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RESUME.

En analyse d’image, mais également dans d’autres domaines (la sismique par exemple), les données
accessibles ne sont généralement pas de support ponctuel, mais convoluées par une fonction de pondération
p(x), déterminée par le processus physique du mode de prélévement. La déconvolution des images est traitée
généralement par transformation de Fourier. Il est bien connu que cette approche est inopérante dans le cas
de données bruitées aprés convolution, de données non disponibles & maille réguliére et lorsque des données
manquantes doivent étre interpolées. C’est pourquoi il est préférable de suivre une autre démarche basée
sur une procédure d’estimation des données ponctuelles par krigeage déconvoluant.

Les limites pratiques de cette méthode peuvent s’exprimer en termes de variance d’estimation (ou encore
de rapport signal sur bruit) accessible pour chaque situation expérimentale aprés modélisation. Elles sont
illustrées par des cas pratiques de fonction de pondérations p(x) et de variogrammes, & partir de calculs et
de simulations.

ABSTRACT.

In image analysis but also in other domains (seismic for example), the available data do not usually have
a point support, but are convoluted by a weighting function p(x) , which is determined by the physical process
of the sampling node. Deconvolution of images is generally treated by Fourier transform. This approach is
known to be inoperable when considering convoluted data with noise or when a regular grid of data is not
available and therefore missing data have to be interpolated. It is for this reason that it is better to use another
system based on the process of estimating point data by deconvoluting kriging.

The practical limitations of this method can be expressed in terms of variance of estimation (or of signal
to noise ratio), accessible for each experimental situation after modeling. They are presented by practical
cases of the weighting function p(x) and variograms y(h), from calculations and simulations.

ENSMP, 1991
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1. INTRODUCTION

In many circumstances, such as in image analysis, or in other fields like seismic, the available data are not
with a point support, but are convoluted by a weighting function. This last function depends on the underlying
physical process and can be known from theoretical considerations, or can be measured with appropriate
experiments. When the support of the weighting function is large as compared to the size of the imaged
features, this results into blurred images, sometimes degraded by additional noise, that require some
restoration before any further processing. After some recalls on the available deconvolution methods, we
develop the deconvolution procedure by kriging, with the aim of exploring its implementation together with
its efficiency and its limits in the presence of noise. This work is illustrated by computer calculations and
simulations.

2. RECALLS ON DECONVOLUTION METHODS

In this part, we introduce the various approaches that enable to perform a deconvolution of images. All
these approaches are very common in the image analysis literature (see [1] for instance). However no
indication is given on their efficiency and on their limitations, as will be presented in the next part of this paper
using simulated images.

1. Notations

We consider a pure signal (oran image in R ) Y(x) which is modified through a convolution byaweighting
function p(x). In the sequel p(x) is normalized, so that its integral over spatial coordinates is set equal to 1.
Expenmentally, if N designates a noise term uncorrelated to the signal Y, we observe the data;

Z=Y*P

or

ey

@
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Occurrence of such a situation is common in the following experimental fields : electron microscopy [2],
electron microprobe [3], optical confocal microscopy [4-6].
Knowing the weighting function p, the problem is to estimate the underlying image Y(x) at each pixel x

from the data Z(xg), and the properties of the noise. This can be done by two different approaches, namely
the implementation of a Fourier transform or an estimation of the underlying signal by kriging. The two
approaches are briefly recalled below.

We limit our purpose to 1-D convolution functions for the sake of simplicity as explained in the practical
study presented in [4-6]. In practice the following weighting (or “convolution”) functions (see Figure 1) are
common to various physical situations:

- uniform convolution function (for instance blur caused by a lack of focus) with diameter d:
1 d
p(x) =— for [x| <—, 0 otherwise
d 2
- exponential convolution function:

N x|
%) = ——exp(— =
p(x) >d p( 3
- gaussian convolution function (for instance in electron microscopy):

Ix|?

1
€X
FV At WP

p(®) =

-~ convolution function derived from the sinus cardinal function:

1 [ sin®XL\?
—— d
p(x) = d x|
d

Similarly n-dimensional convolution functions can be defined (in the isotropic case we replace |x| by the
radius r).

~30. -25. -20. -15. -10. -5. 0. 5. 10. 15. 20. 25. 30

0.11 T T 0.11
0.10 | _ Sinus cardinal? 4 (.10
0.09 <4 0.09
008 / Uniform 4008
0.07 | 4 0.07
0.06 I < 0.06
0.05 | 4 0.05
o4 L Gaussian doo4
003 L Exponential | 0.03
0.02 0.02
0.01 0.01
0. 0

-30. -25. -20. -15.-10. -5. 0. 5. 10. 15. 20. 25. 30.”

Figure 1: Different convolution weighting functions with the same diameter (10)
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IL Deconvolution by the Fourier transform

In the case of the pure convolution, it is easy to achieve an exact deconvolution by means of the Fourier
transform, from the application of the so-called convolution theorem : if F(Y) and F(p) represent the Fourier
transform respectively of the signal Y(x) and of the convolution function p(x), we have the following result
in the case corresponding to equation (1) :

F(Z) = F(Y).F(p) 3)
From (3) it is easy to compute the unknown Y according to the following steps :
- calculation of the two Fourier transforms F(Z) and F(p) from the data Z and from the known
convolution function p
- calculation of F(Y) from equation (3)

- calculation of Y by an inverse Fourier transform ,
This well-known procedure is used in [7], among other examples, to improve confocal microscope images.

However, it suffers serious drawbacks :

- Its implementation is limited to data on a regular grid of points (this is not a real difficulty in image
analysis), but is impracticable in the case of irregular sampling grids.

- A major limitation of the use of the Fourier transform results from the fact that the deconvolution
is an unstable operator, that will tend to increase the slightest errors on the knowledge of the data Z
[1,8]. In particular, in the presence of noise, the estimated Y is completely different from the
underlying signal, that cannot be recovered by this method. This can be understood as the consequence
of the fact that an image resulting from a convolution is expected to be reasonably smooth, which is
not consistent with the presence of noise, even at a low level.
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II1. Deconvolution by kriging

A powerful method for filtering or interpolating missing data was developed in the frame of Geostatistics
[9,10]. Applications of Geostatistics to mining problems are very common. Recently, applications to image
analysis have been proposed: the case of multivariate images obtained from an electron microscope or from
a microprobe are presented in [2,3]. Here we consider the common case of a single datum per pixel x, such
as the recorded light intensity Z(x), deriving from an underlying (pure) signal Y(x). The variables Y(x) and
Z(x) are assumed to have the same mean and to be realizations of an intrinsic 3D random function: the
increments Z(x+ h)-Z(x) are a second order stationary random function. If the symbol E is used for the
mathematical expectation, we can define the variogram of the random function Z from :

1
v2(h) = SE[(Z(x + h)- Z@)Y] @)
The variogram is estimated from the data, replacing the expectation in equation (4) by the mean squared
differences over the pairs x, x+ h. Examples are given in Figure 6. To restore the underlying variable Y from
the observed variable Z, we use as an estimator Y* (x), a linear combination of the data in a neighborhood
of x (pixels x4 )

Y'(x) = > A%Z(xq) )

The weights in equation (5) are the unique solution of the linear system (6) below (commonly referred
to as the kriging system) obtained from an unbiased and a minimal variance estimator.

D A%y(xa-%g) + 1 = Pyz(x—Xp)

a
dAe=1
a

where Yyz is a cross variogram :

©)

Yvz(h) = %E[(Y(x +h) = YO [(Z(x + h) - Z(x))] Y

The variance of estimation is given by u + Z A%y z(xq - X) .
a

As seen from equation (6) the optimal filter, which is a generalization of the Wiener filter, depends on
the structure of the data via the variograms. In the practice of images we encounter the following situations:

i) interpolation of a pure signal.
i) filtering a noisy signal Z (with appropriate assumptions on the noise [3]): Yyz = Yy estimated from

Yz -
iif) deconvolution : we have

v
Yz=yy*P-1(P), Yyz=yy*p-1(p), I(P) = IY(u)P(U)du and P=p*P
This deconvolution algorithm is an alternative to the Fourier transform method mentioned previously,
already proposed in [11,12]. In the presence of noise, ¥z presents a discontinuity as
Yz=Yy*P-1(P) +C, for h # 0 where C, is the variance of the noise.

iv) any combination of the previous situations.

In each case we use theoretical models of variograms for py , from which yz is calculated and compared
to the experimental py . This is illustrated in the next part. When the variance of Y is finite, the quality of
the estimator is measured from the calculation of the signal to noise ratio (SNR) :
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the estimator is measured from the calculation of the signal to noise ratio SNR = 0%:/ 0'%( , to be compared

with the raw SNRO = 0%/02 , where € = Y - Z and:

02 = Var(Y - Z) = 21(p) - j I PX)p(Y)Y(x - y)dxdy

In practical situations the calculated SNR depends on the choice of the variogram model (through the
expression of the variance of estimation 0% )

It is interesting to make here some comments on the deconvolution by kriging :

- the kriging procedure is itself a convolution, which may seem to be a paradox ! However, this is
expected since we look for an inverse of a linear operator that is invariant by translation. Furthermore,
since for a pure deconvolution we will get positive and negative weights (Figure 4 and Table 2), it is
more correct to compare it to a differentiation. Therefore, it is expected to favour instabilities in the
presence of noise.

- It can be shown [8] that, without the last condition of equation (6), unlike the Fourier transform
procedure, the kriging is stable against perturbations of the data Z by a noise e. This operation belongs
to the class of regularization operators for the ill-posed problem of deconvolution [8].

~ The connection between the two approaches can be understood in the case of a pure deconvolution.

For a stationary random function Y with covariance Cy(h) and known expectation, the cokriging system
(6) can be written as follows [9-10], if we consider a weighting measure A instead of the discrete set of weights
Aa of equation (5):

Y'(y) =4* Z(y)
where the measure A should satisfy the system (8):

A* Cz(x) = Cyz(x-Y) ®
for every pointxin R” . As we consider a stationary random function Y, the measure A is the same for eaéh
point y, so that we can restrict the system (8) toy = 0. Then:

A* Cz(x) = Cyz(x) (8 - bis)
In (8-bis), the covariances Cz and Cyz are deduced from the covariance Cy by:

v
Cz=Cy*P Cyz=Cy*P
By applying the Fourier transform to equation (8), we get:
F(4).F(Cz) = F(Cyz)

F(l).F(Cy).F(p).F(I‘;) = F(Cy).F(I‘;) =>F() = ?(1;)'

andfrom Y =A*Z:

F(Z)
F(p)

which from equation (3) shows that in this case the estimator Y recovers the exact function Y. Therefore
for a pure deconvolution of a stationary random function, the two mentioned approaches (deconvolution by
Fourier transform and by kriging) are equivalent. As a consequence the measure A does not depend on the
covariance Cy , which is different in the presence of noise. We will see later that this is nearly satisfied in
practical examples for discrete neighborhoods.

F(Y") =
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Usually, as for instance for the functions p used in this paper, the Fourier transform F(A) deduced from
F(p) has no inverse, so that the cokriging system (6) is unstable in the absence of noise. For a nugget effect
Cop on the covariance of the data Z, we have:

Cz=Cy*P+Cy.0
v
F(Cz) = F(Cy).F(p).F(P) + Co
so that by Fourier transform, we can deduce from (8):
v
F(Cy).F(P)

F(l) = v
F(Cy).F(p).F(P) + Cy

©®)

Generally the function F(4) defined by equation (9) admits an inverse Fourier transform, that enables us to

recover the measure A . Therefore, a numerically stable solution of the cokriging system is obtained by
introduction of a slight nugget effect for the pure deconvolution problem.

IV. Practical implementation of the deconvolution by kriging

In practical applications, the deconvolution by kriging requires us to solve the cokriging system after a
structural analysis in order to identify the underlying variogram 7y . The direct calculation of ¥y from Yz and

p is again a deconvolution, which is unstable according to the experimental fluctuations of the variogram. A
much better approach lies in the use of variogram models depending on some parameters. The procedure
may be split into the following steps:

i) Calculation of the experimental variogram ¥z from the data Z. This variogram should show a nugget
effect in the presence of noise, followed by a very regular behavior for small separations h, due to the
convolution function p.

ii) Choice of a model for the underlying variogram Yy , with a possible decomposition into various scales.
We use theoretical models from a priori knowledge of the structure and from the behavior of the
experimental variogram Yz . )

iif) Calculation (mostly by numerical means) of a theoretical yz from the model ¥y and from p. We must
point out that if p is unknown, the model Yy is undetermined, so that no correct deconvolution can

be looked for.
iv) Comparison between the experimental and the model variogram ¥z . If necessary, correction of the
model (continuation of steps ii)-iii)-iv)).

v) Choice of the optimal neighborhood according to the calculation of the SNR. Numerical calculation
of the solution of the cokriging system (6). Restoration of the image from the system of weights and
calculation of the quality of the deconvolution from the SNR coefficients.

This procedure, which is implemented in a software developed by D. RENARD, is illustrated and
evaluated on simulations in parts 3 and 4.
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3. IMPLEMENTATION OF THE DECONVOLUTION BY KRIGING

In this part, we present the effect of the convolution on the variograms and on the expected SNR
improvement for some examples.

L Structural Analysis

As all the usual geostatistical procedures, deconvolution by kriging and noise filtering requires a prior
study of the continuity and the regularity of the target variable, known as its “structure”.

The structure of the measured data variable Z may be a second order stationary random function, more
regular than Y (as it is smoothed by p).

The principle is to calculate the experimental variograms (possibly in several directions). Then using a
graphic{itting program, we try tofit both the theoretical model of the underlying variable and the convolution
weighting function to each directional experimental variogram. In practice, this problem cannot be solved.
Usually the convolution weighting function is known (as it is linked to the experimental tool) and the only
problem is to fit the structure of the underlying variable.

We illustrate the effect of the convolution on a spherical variogram:

3n h3
yh) =C TZ_a—_Z_aS- if h < a, C otherwise

where “a” stands for the range (or zone of influence) and C is the sill which should coincide with the global
dispersion variance of the image.

Figure 2 shows a 1-D spherical variogram (range = 15, sill = 1) and its behavior when convoluted by a
uniform weighting function with diameters respectively equal to 1, 2, 5, 10 and 15. We note the behavior at
the origin which corresponds to a highly continuous variable, the range of the convoluted variogram
corresponds to the range of the initial spherical variogram incremented by the radius of the convolution
weighting function. -

0. 10.0 20.0 30.0
3 ] T
R no convolution 1000
=]
d=2
0.750 - -4 0.750
d=35
0.500 d —_ 10— 0.500
d=15
0.250 - -1 0.250
L ] L
0. 0 100 20.0 30.0 0.

Figure 2 : 1-D Spherical variogram (Range 15; Sill 1)
1-D Uniform convolution function (Diameter d)
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In Figure 3, we have represented the theoretical 2-D spherical variogram (the same as in the previous
example) altered by a 1-D convolution weighting function (along X only) with the same diameters as
previously. The variograms are represented along X and along Y. The effect of the convolution vanishes when
we move from X to the Y direction although it does not disappear completely.

0. 10.0 20.0 30.0

1000 bom o e e no convolution}

d=1

Yy d=2

X

0.750 |- -1 0.75¢

vy d=5

X
0.500 = * Y d= lﬂ 0.500
X
vy d=15
[
0.250 - X -4 0.250
"/
0. g 100 R0 00 o
Figure 3: 2-D Spherical variogram (Range 15; Sill 1)

1-D Uniform convolution function along X ( Diameter d)

The final problem that may arise comes from the method used to calculate the function y * P . Because

of the large number of possible variograms and convolution functions, a formal integration is usuvally
discarded. Instead we choose to discretize the convolution weighting function and to multiply this weight by
the value of the variogram for the corresponding distance.

This discretization must be carried out with a large number of fine steps. Moreover, the convoluted
variogram must remain an “authorized” variogram which implies a careful choice of the discretization
procedure to keep the non-negative definiteness property of the resulting structure.
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IL. Deconvolution Kriging and Noise filtering

When the structure is determined, the kriging process can be initiated. At that time, a second problem
arises which is linked to the choice of the neighboring information. As we work on regular 2-D isometric grid
data sets, we have selected to work on neighborhoods centered on the target grid node, characterized by their
extension counted in grid nodes along each direction (Ny, Ny) or rather their radius (Ry, Ry) where Ny = 2
Ry + 1., In order to simplify the algorithm, we will simply not process the target grid nodes located too close
to the edge (less than the neighborhood radius) so that the neighborhood of each target node effectively
processed is complete. Therefore, when the radius is chosen, the kriging weights remain the same for all the
target nodes processed and the kriging operation is reduced to a simple scalar product between the
pre-calculated weights and the values of the grid nodes neighboring the target node.

From the choice of a model for yz(h) , we can calculate the variances a%{ s 0%( and o2. They are used
to estimate signal to noise ratio.

II - A. Study of the Signal to Noise Ratio

The signal-to-noise improvement corresponds to the following ratio :

The optimal neighborhood radius R is the one for which the signal-to-noise improvement flattens. In
other words, we look for a horizontal asymptote in the graph of I(R). This is illustrated by the following
example: working in the 1-D scope, and considering two basic underlying variograms (the spherical and the
cubic variograms) with the same range (15) and the same sill (1).

The cubic variogram is given by:

7h% 35h3 7h°  3n’
) =Cl = -——=+t—-—
a 4a 2a 4a

if h < a, C otherwise

We established graphs of I(R) for various amounts of nugget effect (0.01, 0.05, 0.1), for different
convolution weighting functions (uniform, exponential and gaussian) and for several diameters of these
functions (1, 2, 3, 5 and 10). In addition to the graphs, we also provide numerical results for the SNR0 and
SNR scores, as well as the asymptotic I(R) (see the Appendix).

We can make several remarks :

- when R = 35, almost all the curves I(R) have reached their asymptote. The only exception comes from
the uniform convolution function with a large diameter (d=10) where R = 50 would be more
appropriate : this comes from the fact that the uniform convolution function works as an equally
weighted moving average of the image whereas all the other convolution functions give a larger weight
to the central point than to the peripheral ones.

- the more regular the underlying variogram (for the same amount of nugget effect), the larger the
SNRO, the SNR and the improvement I(R).

- in the presence of noise, the SNR and SNRO are higher for the uniform convolution function than for
the other convolution functions: this is due to the lower degradation of the signal since the uniform
convolution function is more "local” for a same given value of d (see Figure 1).
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As an example, we compare the results obtained with an underlying spherical variogram (case 1) and an
underlying cubic variogram (case 2), for the same nugget effect (C=0.1), for different convolution functions
with the same diameter (d=3) (see Table 1).

exponential case 1) SNRO = 3.86 SNR = 6.42 IR) = 1.66
case 2) SNRO = 5.01 SNR = 14.74 IR) = 2.94
gaussian case 1) SNRO = 4.13 SNR = 6.76 I(R) = 1.64
case 2) SNRO = 6.03 SNR = 18.33 I(R) = 3.04
uniform case 1) SNRO = 4.95 SNR = 8.32 I(R) = 1.68
case 2) SNRO = 8.29 SNR = 25.62 KR) = 3.09

Table 1

II - B. Study of the Kriging weights

All the previous exercise has been performed with some nugget effect (from 0.01 to 0.1). As a matter of
fact, the structure of the convoluted variable is usually very smooth (specially when using the uniform
weighting function) and therefore the weights of the ”pure” deconvolution kriging system and sometimes
even the signal to noise ratios are unstable. The traditional solution is to add some artificial nugget effect
(which does not reflect the nature of the underlying variable) in order to practically solve the pure
deconvolution problem.

However (at least in theory), when no nugget effect is added, the weights do not depend on the underlying
variogram, but only on the characteristics of the convolution weighting function.

The Figure 4 shows the effect of the nugget effect on the kriging weights. It is obtained for a fixed
neighborhood (R = 15) with an underlying spherical variogram (Range 10; Sill 1), for an exponential
convolution weighting function (Diameter 3). The different values of the nugget effect are 0., 0.01, 0.02, 0.05,
0.1, 0.15 and 0.2. For an increasing nugget effect, the weights tend to be more uniform, since the smoothmg
of the data required by the noise becomes more effective..

-15.0 -10.0 -5.0 0. 5.0 10.0 15.0

5.0 . . : : . s0 IRy
3
jo— Cop=0 ’ 3
2
1
0 Co
0 0,1 0,2
SNRO 25
0. 0. 2
1,5 Co
0 0,1 0,2
SNR 15
10
5
-5.0 L L L L 4 -5.0 0 Co
-150 -100 -5.0 0. 5.0 10.0 15.0 0 01 0,2

Figure 4 : Influence of the nugget effect Cy on the deconvolution kriging weights
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Table 2 is obtained for an underlying spherical variogram (Range = 5 ; Sill = 1) and for an exponential
convolution weighting function (Diameter = 3). This corresponds to SNRO = 2.271. It shows the effect of
the neighborhood radius R on the pure deconvolution kriging weights and on the Signal to Noise ratio
improvement: R varies from 1 to 20. Because of the symmetry, only half of the weights are listed, the first
value corresponds to the central weight.

As illustrated from the I(R) variations, the optimal radius is reached at R = 6. We can also notice that the
kriging weights obtained for R=6 will not vary significantly up to R=20.

R 1 2 3 4 5 6 7 8 9 10

IR) | 6662 | 6.707 | 6.762 | 6.776 | 6.776 | 6.776 | 6.775 | 6.776 | 6.777 | 6.778

A 20.105 | 21.562 | 20.926| 20.890 | 20.881 | 20.883 [ 20.887| 20.891 | 20.883| 20.885
-9.553 | -10.620 | -9.758 | -9.578 | -9.569 | -9.573| -9.575| -9.579 | -9.573 | -9.571
0.339 | -0.566 | -1.010| -1.046 | ~1.044 | -1.042 | -1.040 | -1.044 | -1.048
: 0361{ 0820] 0913 0.923| 0920f 0.922| 0.923| 0.926
-0.177| -0.277| -0.309 | -0.311| -0.314 | -0.314| -0.314
0.039| 0.074; 0.088| 0.090| 0.088| 0.087
-0.013| -0.031| -0.031 | -0.019| -0.020
0.007} 0.006 | -0.019| -0.027
0.001| 0.025| 0.052

-0.009 | -0.041
0.013
11 12 13 14 15 16 17 18 19 20

6.775 | 6.776 | 6.777 | 6.777 | 6.777 | 6.777 | 6.776 | 6.777 | 6.776 | 6.776

20.883 | 20.878 | 20.882| 20.875| 20.875| 20.879 | 20.881 | 20.887 | 20.890 | 20.877
-9.566| -9.568 | -9.570 | -9.562| -9.561 | -9.568 | -9.575| -9.577| -9.579| -9.572
-1.054} -1.049} -1.047| -1.050 | -1.055| -1.045| -1.039 | -1.040 | -1.039| -1.042

0931} 0927 0928| 0924 0931| 0923| 0921 0922 0920] 0.921
-0.316 | -0.315| -0.318| -0.311| -0.319| -0.316 | -0.314 | -0.313 | -0.311| -0.313

0.085( 0.087| 0.090( 0083| 0.091| 0.091{ 0087| 0.085| 0.086]| 0.086
-0.015| -0.019| -0.022| -0.016| -0.021 | -0.022| -0.017| -0.015| -0.020| —0.018
-0.032] -0.028 | -0.024 | -0.030| -0.028 | -0.026 | -0.030 | -0.031 | -0.026 | -0.029

0.064| 0061 0.059| 0063| 0.062| 0060} 0061} 0.062| 0.059]| 0.062
-0.067 | -0.067 | -0.067 | -0.069 | -0.068 | -0.067 | -0.067 | -0.067 | -0.065 | -0.068

0.041] 0.046] 0.043| 0.044]| 0.043| 0.043| 0.043| 0.041| 0.041] 0.043
-0.011| -0.017| -0.008 | -0.006 | -0.004 | -0.005| -0.005| -0.004 | —0.003 | -0.004
0.003 | -0.007 | -0.017| -0.018 | -0.018 | -0.018 | -0.018 | -0.019 | -0.019
0.004| 0014| 0017| 0.017} 0.016| 0.016] 0.017| 0.017

Table 2
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4. APPLICATION

In this part, we will illustrate the theoretical results discussed previously on simulated data sets where
all the structural and the convolution function characteristics are known. The exercise is used to corroborate
the inference method of the underlying variogram and to evaluate the performance and the limitations of
the kriging procedure for deconvoluting and filtering noise.

L. The simulated Data set

The property of this data set is that all the underlying structure and the convolution function
characteristics are known. Although no theoretical limitation holds, we have chosen to perform this study
on 2-D images (256 x 256 pixels) both for efficiency and for an easier graphic presentation of the results.

Among the various possible underlying variograms, we have chosen to use the isotropic spherical
variogram with a range of 15 pixels (much smaller than the dimension of the image to minimize the problem
linked to statistical fluctuations) and with a sill of 1.

The reason for this choice comes from the existence of a specific simulation technique based on the
properties of the random tokens model which is simulated a follows:

- First we create a realization of a 3-D Poisson point process (I) with a constant density @ . Each point
iofIis then considered as the center of a sphere of constant radius R. The volume of each sphere is attributed

a random value Z; following a gaussian distribution (0 mean and variance o? ). The value Z(x) finally

simulated in each point of R> is obtained by summing all the values attributed to the spheres intersected
at x. The random function thus obtained has a zero mean and its covariance is isotropic and spherical, with
a range which represents the diameter of the spheres and its sill calculated as follows :

C= —;E-a3002

Finally the Poisson intensity 6 is directly linked to the statistical fluctuation. The larger the Poisson
intensity, the smaller this fluctuation, and, unfortunately, the longer the process time for performing this
simulation.

- A second particularity in this study is that we are looking for a 2-D simulation. It can obviously be
obtained by looking at a section of a 3-D simulation. But a more realistic method consists in drawing the
Poisson point process (I) as previously and in considering each point as the center of a disk. The difference
is that this time the radius of the disk is not constant as it corresponds to the intersection of a sphere located

“at random” in R> with a fix plane.

The quality of the simulation can be appreciated by calculating the experimental variogram and by
comparing it to the theoretical variogram. The Figure 6 shows the reference simulation and the variograms
calculated along the X and the Y directions (the angular tolerance is null) calculated on 50 steps of one pixel
and the theoretical isotropic spherical variogram.
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Figure 6: Theoretical and simulated variograms along X and Y

Once this is done, the next problem is to convolve the image by the appropriate convolution function p. Here
this weighting function is derived from the sinus cardinal function as for the application of references [4-6].

A naive solution is to discretize the function p (on a pixel basis) and to use these weights to perform a
linear combination of the initial image.Unfortunately this assumes that the discretization of p is close enough
to the theoretical convolution function. Moreover, the convoluted image is only available on the size of the
initial image eroded by the diameter of the convolution function.

A second possibility is to recall that covariance of a random tokens model is obtained as the convolution
of the indicators function of the sphere (1 if the point belongs to the sphere S ; 0 otherwise) denoted 1s.

C(h) = 00%14 * 1,

To obtain the convoluted covariance Cp = C*B, it suffices to implant "distorted” spheres (15 * p ).

‘The interest of this construction comes from the fact that, for a given underlying spherical variogram, we
can draw the point Poisson process once and for all. The initial spherical image is obtained by implanting
spheres with a constant valuation (we will call it the “reference” image), the convolution using two 1-D
squared sinus cardinal weighting functions (diameters 3 and 10) are obtained by distorting the spheres
implanted at the same points. This will enable us to compare the image after deconvolution with the reference
spherical image. Then several white noises (Co = 0, 0.05 and 0.2) are added to the convoluted images.

On each image, experimental variograms can be calculated and compared to the theoretical models.

Although the spherical variogram of the initial (non-convoluted) image was isotropic, as the convolution
function p only applies along the X direction, the resulting image is no more isotropic. The larger the diameter
of the convolution function, the stronger the geometric anisotropy. We can finally verify that the convolution
changes the behavior of the variogram at the origin from a linear shape to the one of a smooth function.
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IL. Deconvolution Kriging of the simulated images

The next phase consists in performing the deconvolution and the noise filtering using the cokriging
procedure. Again, we assume here that the deconvolution weighting function and the underlying structure
are known. We must then determine the kriging neighborhood which will be the same for both diameters of
the convolution weighting function and for the different values of the nugget effect. First an optimal 1-D
neighborhood radius of 10 pixels has been selected as a good compromise: it leads to a system with 21 kriging
weights.

In the following figures (7 to 12), we first represent the reference image, followed by the image after the
convolution and the addition of noise, and finally the image obtained by kriging. The dark edges of the last
image correspond to the area where the deconvolution kriging and noise filtering cannot be performed as
the neighborhood would not be complete : their width is the neighborhood radius R.

On the deconvoluted image, we can also calculate the variograms and compare them to the reference
isotropic spherical variograms. In addition to the figures, we can check the efficiency of the method by looking
at the following resemblances :

- between the deconvoluted image and the reference image,

~ between the deconvoluted variogram and the reference variogram illustrated by theoretical and
experimental variograms calculated along X and Y,
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Figure 8:
Convolution diameter d=10
Nugget Effect Co=0

Neighborhood radius R=10

SNRO Theoretical 5.213
Experimental 4.990
SNR  Theoretical 10.012
Experimental 9.344
I(R) Theoretical 1.921
Experimental 1.873
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Figure 9:
Convolution diameter d=3
Nugget Effect Co=0.05

Neighborhood radius R=10

SNRO Theoretical 9.917
Experimental  8.959
SNR  Theoretical 14.173
Experimental 12.450
I(R)  Theoretical 1.429
Experimental 1.390
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Figure 10:
Convolution diameter d=10
Nugget Effect Co=0.05

Neighborhood radius R=10

SNRO Theoretical 4.136
Experimental  3.964
SNR  Theoretical 7.074
Experimental 6.589
I(R)  Theoretical 1.710
Experimental  1.662
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Figure 11:
Convolution diameter d=3
Nugget Effect Co=0.2
Neighborhood radius R=10
SNRO Theoretical 3.987
Experimental 3.777
SNR  Theoretical 8.254
Experimental 7.611
KR)  Theoretical 2.070
Experimental 2.015
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Figure 12:
Convolution diameter
Nugget Effect
Neighborhood radius

SNRO Theoretical
Experimental
Theoretical
Experimental
Theoretical
Experimental

SNR
IR)

d=10
Co=0.2
R=10

2.552
2.476
5.207
4.981
2.040
2.012
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As the process has been carried out on images, we can compare the theoretical SNR to the mean squared
errors calculated between the reference image and the convoluted image (SNRO) and between the reference
image and the deconvoluted image (SNR). These last two quantities will be called the experimental SNR.
‘The experimental and theoretical SNRO and SNR are summarized in the table 3;

SNRO SNR I(R)
Theory Experiment Theory Experiment Theory Experiment
Sinc(3) 19.642 16.445 7 44.577 31.490 2.270 1.915
Sinc(10) 5.213 4.990 10.012 9.344 1.921 1.873
Sinc(3)+ 0.05 9.917 8.959 14.173 12.450 1.429 1.390
Sinc(10)+ 0.05 4.136 3.964 7.074 6.589 1.710 1.662
Sinc(3)+0.2 3.987 3.717 8.254 7.611 2.070 2.015
SInc(10)+ 0.2 2.552 2.476 5.207 4.981 2.040 2.012
Table 3

As we have already mentioned earlier, the obvious conclusion is that the efficiency of the deconvolution
decreases with the diameter of the convolution weighting function and the amount of nugget effect. The
second remark is that there is a good concordance between the experimental and the theoretical results.

Hf we look more carefully at the last deconvoluted image (diameter 10 and nugget effect 0.2) obtained with
the 1-D neighborhood (Figure 12), we notice several artefacts which appear as horizontal short stripes.
Moreover, the same artefacts, which correspond to a residual 1-D convolution, appear on the experimental
variogram, as a remaining smoothed behavior along X, whereas its shape is linear along Y. The next attempt
consists in performing the kriging procedure with a 2-D neighborhood. The radius along X is the same as
in the 1-D neighborhood (Rx=10) and the radius along Y is set to 1 pixel: the resulting kriging system is
constituted of 63 kriging weights. The signal to noise ratio is improved and, this time, the deconvoluted image
does not show the artefacts anymore (Figure 13 and Table 4).

R

e

Figure 13: Deconvolution Kriging with 1-D (left) and 2-D (right) neighborhoods

| SNRO SNR I(R)
Theory Experiment Theory Experiment Theory Experiment
1-D neighb. 2.552 2.476 5.207 4.981 2.040 2.012
2-Dneighb. || 2552 2.476 6.253 6.008 2.442 2.427

Table 4
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For concluding this case study, we now assume that the convolution weighting function is known but we
ignore the nature of the underlying variogram as in practice. The interactive procedure performed on the
convoluted variograms, shows a second possible fit (although less accurate than the spherical variogram with
. arange of 15 and a sill of 1) with an underlying cubic variogram with a sill of 0.9 and a range of 17 (Figure
14). The deconvolution kriging is performed with the 1-D neighborhood and the following results are
obtained (Table 5)
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Spherical variogram
(Range 10; Sill 1)
Nugget Effect 0.2

0.40

0.30

0.20

) 1 A | -} 0.
0 10.0 20.0 30.0 40.0
0. 10.0 20.0 300 40.0
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0.50

o40r Cubic variogram
(Range 17; Silt 0.9)
Nugget Effect 0.2 -
0.30
0.20
0,10 4 0.10
% o 100 700 ) %0 o
Figure 14: Spherical and Cubic variogram fits
SNRO SNR 1(R)
Theory Experiment Theory Experiment Theory Experiment
Spherical 2.552 2.476 5.207 4.981 2.040 2.012
Cubic 3.109 2.476 9.473 4.981 3.047 2.012

Table 5
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Despite a wrong choice of the underlying variogram model, the deconvolution procedure led to
experimental results (SNR and I(R)) very close to those corresponding to the "true” model. On the opposite,
we must point out that the theoretical results are quite different, as they strongly depend on the model.

The images are strictly similar and therefore have notbeen presented here. And this is precisely what the
user is expecting from a robust deconvolution procedure !

IIL. Application to a real case

This approach was used with real data obtained on a biological specimen with a confocal optical
microscope giving three~dimensional images. In this case there is a strong convolution in the Z direction
(depth of the specimen) and the weighting function is derived from the sinus cardinal function as used in the
previous simulated data set. The results of the deconvolution are satisfactory, and are reported in [4-6].

We used in our presentation and in the mentioned application one-dimensional convolutions. The same
approach can be followed for three-dimensional convolutions, involving longer calculations for the
convoluted variogram. However, in many practical cases, these are just an iteration of three one-dimensional
convolutions on three orthogonal directions. Lower initial SNR are expected, since there is a higher
degradation of the data. The expected improvement of the SNR can be calculated as before.



197

Practical limits of the deconvolution of images by kriging

S. CONCLUSION

This study of the deconvolution of data by kriging enables us to draw the following conclusions:

- efficient and easy deconvolutions can be obtained, even in the presence of noise. As a result of the
minimization of the variance of estimation, the choice of weights from the kriging system gives a good
compromise between the operation close to a differentiation required for the deconvolution, and the
smoothing required for noise filtering. This is an effect of the adaptive properties of kriging filters.

~ from some simulations, the deconvolution seems to be robust with respect to the choice of the model
of the underlying variogram (provided that the variogram of the data is not too different from the
calculated convoluted variogram). On the other hand, the calculated SNR (and its expected
improvement) strongly depends on the model, and so must be used with some care in the applications.
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6. APPENDIX
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Spherical variogram (Range 15; Sill 1)

Uniform convolution function

Nugget Effect = 0.01
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Diameter | SNRO SNR I(R)
1. 22.878 24.198 1.058
2. 12.873 16.942 1.316
3. 8.914 13.169 1.478
5. 5.441 9.599 1.764
10. 2.574 4.827 1.875
Spherical variogram (Range 15; Sill 1)
Uniform convolution function
Nugget Effect = 0.05
Diameter | SNRO SNR I(R)
1. 11.946 15.594 1.305
2. 8.497 12.101 1.424
3. 6.571 9.792 1.490
5. 4.468 7.256 1.624
10. 2334 3.930 1.684
Spherical variogram (Range 15; Sill 1)
Uniform convolution function
Nugget Effect = 0.10
Diameter | SNRO SNR I(R)
1. 7.479 12.091 1.617
2. 5.964 9.947 1.668
3. 4,946 8.322 1.683
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10. 2.089 3.549 1.699
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Spherical variogram (Range 15; Sill 1)

Gaussian convolution function

Nugget Effect = 0.01
Diameter | SNRO SNR I(R)
1. 17.966 | 20.870 1.162
2. 9.741 13.422 1.378
3. 6.565 9.931 1.513
5. 3.817 6.765 1.772
10. 1.979 3.209 1.786
Spherical variogram (Range 15; Sill 1)
Gaussian convolution function
Nugget Effect = 0.05
Diameter | SNRO SNR I(R)
1. 10.453 13.699 1.311
2. 7.010 9.893 1.411
3. 5.200 7.744 1.489
5. 3.312 5.509 1.663
10. 1.834 2.719 1.483
Spherical variogram (Range 15; Sill 1)
Gaussian convolution function
Nugget Effect = 0.10
Diameter | SNRO SNR I(R)
1. 6.865 10.886 1.586
2. 5.191 8.325 1.604
3. 4.127 6.759 1.638
5. 2.841 4.875 1.716
10. 1.680 2.504 1.490
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Cubic variogram (Range 15; Sill 1)
Exponential convolution function
Nugget Effect = 0.01

Diameter | SNRO SNR I(R)
1. 59.214 | 134412 | 2.270
2. 19.178 | 76.407 3.984
3. 9.128 50.517 5.534
5. 4.232 25.832 6.104
10. 2.140 8.530 3.986
Cubic variogram (Range 15; Sill 1)
Exponential convolution function
Nugget Effect = 0.05
Diameter | SNRO SNR I(R)
1. 17.578 48.654 2.768
2. 10.853 32.256 2.972
3. 6.687 21.894 3.274
5. 3.619 11.388 3.147
10. 1.971 4.449 2.257
Cubic variogram (Range 15; Sill 1)
Exponential convolution function
Nugget Effect = 0.10
Diameter | SNRO SNR I(R)
1. 9.356 22.147 2.367
2. 7.035 21.272 3.024
3. 5.011 14.737 2.941
5. 3.065 8.030 2.620
10. 1.794 3.486 1.943
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Cubic variogram (Range 15; Sill 1)
Uniform convolution function
Nugget Effect = 0.01

Diameter | SNRO SNR I(R)
1. 91.761 | 180.984 1.972
2. 60.609 | 124.177 | 2.049
3. 32.680 | 78.422 2.400
5. 10.738 37.472 3.490
10. 2.586 6.844 2.647
Cubic variogram (Range 15; Sill 1)
Uniform convolution function
Nugget Effect = 0.05
Diameter | SNRO SNR I(R)
1. 19.647 59.058 3.006
2. 17.699 48.917 2.764
3. 14.164 37.969 2.681
5. 7.512 20.677 2.753
10. 2.343 5.099 2.176
Cubic variogram (Range 15; Sill 1)
Uniform convolution function
Nugget Effect = 0.10
Diameter | SNRO SNR I(R)
1. 9.911 35.773 3.609
2. 9.390 31.202 3.323
3. 8.292 25.619 3.090
5. 5.461 15.167 2.777
10. 2.098 4.345 2.071
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Cubic variogram (Range 15; Sill 1)
Gaussian convolution function
Nugget Effect = 0.01

Diameter | SNRO SNR I(R)
1. 82.089 | 184.181 2.244
2. 32.036 | 117434 | 3.666
3. 13.174 66.019 5.011
5. 4.692 17.717 3.776
10. 1.997 3.562 1.784
Cubic variogram (Range 15; Sill 1)
Gaussian convolution function
Nugget Effect = 0.05
Diameter | SNRO SNR I(R)
1. 19.164 56.713 2.959
2. 14.042 42.644 3.037
3. 8.627 27.637 3.204
5. 3.951 9.994 2.529
10. 1.849 2.879 1.557
Cubic variogram (Range 15; Sill 1)
Gaussian convolution function
Nugget Effect = 0.10
Diameter | SNRO SNR I(R)
1. 9.786 34.338 3.509
2. 8.250 26.932 3.264
3. 6.027 18.331 3.041
5. 3.299 7.679 2.328
1.693 2.612 1.543
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