model is taken back to day 0 and numerically simulated
for the whole time span. In each graph, the gray curves
show the production responses for each of the ensem-
ble members, whereas the red curve corresponds to the
reference model. The blue curves in the first and second
rows correspond to production data obtained by the
initial and final ensemblemeanmodels, that is, porosity
and permeability models, respectively.

Comparison of the two rows of Figures 5 and 6, re-
spectively, stresses that the production responses sim-
ulated for the initial models fluctuate much more than
those obtained for the corrected models. Moreover, the
initial models do not follow the trend of the reference
model, and the mean reservoir model derived from this
initial ensemble behaves very differently than the ref-
erence model. However, after correction with the EnKF,
the difference between the ensemble members and the
reference model is reduced: the reference production
data are now located in the range given by the ensemble
members. In addition, the final mean reservoir model
defined from the final ensemble reproduces the behavior
of the reference model better than the initial ensemble
meanmodel. For the two wells, the estimation of water
breakthrough during the history-matching period is
improved significantly compared with the initial en-
semble.More specifically, starting from initial ensemble
members that donot reproduce the referenceWCTdata,
the assimilation with EnKF improves WCT results at
least for well PRO-15: the WCT is fairly well captured
by the corrected ensemble through the history-matching
interval. However, theWCTmatch is still poor for well
PRO-5.MatchingWCTdata, in general, is a difficult task
because of its highly nonlinear dependence on model
parameters.

In terms of the production responses, the corrected
models provide reasonable predictions for BHP and
SOR. As expected, the predicted WCTs are less reliable
because the assimilation of the data during the history-
matching phase led to smaller improvements. Overall,
the updated ensemble outperforms the initial ensemble.

An indicator, which is widely used in the EnKF
literature to quantify the quality of the updated model
at each assimilation time in terms of history match

and prediction, is the root-mean-square (RMS) error.
In this study, we refer to two different RMS error def-
initions. The first RMS error is denoted by RMSd,1. At
the end of each assimilation step, an average porosity
and permeability model is determined from the mean
of the ensemble members, then fluid flow is simu-
lated for this average reservoir model during the whole
history-matching interval (2936 days). The RMSd,1 is
defined as the error between the observed and simu-
lated production data:

RMSd;1ðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nt

XNt

i¼1

1

Nti
data

XNti
data

j¼1

ðdj
obsðtiÞ � d

j
mean;k

vuuut ðtiÞÞ2

ð2Þ

In the equation, d stands for data such as BHP, SOR, and
WCT; k is the assimilation time index; Nt is the number
of data acquisition times up to and including time step k;
i is the time index; Nt

data is the number of data collected
at time, ti, that is the number of wells; j is the data index;
d
j
obsðtiÞ is the j

th data collected at time, ti; and d
j
mean;kðtiÞ is

the jth data simulated at time, ti, for the mean reservoir
model obtained after assimilation at time, tk.

Figure 7 represents the evolution of the RMS value
with time for BHP, SOR, and WCT. The choice of the
initial ensemble may have an impact on the RMS re-
sults, especially for a small ensemble size. To take this
effect into account, five ensembles of 50 members
(among which is ensemble 1), updated with the same
assimilation procedure, were used to calculate the
RMS value. In all cases, the values are normalized to
the initial RMS value. The RMS for BHP and SOR show
a decreasing trend (except for ensemble 5), but the
WCT RMS evolution is more chaotic. These results
again stress the difficulty to match WCT compared
matching BHP and SOR. Furthermore, our experiments
have shown that when the ensemble size is increased to
100 or more, the differences between initial ensembles
in terms of RMS results become less significant.

Results for Petrophysical Properties

Table 1 summarizes the properties of the porosity and
permeability fields. Figures 8 and 9 display, for en-
semble 1, the mean models derived from the initial po-
rosity and permeability fields, respectively. They are al-
most uniform and equal to the porosity andpermeability
means, which are assumed to be stationary (Table 1).

By matching production data sequentially in time,
heterogeneities and streaked features appear progres-
sively in the porosity and permeability fields from one
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assimilation time to the next. Figures 10 and 11 show
the mean corrected porosity and permeability models
after performing 13 assimilations, that is, 13 successive
history matches of production data. The main features
of the reference model (low- and high-porosity and
permeability streaks in layers 1, 3, and 5, together
with low- and high-porosity and permeability patches
in layers 2 and 4) are retrieved in the corrected models.
The porosity fields for layers 1, 3, and 5 were over-
estimated (the porosity values were expected to be
lower than 0.35; they were trimmed when higher).

The overestimation is less significant for permeability
fields; the updated fields are on the same order of mag-
nitude as the reference model. Gao et al. (2006) related
the overestimation problem to the constraints on well
pressures and SORs in the fluid-flow simulation and
reduced it by removing the bounds on the well BHP.
This problem is mentioned in other applications of the
EnKF (Gu and Oliver, 2005). According to Devegowda
et al. (2007), the overestimation is a result of the spu-
rious correlations in the covariance matrix because of
the finite ensemble size. They proposed a mitigation

Figure 7. The first root-mean-square error (RMSd,1) of production data. (A) Bottomhole pressure, (B) surface oil rate, and
(C) water cut for five ensembles of size 50. The values are normalized on the initial value (t = 0).

Figure 8. Mean of initial ensemble for porosity distribution in the five layers.
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strategy by covariance localization. This is beyond the
scope of this chapter.

It can also be shown that the assimilation process
induces a decrease in the variance of the porosity and
permeability ensemble members, especially around
well locations. As wells are perforated in layers 3, 4,
and 5, variance reduction is more significant in these
layers than in layers 1 and 2. Figures 12 and 13 display,
for ensemble 1, the variance computed for the porosity
and permeability models in layer 4. The first graph
gives the variance for the initial ensemble, the middle
one for the ensemble obtained after seven assimila-
tions and the last one for the final ensemble (13 assim-
ilations). Although variability reduction is a natural
consequence of data assimilation, the updated ensem-
ble should be representative of the variability of model
parameters. Hence, excessive variance reduction should
be avoided. This can be ensured using a larger ensem-
ble. Moreover, the model noise is neglected in petro-
leum applications of the EnKF, and its inclusion may
help mitigate this problem.

The distance between the assimilated porosity and
permeability models for each ensemble member and
the corresponding reference models is quantified by
the following static RMS error:

RMSsðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Ne

XNe

j¼1

1

Na

XNa

i¼1

ðyj;i � yref ;iÞ2
vuut ð3Þ

Subscript s stands for static (reservoir parameters are
regarded as static data), Na is the number of active

grid blocks, i the grid block index, and j the ensemble
member number. In addition, yj,i is the value of either
the porosity or permeability logarithm attributed to the
grid block i for the ensemble member j, and yref,i is the
reference value of this property. This RMS value quan-
tifies the convergence toward the reference reservoir
parameters or static data. Figure 14 shows, for ensem-
ble 1, the static RMS values computed after each assi-
milation for porosity and horizontal permeability loga-
rithm in the five layers (all values are normalized to
the static RMS values computed at time 0). A decreas-
ing trend is evident for most of the parameters, except
for porosity in layers 1, 3, and 5. As previously ex-
plained, these layers control most of the flow, and their
updated porosities were overestimated. The effect of
the initial ensemble was also studied on the RMS value:
although the RMS values are not the same for all en-
sembles, the same trend was observed for different
ensembles of size 50.

SENSITIVITY ANALYSIS

The performance of EnKF for history match and pre-
diction depends on several parameters, among which
ensemble size, measurement data uncertainty, assim-
ilation time step, and choice of the initial ensemble are
important. A set of experiments illustrates the influ-
ence of these parameters on the results. To reduce
the effect of the initial ensembles on the experiments
dedicated to the influence of ensemble size, data un-
certainty, and assimilation time step, five different

Figure 9. Mean of initial ensemble for permeability (ln[kh]) distribution in the five layers.

Figure 10. Mean of final ensemble for porosity distribution in the five layers.
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ensembles are generated for the target parameter, and
the same assimilation process is performed for each of
them. The RMS values presented hereafter are the av-
erage values of the RMS results obtained for the five
ensembles.

Ensemble Size

The EnKF provides an approximation of the error co-
variance matrix from an ensemble of finite size. As the
size of the ensemble, Ne, increases, the approximation
of the error covariancematrix improves proportionally
to 1=

ffiffiffiffi
N

p
. Therefore, spurious correlations in the co-

variance matrix are reduced. However, increasing the
ensemble size induces a larger fluid-flow simulation
and computational overburden. Thus, a trade-off exists
between the accuracy of the covariance matrix approx-
imation and the computational cost, and the choice of
the ensemble size is case dependent.Weapply the EnKF
to the same case study as in the previous section but
using ensembles of size 50, 100, 200, and 500. We con-
sider the same data uncertainties as previously dis-
cussed. The assimilation intervals are reported by the
red dashed vertical lines in Figure 4.

Two metrics quantify the performance of the differ-
ent ensembles: the static RMS (RMSs) previously in-
troduced and the dynamic RMS, denoted by RMSd,2.
This quantity assesses the performance of EnKF at
the end of each time step by calculating, for each of the
ensemble members, the difference between the updated
production responses (BHP, SOR, and WCT) and the

reference production data for the same time step. This
RMS is written as

RMSd;2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Ne

XNe
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1

Nt

XNt
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1

N
tj
data

XNtj

data

k¼1

ðdkobsðtjÞ � dki ðtjÞÞ
2

vuuut

ð4Þ

Ne is the ensemble size. All other variables were pre-
viously defined. The RMSd,2 value can be calculated for
each of the target production responses BHP, SOR, or
WCT separately, or for all of them together with respect
to their uncertainties.

Table 2 provides the RMSd,2 values determined for
different ensemble sizes. The values are normalized to
the average RMS obtained for the ensembles of size 50.
At first glance, it seems that increasing the ensemble
size from 50 to 100 decreases the RMS value. A larger
increase in the ensemble size has a less significant ef-
fect. Therefore, an ensemble of size 100 is more appro-
priate considering central processing unit (CPU) costs.

Table 3 provides the RMSs values for ensembles of
increasing size. These values are normalized by the av-
erage RMS error determined for the ensembles of size
50. The larger the ensemble size, the lower the RMS
error for most of the static properties. Furthermore, in-
creasing the ensemble size from 200 to 500 reduces the
static RMS error, but less so than when passing from 50
to 100 or 200. Thus, an ensemble of size 100 to 200 iswell
suited for the considered problem.

Figure 11. Mean of final ensemble for permeability (ln[kh]) distribution in the five layers.

Figure 12. Variance of the en-
semble for the porosity field in
layer 4: (A) Initial ensemble,
(B) intermediate ensemble, and
(C) final ensemble.
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Data Uncertainty

We now assess the effect of measurement uncertainty
on the performance of the EnKF. Under the uncer-
tainty 1 case, data uncertainties were set to 2 bars for
BHP, 2 m3/day for SOR, and 0.02 for WCT. The
uncertainty 2 case assumes an error of 3 bars for BHP,
3 m3/day for SOR, and 0.03 for WCT. The quality of the

results is again measured by the RMSd,2 error (equa-
tion 4). The results presented in Table 4 are normal-
ized to the average RMS value obtained for the ensem-
bles of size 50 and the uncertainty 1 setting to make the
comparison of results easier. In the uncertainty 2 con-
figuration, the RMS errors computed for the production
data are increased in comparison with uncertainty 1 for
a given ensemble size. Apart from the ensembles of

Figure 14. Static root-mean-square (RMS) values for the porosity and horizontal permeability log (ln[kh]) in layers 1 to 5. The
values are normalized on the initial time (t = 0).

Figure 13. Variance of the en-
semble for permeability field
in layer 4: (A) Initial ensemble,
(B) intermediate ensemble, and
(C) final ensemble.
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size 50, our experiment demonstrates that even with a
higher measurement of uncertainty, the final ensem-
bles outperform the initial ensembles.

Haugen et al. (2008) have also performed a sensi-
tivity test on measurement uncertainties for an ap-
plication of the EnKF on a North Sea field case. They
claimed that the choice of the measurement uncertain-
ty is less important; assimilations with increased and
decreased levels of uncertainty provided improved es-
timates compared with the initial reservoir models.
They did not quantitatively compare the results.

Assimilation Step

The time interval between two consecutive assimila-
tions is also an important issue for practical EnKF ap-
plications. Smaller assimilation steps may be required
to capture significant perturbations or nonlinearities
in fluid flow. These perturbations are induced by addi-
tion of a well or variations in flow rates.

The production scheme followed for this case study
involves several changes in the flow rate. Therefore,
we compare the performance of the EnKF for two
distinct time step settings. The first assimilation time
partitioning, time step 1, is reported in Figure 4. In
the second partitioning, time step 2, each of the pre-
vious time steps is divided in two smaller steps. We
considered ensembles of size 50, 100, and 200 for the
uncertainty 1 metric.

Results are compared using the RMSd,2 error metric
(equation 4). The RMS errors reported in Table 5 are
normalized to the average RMS values determined for
the ensembles of size 50 with the time step 1 setting.
Keeping the ensemble size constant while decreasing
the time step size makes the RMS smaller for the tar-
get production responses. Also, decreasing the time
step size while increasing the ensemble size contrib-
utes even more to improve the match.

Choice of the Initial Ensemble

One of the main issues with EnKF is the choice of the
initial ensemble because different initial ensembles
result in different RMS values for production data,

Table 2. Effect of ensemble size.*

Ensemble Size

Property 50 100 200 500

BHP** 1 0.33 0.27 0.25
SOR** 1 0.29 0.19 0.17
WCT** 1 0.44 0.44 0.41
All 1 0.34 0.30 0.26

*Average value of the dynamic RMSd,2 obtained with several en-
sembles of increasing size, normalized on the value obtained with
an ensemble size of 50.
**BHP = bottomhole pressure; SOR = surface oil rate; WCT = water
cut.

Table 3. Effect of ensemble size.*

Ensemble Size

Property 50 100 200 500

Phi-L1 1 0.62 0.55 0.54
Phi-L2 1 0.74 0.68 0.66
Phi-L3 1 0.72 0.64 0.64
Phi-L4 1 0.67 0.64 0.65
Phi-L5 1 0.62 0.67 0.65
Ln(kh)-L1 1 0.67 0.66 0.61
Ln(kh)-L2 1 0.77 0.69 0.68
Ln(kh)-L3 1 0.83 0.69 0.72
Ln(kh)-L4 1 0.81 0.77 0.74
Ln(kh)-L5 1 0.71 0.71 0.65

*Average value of the static root-mean-square obtained with several
ensembles of increasing size, normalized on the value obtained with
an ensemble size of 50.

Table 4. Effect of measurement uncertainty.*

Uncertainty 1 Uncertainty 2

Ensemble size 50 100 200 50 100 200
BHP** 1 0.33 0.27 1.26 0.70 0.61
SOR** 1 0.29 0.19 1.11 0.49 0.37
WCT** 1 0.44 0.44 1.02 0.98 0.96
All 1 0.34 0.30 1.11 0.62 0.54

*Average value of the dynamic RMSd,2 obtained with two increasing
levels of uncertainty and several ensembles of increasing size, nor-
malized on the value obtained with an ensemble size of 50.
**BHP = bottomhole pressure; SOR = surface oil rate; WCT = water
cut.

Table 5. Effect of assimilation interval.*

Time Step 1 Time Step 2

Ensemble size 50 100 200 50 100 200
BHP** 1 0.33 0.27 0.60 0.28 0.24
SOR** 1 0.29 0.19 0.56 0.21 0.15
WCT** 1 0.44 0.44 0.50 0.35 0.29
All 1 0.34 0.30 0.54 0.27 0.22

*Average value of the dynamic RMSd,2 obtained with two decreasing
sets of assimilation time intervals and several ensembles of increasing
size, normalized on the value obtained with an ensemble size of 50.
**BHP = bottomhole pressure; SOR = surface oil rate; WCT = water
cut.
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indicating the importance of the initial ensemble in the
quality of history match and predictions. Initial ensem-
bles are generated stochastically and filter performance
may change from one ensemble to another (Lorentzen
et al., 2005). Moreover, ensemble members become
highly correlated after assimilation. This phenomenon
is a well-known problem of Markov Chain–Monte
Carlo methods. To mitigate these limitations, Thulin
et al. (2008) recommended performing several EnKF
runs with an appropriate small ensemble size and
claimed that the results would be superior to those
obtained by only one large ensemble.

How does the EnKF perform in terms of prediction
capability with different ensembles of identical size?

Focusing on cumulative oil production, ten different
ensembles of size 100 were generated using the uncer-
tainty 1 and time step 1 framework. The forecast ca-
pability of each of the ensembles is assessed by com-
paring the total cumulative oil production from the
initial value with that of the final updated ensembles
for the whole history-matching and prediction inter-
vals. To make the comparison meaningful, the updated
models obtained at the end of the history-matching in-
terval (0–2936 days) were simulated from day 0 to the
end of the prediction interval. The results are plotted in
Figure 15.

The reference oil data are in the range provided by
the initial ensembles, more specifically between the

Figure 15. Box plot of cumulative oil production for 10 ensembles of size 100: (A) initial ensemble, (B) final ensemble. The
black horizontal line corresponds to the cumulative oil production for the reference reservoir model at the end of 6025 days of
production. Each box is limited by the lower and upper quartiles, and the red line within each box shows the median value.
The small black lines (whiskers) show the extent of the data for each box plot. Red plus signs are outliers of each data set.
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upper quartile and the upper extent for the data. The
median predicted oil cumulative production is far from
the true one and the spread, that is, P(75) to P(25), for
each ensemble is fairly high. After assimilating the data
in the history-matching interval, the spread is reduced
and the true cumulative oil production value is better
positioned within the forecasted ranges. Moreover, the
difference between the median and true cumulative
oil production is significantly smaller, and one-half of
the ensembles include the true value between the lower
andupperquartiles, that is, P(75) toP(25).Considering the
range of predictions by the 10 ensembles, we suggest
that soundpredictions should be based on several ensem-
bles of appropriate size, similar to what was suggested
by Lorentzen et al. (2005) and Thulin et al. (2008).

CONCLUSIONS

The ease of implementation and low computational
cost make the EnKF method appealing for most history-
matching studies. Although the applications are gener-
ally successful, the fundamental assumptions intrinsic
to EnKF theorymaybe problematic, althoughmitigation
strategies were suggested in the literature to improve
the performance. In this chapter, we focus on the use
of the EnKFmethod for performing historymatch and
uncertainty quantification. A fairly small ensemble of
size 50 is used to provide the initial uncertainty in po-
rosity and permeability. By sequentially matching the
production data (BHP, SOR, and WCT), porosity and
permeability fields were gradually adjusted so as to re-
produce the reference production data. The WCT was
shown to be quite difficult tomatch possibly because of
the highly nonlinear dependence of these data to res-
ervoir parameters.

We also performed a set of sensitivity tests to as-
sess the function of some EnKF parameters in history-
matching results: the ensemble size, the data uncer-
tainty, the assimilation time step, and the choice of
the initial ensemble. The following conclusions can be
drawn:

1. Increasing the ensemble size results in a better
match for the production data (BHP, SOR, and
WCT), but there exists a trade-off between the in-
crease in computation time and the improvements
in the results. Our experiments suggest that an
ensemble size of 100 to 200 is appropriate to ob-
tain acceptable results with EnKF. However, this
number is case dependent.

2. The level of uncertainty in measured data is of less
significance; data assimilationwith EnKF improves

model estimates whenever the size of the ensemble
is large enough.

3. Decreasing the assimilation time step is required
to better capture the abrupt changes in dynamics
of the model.

4. The match of cumulative oil production is better
assessed when estimated from several ensembles
of identical size, although this makes the process
more CPU time consuming.
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