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SUMMARY

It is well understood that, in studying the mechanical and hydromechanical behaviour of rock joints, their
morphology must be taken into account. A geostatistical approach has been developed for characterizing
the morphology of fracture surfaces at a decimetre scale. This allows the analysis of the spatial variability
of elevations, and their first and second derivatives, with the intention of producing a model that gives a
numerical three-dimensional (3D) representation of the lower and upper surfaces of the fracture. Two
samples (I and II) located close together were cored across a natural fracture. The experimental data are
the elevations recorded along profiles (using recording steps of 0.5 and 0:02 mm; respectively, for the
samples I and II). The goal of this study is to model the surface topography of sample I, so getting
estimates for elevations at each node of a square grid whose mesh size will be, for mechanical purposes, no
larger than the recording step. Since the fracture surface within the sample core is not strictly horizontal,
geostatistical methods are applied to residuals of elevations of sample I. Further, since structural
information is necessary at very low scale, theoretical models of variograms of elevations, first and second
derivatives are fitted using data of both that sample I and sample II. The geostatistical reconstructions are
computed using kriging and conditional simulation methods. In order to validate these reconstructions,
variograms and distributions of experimental data are compared with variograms and distributions of the
fitted data. Copyright # 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Changes in stress and deformation in jointed rock masses are of prime importance in the
assessment of stability in underground openings, in the optimization of petroleum and
geothermal production, and in the design of dam foundations and waste storage facilities.
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Therefore, it is necessary to understand the behaviour of jointed rock masses, and especially the
mechanical and hydromechanical behaviour of individual fractures (under both normal and
shear stresses). A necessary preliminary is thus an accurate knowledge of the morphology of
fracture surfaces.

This morphology can be studied either by a global approach, by summarizing the deviation of
the rough surface from an average plane by some morphological parameters [1,2], or by a full
modelling of the detailed variations in the fracture surface. Since the hydromechanical
behaviour of rock joints is governed by specific parts of the fracture surfaces, the second
approach is one developed here. Geostatistical methods are used because they are designed to
characterize spatial variations, and they provide consistent interpolation and simulations.

Profiles of elevations have been recorded on both walls of a granitic fracture (Gu!eeret, France).
The spatial relations between points of a surface (in terms of variation of elevations and their
first and second derivatives) are characterized by means of geostatistical tools. Three-
dimensional representations of the fracture surfaces are then built by geostatistical techniques
(kriging, conditional simulations). Furthermore, to increase accuracy, the application shows
how one might link data sets having very different sampling densities. Finally, the models are
validated by comparing computed morphological parameters, chosen as important from a
mechanical point of view, with experimental parameters.

2. PRESENTATION OF DATA

Fractures can be envisioned as two rough surfaces in partial contact. Each fracture surface has a
complex geometry that determines its roughness. Since the two walls of the fracture are in
partial contact, a void space exists between them (Figure 1). We study a natural fracture (Gu!eeret
granite, France). Two cylindrical samples were cored across this fracture. The fracture is located
halfway up the cylindrical core sample and is approximately perpendicular to its axis ðOzÞ: The
first sample (I) is a cylindrical core with a diameter of 90 mm: Figure 2 shows a schema of the
lower wall of the sample. Twenty-seven profiles of elevations (sampling interval u ¼ 0:5 mm)
have been recorded on the lower wall in four directions ða; b; c; dÞ allowing the creation of a
database with 4096 co-ordinates fx; y; zg [3] (Figure 3). In order to analyse the influence of its
morphology during shearing [3], the choice of these four directions is linked to shear tests
realized on replicas of the fracture. The spacing between two consecutive parallel profiles varies
from 5 up to 15 mm: This spacing is not constant because profiles have been supplemented by
others through damaged areas, located after shear tests. This data set can be considered
representative. Similar profiles were recorded on the upper wall (4041 co-ordinates).

On the second sample (II) of the same fracture, profiles have been recorded along the radii of
the cylindrical core with a sampling step of 0:02 mm: The two samples are separated by a few
centimetres, and the axes of the two cylindrical cores are parallel to each other, since the fracture
looks like a planar surface at the metre scale (that may no longer be true at a centimetre scale).

The aim of the study is to reconstruct the sample surface, more precisely to have a model for
the elevations at the nodes of a fine grid on sample I using data of both samples (I and II); the
size of the grid mesh will be either equal to or less than 0:5 mm (the recording step for sample I).
We choose to reconstruct sample I because mechanical tests have been performed with replicas
of this sample. Since the lower wall and the upper wall are very similar, we only present the
analysis of the former. The tool used for the reconstructions is geostatistics because it allows the
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characterization of spatial relations between elevations, and enables the application of accurate
mathematical methods of interpolation of experimental data.

3. GEOSTATISTICAL ANALYSIS OF RAW DATA

3.1. Variograms

The basic geostatistical tool for characterizing spatial variability is the variogram. It is
experimentally computed as follows [4]:

#ggðhÞ ¼
1

2Nh

X
xj�xi�h

½zðxjÞ � zðxiÞ�2 ð1Þ

where z is the elevation, xi is the location (in 2D), h is the lag vector, and Nh is the number of
pairs of points, the distance apart from which is approximately equal to lag h:

Figure 4 shows directional variograms calculated with all sampled data for each of the four
profile directions of sample I. The variogram stabilizes beyond 20 mm in direction b but
increases with a quasi-parabolic behaviour in the other directions. This is typical of the presence
of a trend, or drift, due to the fact that the mean plane of the fracture surface is not exactly
orthogonal to the core axis.

Except for the b direction, we observe that gðhÞ fails to stabilize when h increases; its values are
always increasing. This means that the phenomenon studied is not stationary. The mean value
of the elevations is not constant in the directions a; c and d because the surface has a drift and is
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Figure 1. Example of two rough profiles and the resulting void space (note the different scale
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Figure 2. The lower wall of the fracture.
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inclined at some degrees to the horizontal. This effect masks the spatial structure of elevation
and thus has to be removed.

3.2. Characterization of the drift

Since elevations increase linearly on profiles in directions a; c and d; we consider the drift to be
planar:

zpðx; yÞ ¼ axþ by þ c ð2Þ

where x and y now explicitly denote the two co-ordinates perpendicular to the core axis.
This drift is usually approximated by the regression plane of the studied variable, z as a

function of co-ordinates x and y: But since z is here a third co-ordinate, we did not want to
assign a special role to z: So we chose to take the drift to be in the plane perpendicular to the
third eigenvector of the covariance matrix of the initial set of co-ordinates [5,6]. This plane is
inclined 5:038 to the horizontal, dipping with a direction of 178:168measured anticlockwise from
the x-axis. This is nearly parallel to the d direction. Figure 5 shows the relation between the
measurement plane and this new plane using a stereographic projection.

We can now subtract the drift from the data and study the residuals.

Figure 3. Location of the profiles on the lower wall.
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Figure 4. Directional variograms of elevation.
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4. GEOSTATISTICAL ANALYSIS OF RESIDUALS

Residual values zrðx; yÞ are computed using Equation (3):

zrðx; yÞ ¼ zðx; yÞ � ðaxþ by þ cÞ ð3Þ

where z is the experimental elevation at any point ðx; yÞ; and ðaxþ by þ cÞ is the drift value given
by Equation (2).

Figure 6 shows an example of a profile in the d direction and the residual one: it is obvious on
the residual profile that the drift has been removed.

The following geostatistical study is done on these residual values (variograms, reconstruction
of the fracture surface).

4.1. Variograms

To compute variograms of data having drift, we can either use the generalized variogram [7], or
compute variograms on the residual values (this latter is chosen here).

In the following, variograms are computed on residuals zr: Furthermore, the distance u
between two successive points along profiles being constant, the discrete first derivatives z0rðx; yÞ
of residuals in each of the four directions and their variograms guðhÞ can also be computed. It
should be noticed that for this the points must be strictly aligned. The expression of z0rðx; yÞ
computed in the x direction is:

z0rðx; yÞ ¼
zrðxþ u; yÞ � zrðx; yÞ

u
ð4Þ

Figure 5. Relation between the core axis and the drift (Wulff projection of the lower hemisphere).
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The use of variograms of first derivatives [8] is very efficient for fitting a theoretical model to
variograms of experimental data. Since the discrete first derivatives are available, we propose the
use of the variogram of the discrete second derivatives gu2ðhÞ as well.

The expression for the discrete second derivatives z00r ðx; yÞ in the x direction is

z00r ðx; yÞ ¼
zrðx� u; yÞ � 2zrðx; yÞ þ zrðxþ u; yÞ

u2
ð5Þ

Figure 7 shows the three kinds of variograms: gðhÞ; guðhÞ; gu2ðhÞ; obtained from the
experimental data.

Analysis of variograms involves obtaining their structures. This means two values for each
structure have to be determined. The first, the range, is the distance h beyond which values
appear to be uncorrelated, and the second, the sill, is the value of gðhÞ at the range h:

With the calculus of variograms on residual values, the drift vanishes and the variograms of
residuals reach a sill for each direction (between 0.6 and 1:2 mm2; respectively, for the b and d
directions). Differences between sill values show an anisotropy in the morphology of the
residual fracture surface. The higher the sill is in a particular direction, the more the surface
deviates from a planar surface. We observe the presence of a first structure at a range of 15 mm;
then a second at a distance of 30 mm essentially in the c and d directions. This indicates that
there exist at least two structures with different sizes characterizing the fracture surface. From a
mechanical point of view, these structures do not have the same significance. The smaller
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structure plays a role in shear behaviour for small displacements (local behaviour) and the
greater for high displacements.

Opposed to variograms of residuals, anisotropy for the variograms of first and second
derivatives is less obvious (Figure 7(B) and 7(C)). The higher the order of derivatives, the
smaller the ranges of variograms of derivatives become (8 mm for the variograms of first
derivatives, 2 mm for those of second derivatives), and the more the anisotropy decreases (the
sills are very close to each other for the four variograms in both cases). First derivatives are
linked to the angularity of an element of the fracture surface and second derivatives to the radius
of curvature (cf. Section 5.2). These parameters seem to be less sensitive to the anisotropy of the
fracture surface (this is most obvious with the second derivatives). Note that variograms of
derivatives are exactly the same if they are computed on experimental values or on residual
values because the drift is linear.

The aim is now to fit a first variogram model to the experimental one. This is a first variogram
model because data of sample II are not being used yet. We will see later how to use this second
data set to improve the variogram model.

4.2. First variogram fitting

In order to provide a 3D representation of the fracture surface we need to fit a theoretical model
to experimental variograms. Furthermore to increase accuracy and to minimize errors in the
reconstruction of fracture surfaces, we need the best fit not only for gðhÞ but for guðhÞ and gu2ðhÞ
as well (u being the calculus step of derivatives).

The theoretical expressions of guðhÞ [8] and gu2ðhÞ as a function of gðhÞ are

guðhÞ ¼
2gðuÞ þ 2gðhÞ � gðhþ uÞ � gðh� uÞ

u2
ð6Þ

gu2ðhÞ ¼
8gðuÞ þ 6gðhÞ � 2gð0Þ � 2gð2uÞ � 4gðhþ uÞ � 4gðh� uÞ þ gðhþ 2uÞ þ gðh� 2uÞ

u4
ð7Þ

A variogram model is defined as a sum of elementary models called nested models. The
software we work with is Isatis [9]. Input parameters for computing a theoretical variogram
must be the range and the sill (and sometimes a third parameter) of each of the nested models
for the two main directions of anisotropy for the residuals. In order to find these two main
directions of anisotropy, we compute the variogram map that represents the values of the
variogram of residual values as a function of the distance h in all directions (Figure 8). Figure 8
shows the variogram map only up to a lag h equal to 10 mm: This is because it is sufficient to
have a good fit between experimental and theoretical variograms up to an h of 8–10 mm since
the estimation of a residual value will be performed with residuals of experimental points whose
distance from the point to be estimated is less than or equal to 8–10 mm (see Section 4.5.2). The
variogram map shows an elliptical shape whose main axes are the b and d directions. We
therefore take the two main directions of anisotropy to be the b and d directions.

After a sequence of trials, the best model (called model 1) was the sum of four nested models
(spherical, Cauchy and two cubic models, cf. Equation (8) and Table I). For this model, the sill
is greater in the d direction than in the b one, according to experimental observations. Figure 9
shows the theoretical variograms and the experimental one for the two main directions. It can be
seen that we have a good fit up to 8–10 mm for residuals, and a good fit with first and second
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derivatives as well.

Spherical:
gðhÞ ¼ C 3

2
h
a

� �
� 1

2
h
a

� �3� �
if h5a

gðhÞ ¼ C if h5a

8<
:

Cauchy: gðhÞ ¼ C 1�
1

ð1þ ðdh=aÞ2Þa

 !
a > 0

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
201=a � 1

p ð8Þ

Cubic:
gðhÞ ¼ C 7 h

a

� �2�8:75 h
a

� �3þ3:5 h
a

� �5�0:75 h
a

� �7� �
if h5a

gðhÞ ¼ C if h5a

8<
:

where C is the sill value, a is the range value, and h is the lag value.
Till now we have used only data of sample I. We want now to use data of the second sample

(II) in order to improve the variogram model since the recording step is shorter than that for
sample I. With the reduced recording step, improvement will arise out of microroughness.

4.3. Links with microroughness

Since the long-term goal is the understanding of the mechanical behaviour of rock joints, we
need to estimate elevations of sample I at the nodes of a square grid with a mesh smaller than

Figure 8. Variogram map of the residual values of the lower wall.

Table I. Fitted parameters for model 1.

Basic model Sill ðmm2Þ Range b (mm) Range d (mm) Other parameter

Spherical 0.09800 40.0 34
Cauchy 0.06500 8.4 11 0.98
Cubic 1 0.70000 30.0 18
Cubic 2 0.00105 0.9 1
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0:5 mm (the recording step of sample I). To improve the variogram model, we want to use
measurements made on a second sample (denoted by II, having a diameter of 120 mm) located
on the same fracture. On this sample, data are recorded every 0:02 mm; which enables the
reconstructions with a grid mesh smaller than 0:5 mm: At this scale, variograms contain
information about the texture of the rock (size of minerals for example) [10]. Since profiles are
radii of the cylindrical sample, there are no preferential directions of recording. Furthermore,
variograms of residuals computed on each profile separately are quite similar to one another.
We therefore chose to compute an omnidirectional variogram of residuals, taking all directions
into account, avoiding anisotropic considerations. First derivatives are computed in the same
way as for sample I, but with a step of 0:02 mm: Then the final variogram of first derivatives is
obtained by averaging all variograms computed on each profile separately (up to h ¼ 20 mm).
Note that the analysis of each variogram of first derivative separately (prior to averaging) shows
a smaller anisotropy than for sample I. This is the reasoning behind working with a mean
variogram.

Since we want to compare experimental variograms of sample II with model 1, we need for
comparison to have only one variogram for model 1. Then we decide to average the two
variograms of the main directions of anisotropy (b and d) (for residuals and first derivatives).

The comparison of variograms of residuals for samples I and II shows that variograms of
sample II have higher values than those of sample I (Figure 10(A)). Since both data sets are
comparable (samples located on the same fracture), we might have expected to get similar
variograms, but it is not the case. Differences between variograms are due to either a greater
variability of elevations of sample II or due to a support effect (measurements done on sample II
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being more accurate, we access details not available with the apparatus used on sample I). In
order to improve the variogram model, we have to link these variograms. In order to take the
observed greater variability of residuals of sample II into account, we propose adjusting the sill
of model 1 to that of sample II (proportional effect). In order to do this we can multiply the
values of model 1 by a constant factor, in this case, equal to 5.1. This constant is the ratio of the
two sills (sample II and model 1). This is the technique usually adopted in geostatistics.
Figure 10(A) shows that the variogram of sample II and modified model 1 are in good
agreement.

The comparison of variograms of first derivatives also shows higher values for sample II
(Figure 10(B), curves 1 and 2). If we multiply values of model 1 by 5.1, the constant factor, the
sill of the resulting variogram remains lower than that of sample II (curve 3). In order to explain
this, we can analyse more precisely the nested components of model 1. For a variogram of first
derivatives, the smaller is the computation step of the discrete first derivatives, the greater is the
sill of the variogram. As can be seen in Figure 11, values of the nested models decrease when the
step u increases but not at the same rate, so they do not contribute equally to the final
variogram. For computing Figure 11, the range and the sill are equal to 1, and the calculus of
the variogram is done later than the range, so Equation (6) becomes

guðhÞ ¼
2gðuÞ
u2

8h5range value ð9Þ
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We assume that this equation is available even for the Cauchy model. It should be noted that
Figure 11 shows this phenomenon when h is greater than the range, but this remains true
whatever the value of h:

As we know that the data set of sample I (and so of sample II too) is partially characterized by
a spherical component, Figure 11 shows that the increase of guðhÞ values with the decrease of u is
much greater for the spherical component than for the two others (Cauchy and cubic). In order
to illustrate this proposition, we have used Equation (9) to compute guðhÞ values (Table II) for
each component of model 1 (sills are those given Table I).

For a variogram having a linear behaviour at the origin (spherical variogram), the value of
the sill is dependent on the step size u: This is not the case for variograms with a parabolic
behaviour at the origin (Cauchy, cubic). That is why for the spherical component, the sill is
multiplied by 25 when size step u is divided by 25. The presence of the others components reduce
the influence of the spherical model, so the increase of sill is equal to a factor 7 when u changes
from 0.5 to 0:02 mm: The sill of model 1 is theoretically multiplied by about 7� 5:1 ¼ 35:7
(where 5.1 was due to the greater variability of data of sample II). As a consequence the
resulting variogram (Figure 10(B), curve 4) shows higher values than those of the experimental
one (curve 1). It will be shown how to take these observations into account in order to improve
the model.

4.4. Final variogram model

To search the final variogram model, we start from model 1 and we modify it according to the
previous considerations. We would like a fit of this newmodel to variograms of residuals and first
derivatives of samples I and II and to variograms of second derivatives of sample I (Figure 12).
The final model, called model 2, is the sum of five nested models (spherical, two Cauchy and two
cubic models, Table III). The model is well fitted to experimental variograms up to a lag h of 8–
10 mm:

In conclusion, it can be seen that the improvement to the fit is not entirely obvious from
Figure 12(A)–12(D), but is clearly seen in Figure 12(E) (the variogram of first derivatives of
sample II is very close to that of model 2).

The next step is to use the variogram model 2 so as to reconstruct sample I, and obtain an
elevation at each node of a square grid covering the sampled surface.

4.5. Reconstruction of the fracture surface

The reconstruction of fracture surfaces consists of an interpolation based on the theoretical
variogram model and on experimental data in order to estimate the elevation at each node of a
given grid. Two methods are commonly used: kriging and conditional simulation [11].

Table II. Influence of the step u on the sill of model 1 and its components.

Nested model guðhÞ (step 0:5 mm) A guðhÞ (step 0:02 mmÞ B Increase of sill B/A

Spherical 0.0159 0.3973 25.00
Cauchy 0.0260 0.0274 1.05
Cubic 1 0.0166 0.0170 1.02
Cubic 2 0.0067 0.0159 2.37
Model 1 0.0652 0.4576 7.02
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Figure 12. Final variogram fitting to residuals (A), first derivatives (B) and second derivatives (C) of
sample I and to residuals (D) and first derivatives (E) of sample II.

Table III. Parameters of model 2.

Basic model Sill ðmm2Þ Range b (mm) Range d (mm) Other parameter

Spherical 0.025 10.0 40.0
Cauchy 1 0.062 4.0 4.8 4.00
Cauchy 2 0.001 200.0 300.0 0.19
Cubic 1 0.850 38.0 20.0
Cubic 2 0.003 1.8 1.1
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4.5.1. Kriging and conditional simulation. Kriging is a method of unbiased estimation based on
a linear interpolation that minimizes the variance of estimation. A consequence is that it
smoothes local fluctuations.

Let x be the value to be estimated, n the number of points used for the estimation, and g the
value of the variogram model. The objective of kriging is the solution of the following linear
system of equations (nþ 1 equations for nþ 1 unknown variables).

For i ¼ 1; 2; . . . ; n: Xn
j¼1

ljgðxi � xjÞ þ m ¼ gðxi � xÞ

Xn
j¼1

lj ¼ 1 ð10Þ

This system minimizes the variance of unbiased estimation.
The parameter n is defined either as the total number of experimental data if we work within a

global neighbourhood when n is not too large, or as a sufficiently large number of points
(usually between 15 and 20) chosen with an homogeneous spatial distribution in the
neighbourhood of the point to be estimated (moving neighbourhood).

In Equation (10), the unknown variables are:

* l: the weights attached to the points used for estimation as a function of the distance from the
point used for the estimation and its true value. These weights are the solutions of the kriging
system and are a function of the distance between points used for the estimation (the
consequence of the solution is to avoid the influence of large densities of points).

* m: Lagrange’s multiplier.

The variance of estimation or kriging variance can be defined as follows:

s2K ¼ �gð0Þ þ mþ
Xn
j¼1

ljgðxj � xÞ ð11Þ

The weakness of kriging is its tendency to smooth. In order to introduce variability into the
result, another method of interpolation is used, that of conditional simulation. If kriging is a
method of estimation, conditional simulation is a method of simulation.

The conditional simulation technique allows the introduction of variability based on
experimental data, so local fluctuations are not smoothed. Conditional simulation is a
combination of a non-conditional simulation and a kriging. A non-conditional simulation
simulates a field of values having the same spatial structure as the initial field of data. Combined
with kriging, conditional simulation is conditioned by experimental data, so the best estimation
of an experimental data is its measured value (as for kriging). The main methods of conditional
simulation (turning bands, sequential Gaussian simulation) require that the initial data set has a
Gaussian distribution. If not, a transformation to Gaussianity is necessary. Conditional
simulation allows the introduction of variability, but the variance of the simulation is twice that
of kriging.

4.5.2. Application to rock fracture surfaces. Various reconstructions based on residuals of
elevations of sample I have been computed. Since the drift had been removed (cf. Section 4), it
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will have to be restored at the end of the reconstruction in order to get elevation values
comparable with those of recorded profiles. These reconstructions have been computed either by
kriging or conditional simulation, but also by a combination of the two methods. Kriging is
preferred if we want to minimize errors during reconstruction, but it smoothes estimated values.
If we want to introduce variability and local fluctuations, conditional simulation is better. This
latter technique is efficient for the knowledge of elevations between experimental profiles (areas
with a lack of experimental data) and for reconstructions realized with a step less than 0:5 mm:
In fact, for mechanical reasons, we want to obtain reconstructions with a small step in order to
study micromechanisms of deformation.

To perform reconstructions, the following method has been developed.
Reconstructions are performed in several stages from a coarse to a fine grid. For each stage,

to estimate the residual value at a given point, we work with data located in a neighbourhood
circle of radius 8 or 10 mm (according to the variogram model) around the point to be estimated
(that is why the best fit was sought at the beginning of the variogram, cf. Sections 4.2 and 4.4).
This circle is divided into height sectors and the number of points taken is the same in each
sector (with an optimum choice of 10 per sector).

Furthermore, the variogram model having been fitted for h ¼ 0:02 mm; we can realize
reconstructions of sample I with a step shorter than 0:5 mm: We choose to perform
reconstructions with a square mesh of 0:1 mm: This size is sufficient also for the study of
shearing for small horizontal displacements and hydraulic behaviour.

Various kinds of reconstructions of sample I are realized depending on the choice of the
grid mesh size, the minimum distance between points used for the estimation, and the
geostatistical method (kriging or conditional simulation for each step). For conditional
simulation, various kinds of numerical methods are used: turning bands or sequential
Gaussian simulation [11]. Recall that for the use of conditional simulation, we must have a
Gaussian distribution of residuals (necessary but not sufficient in theory) (cf. Section 4.5.1).
Chi-square tests of fit have been carried out comparing the experimental distributions of
residuals with a Gaussian distribution (having the same mean value and same standard
deviation). Results of the tests are good for all classical confidence levels (90%, 95% and
99%). Furthermore we choose other different parameters: the number of simulations
averaged for the final result (because one simulation gives too big a variability in the
reconstruction), and the size of the neighbourhood. The optimal number of simulations
averaged is found after several trials. After each attempt a validation of the reconstruction is
done (cf. Section 5) and the number of averaged simulations is modified or not, depending
on the results of the validation.

The first stage is always a reconstruction on a 2 mm grid mesh with a minimum distance of
1:5 mm between estimation points. This is to avoid the experimental points being too close to
one another. After each step and before computing the next using a finer grid, points resulting
from the reconstruction are added to the experimental ones in order to get a more homogeneous
spatial distribution of data. This technique in several stages is based on the three perpendiculars
theorem [11].

The proposed method shows how to link two data sets and how to get various reconstructions
from a coarse to a fine grid.

Figure 13 shows results of a geostatistical reconstruction performed by kriging for sample I.
To improve the images, the fracture surfaces in Figure 13 are shown with a mesh bigger than
0:5 mm; although this reconstruction is the result of a first kriging with a minimum distance

Copyright # 2002 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2002; 26:873–896

A. MARACHE ET AL.886



between experimental points used of 1:5 mm on the 2 mm grid followed by a second kriging
with a grid mesh of 0:5 mm:

Figure 14 shows a part of the lower wall in order to appreciate differences between the two
main methods of reconstruction. The two methods used for comparison are the reconstruction
done by the previous described kriging and a reconstruction done by a conditional simulation
realized by turning bands (average of five simulations after the first step and of six simulations
after the second one). The grid mesh in Figure 14 is here equal to 0:5 mm:

One can see on Figure 14 that the fracture surface reconstructed by kriging seems smoother
than that reconstructed by conditional simulation. The smoothing due to the kriging method is
expected theoretically.

We have seen that when we use conditional simulation, we need to average n simulations in
order to get a variability matching the experimental one. But in theory, a single simulation is
sufficient to obtain representative variability. It is interesting to study why this should be.

4.5.3. The method developed and conditional simulation. We have seen that we need to average n
conditional simulations in order to get the experimental variability after reconstruction. This is

Lower wall Upper wall

Direction b
Direction d

Direction b

Direction d

Figure 13. Lower and upper walls of sample I reconstructed by kriging.

Kriging Conditional Simulation

Direction d (mm)Direction b (mm) Direction d (mm)
Direction b (mm)

Figure 14. Part of the lower wall reconstructed by kriging and by conditional simulation.
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obvious when we compute variograms of first and second derivatives after reconstruction. This
proves that there is redundancy somewhere in our reconstruction method. In fact, there is
certainly a very small nugget effect that is not accounted for in the variogram model. A nugget
effect offsets the variogram at the origin. In such a study, a nugget effect can be linked to the
measurement error. Furthermore, even if we introduce a nugget effect into the variogram model,
we would still have a problem with the variability after conditional simulation because the
nugget effect is not simulated by the methods of conditional simulation. This fact is emphasized
when we calculate the first or second derivatives.

We conclude that taking the average of n simulations to get the experimental variability can
be a good solution to filter out deficiencies in the method of reconstruction.

We have to now validate the reconstructions with objective criteria.

5. VALIDATION OF RECONSTRUCTIONS

The aim of this section is to validate the reconstructions by comparing experimental variograms
or distributions of morphological parameters (co-latitudes in two dimensions and radii of
curvature) with those computed from reconstructions. The quality of a reconstruction depends
of the agreement between experimental and inferred data.

Results presented in this section are derived from various reconstructions of the lower wall of
sample I (grid mesh 0:5 mm). The two methods of reconstruction used for comparison are the
same than those used for Figure 14. We choose these two reconstructions because their results
are well representative of all the others; furthermore, we have experimental variograms and
morphological parameters only for a step of 0:5 mm: If we want to validate reconstructions
realized with the 0:1 mm grid mesh, we could compare only variograms computed on
reconstructions with the variogram model.

5.1. Variograms after reconstruction

In order to validate the reconstructions, we compute variograms of residuals, first and second
derivatives with the complete set of data points resulting from reconstructions. Figure 15 shows
the different variograms computed for both the reconstructions previously described and the
experimental variograms in the b and d directions.

One can see that variograms computed on residuals resulting from reconstructions are quite
close to one another (Figure 15(A), curves 3, 5 and 4, 6) and are in good agreement with the
experimental variograms (Figure 15(A), curves 1 and 2), except for great values of h in the d
direction.

The main difference between the methods is seen on the variograms of first and second
derivatives. For kriging (Figure 15(B) and 15(C), curves 3 and 4), these variograms have lower
sills than the experimental one (with underestimation of 50% on the sill of the variograms of
first derivatives and of 80% on those of second derivatives). This result could have been deduced
theoretically. Since the fracture surface is smoothed, consequences of this smoothing appear
stronger when we compute derivatives of residuals, underestimating the sill of the variograms.
For conditional simulation, the sill observed on variograms of derivatives depends on the
number of simulations used for averaging. One can see that with conditional simulation, the
variograms of the first derivatives are of good quality, but the variograms of the second

Copyright # 2002 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2002; 26:873–896

A. MARACHE ET AL.888



derivatives show sill values that are too high (overestimation of 31%). This observation could be
a defect in our reconstruction (an overestimation of the variance of second derivatives), but it is
very small compared with the improvement of the model due to the use of second derivatives.

In conclusion, it should be emphasized that the use of variograms is very efficient since, first,
it permits the realization of reconstructions and, secondly, it allows also identification of the
better reconstructions in regard to our mechanical needs. For example, if we want to study
micromechanisms of deformation, conditional simulation will be preferred because the
variability is greater for short distances between points than with kriging. This has also
implications to study fluid flow in the fracture because the distribution of voids and their
connection depend on the results of the reconstructions. But if we study the mechanical
behaviour on the centimetre or decimetre scale, results of kriging and conditional simulation are
very close. The reconstructions used depend on what is needed, and particularly on the scale of
study.

5.2. Calculus of morphological parameters

In rock mechanics it is common to compute distributions of variables such as co-latitudes or
radii of curvature in order to characterize the morphology of fracture surfaces [1]. We decided,
therefore, to compare the distributions of these variables for experimental and interpolated
data. These computations are realized on elevations: residuals plus the value of the drift for each
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Figure 15. Variograms of residuals (A), first derivatives (B) and second derivatives (C) computed on
experimental and interpolated data.
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point. The following comparison is done between experimental distributions and those obtained
after a conditional simulation (again, distributions after kriging show the smoothing effect).

5.2.1. Calculus of co-latitudes in two dimensions. In two dimensions, the co-latitude of a
segment is the angle made by its normal and a reference axis. Here the reference direction is the
z-axis. In a given direction (x for example):

y2ðx; yÞ ¼ arctan
zðxþ u; yÞ � zðx; yÞ

u

� �
ð12Þ

Distributions of co-latitudes ðy2Þ can be computed for each direction, either on experimental
data or on results of geostatistical reconstructions with a step u equal to the grid mesh. Positive
and negative values are taken into account (Figure 16).

Figure 17 shows cumulative frequencies of co-latitudes computed for experimental data for
each direction.

By looking at the median values in Figure 17, one can see that the c and d directions have the
greatest proportion of positive values and the a direction has the greatest proportion of negative
values (c and d directions are close to the direction of dip of the planar drift).

Figure 18 shows cumulative frequencies of co-latitudes computed with inferred data for the d
direction and for kriging and conditional simulation.

With conditional simulation (Figure 18), the distribution is very close to that from
experimental data (confirmed by the chi-square tests). This shows that we cannot reject the
hypothesis of similarity between the experimental and conditional simulation distributions for

θ2<0 

Orientation of profile
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z 

Figure 16. Definition of a co-latitude in two dimensions.
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Figure 17. Experimental distributions of co-latitudes (distributions are very closed for the
c and d directions).
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the classical confidence levels (90%, 95% and 99%). These observations hold also for the results
from the other directions. Note also that the median simulated value is the same as the
experimental one.

In order to characterize the distributions, we can compute statistical parameters. We choose
here to compute the mean value of each distribution. The mean value of n angular values is
computed as follows [12]:

%yy ¼ arctan

Pn
i¼1

sinðyiÞ

Pn
i¼1

cosðyiÞ

0
BB@

1
CCA ð13Þ

Table IV gives mean values for positive and negative co-latitudes for each direction and the
associated percentage of pairs of points used for the calculus.

The closer the direction of calculation to d (the direction of dip of the drift) the more we have
positive co-latitudes, in both percentage and value terms.

Lastly, the knowledge of co-latitudes in two dimensions is very important because we know
that this morphological parameter has a primordial role in the shear behaviour of rock joints [13].

5.2.2. Radii of curvature. Assuming that profiles of elevations are curves, we can compute their
radii of curvature. To compute the radius of curvature we calculate a polynomial approximation
of order 2 (Figure 19) for a subset of k consecutive points along the profile. Since we need to
analyse the fracture in detail, we choose k ¼ 3 because it is known that, for planar surfaces, the
smaller the number of points k that is used the smaller is the value of the radius of curvature, so
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Figure 18. Distributions of co-latitudes in the d direction after simulation.

Table IV. Co-latitude mean values.

y250 ð8Þ Percentage of
pair of points (%)

y24 ¼ 0 ð8Þ Percentage of
pair of points (%)

Experimental b 10.47 50.60 � 11.32 49.40
Experimental d 12.55 57.43 � 10.96 42.57
Simulation b 11.37 49.03 � 11.44 50.97
Simulation d 12.97 58.36 � 10.79 41.64
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the distribution of radii of curvature has a greater variability. We demonstrate the radius of
curvature value at the point x0; as shown in Figure 19.

The radius of curvature is computed as follows in the x direction:

Rc ¼
ð1þ ð@z=@xÞ2Þ3=2

j@2z=@x2j
ð14Þ

where z is the approximated value computed in the x direction.
With the knowledge at each point of the first and second derivatives (concavity), we can

combine it with the radii of curvature to define four types of element (Table V).
Any positive first derivative corresponds to a positive co-latitude as defined in the previous

section.
Figure 20 shows cumulative frequencies of radii of curvature, in respect of the classification

defined in Table V, computed on experimental data for the b and d directions.
Comparing Figure 20(A) and 20(B), one can see that experimental distributions of radii of

curvature are nearly identical in all directions. Nevertheless, small differences appear,

Table V. Definition of each element as a function of first and second derivatives.

First derivative > 0 > 0 50 50
Second derivative > 0 50 > 0 50
Name P–P P–N N–P N–N

Significance
x

z

x0
x -1  x1

x -N
xNRc 

Figure 19. Definition of an element for the radius of curvature calculus.
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Figure 20. Distributions of experimental radii of curvature for the b (A) and d (B) directions.
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principally up to a value of radius of curvature equal to 20 mm: In the d direction, there are
more small values of radii of curvature for the P–P and P–N kinds (with fewer for the two other
kinds) than for the b one. Furthermore, in each direction, the four curves plotted for each kind
of element are close one to each other, but the same little differences appear. Since radii of
curvatures are linked to second derivatives, this confirms the note made on variograms that the
higher the order of derivative the more the anisotropy disappears.

Figure 21 shows cumulative frequencies of radii of curvature (P–P and P–N kinds) calculated
on inferred data for the d direction and for conditional simulation. Only the P–P and P–N kinds
of radius of curvature are presented in this paper, but the conclusions hold for all kinds of radius
of curvature.

Conditional simulation shows that there are slightly more low values than for the
experimental distributions (see for example the 80% decile on Figure 21(A)). This conclusion
confirms the observation made regarding variograms of second derivatives (Figure 15(C)) that
reconstructions realized with conditional simulation overestimate second derivatives, so small
values of radii of curvature as well.

In order to characterize the distributions, we choose to calculate medians because means are
strongly influenced by the highest values. Table VI gives medians for P–P and P–N types and the
percentage of triplet of associated points.

One can see that the percentage of points is more important when the direction used in the
calculation is close to the drift dip (as for the co-latitudes) and that the percentage of triplet of
points is about the same for both P–P type and P–N type. For simulations, the observed median
values confirm that there is an overestimation of low radii of curvature.
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Figure 21. Distributions of radii of curvature for the d direction for P–P (A) and P–N (B) kinds.

Table VI. Characterization of P–P and P–N radii of curvature.

P–P50 (mm) Percentage of
triplet of points (%)

P–N50 (mm) Percentage of
triplet of points (%)

Experimental b 3.27 24.64 3.11 25.64
Experimental d 3.31 28.81 3.22 29.65
Simulation b 2.44 24.33 2.54 24.67
Simulation d 2.74 29.95 2.73 30.07
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In order to characterize more accurately the radii of curvature distributions, we can compute
other deciles and quartiles (10%, 25%, 75% and 90%). Table VII gives these different deciles or
quartiles for the P–N kind of radius of curvature and for the experimental distributions and
after conditional simulation distributions.

For the experimental distributions of radii of curvature, one can see that the main difference
between directions b and d is marked with the Q90 decile. In fact, there are more high values of
radii of curvature for the b direction than for the d one. This is again due to the direction of dip
of the drift. When this direction is close to that of the drift ðdÞ; the proportion of small values of
radii of curvature is greater because of the greater roughness.

Results of conditional simulation show a good agreement with experimental results. The
agreement is better for the d direction than for the b one, principally for the Q75 and Q90
values. This observation could be deduced from the analyses of the variograms of second
derivatives after reconstruction (Figure 15(C)). On this graph, for conditional simulation, the
curve of the d direction is closer to the experimental variogram than for the b direction, so it is
obvious that results of radii of curvature are in better agreement with the d direction.

In conclusion, it is very interesting to observe that the qualitative analysis of the results of the
previous morphological parameters could be done entirely by analysis of the variograms,
confirming their power as a geostatistical tool.

Till now, geostatistics has been used to analyse fracture surfaces without mechanical
considerations. In the next section, an example of the use of geostatistics linked to rock joint
mechanical behaviour is presented.

6. EVOLUTION OF VARIOGRAMS WITH THE SHEAR PROCESS

The calculus of directional variograms can also be used to analyse the evolution of the
roughness during a shear test on rock joint [14]. In order to study this evolution, mortar replica
of the granitic joint have been made and shear tests have been realized by keeping always the
same morphology of rock joint surfaces. These tests have been realized in various directions,
under various levels of normal stress. Furthermore the tests have been stopped at various level
of horizontal displacements in order to record the same profiles of elevations than on the intact
walls. On a same profile, variograms can be computed for different horizontal displacements.
Variograms of elevations presented in Figure 22 have been calculated on one profile after a
shear test in the b direction under a constant normal stress equal to 21 MPa:

One can see in Figure 22 that variograms are different as a function of the horizontal
displacement because there is an evolution of the morphology, creation of damaged areas on
fracture surfaces, with the shear process. When the horizontal displacement increases,

Table VII. Characterization of P–N radius of curvature with different deciles or quartiles.

Q10 (mm) Q25 (mm) Q50 (mm) Q75 (mm) Q90 (mm)

Experimental b 1.29 2.03 3.11 7.76 22.96
Experimental d 1.34 1.84 3.22 6.62 15.73
Simulation b 1.00 1.45 2.54 5.51 13.91
Simulation d 1.09 1.58 2.73 6.12 15.46
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consequences on variograms are a decrease of the slope at the origin and of the sill, and an
increase of the range. This is because after the shear process the joint surface is smoother than
before the shear process. These parameters are summarized in Table VIII. But on this example,
for the greater horizontal displacement, sill and range disappear. This is the consequence of a
big change in the morphology and the creation of a drift in the topography in this direction.
This drift is certainly due to the distribution of gouge material on the profile.

One of the future developments could be to find a relation to predict the evolution of the
variograms as a function of the horizontal displacement.

7. CONCLUSION

In a lot of domains, like stability of rock masses or waste storage, an accurate knowledge of the
behaviour of jointed rock masses is needed. In order to understand the hydromechanical
behaviour of jointed rock masses, it is necessary to study the hydromechanical behaviour of
isolated rock joints under normal and shear loads. It is today well accepted that this behaviour is
closely linked to the morphology, to the roughness of fracture surfaces. So the first step is to
obtain a good numerical model of the fracture surface for use later in mechanical and hydraulic
computer calculus [15].

To characterize the morphology of the joint in terms of spatial variability between data points
and to reconstruct it, the geostatistical tool allows us to obtain sufficient and accurate
knowledge of the morphology. The proposed method of characterization and reconstruction is
to study the elevations and their residuals (eliminating any drift), first and second derivatives,
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Figure 22. Variograms of elevation before and after a shear test.

Table VIII. Evolution of variogram parameters with the horizontal displacement.

DU (mm) Slope at the origin (mm) Range (mm) Sill ðmm2Þ

0.000 0.067 9.5 0.72
0.564 0.055 11.0 0.61
1.059 0.051 13.5 0.58
4.991 0.025 } }
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and take the anisotropy of the data into account. It shows how to link two data sets in order to
improve the quality of the reconstruction. The example of a granitic fracture demonstrates the
power of this method in that it gives different reconstructions, from a coarse to a fine grid, with
different geostatistical methods. The reconstructions are validated and the computed
parameters in the validation are in good agreement with experimental data. With this work,
we know exactly the best reconstruction as a function of what is needed for future mechanical
studies. Furthermore, it is important to note that the analysis of variograms on its own gives a
lot of information, even on morphological parameters classically computed by rock mechanics.

We have shown the power of the geostatistical tool for the characterization and the
reconstruction of rock fracture surfaces. Furthermore, this tool can be used in many others
applications: characterize more accurately the void space [16] or find structural links between
fracture surface heights and void space before or after shearing [17].

This geostatistical study is only a first step, but an essential step, towards improving
hydromechanical behaviour models of rock joints. Further, the proposed method can be applied
to all kinds of rock fractures.
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