
MODELLING THE STONE SIZE DISTRIBUTION OF A
DIAMOND DEPOSIT
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ABSTRACT

The diamond size-frequency distribution (SFD) is one of the most important

factors determining the revenue of a diamond deposit. Since the diamond SFD

typically varies spatially in an alluvial deposit, it should be modelled locally. A

data set from an alluvial deposit was used to compute experimental simple- and

cross-variograms for variables representing diamond abundance in a range of

standard granulometric classes. These variograms display a number of striking

features, firstly the larger the granulometric class the smaller the range, and

secondly a negative correlation between the nugget effect (as a proportion of the

total sill) and the proportion of available stones. For the sake of prediction and

simulation, a simple model is proposed to reproduce these features, while also

taking into account the particulate nature of diamond. At first, all points from a Cox

process are interpreted as stones and assigned independent sizes. Then each stone

is independently migrated as a function of its size, as would occur by geological

processes. The resulting process is a marked Cox process, the properties of which

are investigated.

INTRODUCTION

Prediction of the diamond size-frequency distribution (SFD) in a diamond deposit,
contributes significantly towards the estimation of expected revenue. Following a
case study (Millad, 2007), which involved the estimation of the diamond SFD in
an alluvial diamond deposit, it became apparent that standard multivariate models
were not the most appropriate. The desired result of the case study was an
estimate of diamond SFD, expressed in terms of the number of stones in a range of
granulometric classes, called sieve classes, at a panel scale. The particulate nature
of diamonds and some properties of the experimental simple- and cross-variograms
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prompted the design of a new, more suitable model. The objective of this paper is
therefore twofold:

i) To examine the experimental characteristics (statistics and spatial structures) of
the data, as used in the case study.

ii) To propose a marked point process for the modelling of the spatial distribution of
the stones, including their size attribute, in full compatibility with the experimental
observations mentioned in i) above.

EMPIRICAL OBSERVATIONS

Background

The case study area is located several kilometres offshore of the Namibian
southwest coast, to the immediate north of the Orange River mouth (Figure 1).
This area, called Atlantic 1, contains a major alluvial diamond deposit, which is
currently sampled and exploited using vessel-based mining and mineral processing
systems. The diamonds are hosted within thin (typically < 0.5m) grit and gravel
horizons that occur on the seabed, which are treated as two-dimensional entities
during the estimation of the diamond resource.
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Figure 1: Location map.

The sampling vessel uses an airlift drill system to recover sediment and diamonds
from the seabed (sample size = 12.2m2). Once recovered from the sediment, the
weight of each diamond or ”stone” is measured in units of carats (1ct = 0.2g). The
stones are also sieved into granulometric classes, called ”sieve classes”, using a
standard set of sieves (see Figure 2). The sieve class into which each stone falls is
recorded.

A test area with approximatively 4km× 4km of uninterrupted sample coverage,
situated in the southeast of Atlantic 1, was selected for the multivariate analysis. In
order to simplify the testing of the multivariate approach, samples were declustered,
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Figure 2: The family of sieve classes and their key aperture sizes

leaving a regular, 71m×71m sample grid.

Choice of variables

The sample diamond SFD in Atlantic 1 was expressed in terms of stone density (ie.
stns/m2) per sieve class. Such variables are additive, ensuring that the diamond
abundance is taken into account when estimating the SFD. This resulted in 9
variables for structural analysis, ranging from the sieve class 7 to 21 (sieve class 23
was excluded due to a lack of observations). Some 3244 samples were available
for analysis.

Basic statistics and correlation

Basic statistics and a correlation matrix for the 9 variables are displayed in Tables 1
and 2, respectively. Note that because the number of stones is integer, and sample
size is constant at 12.2m2, the variables are discrete. The coefficient of variation and
skewness are inversely related to the proportion of total stones in each sieve class,
while being positively correlated with the proportion of barren samples. These
relationships are predictable, and are interpreted as a function of both the inherent
variability of stone densities in different size categories (larger stones = greater
statistical variability) and the relative abundance of the stones (lower stone densities
= greater standardised statistical variability).

Table 1: Basic statistics for the sieve class stone density

class min max mean std dev CoV % zeroes % stones
7 0 0.984 0.021 0.050 2.45 80.73 8.50
9 0 0.820 0.047 0.083 1.77 64.58 19.45

11 0 1.148 0.052 0.090 1.73 62.39 21.61
12 0 0.656 0.034 0.069 2.02 72.23 14.04
13 0 0.902 0.049 0.093 1.89 64.83 20.31
15 0 0.328 0.013 0.036 2.82 87.02 5.22
17 0 0.410 0.012 0.036 2.88 87.39 5.14
19 0 0.574 0.011 0.038 3.33 89.12 4.69
21 0 0.164 0.002 0.013 6.48 97.60 0.85
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Table 2: Correlation matrix for the sieve classes

∣∣ 7 9 11 12 13 15 17 19 21
7

∣∣ 1.00 0.30 0.26 0.21 0.24 0.09 0.15 0.10 0.04
9

∣∣ 0.30 1.00 0.46 0.38 0.38 0.22 0.27 0.28 0.11
11

∣∣ 0.26 0.46 1.00 0.44 0.50 0.29 0.29 0.30 0.13
12

∣∣ 0.21 0.38 0.44 1.00 0.46 0.26 0.30 0.30 0.11
13

∣∣ 0.24 0.38 0.50 0.46 1.00 0.28 0.35 0.31 0.14
15

∣∣ 0.09 0.22 0.29 0.26 0.28 1.00 0.26 0.22 0.10
17

∣∣ 0.15 0.27 0.29 0.30 0.35 0.26 1.00 0.25 0.08
19

∣∣ 0.10 0.28 0.30 0.30 0.31 0.22 0.25 1.00 0.13
21

∣∣ 0.04 0.11 0.13 0.11 0.14 0.10 0.08 0.13 1.00

The correlation coefficients between the 9 variables are all positive. These
positive relationships were expected, since an increase in overall stone density
will generally be echoed within each sieve class. Most of the variables also show
weak-to-moderate correlations with their counterparts, with the best correlation
of 0.5 between the sieve classes 11 and 13. It is noteworthy that there is good
correspondence between the general degree of correlation that a variable enjoys
with its 8 partners and the proportion of the total available stones supporting that
variable.

Experimental simple- and cross-Variograms

The size of the multivariate system prohibits illustration of all the simple- and
cross-variograms. Therefore, Figure 3 shows part of the system, for the sieve
classes 9 through 13. This is sufficient to illustrate the general features of the
spatial interdependence between sieve classes. Note that no evidence of anisotropy
could be found for any of the variables, hence the analysis using omnidirectional
variograms.

The following features characterise the simple- and cross-variograms:

i) Very high nugget effects in the simple-variograms, this being reflective of the
small sample support size for the individual sieve classes. This is not surprising,
given that the sample size was originally optimised for the estimation of total stone
density across all sieve classes. The nugget effect is also inversely related to the
sample mean and the proportion of stones supporting each variable, and therefore
is largely a function of the amount of information available for each sieve class.

ii) The ranges of simple-variograms generally decrease with increasing stone size,
and are therefore distinct from one another. This is believed to be due in part to the
reduced mobility of stones in the hydraulic environment, coupled with a general
decrease in stone abundance, as stone size increases.

iii) Although the experimental cross-variograms have a similar shape to the
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Figure 3: Simple- and cross-variograms for the sieve classes 9 through 13.

simple-variograms, they are nonetheless more difficult to interpret. Debatably, the
longer range component of the cross-variograms is somewhat more important than
in the simple-variograms. This is in accordance with the fact that particles are
size-sorted by hydraulic processes and lends support to this inference.

THE MODEL

Fitting simple- and cross-variograms becomes progressively more difficult as the
number of granulometric classes increases. This is especially true for large classes
that contain a limited number of stones but which represent a substantial portion
of the value of the deposit. It has, however, long been observed that there exist
important dependence relationships between data from neighbouring granulometric
classes. Conversely, it would be quite helpful if these relationships could contribute
to the structural modelling. As a consequence, rather than fitting the structure
using standard models, why not consider a stochastic model, based on some simple
and plausible physical process, and which is capable of reproducing the observed
dependence relationships?

The model proposed below is a first attempt toward this approach. After a short
reminder about the Cox process, a migration model is introduced and its properties
investigated. To make the text more flowing, all proofs have been relegated to the
Appendix.

VIII International Geostatistics Congress 5
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Reminder on the Cox process

A Cox process is a Poisson point process with a random intensity function. This
random function is denoted by Z and called potential. It indicates the propensity of
the points to be preferentially located in some regions rather than others. The top
left of Figure 4 shows a realisation of a Cox process superimposed on its potential.

In order to characterise the statistical properties of a point process, we can consider
the functional that assigns to each domain A the probability P{N(A) = 0} that it
is devoid of points. Originated from the random set theory (Matheron, 1975), this
functional acts for random sets exactly as a complementary distribution function for
random variables. This is the reason why we call it the complementary distribution
function of the point process, or cmdf for short. The cmdf of a Cox process with
potential Z is

P{N(A) = 0}= E
{

e−Z(A)
}

(1)

where Z(A) denotes the integral of Z over the domain A (Kleingeld and Lantuéjoul,
1993).

Suppose that Z is second order stationary with mean m and covariance CZ , and let
A be a bounded domain of IRd . Then the random function N(A·) =

(
N(Ax),x∈ IRd

)

is also second order stationary with mean m|A| and covariance1

CN(A·)(h) = CZ ?KA(h)+mKA(h) (2)

where KA(h) = |A∩ Ah| is the geometric covariogram of A. This covariance is
therefore a sum of two terms. The first term is a long range structure conveyed by
the potential. The second term is a short range structure that stems from the Poisson
seeding of the points once the potential has been fixed. This short structure induces
an apparent nugget effect, whose amplitude can be expressed as a proportion of the
total variance

θN(A·) =
mKA(0)

CN(A·)(0)
=

m|A|
CZ ?KA(0)+m|A| (3)

A migration model

The starting point is a Cox process. Each point of the process, or particle, is
assigned a random size, then randomly migrated w.r.t. its size (cf Figure 4).

By calculating its cmdf, it can be shown (cf. Appendix) that this migration process
is also a Cox process, with potential

Z̄(x) = Z ?g(x) (4)

1In this formula, the symbol ? between CZ and KA is a convolution product. Explicitly

CZ ?KA(h) =
∫

IRd
CZ(x)KA(h− x)dx

.
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Figure 4: Model construction. Top left, a realisation of the initial Cox process, superimposed
on its potential. Bottom left, the size assignment. Bottom right, the particle
migration. Top right, a realisation of the model. In this example, a particle of
size s and located at (x,y) is tranported from west to east to (x′,y′), where x′
and y′ are independently normally distributed with respective means x + m and y
(m is exponentially distributed with mean 20/(s + 0.1)), and respective variances
10/(s + 0.1) and 5/(s + 0.1). As a comparison, the size of the simulation field is
300×200

where g is the migration pdf of a typical particle, obtained by weighting the
migration pdf gs associated with each size s by its relative abundance f (s):

g(x) =
∫ ∞

0
f (s)gs(x)ds (5)

Let N̄(Ax) be the number of points of the migration process in the domain A located
at x. According to (2) and (4), the covariance of N̄(A·) takes the form

CN̄(A·)(h) = CZ̄ ?KA(h)+mKA(h) = CZ ?Kg ?KA(h)+mKA(h) (6)

where Kg = g? ǧ denotes the transitive covariogram of g (with ǧ(x) = g(−x)). This
covariance has the same short structure as the initial Cox Process, but its long range
structure has been extended. Note also that CZ ? Kg ? KA(0) ≤ CZ ? KA(0), which
implies that

θN̄(A·) =
m|A|

CZ ?Kg ?KA(0)+m|A| ≥
m|A|

CZ ?KA(0)+m|A| = θN(A·) (7)

In other words, migration makes the apparent nugget effect increase.
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The process associated with one particular granulometric class

In this section we are interested in the particles pertaining to a given granulometric
class S⊂ ]0,∞[. We call them S-particles for short.

Because the model lets the particles migrate independently, the S-particles can
be studied irrespective of the other particles. Accordingly, the general results
established in the previous section are directly applicable to the S class, as long
as the potential Z has been replaced by the potential ZS of the S-particles

ZS(x) = f (S)Z(x) (8)

and the migration p.d.f. g has been replaced by the migration p.d.f. of a typical
S-particle

gS(x) =
∫

S

f (s)
f (S)

gs(x)ds (9)

Consequently, the migrated S-particles are spatially distributed like a Cox process
with potential

Z̄S(x) = ZS ?gS(x) = f (S)Z ?gS(x) (10)

and because of (2) the regularised process N̄S(A·) takes on the covariance

CN̄S(A·)(h) = f 2(S)CZ ?KgS ?KA(h)+ f (S)mKA(h) (11)

Note that this covariance depends on the migration p.d.f. gS via its transitive
covariogram GS. Accordingly, CN̄S(A·) is affected by the dispersion of gS, not by its
mean. The more scattered gS, the longer the range of CN̄S(A·). This is in agreement
with empirical observations, insofar as small particles have greater mobility and
tend to disperse more than large ones.

Formula (11) also suggests that the apparent nugget effect of N̄S(A·)

θN̄S(A·) =
m|A|

f (S)CZ ?KgS ?KA(0)+m|A| (12)

is a monotonic decreasing function of the class proportion. However, this has to
be counterbalanced by the fact that the variance of the long range structure also
depends on f (S). Note however that the inequality CZ ? KgS ? KA(0) ≤CZ ? KA(0)
holds, which implies

θN̄S(A·) ≥
m|A|

f (S)CZ ?KA(0)+m|A|

Accordingly, the smaller the class proportion, the larger the minimal value allowed
for N̄S(A·). Thus, what the model implies for the apparent nugget is compatible
with the empirical observations without fully corroborating them.
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The biprocess associated with two granulometric classes

Let T be another granulometric class such that T > S (short notation for t > s for
each s ∈ S and t ∈ T ). What are the dependence relationships between N̄S(A·) and
N̄T (A·)?

At first, it should be mentioned that both processes are dependent, even if they rest
on different granulometric classes. This is because both are directed by the same
potential Z. Their joint cmdf cannot be factorised:

P{N̄S(A) = 0, N̄T (B) = 0}= E {exp [− f (S)Z ?gS(A)− f (T )Z ?gT (B)]} (13)

The cross-covariance of the regularised biprocess takes the form

CN̄S(A·),N̄T (A·)(h) = f (S) f (T )CZ ?KgS,gT ?KA(h), (14)

where KgS,gT = gS ? ǧT is the transitive cross-covariogram of gS and gT . This calls
for several comments:

– in contrast to simple-covariances, there is no short range contribution;

– the presence of the convolution product between gS and ǧT indicates that the
cross-covariance is affected by the difference between the mean migrations of
classes S and T . This difference acts as a shift factor. In particular, one must
expect

CN̄S(A·),N̄T (A·)(−h) 6= CN̄S(A·),N̄T (A·)(h)

Of course, this should not be confused with CN̄S(A·),N̄T (A·)(−h) = CN̄T (A·),N̄S(A·)(h),
which always holds;

– in contrast to this, the cross-variogram is symmetric. It does not depend on the
difference of migration means, which can be seen directly from its very definition;

– if S < T , then gT is less scattered than gS. The presence of the convolution
product gS ? ǧT shows that the range of CN̄S(A·),N̄T (A·) lies between those of CN̄S(A·)
and CN̄T (A·).

CONCLUSIONS

A marked Cox point process model was developed following observations on a
multivariate data set for an alluvial diamond deposit. This marked Cox process is
considered to be more appropriate for modelling the experimental characteristics
of such a data set, due primarily to its ability to represent the particulate nature of
diamonds. The new model could be used for interpolation or simulation of stone
densities in a number of size categories.
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APPENDIX

Statistical characterisation of the migration process

Let D be a bounded domain of IRd . By conditioning first w.r.t. the potential and
then w.r.t. the content of D, the probability that no particle originating in D has
migrated to the domain A can be expressed as

P{N̄D(A) = 0} = E
{

e−Z(D) Zn(D)
n!

[∫

D

Z(x)
Z(D)

∫ ∞

0
f (s)[1−gs(A−x)]dsdx

]n}

= E
{

exp
(
−

∫

D
Z(x)

∫ ∞

0
f (s)gs(A−x)dsdx

)}

The complementary distribution function of the migrated process is then obtained
by letting D tend to IRd :

P{N̄(A) = 0}= E
{

exp
(
−

∫

IRd
Z(x)

∫ ∞

0
f (s)gs(A−x)dsdx

)}

Note that it can be simplified by introducing the migration p.d.f. (5)

P{N̄(A) = 0} = E
{

exp
(
−

∫

IRd
Z(x)g(A−x)dsdx

)}

= E
{

exp
(
−

∫

IRd
Z(x)

∫

A
g(y− x)dydx

)}

= E
{

exp
(
−

∫

A
Z ?g(y)

)}

Cross-covariance of the regularised biprocess

Here, the purpose is to calculate CN̄S(A·),N̄T (A·)(h). By conditioning w.r.t. Z, this
covariance can be written as C1 +C2, with

C1 = Cov
{

E
{

N̄S(A) | Z
}
,E

{
N̄T (Ah) | Z

}}

C2 = E
{

Cov
{

N̄S(A), N̄T (Ah) | Z
}}

As E
{

N̄S(A) | Z
}

= Z̄S(A) = f (S)Z ? gS(A) by formula (10), and similarly
E

{
N̄T (Ah) | Z

}
= f (T )Z ?gT (Ah), we have

C1 = Cov
{

f (S)Z ?gS(A), f (T )Z ?gT (Ah)
}

= f (S) f (T )CZ ?KA ?gS ? ǧT (h)

On the other hand, C2 = 0 because N̄S(A) and N̄T (Ah) are conditionally independent
given Z. The covariance is therefore equal to C1, namely

CN̄S(A·),N̄T (A·)(h) = f (S) f (T )CZ ?KA ?gS ? ǧT (h)
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