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ABSTRACT: To understand the hydromechanical behavior of jointed rock masses, the study of isolated rock 
joints is a key element. Nowadays many scientists stand for taking joints' morphology into account. In order 
to get numerical model for these joints, we propose an original method based on the use of the geostatistical 
tools. Using them allows to analyze the spatial relations between elevations (sampled from the joint), and 
their first and second derivatives. Next we present a method for the reconstruction of a fracture surface by 
using a variogram model derived from data coming from two different samples located on the same fracture a 
few centimeters apart. The method of reconstruction is performed in several steps in order to have a more and 
more accurate reconstruction. Finally, at•er the validation of the reconstructions by different ways, we show 
the implications of the size of digitalization of the fracture surfaces and of the kinds of reconstruction on the 
results of simulation of shear tests. 

I INTRODUCTION 

The knowledge of the hydromechanical behavior of 
jointed rock masses is today very important in a lot 
of environmental problems (waste storage, rock 
mass stability, high enthalpy geothermal reservoirs, 
etc.). The study of jointed rock masses requires the 
study of isolated rock joints. It is well known that 
the morphology, the roughness of a joint is a key 
element for the understanding of its hydromechani- 
cal behavior. The aim of this paper is to show how 
very accurate numerical models of fracture surfaces 
can be inferred from quite unusual geostatistical 
methods and then successfully used in mechanical 
modeling. 

2 PRESENTATION OF DATA 

Fractures can be envisioned as two rough surfaces or 
walls in partial contact. The studied samples, de- 
noted I and II, were cored trough a natural granitic 
fracture (Gu6ret, France). Sample I is a cylinder and 
the fracture is located at the middle of this cylinder, 
quite perpendicular to its axis. The diameter of the 
cylindrical sample is equal to 90 ram. Profiles of 
elevations have been recorded on the two walls of 

this sample (sampling step u = 0.5 ram) in four di- 
rections (a, b, c, d). Results presented in the follow- 
ing sections are those obtained by working on the 
lower wall (the same work was done for the upper 

wall; results for both walls are very closed). The re- 
corded profiles on the lower wall have allowed to 
create a data base of 4096 co-ordinates {x,y,z} 
(Flareand 2000). Figure 1 shows the experimental 
recorded profiles in the four directions. 

Profiles have been recorded along sample II with 
a smaller sampling step (u = 0.02 ram). The two 
samples are distant from a few centimeters and the 
axis of the two cylindrical samples are parallel one 
to the other. For this second sample, profiles are re- 
corded along radii of the cylindrical sample and not 
in any preferential direction. 

The aim is to characterize the most accurately as 
possible the morphology of sample I (because this 

d 

Figure 1. The four directions and the experimental profiles on 
the lower wall of sample I. 
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sample has been used for mechanical tests) and to 
obtain reconstructions of this sample (knowledge of 
elevations at each node of a grid). Sample II is only 
used to increase the accuracy while modeling sample 
I. In order to do that, we use the geostatistical tools. 

3 GEOSTATISTICAL STUDY 

3.1 Experimentalvariogrctrns 

In geostatistics, the variogram allows to characterize 
the possible spatial relations existing between sam- 
pled data. Here these data are the elevations and 
their first and second derivatives. The experimental 
variogram of any variable z is computed as follows 
(Armstrong 1998): 

1 

•n i=! 

The analysis of experimental variograms is here 
leaded on the sample I's lower wall. 

Figure 2 shows the experimental directional 
variograms of elevations computed in the four di- 
rections. 

Except for the b direction, variograms increase 
continuously when h increases. This is the proof that 
there is a trend in the data, the mean elevation is 
space-varying. This dfiR is observable on profiles 
recorded in the d direction. This driR masks all d•- 

tails in the spatial structur• of elevations. Because 
the driR appears as linear on experimental profiles, 
we assume the driR to be planar in three dimensions. 

So we work on the residual values z• computed as 
shown equation 2: 

z,(x, y) = z(x, y)- (ax +by +c) (2) 
with: z experimental elevations at any point (x,y) 

and (ax + by + c) the value of the planar driR. 
All the following work will be done with the re- 

sidual values z•(x,y) but at the end of the g•ostatisti- 
cal work, the driR will b• added in order to g•t 
z(x,y) values from which the numerical representa- 
tion of the fracture surface is inferred. 
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Figure 2. Experimental variograms of elevations in the four di- 
rections (sample I, lower wall). 
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Figure 3. Experimental variograms of residual values (7(b)) (a) 
and their first (7,,00) (b) and second (7,a(h)) (c) derivatives 
(sample I). 

Figure 3 shows the experimental directional 
variograms of the residuals ¾(h) and those of their 
first ¾,(h) and second ¾,2(h) derivatives (sample I, 
recorded step u = 0.5 mm) in the four directions. 

Figure 3 shows first a zonal anisotropy since the 
sills (value of ¾(h) for the range) of the variograms 
vary with the direction, next it shows that the range 
(for values h greater than the range, variables are 
uncorrelated) of a first structure is equal to 
h = 15 mm whatever the direction is. Furthermore, in 
the c and d directions, a second structure appears for 
h = 30 mm. 

On the variograms of first and second derivatives, 
the ranges of the observed structures are smaller 
than previously (ranges equal to 8 mm for the first 
derivatives and to 2 mm for the second derivatives); 
furthermore, the higher is the order of the derivative 
and the less obvious is the anisotropy. 
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The aim of the next section is to find a model that 

meets the previous observations. 

3.2 I,'ariograrn modeling 

Variogram modeling consists in finding an aniso- 
tropic model, which should be the sum of nested 
theoretical models. It should be noticed here that the 

model needs only to be fitted to the beginning of ex- 
perimental variograms (see section 3.3). Further- 
more, good variogram modeling can be obtained 
when the model is chosen so as to produce a good 
fit to the experimental variograms of residuals and to 
those of first and second derivatives, since the theo- 
retical variograms of first and second derivatives of 
a given variable are available (Chil•s & Gentier 
1992, Marache et al., in prep.). 

A model based on the only previous data could be 
derived but we decide to search a model based on 

data from both samples (I and II). With the use of 
sample II, we get more experimental variograms, so 
the model should be better constrained. Furthermore, 
elevations of sample II having been recorded with a 
smaller step (u = 0.02 mm) than those of sample I, 
this sample can allow to improve the quality of the 
model for small h values. 

Because profiles of sample II have been recorded 
along radii without preferential direction, the com- 
puted variogram of residuals is an omnidirectional 
variogram. 

The comparative analysis of variograms of sam- 
ples I and II shows first, that the omnidirectional 
variogram of residual values of sample II (Fig. 4d) 
shows higher values than those observed for the di- 
rectional variograms of sample I (Fig. 4a) and next, 
that values of the variogram of first derivatives of 
sample II are again higher than those of sample I. 
The first note is the consequence of a greater vail- 
ability of data recorded on sample II than for sample 
I. The second point emphasizes that the variogram of 
first derivatives is dependant to the calculus step: the 
smaller is the step and the higher are the variogram 
values (Marache et al., in prep.). 

However, a detailed analyze of the variograms of 
residuals values shows that the variogram values of 
sample II and the average variogram values of the b 
and d directions of sample I (main directions) are 
proportional (ratio = 5.1): that is this structural link 
existing between the two samples that we want to 
use in the modeling. 

In order to do that, the variogram model will be 
chosen so as to fit well both to the experimental 
variograms of sample I (residual values, first and 
second derivatives), and sample II (residual values 
and first derivatives). 

The chosen model is the sum of five nested ele- 

mentary models (spherical, two Cauchy and two 
bic); Figure 4a, b and c show the fitting for sample I 

and d and e for sample II; in the latest case the 
model is multiplied by the ratio 5.1. The number 
between parentheses on variograms of derivatives 
indicates the step for the computation of the deriva- 
tives. 

The variogram model having been found, the next 
step in the geostatistical study is the reconstruction 
of the fracture surfaces. 

3.3 Reconstruction of the fracture surfaces 
The aim of the reconstruction of the fracture sur- 

faces is to obtain a knowledge of residual values at 
each node ofa pre-defined grid. Recall that, in order 
to get the final elevations (z(x,y)), the drift as de- 
fined in section 3.1 will be added at the end. The re- 

construction is done on sample I. In order to esti- 
mate a residual value at a node, we use data located 
in a circular neighborhood of 8 mm from the point to 
be estimated (that's why we fit better for small h 
values than for high ones). The estimation is done by 
using either kriging or conditional simulation 
method. Kriging is the best method of estimation be- 
cause it minimizes the error, but it smoothes results. 
Conditional simulation allows to introduce variabil- 

ity. The kriging estimator is an exact interpolator 
(the mean error is equal to zero), but kriging esti- 
mates are less dispersed than the true data; in order 
to avoid this phenomenon we use also conditional 
simulation that are useful to obtain realistic pictures 
of spatial variability (Chil•s & De!finer 1999). 

The reconstruction is here performed in succes- 
sive steps (two or three). At first, we filter the whole 
experimental set of data in order to keep only one 
point every 2 mm. We realize a first reconstruction 
with this filtered set of data in order to have a resid- 

ual value at each node of a grid with a mesh of 2 mm 
square. The next step consists in combining the pre- 
viously estimated values with the totality of the ex- 
perimental data; the result is the set of residual esti- 
mated values at each node of a 0.5 mm grid mesh 
size. This result can be either the final result or an- 

other intermediate result; if so, we perform a last re- 
construction to have a result with a mesh of 0.1 mm. 

At each step we can use either kriging or conditional 
simulation method. So we have a !or of possibilities 
and we obtain various results with a grid mesh either 
equal to 0.5 mm or to 0.1 mm. Figure 5 shows an 
example of reconstruction performed by kriging. 

Since various numerical models (reconstructions) 
are available they must be checked against the back- 
ground of our purpose: good quality of the numeri- 
cal representation and its utility for simulations of 
mechanical tests. That's why it is now necessary to 
validate the various kinds of reconstruction in order 
to choose what are the best reconstructions which 

will be used later when simulating mechanical tests 
for rock joints. 
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3.4 Validation of the reconstructions 

Various methods of validation are possible and we 
present here two 'distinct methods. First, the valida- 
tion of the previous reconstructions is done by com- 
paring experimental variograms and those computed 
with data resulting from the reconstructions. Next, 
the validation is done by comparing experimental 
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Figure 4. Variogram model. a, b and c: variograms of residual 
values, first and second derivatives of sample I; d and e: vario- 
grams of residual values and first derivatives of sample H. 

and inferred distributions of morphological parame- 
ters such as colatitudes 2D (angularity of elements 
along profiles) (Marache et al. 2000) or radii of cur- 
vature. Radii of curvature are computed from a 
polynomial approximation realized on three succes- 
sive points in a given direction. 

Figure 6a shows the experimental variogram of 
first derivatives and those computed from a kriging 
and from a conditional simulation reconstruction. 

Figure 6b shows the experimental and inferred cu- 
mulative distributions of radii of curvature. These 

results are shown for the d direction, but conclusions 
are the same for all directions. 

The same kind of conclusions can be drawn from 

the two methods of validations: in both cases kriging 
method smoothes the results and those from condi- 

tional simulation are in good agreement with the ex- 
perimental data. In fact, we can observe for the 
kriging method lower values on variograms, so a 
lower variability of first derivatives than the experi- 
mental one. On the distribution of the radii of cur- 

vature, we observe higher values of radii of curva- 
ture for a given cumulative frequency than those 
observed on experimental results. The higher is a ra- 
dius of curvature of an element and the more flat- 

tened is this element, so this is again a proof of the 
smoothing resulting from the kriging method. Re- 
sults obtained from conditional simulation are in 

both cases in good agreement with experimental re- 
sults. 

Direction n d 

Figure 5. Reconstruction of the lower wall of sample I by 
kriging. 
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Figure 6. Validations of the reconstruclions. a: variograms of 
first derivatives; b: radii of curvature. 

Since kriging smoothes results, a part of the 
roughness on the fracture surface is removed. As a 
contrary, conditional simulation gives, at the re- 
corded step, a variability of the angularity of the 
fracture and of its curve statistically identical to the 
real fracture. So the choice of the reconstruction for 

simulations of mechanical tests will depend of what 
we need. If we study micromechanical deformations, 
conditional simulation will be preferred because of a 
bigger variability in the morphology; if we study the 
shearing behavior for great tangential displacements, 
kriging or conditional simulation will give same re- 
suits. 

4 SIMULATION OF SHEAR TESTS 

A computer code has been developed in order to 
study the mechanical behavior of rock joints under 
normal (Hopkins 1990) and shear stresses (Marache 
et al. 2001). It should be noticed that we focus our 
attention on the elastic phase of the shear test with 
constant normal load, before the apparition of dam- 
age (breaking or crushing). As a consequence the 
first step of the simulation is the simulation of a 
normal loading. The simulation of the normal load- 
ing allows to determine what are the contact points 
between the two rough surfaces before the beginning 

of the shear test. Validations of these simulations are 

available in Hopkins (1990) and Marache et al. 
(2001). 

For the simulations of the tests, we need to know 
elevations at each point of a grid for the two walls, 
what was available for the lower wall from the pre- 
vious geostatistical work. In order to obtain the re- 
construction of the upper wall, two solutions are 
possible: 

- either we use a geostatistical reconstruc- 
tion of the upper wall (as previously for the lower 
wall). 

- or we use a cast of the void space located 
between the two walls, so as to know the void aper- 
ture at each node of the same grid than for the recon- 
struction of the fracture surface of the lower wall 

(Gentier et al. 1996). To obtain the upper wall, we 
can add at each node of the grid the void aperture to 
the elevation of the lower wall. 

We present in this paper results based on the 
second method. 

For the simulations of the tests, on sample I, the 
Young's modulus of the rock will be equal to 
30,853 MPa and the Poisson's ratio to 0.19. 

4.1 Influence of the grid size 

The aim of this part is to find the best size for the 
grid mesh (0.5 mm, 1 mm, 1.5 mm or 2 mm) in or- 
der to combine accuracy (the finer is the mesh size 
and the more accurate are the results) and time of 
computation (the finer is the mesh size and the 
longer is the time of computation). Note that for the 
moment, even if reconstructions with a grid mesh 
equal to 0.1 mm are available, they can't be used be- 
cause of the too big number of points for which we 
know an elevation. 

The aim of the model is to predict the closure of 
the fracture as a function of the normal load which is 

applied on it. The result of the normal loading is the 
normal stress applied as a function of the vertical 
displacement (closure of the fracture). Figure 7 
shows the results of the normal loading simulation 
with the four different sizes of grid mesh. 

When the grid mesh size decreases, the closure of 
the fracture is less important (for a same normal 
stress, the greater is the mesh size, the smaller is the 
vertical displacement) and the stiffness is slightly 
smaller. However, one can see a quick convergence 
of the graphs obtained for grid mesh sizes equal to 
1 m and 0.5 mm. In all cases, the slope of the graph 
for great vertical displacements is the same, so the 
behavior of the fracture is the same for a high pro- 
ponion of contact area whatever the grid mesh size 
is. Results shown on Figure 7 are representative of 
the majority of realized simulations. In order to re- 
alize more simulations, we have worked also on a 
part of the whole fracture surface. By analyzing re- 
sults of all simulations, results for the grid meshes 
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Figure 7. Influence of the grid size on the normal loading 
simulation. 

1.5 mm and 1 mm are sometimes more different 

than those observed on Figure 7, but results for the 
grid meshes 1 mm and 0.5 mm are always very 
similar. Because results obtained with step 1 mm 
and 0.5 mm are quite closed, and because time of 
computation is shorter for the 1 mm case, we can 
take reconstructions done at I mm of grid mesh size 
for future works without big errors. 

4.2 Influence of the kind of reconstruction 

4.2.1 Normal loading 
In the model we use, it is assumed that a joint can be 
modeled by two parallel half-spaces separated by 
variable height asperities so we need only to know 
the geometry of the void space. Given we have cho- 
sen to work with the cast of the void space, it is ob- 
vious that the kind of reconstruction has no influ- 

ence while simulating normal loading. 

4.2.2 Shear loading 
In this section simulations are computed using nu- 
merical representation of the fracture surface on a 
grid with a mesh size equal to 1 ram. 

Simulations are realized for a constant normal 

stress equal to 7 MPa. Results of the shear loading 
are given as applied tangential stress function of the 
horizontal displacement. Since we assume that we 
are in the elastic behavior stage and that the number 
of contact points doesn't change during this phase, 
the tangential stress increases linearly as a function 
of the horizontal displacement. Figure 8 shows re- 
sults from reconstructions obtained with kriging and 
with conditional simulation. 

One can see on Figure 8 that the obtained tangen- 
tial stiffness (slope of the straight line defined by the 
shear stress as a function of the horizontal displace- 
ment) is greater for the result obtained from the con- 
ditional simulation reconstruction. In the developed 
code, in order to take the morphology of rock joints 
surfaces into account, we use the angularity (02) of 
elements in the direction of shearing as defined 
Figure 9. 

--- Simulation[ . -"**•"" 
14 

•.12 
"'"10 

2 

0 

0.00 o.os 0.10 0.15 0.20 

Horizontal displacement (ram) 

Figure 8. Influence of the kind of reconstruction on the shear 
loading. 
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Figure 9. Angularity associated to the elements in the shear 
process. 

The greater is the angle 02 of an element and the 
more important is the force required to perform a 
given displacement. We have shown in section 3.4 
that the reconstructions performed by kriging, al- 
though of good quality, show a smoothing of the 
values, smoothing more accentuated when we look 
the derivatives. As a contrary, conditional simulation 
allows to introduce variability (see section 3.4). So 
values of angularity are usually greater with condi- 
tional simulation reconstructions. That's why the 
tangential stiffness is greater when we use the recon- 
structions obtained by conditional simulation. 

5 CONCLUSIONS AND PERSPECTIVES 

Understanding the hydromechanical behavior of 
rock joints under normal and shear stresses requires 
a accurate knowledge of their morphology. We have 
shown in this paper the power of the geostatistical 
tool in order to characterize this morphology and to 
reconstruct fracture surfaces. Furthermore, we have 
shown how to obtain results for a sample by com- 
bining data providing from two neighboring sam- 
ples. This method allows to obtain different recon- 
structions, all validated by various ways, and to 
know what are the best reconstructions as a function 

of what we need from a mechanical point of view. 
Simulations of normal and shear tests have al- 

lowed to select what are the best size of reconstruc- 

tions in order to combine accuracy and time of com- 
putation. Furthermore, they have shown the 
implications of the geostatistical work on the results 
of simulations. 

The aim is now to improve and to continue the 
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development of the mechanical model of the shear 
test in order to simulate a complete test up to 5 mm 
of horizontal displacement, by taking dilatancy and 
damage into account, and to continue to analyze the 
differences between reconstructions used. 
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