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0 -~ INTRODUCTION

Technical parametrization of recoverable ore reserves is in-
tended as a tool for choosing among various technically feasible
projects, that which has the greatest chance to lead to the best
results under given economical conditions.

Each project being considered as a function of one or Hwo
purely technicalfparameterS"(e.g. cut~bff grades, or tonnage of
ore to be processed, or tonnage of waste to be removed),_the tech-
nical parametrization consists of selecting g family of such pro-
Jects which are optimal in a purely technical sense(i.e, indepen~
dently of any economic consideration). This family will have %o
possess the following property : whatever the economic conditions
of the moment (price of metals, costs of extraction and processing
ete,.), and the formula to be used for the economic value, the
economically optimal project (whatever it may be) must necessarily
fall within this family of technically optimal projects.

This separation (or preliminary technical pérametrizatian)

is not always possible to make rigourously, but it is often possible

as a first spproximation; In what follows, we will place ourselves
in the simple case in which the economic value of a project is a
function of the form '

B(Q,T,V)
- Q : Quantity of metal (or of useful material)
- T : Tonnage of ores to be processed

- V : Total tomnage to be extracted (ore + waste)

In order to parametrize the ore reserves, we do not need to
explicitly know the function B (which can thus, at this stage, re-
main indeterminate). We only assume the following (reasonable)
hypothesis that B is an increasing function of Q and a decreasing
function of T and V.

At that point, technical parametrization becomes possible. Among

all of the possible projects involving the same tonnage T of ore



to be processed and the same volume V to e mined, the best will
always be the one which maximizes the quantify of recovered metal
Q. | |

As a function of T and V,'we will thus define the project which
maximizes Q at fixed T and V, and we will set down the correspond-—
ing function '

Q = Q(T,V)

which will prdduce~the parametrizatibn<which we are looking for.
To choose the economically optimal project, we have only to deter—
mine (once the payable function B is known) the values of T and V
which produce the maximm of Blq(T,V), T, V].

In practice, we will often replace T and V by two other para-
meters z and A (representing the cut-off grades), and we will set
up a parametric representation of the family of technical optima
of the form : 4

Q = Q(z,))
T = 7(z,A)
v = V(z,))

The economic optimigation will then (once B is known) consist
of choosing the values of z and A which meximize the expression 3

E[Q(z,x), T(zy7) 5 V(z,\)]

I ~ INTRODUCTIVE INTUITION : ZONEQGRAPHY AND HISTOGRAI.

Lasky's Tormmaze/Grade curve,

Around 1950, S. ILasky wondered how the recoverable reserves of
porphyry copper varied as a function of the usual selection crite-
rion (the cut-off grade in Cu %). He came up with the capital no-
tion of grade/tonnage curve,

Iasky started from a simple representation of his porphy:y
copper deposit : the grade Z(x) at point x was (implicitly)



considered as a continuocus and regular function which, for example,l
decreased regularly as one moved away from the rich heart of the
porphyry (today, we would attribute this behaviour to a trend, ra=-
ther than to thé grade itself). He assumed this function to bé known
(perfectly, or to a very close approximation), and his point of view
was that of a zoneography @ '

If the cub-off grade of Cu is Z g

we will mine the domain whose limits-
are the iso-grade z , i.e, '

o
_BZO é {x s z(x) = z.}
end with a tonnage and é grade of '
(=) e = [ oa@n ale) = [ s aen)
Bzo BZo

with : A(dx) = dx, or, more precisely; p(x) dx, where p is the
density. Lasky obtained T, Q, and m = Q/T curves parametrized by 2z,

0°, Q and T are evidently decreasing (and

m increasing) with Zoe

We can thus eliminate Zg and set

Q - Q{T) , m = m(T), etc...

- [Bx : the so-called Iasky law of the.
m(T) form m=gq~p log T].

»
—

7 Q(T) is increasing and concave.

Indeed, if T(dz) is the tonnage which lies between the iso-
grades z and z +°dz

_\O‘O

T(zo) = T(dz)
(1~2) | %o
OO

alz,) = [ 2 n(az)

z -
Q .

Kl



As a conseguence, %% =z, >0 ; but T(zo) is a decreasing
function of Zé’ hance z_ is also a decreasing function of T :
~the slope of the tangeant decreases as T increases,iand Q is

concave,

Notice the relgtion :

oo
- qlzy) =z, 2(z,) + J T(z) dz
. 4 ) "
Hence : _— 1 o
n(T) = Q/T = Zy g j (z) dz
z
o

il

The relation Q = mT than gives 4dQ = mdT + Tdm, hence z, AP = mdT
+ Tdm, From which we deduce that :

M2
dm _ _ o
m T 0

Thus, m decreases when T increases,

We can also give another interpretation, in terms.of histograms, ‘
or of the distribution P(dz) of the grades (point grades z(x)). In-"
deed, if T  is the maximum tonnage of ore (the limit of T(zo) as
Z, -'0), we may set

Faz) = gﬁ-m(dz)
O

from which we obtain

. ee
™z,) =1, (1 = Bz,)) =T, J Fdz)
' ' a

ca o perey

.To f z Fldz) = Z, T(zo) + T j [1 - F(z)]dz

%o %0

it

alz,)

In this very simple case, the above formulase give the technical
parametrization of recoverable reserves, as a function of a single
parameter : the cubt-off grade e )

In fact - if we suppose that the point grades aie actually



known and that it is possible to perform such a precise selection -
the best possible choice of the volume. to mine, in order to obtain
' a given tonnage T, would be that which maximizés Q, that 1s, the
set {Z(x) = z o} with a z0 ‘guch that T(z ) = }

REMARK : From the point of view of geostatistics, Iasky's simplis—
tic model is misleading. Through the (non-realisfic) hypotheses
made on the regionalized varisble (RV) 4(x) : a well-known and re-
gular function ~-three notions - between which one should discri-
minate very carefully - here become confused :

~ Zoneography
~ Histogram of grades
~ The tonnage/grade curve

With usual RV's, this method would lead to serious overestima=—
tions. Indeed, one never has the right to use the histogram of
point (or core) grades ; at most, one can get awsy with using the
histogram of grades of blocks, i,e, of the smallest units on which
the effective selection will be made (their size depends upon the
plammed mode of operation), Then arises a first problem (which we
know how to solve) ' |

-~ how to predict the histogram of. blocks knowing that of
the cores,

 But that is not all, For the identification of the tomage/grade

curve with the distributidn of blocks to be legitimate, we Would

need :
- the real grades to be perfectly known, at very least

when the operation starts,

~ that no geometric constraints should influence the se-—
lection (in other words, that we would be free to select
each of the blocks independently of the other blocks),

The first condition is never achieved except (approximately)
for Uranium, for which one can measure the radioactivity at the
time of mining, In all other cases, the grade of the blocks will
never be known exactly at the mining stage, but only estimated :
based upon information perhaps richer than that which we have




today, but with a margin of error nonetheless,

As for the second condition, it will rarely (or never) be pos-
sible, in practice, to extract a rich block from just any place
wnile leaving its poorer neighbouring blocks in place, In the case
of an open pit, such geometric constraints become the most impor—-
.tant aspect of the problem,

2 ~ CRITTICAT, FACTORS OF THE TECHNICATL PARAMETRIZATION.

These factors are sﬁggested by the preceding critique, Iet us
point out right away that there will be as many technical para-
metrizations, hence as many possible definitions of the recoverable
reserves, as there are possible modes of mining, For a given mining
technique, the following factors must be taken into account :

a) Geometrical constraints.

[Principle : not everything is possible].

The technological characteristics of a mining technique ofﬁén
impose severe constraints_upon the geometrical form of the volumes
to be mined, This can be expressed with the notion of admissible

contours, Example @

— Open pit : The excavation must respect the natural equili-

brium slope., If ore is extracted at a point x, all material within
the cone TX,-which has its tip at point x (upside down) must also

be extrazcted, and the admissible contours are necessarily a union

of such cones, '

- In subhorizontal bedded deposits, selection of the footwall
and hanging wall limits, We decide to . take only one layer of thick-

ness greater than p. meters,

~ The selection itself may be simple or it may operate at se-~
veral levels, For example, we often have to perform a double se
lection which comprises 3~

~ an extraction selection concerning the choice of the vo=-
lume V to be extracted (which must be an admissible con-
tour). ‘



~ an ore selection (each of the blocks v contained within the
volume V to be eéxtracted can be sent either to the waste or
to the mill, '

The geometric constraints influence each of these selections
in different ways., For example, the selection of ores, at the le-
vel of the elementary blocks v, will most often be independent of
any constraints (each small>block,,once_it'hasdbeen"extracted,“can.- .
be sent to the waste or to the mill, independently of the other
blocks). On the contrary, the extraction selection will genmerally
fall under more or less severe constraints ("the volume V to be
extracted must constitute an admissible contour"), Sometimes
(for example, when considering undergfound mining or in the case
of a shallow stratified formation) we may consider (as a first
approximation) that the volume V to be extracted is constituted by
the union of panels V. of a given size which we can choose indepen—
dently of each other zthis terminology implies that the blocks v,
at whose level the ore is selected, are smaller than the panels -
V3 to be extracted) : in this case, we can talk about a free se-
lection on two levels (level v for the ore selectlon, level VJ
for the extraction selection). ' ’ :

-b) Support.

[Principle : the variables upon which the ore will be mined
out are not the same as those which we used in the explora-
tion. We will mine blocks or pamels, but never cores]. '

For each of these selections, we must defined its support,
which is the size of the smallest unit which might be selected :
blocks v for the ore selection ; panels Vj for thenextractian

- selection, ’

¢) Information,

_The information upon which the selection decisions are (or
will be) effectively made at the various levels (ore amd extrac-—
tion) '

[Principle : the estimation is never identical to reality].



We must carefully distinguish between

~ The present information (available at the moment of the para~'
metrization of reserves : for example, exploration DDH).

- Future or “"ultimgte" information, which will be available when
the final decislon about selection is made, but generally is not
available today. Por example, for the selection of ores, we will
have the results of the blast holes when we will have to decide
whather a block v should be sent to the mill or to the waste.

This gap between present information and future information
is the source of one of the principal difficulties in parametri-
zation : since the actual future selection is based upon a not- -
yet—available future information, we cammot predict its effect
without anticipating,_probabilisticallz, that future information
on the basis of our present information,

This would not be very serious if there  are no constraints
(if the panels can be selected independently), since a global
probabilistic reconstitution would be possible, If there are
strong constraints (open pits, for-example) the prediction neces—
sarily shifts to the local level. It then requires more powerful
tools (transfer functions) and the use of the final information,

d) Criteria,

The criteria used for each of the selections. In all generality
a selection Si (for instance s1 = extraction selection, 32 = ore
selection) requires a criterion of the form fi'(functian of infor-
mation available at the moment of making the effective decision

upon Si)z 25 .

These Z3 constitute the parameters of the technical parametri-

zation of reserves, Hence, in principle, there will be as many pa-
rameters as there are levels of selection, The criteria functions

fi (which we chose shead of time) will have to respect, in principle,
the following condition :

- Whatever the values of the economic parameters in the "pay off"



formula itself (as long as it remains plausible), the economic
optimum must belong to the family of projects defined by the cri-
teria fi .

3 - FREE AND SIMPTE SETECTION.

Here, the deposit is cut up into blocks (or panels) v, and we
can select each of these vy (1 =1y...,N) independently, Among all
of the possible choices of k blocks, the best would be that which
maximizes the total recovered metal v Z)Z(vi) (this is true, re-
gardless of the form of the pay-off formula). But we do not know
the actual grades Z(Vi) and we will have only their estimators
z*(v; ).

We will assume, essentially, that these estimators satisfy the
conditional non-~bias condition,

(3-1) - Bla(vy)/ax(v )] = zx(vy)

At the present time, the estimators Z*(vi) are not yet known,
if we have available (for example) only the results of the widely-
spaced exploration DDH (which gave za, % = 13...30 as results),

For a given panel Vis We should calculate
2(z*(vy) = 2/3)

which is the probability (corditional given Za) thatbthe panel
will be selected in the end, ard estimate T(Z) by

2(z) = v 32 2(2#(vy) » z/2,)

From this point of view, we estimate the global 7(Zz) by summing
the local estimations of each panel—vi. This is a rather heavy pro-
cedure which can be avoided here, It so happens that (if the panels
are numerous enough) the summation of these various conditional
probabilities approximately reproduces (in the stafionary and er-—
godic cases) the non-conditional probability P(z*(V) = z) for a
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panel of size v, i.e, @

T(z) = N v P(z*(v) = 2)

We need only to know the "g priori" distribution law of the
future estimabor, that is : P*(dz). '

From (3-1), E(z(v)/z%(V)) = z*(v),_from'which we‘deduce that
E[za(v)/z*(v) = 2] = E[2*(v)/zx(v) = 7]
This produces'our parametrization (with T, =.NV) :

[
: (z.) =1 m(dg)
(3-2) ° ° ?o.

o
alz,) = 1, I z (a3z)

Zg

The parametrization is similar to Tasky's (1?2) but F¥ is now the
distribution of the future estimator Z*(v), and not that of the
block grades 4(v). What's more, the second relation of (3-2) (but
not the first) presupposes the condition of conditional non-bias

(3-1).

Tn practice, we do not know the distribution F* of the z*(v)
(nor that of the z(v)), except if the future information is already
available (in this case, we use the experimental histogram of the
Z*(vi). But, with the help of certain "invariance" hypotheses, we
can obtain an approximate expression for * from the histogram of
the Za (present information). |

4 -~ FREE SEIECTION AT TWO LEVELS.

Here, we assume that a first selection S1 (extraction), based -
- upon the information I1 (not necessarily available -at the time of
the estimation) chooses the panels V. which are to be extracted,

Next, a second selection 82 (of oresg'chooses, within each panel,



 those blocks Vi which are to be processed, based upon "ultimate"
information Iz, which is richer than I
Iet us assume, at the outset, that I
right awsay., '

y but is presently unknown,

1 Zbut not 12) is available

Under these conditions, for a given choice of panels vy (j e )
assumed to be selected, the reasoning followed in parsgraph 3 can
be applied : the economic optimum will belong to the family of pro-
jeets {z* (VJ .) = z) defined by the application of a single cut-—
off grade =z to the (future) estimators Z*\(v ) of the various
blocks contained within the preselected panels. |

Thus, we should perform the same p “ametrlzatlon as in (3-2)
but panel by panel, and consequently tasing the distribution law
Py (dZ/i ) of the grade Z*(vj) of a block Vy which sweeps through
the Eanel V ¢ this law is conditional, given the actual information
I,. For each panel Vj, we thus obtain a (local) estimation of reco-
verable reserves

'\% :
1:(z,) =V, ¥ (a2/1,)
(4-1) ’=* 3 %o
o . Go
*
Qy(zo) =7y I, (éz/11)

o

The techniques of Disjunctive Kriging are very helpful for
rapidly estimating these transfer functions (or local perametri-
zation of reserves), panel by panel.

' We now have to optimize the choige J of panels Vj (3 € J) to
be extracted. To facilitate the reasoning (although the result
which will be obtained will be more generally applicable), let
us assume, temporarily, that the "pay off" formula is linear,
that is, to within a constant factor :

- B(Q,T,V) =Q = 2T - AV

(in this formula, z and A represent the costs of processing and
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extraction. But we attach little importance to this economic in-
terpretation and simply consider z and )\ as two parameters which
can vary independently)., ’

For a given choice J of panels Vj to be extracted, we have

E(B/J) = [Qj(Z) - z Tj(Z) - AV i]
J

J€

With z and A fixed; a panel j will be selected for extraction
if and only if it brings a positive contribution to the sum above,
The criterion for the selection of panels is thus :

'Qj(z) - 4 Tj(Z)

(4-2) T > A

If we now consider z and A\ as simple variable parameters, we wi
will obtain the following parametrization : for given z and A,
we will retain those panels which verify criterion (4~2), and this
defines the set J = J(z,\) of selected panels. From this set J(z,A)
of panels, we then select the blocks of grade » z (ore selection),
In this'way, we obtain the parametrization

(Q(z,0) = 5 (z)

L 3€3(z,) Aeh

(4~3) RT(z,A) = T T.(z)
JGJ(ZQA) J
v( ’.7\) = 2 V.
~ ‘ : -jGJ(Z’K) J

REMARKS @

1) ZEven though, for simplici ty's sake, we assumed that the
"pay—off" formula is linear, the parametrization (4-3) has a gene-
ral value;<MDre precisely, the techni@ues of convex analysis, which
we will study, show that the projects defined by (4-3) all corres-—
pond to technical optima (for given z and A, each of these maxi-
mizes the quantity of metal Q for fixed T = T(z,\) and Vv = V(z,A).
However, some existing technical optima may escape this parametri-
zation, but : those optima which elude us will always, in practice,
be closely bracketed by projects defined by €4-3), and, for the
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usuai forms of "pay-off" formula, they would have virtually no
chance of corresponding with the economic optimum,

2) We have assumed that the information I for the first se-
lection, is available, If it is not yet available, if we have only
the poorer information I, € I, the Qj(z) and Tj(z) must be consi-
dered as random variables, and formulae (4-3) must be probabilis-
tically enticipated ; such a procedure is possible, but we will

not go into it here,

5 - SIMPLE SELECTION UNDER CONSTRAINT.

The constraint is expressed by stating that any project must
correspond to a contour A € 5 (belonging to the family p of ad- '
missible contours). Examples @

- Open Pit : A € p if A follows the equilibrium slope condi-
tions, hence if A is the ‘union of cones Tyr X € Ao '

-~ Tootwall and Hanging wall : Here,‘the deposit is divided into
penels P., In each panel, the mined portion must be either“empfy“or
a horizontal slice of thickness s a given p (for eiample). To sim-
plify things, we assume that the horizontal slices may be indepen—
dently chosen from the variocus panels Pj (hence, we neglect the
link-up conditions between panels). '

Among the possible projects A of volume V(A) < a given v, we
suppose that the best is that project which maximizes the quantity
of metal Q(A), TFor each v, there are thus one (or several) A,
which verify :

(5~1) sup[q(a) : A e B V(A) = v] = Q(v)

If the grade q(x) is known at each point x, then Q(A) = J g(x)ax

is known for each A, and the above formula will achieve (theo%éti—
cally) the technical parametrization of v, when g(x) is not known,
nothing essential is changed if the information I, -upon which is
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based the choice of contour A, is available right away - which is
what we assume here. Indeed, we formulate, for each x, the esti-
‘mator q*(x) = E(q(x)/I) which satisfies the condition of condi-
tional non-bias. We are back to maximizing I g*(x)dx = @*(4)

: A
(since E(Q(4)/I) = q*(4) for each A € B). We shall therefore
drop the asterisk and write Q(A) instead of Q*(4).

Principle of Convex Aﬁalys@g

In practice, the problem stated in (5-1) is rarely easy to
solve, A tedious combinatorial analysis is often required. Convex
analysis techniques consist then in replacing the inaccessible
curve Q = Q(v), which is increasing but generally not concave, by
its concave hull @ = 6(v), the latter curve being in general more
easy to get ¢ doing soy we may miss a few technical optima (but
they are the most .. interesting ones in an economical sense,
and in any case they are never too far from (known) points of the
concave curve a(v)e '

f Yo

\'4

For each A = 0, let us consider with (Q,v)-coordinates the lines
of equation Q ~ Av = y. When y is great, the curve Q = Q(v) is
entirely within the lower semi-plane limited by this line :

Q(v) = Av ¢ y for any v, For a limit value y = y(A), the line
meets one, or possibly more points of tue curve, but this cuxve
is still within the lower semi~plane (i.e, Q(v) - Av < vy). It
then appears that y(A) is given by :

(5=2) oy = swp {ola) - av(a)} )
AEp -

4
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and that the admissible contour(s) for which this maximum is
met correspond precisely to points where the line Q — AV =,y(h)
meets the curve Q = Q(v) (such points are called "critical points").

The concave hull Q = Q(v), whose explicit expression is

/é(V) = Inf fy(A) + av}
A=20

is thus defined as the £t of critical points of the various lines
obtained when A\ varies. "Iissing" optimal projects correspond to
convex parts of the curve Q(v) and hence are, in general, of little
interest. Except for those few unimportant missing projects, we
have commuted the tedious problem (5-1) into a much easier problem
(5-2) : find, for each value A, the project which maximizes Q-AV.

The recovered reserves can then be parametrized in terms of A @

for each A > 0, the limit line Q - AV = y(\) presents the two ex-
R - - + - +
treme critical points (vh, Qh) and (vh, QA)’ hence vy =V, = Vy

for any other critical point), ard these two extreme points cor-

respond to the two projects A{ and A;. We have then come to the -

following parametrization :

i
<
N
b
h

vH(p) = v(A{) | vo(a) - N

V)=o) Q)

Il
O
LY

>y
~r

vt ang Q+ are decreasing functions and continuous to the left hand
side ; v- and @ are decreasing and continuous to the right hand
side, Moreover : '

v(A) = () - A vT(A) =@ (A) = A v7(A) is convex, decreasing
and continuous, -7

This parametrization is unique, whatever the notations v+, v,
etec,.. because )

VOO Lvty) s T L eta,)  for A

V) PYT(h) s T 1 QT(nh)  for A A,



etc,.)

‘EXAMPLE 1 ¢ Footwall and Hanging wall,

The problem is to define, for each panel Pys the elevationS“gi
and b of the footwall and hanglng wall, For each i, the kriged
grade 25 (x) of the horizontal slice of elevation x is computed,
and 1tAfollows that

Q - AV =:Z)J'i[Z?(X) - A dx
s 11

“ Parametrization in terms of A is obtained by
independent optimization of the various terms :
&, J [2;(x) - A] ax
' %

as we assumed that there was no link-up cons—
traints between panels,

il N For each A, there are a limited number of pos-
- ) sibilities (as 7 (x) < A for any x just above -
C a; or just be low b )+ For each panel :
1 > 1, () = (by-2)
Y o) = [ &) ax
< a5

~then ¢ 2(A) =2 1, (M) 5 QA) =2 Qi(X)
. . ' R
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. EXAMPIE 2 : QOpen Pit design.

Here for equilibrium slope purposes, all cones Px'with tip at
x must be mined if it is decided to mine out point x, therefore
any admissible contour A ¢ p is a union of inside cones Px°~

It can be shown.that :

1) TFor a given value A > 0, there is a
minimum size admissible contour B; and a
maximum size BY which fulfill the maximum
of Q(4) - A V(A) for A € Bs with necessa-
rily B, B (generally, B, = B{, except
for a few critical values of parameter A)e )

2) These contours are nested within each other, when A varies

B{ c B;, s for A > A

3) TFor each point x, there exists a maximum value A(x) for
parameter )\, such that x belongs to the optimal contour B{ as long
as A =< A(x), and no longer for A > A(x). This function A(x),
when known, thus allows parametrization of the optimal contours .
indeed, we have the following criterium : x ¢ B{ if and only if
A(x) = A

4) The relation y ¢ I, con be considered as an ordering rela~
tionship (y is inferior to x with respect to this ordering relation—
ship if mining x implies mining y) and a given function £ is said '
to be increasing with respect to the order T if f(y) = f(x) as’
soon as y € Ty Such a function A(x) which performs the parametri-
zation of optimal contours must necessarily be increasing with res-
pect to the order T, |

More precisely, the following result can be stated : amongst
all I'-increasing functions, the function A(x) is the one that
gives the best approximstion of the grade function z( ), i,e.
the functlon minimizing the 1ntegral '

j [Z(x) - Mx)]% ax
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In other terms again : A(x) is the projection of the grade
7Z{x) on the set of T-increasing functions,

On this fundamental result aré based procedures which allow
practical parametrization of open pit recoverable reserves., The
so-called "CG Open-Pit" program allows (under particular appro-
ximation) calculation of this function A(x). Parametrization is
then obtained as in the zoneography model of ILasky, feplacing the
grade 7(x) by this fumction A(x).

6 = DOUBLE SELECTION UNDER CONSTRATNT.

Mmissible' contours are here pairs (A,A') € p where A' is the
volume given by extraction selection and A « A' is the volume '
given byrore selection, Iet us denote w = (A A') ; the w € g are
then called : "admissible project". For any w = (A,A'), the fol-
lowing notations are considered : ) )

]

V(w) = v(A'")
(w) = V(A)

Volume to be extracted,

Volunme (or.tonhége) of reooveﬁed oré.

e

o(w) = Q(A) : Recovered quantity of metal.

vith V() = T™(w). The general underlying ides= is the du;]lfy bef-
ween the two parametrizations in (V,T) and in (x,e)

Parametrization in (V,1).

For any v = T & O, the function

(6=1) Q(v,T) = Sup {Q(m), = € B Mw) = T, V(=) < v}

is an increasing function of the two variables v, T. This function

provides a possible technical_parametrization (under the only hypo- .

thesis that, between any two projects leading to the same values
of v and T, the best project is the one that gives- the greatest
qaantlty of metal )
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But such a technical parametrization is, in practice, unacces—
sible because of the tedious combinatorial analysis involved, Here
again Q(v,T) should be replaced by its concave hull, which amounts
to using dual parametrization, ‘ )

Qual;parametrizaiion in A,8.

The function Q(v,T) is replaced by its concave hull QCV,T).
For this, to each value of the pairs of parameters (A,8), we.
mst associate (and it is generally possible to do so) the pro-
je¢t or various projects providing the following maximum 3

Y(r,8) = sup {Qlw) - A V(=) - 6 (=)}

- w e p
Such projects correspond to critical points of planes Q ~ AV - 6T
= y(x,e), i.e. to the points where these planes meet the surface
Q= Q(v, 1), this surface being within the semi~space defined by
this limiting plane, Those critical points thus define the concave
hull of Q(v,T), i.e. :

AUV,m) = Inf  {y(A,8) + AV + 6T}
- Ay020 - -

and they give, as functions of'x and 0, the following technical
parametrization : ' : .

Q=0n8) 5 T=1(708) 3 V=1V(r0)

In practice, one parameter is fixed, e.g. © = 6, and the parame- -
trization in A is done as was shown in the preceding paragraph.
Then 6 is made variable, amd the required parametrization in (A,8)
is thus obtained, ST .

EXAVPIE {1 ¢ Defining footwall and hanging wall with overburden,
With the notations of section 5, it comes here :

2la) - % V(o) = 6 ) = 3 Ul 2%()ax = A(b) = 8(bon .)}
| T Lllg °1 P78

As the limits (ai’bi) are determined independently‘from one panel
to another, the following optima :
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b.

J'l z*(x)ax - (A+0) by + 6ay

a'j_ . )

mist be determined independently for each panel Pi ¢ there are
but a small number of possibilities, since Z*(x) < 6 for eleva~
tion x > a, and Z*¥(x) = 6 for x < a’; similarly 2zZ*(x) < A+6 for
x < b and Z*(x) > A+8 for x > b. The following parametrization

is thus readily obtained :
r

oy e e
Q(n,8) =8 Z)J Z*(x) dx
ida;

| ﬁT(Me) = 8 713 (}_)i"ai)

v(1,8) = ST b;
> b

~

EXAMPIE 2 ¢ Defining footwall and hanging wall with precise se-~
lection,

Iet us consider an uranium deposit. Within each
panel, an horizontal slice (ai’bi) is recovered
ok (whatéver overburden may resull), Then at the

mining stage a precise selection of ore is made
- on small blocks of thickness dx,

On these blocks v, the criterium 7%(v) = 0 al-

5 lows the technical parametrization of a given
volume {a slice ai,bi) already mined out, This
leads to the transfer functions of each hori-
zontal slice (x, x+dx) for each panel Pi(of
surface Si)

Ti(Xie) =8; 8% Jm F:(X;dz)
6

03 (x50) = 8, 8% | 5 Fi(xsa)
.

4

"
Tmnitfdhmsfw“meshce(%f%)

b.
X ,
%-Avo"9%=SiL (Q(x30) ~ @ T;(x36) - A) dx
i



For each given value 6, ay and bi are given by the procedure detailed
in section 5 (replacing z*(x) with Q (x,8) -~ o T, (x48)). Therefore

A and b appear as functions of A ard 0, and by summing up, the
parametrlzatlon Q(r,0), T(x,e), V(A,68) is obtained.

EXMPIE : Qpen Pit design with free selection of ore,

Each admissible contour being necessarily a union of blocks v,
the problem is considered for each particular block v, For each
block v (centred at x, x ¢ E where E is finite), the tremsfer
functions 7(x,6) and Q(x,0) are computed, For each given value @,
the problem then reduces to a single A-parametrization problem
with z(x) = q(x,8) - & 2(x,0).



