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Introduction

Past in�uenza pandemics, notably the Spanish in�uenza (1918-1919) with a death toll of
more than 40 million people, and other pandemics such as Asian in�uenza (1957), Hong
Kong in�uenza (1968), Russian in�uenza (1977) [3], have greatly impacted humans all
around the world. The psychological and economic repercussions from these pandemics
have raised concerns on potential of a future in�uenza pandemic. However, with the
current detection technologies, early diagnosis of the continuously mutating in�uenza
strains lacks the required sensitivity and speci�city. In�uenza leads to pneumonia in the
more serious cases, and most in�uenza deaths result from secondary bacterial pneumonia.
This occurs more often in the >65 age group compared to the other age groups. The
combined cause-of-death category pneumonia and in�uenza (P&I) ranks as the seventh
leading cause of death in the United States, only to be preceded by heart disease, cancer,
stroke, chronic lower respiratory diseases, unintentional injuries and diabetes1. Thus, the
knowledge of future outbreaks of pneumonia and in�uenza is essential for prevention and
control of the magnitude of outbreak.

In this study, we have applied the extreme value theory to predict the distribution of
extremes of mortality due to pneumonia and in�uenza for the >65 age group from the data
of 1968-1998. Epidemiology is intimately linked to demography: therefore the extreme
value analysis of mortality data is preceeded by a detailed statistical analysis of the
demographic changes in age structure of the american population over a period of 30 years.

This report is organized into 2 chapters, in the �rst chapter, analyzes have been performed
on the demographic structures of the four most populated states in the United States,
namely, California, Texas, New York and Florida. In the second chapter, we performed
basic analyzes on the mortality of California and Texas and �tted the generalized extreme
value distribution to California and Texas. We also improved on the �t by introducing a
covariate in a non-stationary context.

1http://www.cdc.gov/nchs/products/pubs/pubd/hestats/leadingdeaths03/leadingdeaths03.htm
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Chapter 1

Demography

We are interested in a general analysis of the demographics of selected states in the United
States (US) as a background study to identify trends and changes in the population.

The 1969-2004 US population data for each state is obtained from the National Cancer
Institute (NCI) website under the category County-Level Population Files1. These datasets
include the modi�cations made by the NCI to the Census Bureau estimates. In each dataset,
there is information on resident population along with year, state postal abbreviation, state
FIPS code, county FIPS code, registry, race, origin, sex and age group. For our study
purposes, we extracted 5 variables from the datasets, namely year, state FIPS code, sex, age
group and population.

As census was actually carried out every 10 years (for our dataset the years 1970, 1980,
1990 and 2000), the population sizes for other years were estimated and published under
the Population Estimates Program. The size of dataset decreased the speed of operations
in R substantially, and thus state speci�c data was extracted independently and used in our
study instead of the combined states data.

Table 1.1: Age groups classi�cations
Group Ages (years) Group Ages (years)

00 0 10 45-49
01 1-4 11 50-54
02 5-9 12 55-59
03 10-14 13 60-64
04 15-19 14 65-69
05 20-24 15 70-74
06 25-29 16 75-79
07 30-34 17 80-84
08 35-39 18 85+
09 40-44

1.1 California state population

Firstly, we studied the demographic evolution of California as the population size of Cal-
ifornia is the largest among all other states, it constitutes 12% of the total population of

1http://seer.cancer.gov/popdata/download.html
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1.1. CALIFORNIA STATE POPULATION CHAPTER 1. DEMOGRAPHY

US. Understanding the changes in the diverse and dynamic population of California over the
years could provide us clues to a fragment of the larger picture of US population.

According to the 19 age groups as de�ned in the dataset, bar-plots of each age group are
generated for 1970, 1980, 1990 and 2000 (Fig.1.1). The �rst mode that appeared in the age
groups 2-5 in 1970 is due to the Baby Boomers (persons born between 1946 and 1964)[1],
it shifts to the right in the years as aging occurs. Di�erent age groups increase at di�erent
rates throughout the years but there is an evident overall increase in all the age groups as
seen in the bar-plots. The primary cause of population growth in California is migration, the
number of immigrants in California being more than twice as many as the next leading state
New York, and the leading sources of immigrants are Latin America and Asia, as suggested
by 2000 Census Supplemental Survey.

For visualization of the same data from a di�erent perspective, the line graphs are gen-
erated in Fig.1.2. It is observed that each cluster of age groups behaves di�erently. For
instance, age groups 1-4 show an increase from year 1990 onwards, age groups 5-8 show
increase throughout the years and reach a peak in 1990 then decline gradually, age groups
9-12 shows an apparent increase from 1980 onwards, and age groups 13-18 remains relatively
stable throughout the years. The individual behaviors of each single age group can likewise
be read from the graphs, according to their color codes.

Figure 1.1: Bar-plots of California population by age groups

0 2 4 6 8 10 13 16

Barplot of Year 
1970

Age groups

P
op

ul
at

io
n 

in
 C

al
ifo

rn
ia

0
15

00
00

0

0 2 4 6 8 10 13 16

Barplot of Year 
1980

Age groups

P
op

ul
at

io
n 

in
 C

al
ifo

rn
ia

0
15

00
00

0

0 2 4 6 8 10 13 16

Barplot of Year 
1990

Age groups

P
op

ul
at

io
n 

in
 C

al
ifo

rn
ia

0
15

00
00

0

0 2 4 6 8 10 13 16

Barplot of Year 
2000

Age groups

P
op

ul
at

io
n 

in
 C

al
ifo

rn
ia

0
15

00
00

0

5



1.2. TEXAS STATE POPULATION CHAPTER 1. DEMOGRAPHY

Figure 1.2: Line plots of California population by age groups
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1.2 Texas state population

Texas is the second most populated state in the US and thus is also of interest to us. The
same types of graphs are generated for Texas so that comparison could be made. From the
barplots, it is evident that the population size of Texas is smaller than that of California
in general, as can be seen in Fig.1.3. In year 2004, the population of Texas is 22.5 million
compared to 35.8 million in California. However, the overall distribution and shape of the
barplots are almost similar to California. Small di�erences can only be observed in the
diminished magnitude of the second peaks (age groups 9-11 in 1970, age groups 11-12 in
1980, age groups 5-8 in 1990) in Texas, and a slightly leveled shape of age groups 2-8
compared to California.

From the line plots of Texas population by age groups on Fig.1.4, we observe increase for
all 19 age groups which indicates increase in the Texas population as a whole. The increase
in population is accounted for by three factors: natural increase, net immigration and net
migration. The line plots for age groups 0-8 are slightly di�erent from the corresponding
age groups of California, with the most evident di�erence being in 1995. Age groups 9-18 of
Texas have a similar trend as California.
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1.3. NEW YORK STATE POPULATION CHAPTER 1. DEMOGRAPHY

Figure 1.3: Bar-plots of Texas population by age groups
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Figure 1.4: Line plots of Texas population by age groups
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1.3 New York state population

New York state is the third largest state in population, with a total population of 19.3 million
in 2004. The barplots of New York state show that the distribution of the population for
each age groups are slightly di�erent from California and Texas on Fig.1.5. A noticeable
trend in the bar-plots is the aging of the population in New York state. The population of
the oldest (18th) age group increases from 116064 in 1969 to 354790 in 2004.

The line plots of New York indicate that there is a decrease in population for age groups
0-8 on Fig.1.6. The population increase in age groups 9-18 is at a lower rate compared to
California. This is due to a higher rate of emigration to other states, especially Florida and
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1.4. FLORIDA STATE POPULATION CHAPTER 1. DEMOGRAPHY

Arizona, as these other states provide housing at a lower cost and work opportunities[4].

Figure 1.5: Bar-plots of New York population by age groups
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Figure 1.6: Line plots of New York population by age clusters
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1.4 Florida state population

Florida is the nation's third fastest-growing state and the fourth largest state by population.
The bar-plots indicate that in year 1990, there is an evident increase in the population for age
groups 13-15 whereas no such increase is observed in California (Fig.1.7). The population
of age groups 13-18 is relatively high compared to California, which also suggest aging of
population in Florida.
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1.4. FLORIDA STATE POPULATION CHAPTER 1. DEMOGRAPHY

Figure 1.7: Line plots of Florida population by age groups
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The population growth is shown in the line plots of each age groups, and is dependent
on both natural increase and migration. The age groups 13-18 is observed to be increasing
steadily throughout the years. All other age groups also show increasing trends.

Figure 1.8: Line plots of Florida population by age clusters
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Chapter 2

Mortality

Our dataset on mortality rates was obtained by dividing Pneumonia & In�uenza deaths for
each month by the corresponding year's total population count, with the 1970 population
applied to deaths occurring in years 1968-1970, among people aged 65 or more years.

2.1 Basic analysis on mortality data

For fundamental understanding of the mortality data for California and Texas, graphical
representations of the mortality data of each states were generated. As the data was provided
in months of each year, the maximum mortality rate of the year is taken. Then, the time
series plot and histogram are plotted.

2.1.1 California mortality maxima

From the graphs plotted below, we observed that there is an obvious increasing trend of
maximum mortality across years 1968-1998 (Fig.2.1). Generally, the maximum mortality
rate tripled in 30 years. This is due to the aging population as in�uenza mortality occurs
primarily among the elderly. This indicates that there is a characteristic of the California
mortality that change systematically through time. From the histogram generated in Fig.2.2,
we observe a bimodal distribution of the mortality rates, with the �rst peak at 0.04 and
second peak at 0.08.
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2.1. BASIC ANALYSIS ON MORTALITY DATA CHAPTER 2. MORTALITY

Figure 2.1: Time-series Plot for California
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Figure 2.2: Histogram for California

extremeCAmort

P
er

ce
nt

 o
f T

ot
al

0

5

10

15

20

0.04 0.06 0.08 0.10 0.12

2.1.2 Texas mortality maxima

The mortality across the years is scattered randomly, however, there is an outlier in year
1968 (Fig.2.3). Compared to the mortality in California, the maximum mortality of Texas
are lower. The histogram of Texas mortality is symmetric as seen in Fig.2.4, except for a
few low values which generate a second mode.
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2.1. BASIC ANALYSIS ON MORTALITY DATA CHAPTER 2. MORTALITY

Figure 2.3: Time-series Plot for Texas
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Figure 2.4: Histogram for Texas
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2.1.3 Weighted average age for all states

To study the aging of the population, the average age weighted by population size, for the age
groups >65 is calculated for each year from 1968-2004, for all states. The graphical output
indicates that the aging of population in each state is occurring at a di�erent rate (Fig.2.5).
The weighted average age of Arkansas decreases from 1970-1980, unlike all other states which
showed increase. In the overall, the weighted average age in Arkansas is the lowest. There
is a similar pattern of slight increase till 1990 followed by a steep increase through 2004 in
states like Hawaii, Connecticut, New Jersey, Rhode Island and Pennsylvania. California and
Washington show similar trends over the years, the weighted average age showed minimal
increase up till 1990 and an obvious increase thereafter.
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2.2. CLASSICAL EXTREME VALUE MODEL CHAPTER 2. MORTALITY

Figure 2.5: Weighted average line plots for all states
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2.2 Classical extreme value model

Extreme value analysis is used to estimate the probability of events that are more extreme
than any that have already been observed. Due to inadequacies of adopting one of the three
classes of extreme value distributions: Gumbel, Fréchet and Weibull families, the generalized
extreme value (GEV) family of distributions which uni�es three families of extreme value
distributions into a single family is chosen[2]. After �tting a GEV model to the mortality
data, we generated return level plots and also diagnostic plots to assess the suitability of the
GEV model.

2.2.1 California GEV �t

Maximization of the GEV log-likelihood for the mortality data of California returns the esti-
mates (µ,σ,ξ) = (0.06, 0.02, -0.10) with standard errors (0.004, 0.003, 0.160). The maximized
log-likelihood for this �t is -74.11. To assess the quality of the �tted model, a set of four
graphical diagnostics is used (Fig.2.7). From the probability plot and quantile plot, we found
that the data �ts acceptably well, the plotted points follow approximately the straight line
and have a near linear behavior. The return level curve shows asymptotes to a �nite level
and so provide a satisfactory representation of the empirical estimates. The corresponding
density plot is consistent with the histogram of the data. We conclude from these diagnostic
plots that the �tted model is suitable for California mortality data.
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Figure 2.6: Pro�le likelihood for ξ in the California mortality data
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Figure 2.7: Diagnostic plots for GEV �t to California mortality
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As better accuracy comes with pro�le likelihood, the pro�le likelihood for 10-year and
100-year return level in California mortality are plotted respectively on Fig.2.8 and Fig.2.9.
The the 10-year return level plot is almost symmetrical, in contrast, the asymmetry in the
100-year return level plot indicates that the data provides weak information about the return
level. We concluded that the GEV �t is adequate for the California mortality, in the next
section, we will introduce the weighted average age as a covariate as an attempt to obtain a
better �t.
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Figure 2.8: Pro�le likelihood of return level for 10-year return return period
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Figure 2.9: Pro�le likelihood of return level for 100-year return return period
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2.2.2 California Gumbel �t

As the 95% con�dence interval for pro�le likelihood for ξincludes 0 (Fig.2.6), and the set of
points in the return level plot is near-linear as seen in Fig.2.7, a Gumbel model might be ap-
propriate in replacing the GEV family. Maximum likelihood in the Gumbel case corresponds
to the estimates (µ,σ) = (0.06, 0.02) with standard errors (0.004, 0.003). The maximized log-
likelihood for this �t is -73.9. However, the likelihood ratio test statistic for the reduction
to the Gumbel model is D=2{-73.9-(-74.11)}=0.42, this value is small when compared to
the χ2

1 distribution, suggesting that the Gumbel model is adequate for California mortality
data. From the diagnostic plots for Gumbel �t (Fig.2.10), we observe that the probability
plot and quantile plot for Gumbel model are similar to that of GEV model. However, the
goodness-of-�t is comparable with the GEV model as the estimated parameters in the two
models are very similar. The di�erence between the GEV model and Gumbel model is the
precision of estimation, the model parameters and return levels have estimates with smaller
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con�dence intervals in the Gumbel model compared to the GEV model.

Figure 2.10: Diagnostic plots for Gumbel �t to California mortality
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2.2.3 Texas GEV �t

We obtained the maximum likelihood estimates (µ,σ,ξ) = (0.05, 0.01, 0.34) with standard
errors (0.002, 0.002, 0.24). The maximized log-likelihood for this �t is -89.0, considerably
lower than that of California. From the diagnostic plots generated for the Texas GEV �t, we
observe slight deviations of plotted points for probability plot and quantile plot. The return
level curve shows an extremely large con�dence interval and thus is not a good representation
of the empirical estimates. Finally, the corresponding density plot is generally consistent with
the histogram of data. Consequently, we conclude that the �tted model is not suitable for
California mortality data.
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Figure 2.11: Pro�le likelihood for ξ in the Texas mortality data

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

84
85

86
87

88
89

Shape Parameter

P
ro

fil
e 

Lo
g−

lik
el

ih
oo

d

Figure 2.12: Diagnostic plots for GEV �t to Texas mortality
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The pro�le likelihood for 10-year return level in Texas mortality (Fig.2.13) shows slight
asymmetry whereas the asymmetry in the 100-year return level plot (Fig.2.14) is more evident
as the data provide increasingly weaker information about high levels of the process. The
GEV �t is less satisfactory for the Texas mortality data compared to that of California.
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Figure 2.13: Pro�le likelihood of return level for 10-year return return period
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Figure 2.14: Pro�le likelihood of return level for 100-year return return period
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The likelihood ratio test statistic for the reduction to the Gumbel model is D=2{-87.5-
(-89.0)}=1.5, this value is small when compared to the χ2

1 distribution, suggesting that the
Gumbel model is adequate for Texas mortality data. The 95% con�dence interval of pro�le
likelihood for ξ in Fig.2.11 excludes 0 and the set of plotted points in return level plot is not
linear (Fig.2.12), therefore, the Gumbel model is unlikely.

2.3 Non-stationary modeling

From the weighted average plots, we found that the weighted average ages for both California
and Texas change systematically through time. Thus, there are limitations of �tting a GEV
model to the mortality data which assumes a constant distribution through time. The
extremal behavior of the mortality can be related to a covariate, the weighted average age
in this case. To introduce the covariate, we have �tted a new model to the mortality of
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California and Texas. A scatterplot of California mortality against weighted average age
is shown below in Fig.2.15. The similar plot for Texas mortality is shown for comparison
in Fig.2.16. From the plots, we observe a trend in California mortality data, it deviates
slightly from our prediction that mortality is exponentially related to weighted average age.
Conversely in Texas mortality data there is no such trend, the mortality is distributed
randomly across all ages, but there are a few outliers in the plot (Fig.2.16).

Figure 2.15: Scatterplot of California mortality data against covariate
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Figure 2.16: Scatterplot of Texas mortality data against covariate
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2.3.1 California non-stationary �t

After introduction of covariate, we have �tted three di�erent models to the California mor-
tality data, Model 1 (µ depends linearly on year), Model 2 (σ depends exponentially on
year) and Model 3 (Linear dependence of µon year and weighted average age). The results
of �t are shown in the table below Tab.2.1. From the table, we see that the negative log-
likelihoods for all three models are less than that of the GEV �t, this suggests that the 3
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models have improved accuracy. Among these three models, Model 3 is the best suited as it
has the lowest negative log-likelihood.

The deviance statistics for comparing these three models with GEV model is calculated
as shown in the table. All deviance statistics values are large when compared to a χ2

1

distribution at 95% level, more precisely, D1=21.6 > χ2
1,0.95=3.84, D2=20.2 > χ2

2,0.95=5.99
and D3=22.6 > χ2

2,0.95=5.99. It implies that these models explain a substantial amount of
the variation in the data, and are likely to be a genuine e�ect in the mortality rather than
a chance feature in the data.The diagnostic plots show satisfactory �t of all three models.

Table 2.1: Maximized log-likelihoods and parameter estimates and standard errors of three models for
California

Model 1:

µdepends linearly on year

Model 2:

σdepends exponentially on

year

Model 3: Linear dependence of µon

year and weighted average age

Maximum

likelihood

estimates

0.06 0.19 0.01 0.1 0.06 0.2 -4.4 1.1 0.2 -1.66 0.1 0.02 0.01 0.08

Standard errors

of estimates

0.003 0.03 0.002 0.2 0.003 0.03 0.2 2.1 0.2 0.002 0.03 NA 0.002 0.04

Calculated

Maximum

likelihood

estimates

µ=0.06+0.19* year

σ=0.01

ξ=0.1

µ=0.06 + 0.2* year

σ=exp[-4.4+ 1.1*year]

ξ=0.2

µ=-1.66 + 0.1* year -0.02*w.avr

σ=0.01

ξ=0.08

Negative

log-likelihood

-84.9 -84.2 -85.4

Deviance

statistics from

GEV model

D1=2{84.9-74.1}=21.6 D2=2{84.2-74.1}=20.2 D3=2{85.4-74.1}=22.6

Figure 2.17: Residual diagnostic plots for Model 1
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Figure 2.18: Residual diagnostic plots for Model 2
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Figure 2.19: Residual diagnostic plots for Model 3
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2.3.2 Texas non-stationary �t

The same models are �tted to Texas mortality data, and the results are tabulated in Tab.2.2.
The negative log-likelihoods of all three models are close to that of the GEV �t for Texas
mortality. The deviance statistics are small compared to the χ2

1 distribution at 95% level,
D1=0 < χ2

1,0.95=3.84, D2=4.8 < χ2
2,0.95=5.99 and D3=0.4 < χ2

2,0.95=5.99. This implies that
the increase in model size does not bring worthwhile improvements in the model's capacity to
explain the data. It follows that the constant GEV model provides an adequate description
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Table 2.2: Maximized log-likelihoods and parameter estimates and standard errors of three models for Texas
Model 1:

µdepends linearly on year

Model 2:

σdepends exponentially on

year

Model 3: Linear dependence of µon

year and weighted average age

Maximum

likelihood

estimates

0.05 0.001 0.01 0.35 0.05 -0.01 -4.7 -2.6 0.2 -0.3 -0.01 0.005 0.009 0.4

Standard errors

of estimates

0.002 0.013 0.002 0.28 0.002 0.01 0.2 1.1 0.2 2.3e-3 1.2e-2 2e-6 1.8e-3 2.9e-1

Calculated

Maximum

likelihood

estimates

µ=0.002+0.013* year

σ=0.002

ξ=0.28

µ=0.002 + 0.01* year

σ=exp[0.2+ 1.1*year]

ξ=0.2

µ=-0.3 - 0.01* year -0.005*w.avr

σ=0.009

ξ=0.4

Negative

log-likelihood

-89.0 -91.4 -89.2

Deviance

statistics from

GEV model

D1=2{89.0-89}=0 D2=2{91.4-89}=4.8 D3=2{89.2-89}=0.4

of the process. From the diagnostic plots we observe reasonable linearity of the plotted
points, but imperfection occurs at the center part of the plots.

Figure 2.20: Residual diagnostic plots for Model 1
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Figure 2.21: Residual diagnostic plots for Model 2
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Figure 2.22: Residual diagnostic plots for Model 3
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