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.0 ~ INTRODUCTION

Technical parametriéation of recoverable ore reserves is in-
tended as a tool for choosing among various technically feasible
projects, that which has the greatest chance to lead to the best
results under given economical conditions.

Each project being considered as a function of one or two
purely technical parameters (e.g. cut-off grades, or tohnage of
ore to be processed, or teonnage of waste to be removed), the tech-
nical parametrization consists of selecting a fawily of such pro-
jects which are optimal in a purely technical sense(i.e, indepen-
dently of any economic consideration). This femily will have to
possess the following property : whatever the economic conditions
of the moment (price of metals, costs of extraction and processing

' etc..), and the formulas to be used for the economic value, the

economically optimal project (whatever it may be) must necessarily

fall within this family of technically optimal projects.

This separation (or preliminary technical parametrizdtion)
is not always possible to make rigourously, but it is often possible
8s. a first approximation; In what follows, we will place ourselves

'in the simple case in which the economic value of a project is a

function of the form
B(Q,T,V)

: Quantity of metal (or of useful material)

Pl
B o

Tonnage of ores to be prbcessed
- V : Total tonnage to ve extracted (ore + waste)

In order to parametrize the ore reserves, we do not need to

- explicitly know the function B (which cen thus, at this stage, re-

main indeterminate). We only assume the following (reasonable)
hypothesis that B is an incressing function of ¢ and a decreasing
function of T and V.,

At that point, technical parametrization becomes possible. Among
a2ll of the possible projects involving the same tonnage T of ore
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t0 be processed and the same volume V to be mined, the bgst will

. always be the one which maximizes the quantity of recovered metal

Qe

As a function of T and V,>we will thus define the project which
' maximizes Q at fixed T and V, and we will set down the correspond—

ing function

Q = Q(z,V)

which will prbduce the parametrization which we are looking for,
To choose the economically optimal project, we have only to deter-
mine (once the payable function B is known) the values of T and V.
which produce the maximum of B[Q(T,V), T, V].~

In practice, we will often replace T and V by two other para-—
meters z and A (representing the cut-off grades), ahd we will set
up a parametric representation of the family of technical optima
of the form :

Q = Q(z,2)
P = T(zyA) \
V = V(z,A)

The economic optimization will then (once B is known) consist

- of choosing the values of z znd A which maximize the expression 3

B[Q(z,7), T(zyA)s V(z,A)]

I - INTRODUCTIVE INTUITION : ZONEQGRAPHY AND HISTOGRAMNM.

Iasky'é Tonnage/Grade curve,

Around 1950, S. Iasky wondered how the recoverable reserves of
porphyry copper varied as a function of the usual selection crite-
rion (the cut-off grade in Cu %). He came up with the capital no-
tion of grade/tomnage curve, '

Lasky started from a 'simple representation of his porphyry
copper deposit : the grade z(x) at point x was (implicitly)
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considered as a continuous and regular function which, for example,
decreased regularly as one wmoved zway from the rich héart of the
pvorphyry (todey, we would attribute this behaviour to a trend, ra—-
ther than to the grade itself). He assumed this function to bé known
(perfectly, or to a very close approximation), and his point of view
was that of a zoneography : ' | | '

If the cut-off grade of Cu is Zyo e
we will mine the domain whosc limits
are the iso~grade Zys i.e,

B, = {x : z2(x) = z

o o}

and with a tonnage snd a grade of

(1-1) z) = [ a@@  alz) = [ 260 aax)
B B

Zo %o

with : a{dx) = dx, or, more precisely; p(x) dx, where p is the

density., Lasky obtained T, Q, and m = Q/T curves psrametrized by 2,

z - - - i .

0% ' m Q and T a:e'évidently decreasing (and

m increasing) with Ze

a - We can thus eliminate z, and set

. ad) 2 Q =0o(m) , m=n(T), ete...

[Ex : the so-called Iasky law of the
M form m= g - g log T7]. ’

i * Q(7) is increasing and concave,

Indeed, if T(dz) is the tonnage which lies between the isoe-
grades z ard z + 4z @ '

00

o(z)) = [ o(as)
(1-2) > %o
00

Q(Zo) = { 2 7(dz)



As a comsequence, %%,= z, >0 3 but.T(zo) is a decreasing
function of Zyy hance zo.is also a decreasing function of 7T :
the slope of the tangeant decreases as T increases, and Q is

c w

concave,
Notice the relation :

: oe
alzy) =z, 2(z,) + J ?(z) dz .
) Z
0

Hence ¢
n(T)

I

L co ‘.. ‘
Q/T =z, +-% J (z) dz
z

o

The relation Q = mT than gives dQ = mdT + Tdm, hence %, d? = mdT

+,dm, From which we deduce that :

M~-2
“dm _ 0
ar -~ g 50

Thus, m decreases when T increases,

i

We can also give another interpretation, in térms of histograms,
or of the distribution F(dz) of the grades (point grades %(x)). In-"
deed, if T  is the maximium tonnage of ore (the limit of T(zo) as

z_ - 0), we may set

o -—
) F(dz) ='§l ™dz)
’ o
from which we obtain L
. so
2(z,) = T, (1 - Fzy)) = 1, f— F(dz)
, S 4

° o0

o0
Q(zo) = D j z F(dz) =z T(zo)‘+ 2, J [1 - ¥(z)]dz
Z

o _ ZO

In this very simple case, the above formulae give the technical
parametrization of recoverable reserves, as a function of a single

parameter : the cut-off grade Zgoe

In fact — if we suppose that the point grades are actually
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¥nown and that it is possible to perform such a precise selection -
the best poss1ble choice of the volume to mine, in order +to obtain -
a given tonnage T, would be .that which maximizes Q, that is, the
set {z(x) = zo} with a zo'such that'T(zo) = P, S )

REEARK ¢ From the point of view of geostatistics, Iasky's simplis—
tic medel dis misleading. Through the (non-realistic) hypotheses

made on the regionalized -variable (RV) z(x) : a well-Xnown and re-
galer function - three notions — between which one should d.sciie
minate very carefully - here becomg confused

e~ ZOneography
~ Histogram of grades
~ The tonnage/grade curve

With usual RV's, this method would lead to serious overestims—
tions., Indeed; one never has the right to use the histogram of
point (or core) grades ; abt most, one can get away with using the
hiutogram of grades of blocks, i.,e, of the smallest units on which
the effective selection will be made (their size depends upon the

plammed mode of operation), Then arises a first problem (which e
know how to solve) 3 ' '

~ how to predict the hlstOﬁrau of blOCku knowing that of
the cores.

But that is not all, ¥or the identification of the tommage/grade

-curve with the let¢lbuﬁlon of blocks to bp legitimate, we would

need = the real grades to be perfectly known, at very leaot
when the operation starts.
-~ that no geometric constraints should influence the sSe= -
lection {in other words, that we would be free to select
each of the blocks independently of the other hlocks),

The first condition is never achieved except (approximately)
for Uranium, for which one can measure the radioactivity at the
time of mining., In all other cases, the grade of the blocks will

?

never be known exactly abt the mining stage, but only estimated
Lased upon inforwation perhaps richer than that which we have
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today, but with a margin of error nonetheless,

As for the second condition, it will rarely (or never) be pos—
sible, in practice, to extract a rich block from just any place
while leaving its poorer nelghbourlng blocks in place, In the case
of =n open pit, such geometric constraints become the most impor-
tant aspect of the problem,

2 -~ CRITICAL FACTORS OF THE TLCHNICAI.PARALETRIZATION

These factors are suggested by the preceding critique, Iet us

- point out right away that there will be as many technical para-
metrizations, hence as many possible definitions of the recoverable
reserves, as there are possible modes of mining., For a given mining
technique, the following factors must be taken into account :

a) Geometrical constraints.

[Principle : not everything is possible].

The technological characteristics of a mining technique often
impose severe constraints upon the geometrical form of the volumes
to be mined, This can be expressed with the notion of adm1331ble
contours. Example 3

- = Open pit : The excavation must respect the natural equili-
brium slope, If ore is extracted at a point x, all material within
the cone TX’ which has its tip at point x (upside down) must also

be extracted, and the adm1331ble contours are necessarily a union
of such cones,

-~ In subhorizontal bedded deposits, selection of the footwall
and hanging wall limits, We decide to take only one layer of thick-
ness greater than p. meters.

- The selection itself maJ be simple or it may 0perate at se-
veral levels, For example, we often have to perform a double se
Jection which comprises 3 ' '

~ an eitraction selection concerning the choice of the vo-
lume V to be extracted (which must be an admissible con-
tour).




‘'~ an ore selection (each of the blocks v contained within the

volume V to be ¢xtracted can be sent eifher to the waste or.
to the mill,

The geometric constraints influence each of these selections
in different ways, For exampie, the selection of ores, at the le~
vel of the elementary blocks v, will most often be independent of
any constraints (each small block, once it has been extracted, can
be sent to the waste or to the mili, independently of the other
blocks), On the contrary, the extraction selection will generally
fall under more or less severe constraints ("the volume V to be
extracted must constitute an admissible contour"). Sometimes
(for example, when.éonsidering undergrognd mining or in the case
of a shallow stratified formation) we may consider (as a first
approximation) that the volume V to.bebéxiracted is constituted by
the union of panels V. of a given size which we can choose indepen-
dently of each other 2this terminology implies that the blocks v,
at whose level the ore is selected, are smaller then the penels
Vj to be éxtracted) ¢ in this case, we can.talk about a free se~

lecticn on two levels (level v for the ore selection, level v
for the extraction selection).

d

b)i Support.,

[Principle : the variables upon which the ore’ will be mined
out are not the same as those which we used in the explora-
tion. We will mine blocks or panels, but never cores].

For each of these selections, we must defined its support,
which .is the size of the smallest wuit which might be selected 3

blocks v for the ore selection ; panels Vj for the rextraction
selection,

¢) Inforuztion,

The information upon which the selection decisions are (or
will. be) effectively made at the various levels (ore ard extrac—
tion)

.

[Principle : the estimation is never identical to reality].




P e
i

We must carefully distinguish between -3 - B

- Theqpresenﬁinformation'(évai}able at the moment of the farér
metrization of reserves : for example, exploration DDH). |

- Future or “ultimate" information, which will be available when
the final decision about selection is made, but generally is not
available today. For example, for the selection of ores, we will
have the results of the blast holes when we will have to decide
whather a block v should be sent to the mill.or to the waste,

This gap between present information and future information e
is the source of one of the principal difficulties in parametri- —
zabion : since the actual future selection is based upon a not- L
yet—-available future informstion, we cannot predict its effect R
without anticipating, probabilistically,'that future information

on the basis of our present information,

‘This would not be very serious if there are no constraints

(if the panels can be selected independently), since -a global
probabilistic reconstitution would be possible, If there are
strong constraints (open pits, for example) the prediction neces-
sarily shifts to the local level. It then requires more- powerful -
tools (transfer functions) and the use of the final information, —

d) Criteria,

The criteria used for each of the selections. In all generality ?J
a selection Sy (for instance S, = extraction selection, S, = ore’ rﬁ
selection) requires a criterion of the form 5 (function of infor- il
mation available at the moment of making the effective decision

upon S;)= z;. - ng

These z; constitute the parameters of the technical parametri- fﬂ
zation of reserves, Hence, in principle, there will be as meny pa=-

rameters as there are levels of selection. The criteria functions FH
£, (which we. chose zhead of time) will have to respect, in principle,
the following condition : ' o ' Y

~_ Whatever the values of the econonic paraméters in fhe "pay off"




. formula itself (as long as it remains plausible), the econonic

optimum must belong to the family of projects defined by the.cri-
teria £, . ' ' : '

3 ~ FRES AND SILPIE SEIRCTION.

Here, the deposit is cut up into blocks (or panels) vi and we
can select each of these vy (1 = 1,¢..,N) independently, Among all
of the possible choices of k blocks, the best would be that which
meximizes the total recovered metal VVZfz(vi) (this is true, re—
gardless of the form of the pay-off formula). But we do not know

the actual grades Z(vi) and we will have only their estimators
z*(vy). ' '

We will assume, essentially, that these estimators satisfy the

conditional non-bias condition,

(3-1) E{2(v ) /2% (v;)] = 2=(v3)

At the preseﬁt time, the estimators Z*(vi) are not yet known,
if- we have available (for example) only the results of tbe widely-
spaced exploration DDH (which gave By @ = 1y...,m @S results).

-

Por a given panel Vis We should calculate
p(zx(v;) > 2/2,) |

which is the probability (corditional given za)‘thatbthe panel

will be selected in the end, and estimate T(Z) by

™3) =v 213 P(z*(vy) 2 z/za)

From this point of view, we estimate the global T(2z) by summing
the local estimations of each panel vj. This is a rather heavy pro-
cedure which can be avoided here, It sc happens that (if the panels
are numerous enough) the summation of these various conditional
probabilities approximately feproduces (in the stationary and er-
godic cases) the non—conditional probability P(z*(V) 2 7) for a
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panel of size v, i,e, 3

™Mz) =NV f(z*(v) z_i)

We need only to know the "a priori" distribution law of the
future estimator, that is : P*(dz). o ‘

From (3-1), E(z2(v)/2*(V)) = zx(v), from which we deduce that

E[2(v) /2%(¥) > 7] = B +(v) /2%(v) > 2]

This produces our parametrization (with T, = Nv) :

I}

oD
2(z,) = T, Jz Px(az)
(o

(3~-2)

o0
a(z,) = 1, ] z. 7*(az)
Z, '

The parametrization is similar to Iasky's (1=-2) vut B is now the
dis tribution of the future estimator Z*(v), and not that of'the
block gredes Z(v). what's more, the second relation of (3~2) (but
not the first) presupposes'the condition of conditional non-bias

'(3-1). ’

In practice, we do not know the distribution F* of, the zx(v)

(nor that of the z(v)), except if the future information is already

available (in this case, we use the experimental histogram of the
z%(v;)e But, with the help of certain "invarismce" hypotheses, we
can obtain an approximete expression for F* from the histogram of
the Z, (present information). .

4 ~ PREE SEIECTION AT TWO TEVEILS.

Here, we assume that a first seleciion S1 (extraction), based
upon the information I1 (not necessarily available at the time of
the estimation) chooses the panels V. which are to be extracted.
Next, a second selection 82 (of oresg chooses, within each panel,




those blocks vji wiiich are to be processed, based upon naltimate™
information 12, which is richer than I
Iet us assuume, at the oubset, that I
right away. -

s but is presently unknowm, -

1 2buﬁ not 12) is available

Under these conditions, for a given choice of pénels Vj (j e J)
assumed to be selected, the reasoning followed "in paragraph 3 can
be applied : the economic optimum will belong to the family of pro- -
jeets {Z*(vj'i) > z) defined by the application of a single cut-
off grade z to the (future) estimators Z%-(vji) of theIVarious

blocks contained within the preselected panels,

.Thus, we should perform the same parametrization as in (3-2)
but panel by panel, and consequently using the distribution law -
Fj(dz/i1) of the grade z*(vj) of a block Vs which sweeps through
the panel vj : this law is conditional, given the actual information
I1. For each panel Vj’ we thus obtain a (local) estimation of reco-

verable reserves .
. : : oD

o.(z ) =v. | F (az/1.) L ‘
itY0’ T Y3 | J 1
(4-1) Zo :
- o0
~ *
6]

The techniques of Disjunctive Kriging are very helpful for
rapidly estimating these transfer functions (or local perametri-

zation of reserves), panel by panel,

We now have to optimize the choise J of panels V. (j € J) to
be extracted. To facilitate the reasoning (although the result
which will be obtained will be wore generally applicable), let
us assume,'temporarily, that the "pay off" formula is linear,
that is, to within a constant factor :

B(QyTyV) = Q = 2T — AV

(in this formula, z and A represent the costs of processing and
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extraction. But we attach little importance to this economic‘iny
terpretation and simply consider z and A as two parameters which
can vary independently).

PN ‘

For a given choice J of panels Vj to be extracted, we have

CE(®/AI) = B [a.z) -z 1.(2) - AV ]
s d J
J€d
With z cvd A fixed, a panel j will be selected for extraction
if and only if it brings a positive contribution to the sum above,
The criterion for the selection of pamels is thus :

(4~2) : Qa(z) v.?_?a(z) = A
_ i .

If we now consider z and A as simple variable parameters, we wi
will obtain the following parametrization : for given z and A,
we will retain those panels which verify criterion (4-2), and this
defines the set J = J(z,A) of selected panels. From this set J(z,A)
of panels, we then select the blocks of grade = z (ore selection),
In this way, we obtain the parametrization - .

fatzn) = = (2)
ne Jed(z,1) 3 :
..." ‘JT ’ = m,
(4-3) (z,2) - 5§J(Z’k) 5(2)
V(zyA) = T V.,
\ jEJ(Z,K) J

REJARKS @

1) Even thoﬁgh, for simplicity's sake, we assumed‘fhat the
"pay—-off" formula is linear, the parametrization (4—3)'has'a gene-
ral value. ijore precisely, the techniques of convex analysis; which
we will study, show that the projects defined by (4-3) all corres-—
pond to technical optima (for given z and A, each of these maxi-
mizes the quantity of metal Q for fixed T = T(z,\) and V = V(z,17).
However, some existing technical optima may escape this parametri-

zation, but : those optima which elude u$ will always, in practice,
be closely bracketed by projects defined by §4~3), and,'for the
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.usual forms of “"pay-off" formuls, they would have virtually no

chance of corresponding with the economic optinum,

2} We have assumed that the information I, for the first se-
lection, is available, If it is not yet available, if we have only
the poorer information I c I1 the Q {(z) and T.(z) must be consi-
dered as random.varlables, and formulae (4-3) must be probabilis-
tically anticipated ; such a procedure is possible, but we will

not go into it here,

5 - SIMPLE SETACTION UNDER CONSTRAINT.

The constraint is expressed by'stating that any pioject must
correspond to a contour A € p (belonging to the famlly 5 of ad-—
missible contours). Examples :.

~ Open Pit ¢ A € p if A follows the equilibrium slope condi-
tions, hence if A is the union of cones TX’ X € A.

- Footwall and Hanging wall : Hefe, the deposit is divided into
panels P., In each panel, the mined portion must be either empty or
a horizontal slice of thickness » a given p (for example). To sim-

plify things, we assume that the horizontal slices may bé indepen-~
dently chosen from the various panels Pj (hence, we peglect the
link-up conditions between panels).

Among the possible projects A of volume V(A) < a given v, we
suppose that the best is that project which maximizes the gquantity
of metal Q(A). For each v, there are thus one (or several),Av
which verify :

(5-1) sup[Q(a) : A€ p, V(4) = v] = Q(¥)

If the grade g(x) is known at each point x, then Q(4) = I g(x)dx

_ A .
is known for each A, and the above formula will achieve {thecreti-
cally) the technical parametrization of v, ihen q(x) is not knowm,
nothing essential is changed if the information I, upoh wvhich is.



based the choice of contour A, is available right away — which is

what we assume here. Indeed, we formulate,. for each x, the esti-
nmator q*(x) = E(q(x)/I) which satisfies the condition of condi-
tional ncn-bias, e are ‘back to maximizing j g*(x)ax = Q*(4a)

: A
(since E(Q(4)/I) = q*(A) for each A € g). Ve shall therefore
drop. the asterisk and write Q(A) instead of Q*(4).

Principle of Convex Analysis

In practice, the problem stated in (5-1) is ra}ely easy to
solve. A tedious combinatorial anélysis is often required. Convex
analysis technigues consist then in replacing the inaccessible
curve Q = Q(v), which is increasing but generally not concave, by
its concave hull q = Q(v), the latter curve being in’ general more
easy to get : doing so, we mey miss a few technical optima (but
they are the most interesting ones in an economical sense,
and in any case they are never too far from (known) points of the
concave curve Q(v)

I ¥o

/4 ] . v oo

For each A 2 0, let us consider with (Q,v)=-coordinates the lines
of equation Q ~ Av = y. Vhen y is great, the curve Q = Q(v) is
entirely within the lower semi~plane limited by this line :
Q(v) = Av ¢ y for any v. For a limit value v = yv(A), the line
meets one, or possibly more points of ti.e curve, but this curve
is still within the lower semi-plane (i.e., Q(v) - AV < ¥). It
then appears that y(A) is given by :

(5-2) | y(2) = sup  {q(a) - av(a)}
, Aep .

b

I3
L
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and that the admissible contour(s) for which this maximum is
met correspond precisely to points where the line Q ~ Av = y(A)
meets the curve Q = Q(v) (such points are. called "critical points").

The concave hull Q = Q(v), whose explicit expression is

Av) = I fy(A) + av)
A=0
is thus defined as the st of criticalAﬁoints'of the various lines
obtained when A varies. "ilissing" optimal projects correspond to
convex parts of the curve Q(v) and hence are, in general, of little
interest, Except for those few unimportant missing projects, we
have commuted the tedious problem (5-1) into a much easier problen

(5-2) : find, for esch value A, the project which maximizes Q-AV.

The recovered reserves can then be parametrized in terms of A @
for each A = 0, the limit line Q - AV = Y(A) presents the two ex-
treme critical points (v ; Qh) and (VR, Qy Y, hence VA sV, < vx
for any other critical p01nt), ard these uwo extreme points cor-

respond to the two projects AK and AX’ We habve then come:'to the
follow1ng parametrization :

It

vi(a) = v(a) (W

v(A"}:)
Q(A;)

i

Q (n)

ay) T

vt and Q+ are decreasing functions and continuous to the left hand

side ; v and Q  are decreasing and continuous to the right hand
side, Moreover :

y(a) =" (a) - a V+(h).=_Q~(x) - A v (A\) is convex, decreasing
and continuous, -

This parametrization is unique, whatever the notations v', v 7,
_ete,.. because | -
v LTy s TG L aT(h) for AT A,

V) YTy s @T() A QT(Gy)  for A i'xo
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EXALPIE { ¢ Footwall and Haﬁging wall,

- The problem is to define, for each panel P ’ the elevations a3
- and b of the footwall and hanging wall, For each i, the kriged
grade z (x) of the horizontal slice of elevation x is computed,

end it follows that

a_;;_._—-.—.-—--—-_

N’

Q -~ Av ==Z>j'l

Parsmetrization in terms of ) is obtained by
-independent optimization of the various terms

as we assumed that there was no llnk?up cons-—
traints between panels,

For each A, there are a limited number of pos-—
sibilities (as 2 (x) < A for any x just above
a. or just below bi)‘ For each panel :

L

then

L3
L

b,

i7ey

Ja
i

[2;(x) = A] ax

i *
[ 71250 - a) ax

oD
Q; () = J~1 7; (x) dx
2y

r(A) = 73 ()

?

Q)

-(this results from v'(A) = v~ (}) = v+(x0):for hf? Aot

—

eté;;)

. |

ZQ;(\)

1
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- EXALPIE 2 3 Open Pit design,

Here for equilibrium slope purposes, all cones I, with tip at .
x must be mined if it is dec1ded to mine out p01nt x, therefore
any adnissible contour A ¢ p is a union of inside cones Px“

It can be shown that :

1) TFor a given value A = 0, there is a

minimum size admissible contour B; and a
maximum size B; which fulfill the maximum
of Q(A) - A v(A) for A € g, with necessa-

rily B, ¢ B (generdlly, B, = ;, except
for a few crltlcal values of parameter Ao )

2) These contours are nested within each other, when A varies
By © By, » for A > A

3) For each point x, there exists a maximum value A(x) for
parameter A, such that x belongs to the optimal contouxr BA as long
as A =< A(x), and no longer for A > A(x). This function' A(x),
vhen known, thus allows parawetrization of the optimal contours :
indeed, we have the following criterium : x ¢ B{ if and only if
Alx) = 2. '

4) The relation y ¢ Px can be considered as an 5rdering rela~
tionship (y is inferior to x with respect to this ordering relation-—
ship if mining x implies mining y) and a givén function £ is seaid
%o be increasing with respect to the order T if £(y) = f(x) as
soon as ¥y € I'ye Such a function A(x) which performs the parametri-

zatlon of optlmal contours must necessarily be increasing with res-—
pecst to the order Te

ljore precisely, the following result can be stated : Amongst
all I'—~increasing functions, the function A(x) is the one that
gives the best approximation of the grade function. Z(x), i.e.
the function mxn1m1z1n5 the integral

-J‘[Z(x) - Ax)]? ax
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In other teruws again : A(x) is the projection of the grade _
7Z(x) on the set of I'~increasing functions,

. ]
On this fundamental result are based procedures which allow .
practical parametrization of open pit recoverable reserves, The ,
so-called "CG Open~Pit" program allows (under particular appro- k
"~ ximation) calculation of this function A(x). Parametrization is -
then obtained as in the zoneograpny model of ILasky, replacing the j?
grade 7(x) by this function A(x). _ -
6 - DOUBLE SEiECTION ﬁHDER CONSTRATNT. -
Admissible contours are here pairs (A,A') € p where A' is the ~—
volume given by extraction selection and A < A' is the volure —_
given byrore selection, Iet us denote w = (A,A') ; the w € p are -
then called : "admissible project", For any w = (A,A'), the fol-
lowing notations are considered : ) } .
V(w) = V(A') : Volume to be extracted. ‘ —
Mw) = V(4a) : Volume (or tonhége) of recovered ore, 5~!
o(w) = Q(a) : Recovered guantity of metal.

T
with V(w) = T(=). The general underlying idea is the -duality bet- uj
ween the two parametrizations in (V,T) and in (x,e) _
Parametrization in (V,1). .}

_ : d ~I
For any v = T = 0, the function ' ' -

(6-1) Q(v,T) = sup {Q(w), w € By T(w) = Ty V(w) < v} 4

is an increasing function of the two variables v, T, This function if
provides a possible technical parametrization (under the only hypo-

thesis that, between any two projects leading to the same values Tﬂ
of v and T, the best project is the one that glves the greatest
uantity of metal.} ' ' =
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.But such a technical parametrization is, in practice, unacces—

sible because of the tedious combinatorial analysis involved., Here . -

again Q(v,T) should be replaced by its concave hull, which amounts
to using dual parametrization, )

Dual parametrizstion in A,8.

The function Q(v,T) is replaced by its concave hull Q(v,T).
For this, to each value of the pairs of parameters (A,8), wé
must associate (and it is generally possible to do so) the pro-~
Ject or various projects providing the following maximum :

v(2,8) = sup {o(w) = A V(=) - 8 (x)}
- ®w € pB
Such projects correspond to critical points of planes Q - AV - 67T
= y(ry8), i.e. to the points where these planes meet the surface
Q = Q(v,T), this surface being within the semi-space defined by
this limiting plane, Thosé critical points thus define the concave
hull of Q(V,T), i.e. : |

AUV,T) = Inf {y(2,6) + AV + T} | .
- R,GZO - :

and they give, as functions of A and @, the following teéhnical
parametrization : '

Q=Q(r8) 3 T="1(rs8) 3 V= v(x,0) | -~

"In practice, one parameter is fixed, e.g. 6 = B0 and the parame=
trization inh A is done as was shown in the preceding paragraph.

Then eo is made variable, and the required parametrization in (3,9)
is thus obtained, ST ' ' T

EXAIPIE 1 ¢ Defining,fbotwall and hanging wall with overburden.

With the notations of section 5, it comes here

1 -
Aw) = A Ve) -6 2(w) =2 [J z¥(x)dx - a(by) -~ e(bi-ai)]
: a; e .

i

As the limits (ai,bi) are determined independently from one panel °
to another, the following optima



b,

I°

8

must be determined independehtly for each panel Pi ¢ there are
but a small number of possibilities, since %%(x) < 6 for eleva-

~20 - o

Z*(x)dx‘— (A+8) b; + 63y ' T

tion x > a, and 2*(x) = 6 for x < a’; similarly z*(x) < A+ for ~ |
x < b and z*(x) = A+6 for x > b. The following parametrization -
is thns readily obtalned : ' .

EXAUPIE 2 'Defining footwall and hanging wall with precise se= —

Q(r,8) = szj 7%(x) dx :

| a; i
4 2(x,0) = 8T (by-a,) -
i =
V(%,8) = §T b, N

. 5 -
. -

lection,

~

T, (x;0)

Q4 (x;0)

.

Then it follows for the slice (ai’bi)
b

Q= AV, -0 1y

i |
= 85 Ja (Q;(x58) - 8 7;(x58) - 1) dx

Iet us consider an uranium deposit. Within each”“
panel, an horizontal slice (al,b ) is recovered ™
(whatéver overburden mey result), Then at the !

- mining stage a precise selection of ore is made--

on small blocks Qf thickness &x, ‘ —

On these blocks v, the criterium z*x(v) = 6 al-~
lows the technical parametrization of 2 given |
volume (a slice ai,bi) already mined out, This
leads to the transfer functions of each hori- |
zontal slice (x, x+dx) for each panel Pi(of -
surface Si) ~

= 54 Bx‘rm Fz(x;dz)
o

= 5; &x fx z Fz(x;dz) | ’ -

0

i



. For each given value 6, a; - and b are given by the procedure detailed

in section 5 (replacing Z*(x) w1th Q; (x,08) - 8 T (x,8)). Therefore-
ay and b appear as functions of A and 6, and by sununing up, the
parametrlzatlon Q(n,8), T(A, e), v(n,0) is obtained,

EXASPIE 3 ¢ Open Pit design with free selection of cre,

Each admissible contour being necessarily a union of blocks v,
the problem is considered for each partlcular block v, For each
block vy (centred at x, x ¢ E where E is finite), the transfer
functions T(x,0).and Q(x,8) are computed, Por each given value 6,
the problem then reduces to a single A-parametrization problem
with z(x) = q(x,8) - 6 T(x,0).
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GAUSSTIAN ANAIORPHOSIS MODELS

A.. MARECHAT,

"I - INTRODUGTION

In practical problems of estimating recoverable reserves it is
necessary vo estimate the average aensity function of the variables
within specified volumes (e.g. small blocks or large blocks). This,
in its turn, requires the definition of multivariate probabiliétic
models (i.e, the joint density functions of two or more random
variables). In addition to this, since the quantities to be esti-
mated are always the a#erage grades of blééks it is necessary to
be 2ble to determine the distribution law of the block grades from
the distribution of sample grades. lloreover, the models of these
distributions need to be general enough to describe the wide va-
riety of distributions encountered in practice without requiring
the estimation of too many parameters. .

One possible solution to this kind of non linear problem is to
carry out a cond itional simulation of the deposit, Since mest. of
the algorithms used for simulations generate data having a normal
(i.e. Gaussian) distribution, it is necessary at the outset of the
study to transform the Gaussian simulated variates so that they
have the same distribution as the experimental data (il.e. so that
their histogram is the same as the experimental histogram). For
example, for a lognormal random variable, the transformation func-
tion (which we shall call the anamorphosis function in the fol-
lowing séctions) is simply the exponential function,

, As it happens, the models implicitly used in our simulation
algorithms satisfy the conditions listed above and alsc possess
a number of interesting properties associated with the properties
of the normal distribution, Under these corditions it is natural
to choose a (Gaussian anamorphosis model as a first attempt of a

model, firstly because of the functional simplicity of the normal



distribution, and secondly because it clarifies some of the pro-
blems arising in conditional simulations, .

II ~ BEVIZY OF THE NORMAL (GAUSSIAN) DISTRIBUTION.

II~1 - Review of the properties of random functions (r.f.)

¥

A random function can be defined by its spatial distri- _
bution function,that is the Joint probability density function of -
N random variables Z(xi) taken at N sample points xit'The problems /
we shall study will always consider only a finite number N of sam-
ple points of the random function, so that we shall only have to
make use of the multivariate probability laws rather than of the
full spatiai law. The multivariate distribution law (i.e. the dis-

tribution function of a vectorial random variable (Yi,Ye,..Q,Yﬁ) is ’

F(Y1,.-.’YN =' PrOb(Y1 < y-l’-oo’Y:N < YN)
Two types of distribution functions can be derived from this mul~
tivariate distribution function :

(1) +the marginal distribution function
By (y5) = Plaoo, 400,000 y¥5000nst)

i.e, the distribution of the random variable Yy cénsidered by it-
self,

(ii) +the conditional distribution functions

F(Yl/ya) = PI‘(Y;L < yj_/Yj = y'])

The random variable defined by this distribution function is
the conditional random variable Yi given that Yj takes the value
Y and will be noted (Yi]Yj =¥y)e

A rendow. function Y(x) is said to be totally Gaussian if all
of its vectorial components have a multivariate normal distribu-~
tion., In this case 211l of its marginal distributions will also
be Gaussian, ‘ '




From now on, we will only consider stationary models with a
standard normal distribution, that is, those models where all the
marginal distributions P(Y(x) < y) are identically N(0,1) (i.e.
normally distributed vith mean O and variance i) '

I1I-2 - Multiveriste Normal Distribution,

- An N—-dimensional Gaussian random variable which has been
centred and normed (i.e. mean 0, variance 1) is.completely defined
by a positive definite matrix H which gives the correlations bet-
ween the components Yi" .

< i if 1=

T {pij} TRETE Pag T B(Y; Yj) if i # 3

In the pérticular case where this random variable is associated
with a stationary random function, we know that the correlation co-
efficient pij of any two components Yi and Y, is given'directly
by the covariance function p(h) of the random function :

p(h)
p(xi—xj)

i

Pij

i1

Por the particulsr case of a bivariate normal distribution, the
distribution will be defined by a single correlation coefficient
ps the probability density function being

S 2, y2 o0y |
8, (¥,17,) = ——T=s exp {- AL 22 71 y2}
P 2n Vi-p - 2(1=p°)

The marginal density functions would then be the standard normal
density functions

ely) = -—-1-«V_2._ exp (- 1 y?)
T

The main properties of Gaussian random varisbles are, for our
purposes :

(i) All the marginal distributions are N(0,1).

(1i) =EBvery linear combination AT Yi of the Yi is N(0. AT Xa
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(1ii) Two components Y; and Yj are independent if and only if

pij = Q, )

(iv) ©PFor a random variable with H+1 combanents (YOQY1...,Y )
the best estlmgtor of Y given Y1""’YN is the condition ,
expectation Y = E(Y /Y yl,...,YN yN) If the vector |
(YO’Y1”"’YN) is completely Gaussian then the conditional
random variable E(Y /Y1,...,Y ) is itself a Gaussian ran-
dom va_lable with meen value A* ¥y cand with variance 1 - o
where AT is the vector solutien of the kriging system, and

c% is the correspondlng krlglnb variance,

One property of kriging with z known mean and in the Gaussiazn 1
case (in which case kriging is the conditional expectation) 1s that
the estimator and the error of estimation are 2 independent normally }
_ distributed random variables E(YO/Y1,;..,YN} and [Y - E(YO/Y15..,Yﬁ},

'i
{

" II-3 - Bivariate and Univariate normally distributed random
viriables, '

In the following we will consider the random variables
1, YZ having standard normal distributions and a correlation coef-
ficient p. Ve let g(y) end G(y) denote the density functions and l
the distribution functions respectively of the standard normal i
distribution : '

v

142 : |
1 -7 : i
gly) = e .
V 2 : )
y :
aly) = J g(x) ax . o ot

-—0Q

Iet ®(y) be & measurable function, and let Y be a normally distri-~ . '
buted random varisble. Suppose that we wish t0 study the random
varizble &(Y) and that it is convenient to approach this random
variable by developing a polynomial series of order n

e fVY = 2 | ' -
ax(Y) = g+ 2y T +oa, Y7 4+ an‘Yn

The be5u polynomial represertatlon for @%(Y) is the one which



is unbizsed and which minimizes +the variance of the deviétion
a(Y) - a*(Y) :

I= j [2(r) = 2, = & == anyn]z &(y) ay

The problem is easily résolved by using the Hermite polynomials
H1,H2,...,Hﬁ instead of the monomials Y1,Y2,.;.,YQ where the Her-
mite polynomials are defined by

. n ' '
: d. :
n>0, H(y) aly) =—F5 &y) , HEG) =1
- d y -
This family of pblynomials has the remarkable property of being-
orthogonal for the Gaussian density g(y) | ‘

[ 8,0 5,00 e ar =nt 5,

where 8, ;m = 1 ifn =m.
b4
0 ifn#m

Consequently they will be particularly convenient in our polyncmisl
representation, &*(Y) =

' ¥, B (y)
n=0 :
where‘the b, are presently undetermined numerical coefficients,
These coefficients can be obtained directly from

b = | o) 5,6 &) ay
or equiyalently.from
by = Blaly) B (¥))

The reason for using the first of these two representations for
o(Y) comes precisely from the fundawmental property of the family

IIII’ i.e. ii‘ ) ( )
' N Y
ov) = p omon

n=g0p -




Since E[Hh(Y)] = 0 for n # 0, we see that : -

E[e(Y)] = ¢, |
d N 02 |
* v[a(X)] = S%r , ‘

By taking account of the properties of the family H, we obtain
the classical result for the bivariate normal density . ' w
. o 2

b
n=o *

H(y,) B,(y,) e(y,) 8(y,) | =

The term isofactorial is used to describe a bilvariate distribu-~ -
tion law whose Jjoint density function f(y1,y2) can be expressed in
the form : o |

f(yﬁyz) =2 Ty %, (v ) x,(,) £(y)) £(y,)

vhere y1 and y2 have the same marginal density function £(y), and
where Xn(y) are the orthogonal polynomials associated with the mar~
ginal distribution, o

- }

The definition given above leads haturally to expreésing the i
density function of the random variable (Y1/Y2 = y2) in terms of B
Hermite polynomials. The clazssical expression for f(y1/y2) is

- g (y.,,7,)
Wi = gy |
. 2 .
Hence © n . — |
20y,/50) = 2 07 oEG) 50, &) - -

A simple representation for the expectation of (21/22) can easily -
be derived for the case where 7, = @1(Y1), 2, = @2(Y2) and where -
Y1 and YZ have g bivariate normal distribution with a correlation s
coefficient p.

bin

Iet o

2, () =2 5

‘ : b .
end a,(9) =2 =2 H (y) |
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then we have

or alternatively

)

- E(2,/2,) = 0 (Y,

where @i‘b is the function
b 4

-

82,0 =2 ot =2 H (y)

II~4 ~ The anamorphosis of the Gaussian random variables,

The results from the preceding section on the two ran-—
dom variables z1 and, Z2 are more easlly seen if it is assumed that
the pair (Y1,Y2) has a bivariate normal distribution and if 2

and
Z, are written in the following form : '

1

z, = 2,(x,) and g, = é@2“{2),

- 1
: ¢

where %) =2 = B ()
: 2
. ¢

%) =T =7 5.(3)

and where Y1 and Y2 are Gaussisn random variables. Infparticular
the problem of the regression of Z
we shall see,

i on 22 is resolved simply as

Any continuous random variable can be represented as the func-
tion @1(Y1) by the operation of anamorphosis (used in Monte-Carlo
simulations).

f prob(Ggy?

-

\
\

a experirnental |
histagram:

oo s 0o o e e Wt e T o e
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Consequently we can always consider a stationary random fun tlon —
7(x) as the anamorphosis of a stationary random function Y(x) with

8 Gaussian rarginal distribution where. 72(x) = @[Y(x)] but in gene-
ral the random functicn will not be completely Gaussisn (i.e. in

its joint distribution function). To be able to take advantage of _
prone“tles of the normal distribution y wve must, at a minimum, assu-
me that all pairs of random varisbles Y(x ) and Y(k ) have a biva-
riate normal distribution. In practice we of+en even assume that

Y(x) is couplstely Gaussian ; for example, in the "discrete Gaus-
sian” model. ‘ ' ﬁ}

III ~ IHE DISCRETE GAUSSTAN MODETL. v -

III-1 - An example of the losnormal case, . -

The most commonly used probability model in modelling (
geological phenomena is without doubt the lognormal, The lognormal -
random variable Z is already expressed in terms of a.Gaassién ana-
morphosis since by its very definitﬁon there exists a normally dis- -
tributed random variable Y such that 2 = exp(m + oY) (i.e, In % ~
N(w,0°)). This definition can easily be extended to cover the case -
of the lognormal random functions ehcountered in geostatistics -
we let Z(x) be a random funcvion such that z(x) = explm + o Y(x)]
where Y(x) is a completely Gaussian random function. Of course a
model of this type can only be used to refeér to the average grades ‘
from constant sized supports or from drill holes of uniform size ‘
which, for example, can be considered as point samples of grade i

Z(x). Continuing with our notation we have

z(x) = exp[m + ¢ ¥(x)] ; ' o

where Y(x) is a random function having a centred and normed, Gaus-
sian distribution with a correlogram p(h).

The classical formulae for the lognormal provide us with the
main statistical characteristics of %(x) in terms of the parametersif[
mand ¢




. N ' 62
= 5(2) = exp(ii + £)
. > 0_2
>? = Var(z) = u° (e - 1)
$(h) = E[(z(x+n)=1) (a(x) - m] = 2P q)
Moreover, as was shown earlier in the section on conditional distri-~

butions, the conditional varlable (Y /Y yi, YN) is also comple~
tely Gau351an with mean A* ¥y and Varldnce 1 - o2 and can be

K ?
Xiyi‘*' \/1"012{Y1

The transformed variable (Zo/zi = Oy

written as

,...,Zn) is then lognormal
ard can similarly be written ' '

(Zo/zz""’zn) = exp(m + o AT y; + 0 V1 - ox Y”

It is evident that provided we are prepared to assume that Y(x) is
completely Gaussian, it is possible to determine theoretically the
conditional distribution of the point grades from the data given,

by using the lognormal theory': their distributions are also log~

normal, We may say that this is a kind of "permsnency" of the

type of dlstrlbutlon.

To establish a lognormal model for a vector of N point grades
does not present any particular difficulty, but it does not cor-
respond to the problem most frequently encountersd in mining stu-
dies, i.e, to know how to define the density function of the ave-
rage grade ZV of a panel V and also the joint densityvfunction
of this grade % and the point grades 7Z(x ) of the samples., In the
case where the point grades are lognormal, it has been shown expe-~
riventally that the average grades of the panels are at least ap-—
proximately lognormally distributed (with a much smallex variance).
This phenomenon is referred to as the "“permanency of the loegnormal
distribution".

Continuing the same notation as before, the parameters of the
new lognormal distribution can easily be dexrived.



var}able (ZM,...,Acm, ZV‘I""’ZVn) when the point va_rlables Za

Tet 7z(x) = exp [m + o Y(X)]

vhere Y(x) has a correlogram p(h). Then the covariance function

for the point grades z(x) is
Sh) =12 (P - gy,
The tneoretical variance Z$ of the average panel grade ZV =

% J Z(x) dx is known from geostatistics.to be
v . - '
72 = T,V =M2{;‘[—2_[jep_(x“3’) dx dy - 1} .
' vy

This determines Z$ in terms of the point grade parameters m, ¢ and

p. If we assume thatb Zy is also lognormal, then there exists a Gaus-. .

slan random variable X such that

Zy = €xp (m1 + c1X)

wnere . 4 ' .
\ ; -1 012 02
E(ZV) = E[Z(X)] = m '+ =Wk

Var(z&) = b% s ol? = log[eciv’Vj]

Consequently if we accept the “permanency of %he lognormal distri~
bution", the parameter values from the point wmodel allow us to
completely determine the distribution of panel grades ZV' In fact,
the same principle can even be applied to the vectorial random

. i
are considered simultaneously With the regularized varigbles ZV.°

We gre, of course, assuming that the point variables Za are log-

i
normal with 7 = exp(m + o Ya-), that the regularized variables
» i - i .
7. ~are lognormal with ZV = exp (m1 + 01 XV } and that the vecto-

Y

1 _
sian and is centred and normed with correlation coefficients {rij}
such that after the lognormal transforuations have been applied,

dJ . ..
rial random variable (Y ,...,Y , yeeasyky ) 1s completely Gaus—
o a, XV1 Vn




»

these correlations are equal to the values ) 8’ Z) Z%‘V of the
correlations between the za and -the ZV'

In reality theoretical.studies have shown that the "permsnency
of the lognormal distribution" cgnnot be strictly true : it is not
possible for both the point variables 7@ and ‘the regularized va-

i
riables ZV- to have a lognormal distribution., In fact the discrete
Gaussian model has been developed to generaliée'the lognormal mo-
del a little more rigourously.,

III-2 - The general case,

The essential principles of this model are the same as
for the lognormal model given earlier :

. To define a principie of "permanéncy" which allows us to de-
termine the distribution of the regularized variasble from the
parameters of the distribution of the point random variables 2(x).
The z(x) are considered as the anamorphosis &(Y¥(x)) of a Gaugsian
random function ¥(x), and the Z; as the anamorphosis @V(Xi) where
Xi is also-a Gaussian random function., The principle of "permanency"
will be used to link the parameters of the two anamorphoses & and

@V.

. To assume the variables Y(x ) end X5 (which are” individually
normally distributed) are Jjointly completely Gaussian,

As we have noted earliexr, this hypothesis is only possible if
we alter slightly the significance of the point variables : in
order to do this we are going to select a particular unit volume,
the size of which 1is supposed to have a particular
signiticance (e.g, size of a block for selection, for simulation,
etec,). We are going to divide the deposit into a grid of such blocks
v, . The data is assumed to be known at the level of point samples

(or is considered to be) on a grid much wider than v so that at
most one sauple Z(Ka> can be found in a given block vy It is then
possible to define a model which is completelj Gavssian. This is
done by considering the sample Z, to be located abt random in the



small block v containing it, (By dcing this we, of course, lose

some of the information available to us concerning the exact loca-
tion of the sample within v ) The result of this approximation is
that E(z_/? ) = zv , whlch allows us to link the parameters of our

point sample model to those of the samples of volume V .

The deposit is divided into N blocks v,. The grade Z, of each

. i
of these blocks is associated by the anamorphosis @V : Zvi = @V(Xi) "

with one of the components of the Gaussian vector (X1,...,XN).

Each olock.v may also contain a point sample z which is, in tumm,
associlated by a second anamorphosis & : Zl @(Y ) with another
Gaussian vector (Y1,...,Yﬁ)-

The following hypotheses are made concerning the Gaussian dis-
tributions

a) For a1l blocks v,, the two random variables (&1,_ ) have =
standard bivariate normal distribution with a correlation coeffi-
cient r > O which is the same for all blocks Ve

¥

b) As was -seen earlier, a consequence of randomizing the loca-
tion of Z, within v, ‘is thet E(Za/zv ) = Z, « We further assume
o

that for X fixed, Y is 1ndenendent of aLl the other random vo~

J
c) (X1,...,Xﬁ) is completely Gaussian,

~riables XJ’ Y. in- thv model.

Taken together, the hypotheses a), b) and c¢) imply that the
vector (Y1, Xps Yor Xpreeer¥yp Xy ) is completely Gaussian, is cen-—
tred and normed and may be showm to have the following correla-~

tions

- block x block correlations R; i3 = E(X:L X ) are, in fact,
- given by the covariance function R(h) of the 1nverse ana~
morphosis Xy of the block grades, i.e.

Rij = R(:‘:a“‘};ﬁ )

- point x block correlations T = E(Xi Ya)

]
H
o

i

1l

~ pcint x point correlations paﬁ = E(Ya YB)' r2 R
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So the resulting set of correlation coefficients is determined

by two quantities : R(h), the covarisnce function of the X, and r,
the parameter defined above as E(Y X;) (i.e. the covariance bet-
ween a blocx equlvalent X and its dSSOClatea point equivalent Y )

III~3 ~ Permanency in the discrete Gaussian model.

The preceding model completely defines the random variables
Y, and X, vhich are the inverse. anamorphoses of the point grades

Z(Xa) and the average grades Zy 0 respectively, As usual the point
i

anamorphosis function ® will be determined from the experimental
histogram of the point grades Z(Xa) ; the anamorphosis &  of block
grades must be derived directly from the preceding model,

Suppose that &(y) can be represented by

ooq;n

o(y) =2 v B G)
0 |

Point a) of the model is that within a given block vy, (Xi’Yi)
is a bivariate Gaussian with correlation r : we thus have
' n

G, T

8

B33/, ) = Be(¥;)/%) =

n=90

.Point b) is that E(Zi/z§ ) = Z, S0 we have
. . i i
n

¢, T

nl

e

Zv. = En(xi)

1 o

in whlch we recognxve pre01sely the anamorph081s function of block
grade
Py n
) = » 2wy

(Py= [

v n—p ¥ n
This result is intercsting because it allows us to adjust the value
of r experimentally., In Fact the geostatistical study provides us
with the variogram y(h) of the point samples and consequently the
covariance S(h) = y{«w) — v(h), and also the covariance of the
block grades Sv(h> = S{v,v,J. In particular, Sv{o)'z S{v,v) is the
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theoretical variemce of the block grades Z . VWe have seen earlier =
. i cE

that the veriance associated with an anamorphosis function can be

- et

celculated directly from the coefficients ¢, *

b, r H(y)
! . . N
et 0, = Y P | |
then 2 _on | -
Var[® (y)]==23'¢n i “?
S A . n!

The parameter r can then be determined from the relation -

o, .2 .o ' .
© G- T . .
SV(O) S N S— " R : _ -l
, 1 n! . .

The solution can easilj be found since the series is an increa- — |
sing function of r, Once r has been detefmined, the same relation
can be used for the covariance function Sv(h) (which is known
from a theoretical regularization of the experimental covariance
S(h)) and R(h) from the block anamorphosis : :

42 2 R(n) | R
ni

[v0]
sv(h) =3
1

' The numerical method which was used to determine r, is now used
again to provide the values of R(hi) for a series of values h., A -
theoretical model for R(h) is then chosen. ’

I11-4 -- Conclusion.

The discrete Gaussian anamorphosis model provides a -
convenient method for carrying out the calculations which arise -
in connexion with the point distribution of the point grades and
the block grades., jloreover, it allows us to do this whatever the
distribution of the point samples. However it should be noted that | |
the model suffers from two restrictions :

. Firstly the assumption -that the'Ya end the X, -are ccmpletely g
Gausecian, This extremely strong hypothesis is difficult to verify
except for the experimental bivariate histograms. It is known that |
tnils hypothesis will be false in many cases, but the results coming



from this extremely useful hypothcsis are vaild in many cases
where the hypothesis itself is not strictly true. Besides this,
the hypothesis‘of the indeperidence cf the Ya for fixed X& has
unpleasant theoretical consequences which restrict the generality
of the model (for example it can be shown that the local histo-
growms for within a panel are entirely determined when the mean of
the panel is fixed).

. The second restriction concerns the theoretical approxima-
tions, that is, the assumptions regarding thé “"permanency" of
distributions. In the case of the lognormal distribution this is
precisely the "lognormal permanency" which, as was mentioned ear—
lier, is theoretically not possible. |

In conclusion, the discrete Gaussian model is not an "all
purpose" model which can be applied willy-nilly in all cases, In
fact several other models are available (viz the Hermitian Gaussian

-model, the non-Gaussian isofactorial wmodel) which sre better suited

for use with some of the variables studied than the discrete Gaus-~
sian model,

IV ~ A PRACTICAT EXATPTE : THE CAICULATION OF THE OVERALL GRADE
TONKAGE CURVE,

IV—-4 - The Problens,

Consider a deposit near the surface which is to be mi-
ned by open pit methods. Suppose that the size of the blocks for
selection has been fixed (for example, as cubes the size of the
bench height). As a first approximation assume that the blocks
to be mined may be selected without any constraints, and that all
the blocks whose average grade Zv is above the cut-off grade z
will be mined. Under these conditions, the exploitable results
will be given by the cut-off grade/fbnnage curve which is simply
the estimator of the proportion of btlock grades sbove the cut-
off grade Zs . The probiems to be resolved are then

c

~ obtain a good estimabtor of the distribution of point gredes
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within the mineralized pert of the deposit, given the experimental -~
values of the point grades, |

- model the distribution law using an anamorphosis function and to
obtain nurerically its expansion in terms of Hermite polynomials, T

~ determine the representation of the distribution of block grades
Zy from the nmodel obtalncd above by using the "permanency of distri-
butions" as outlined 1n the previous section, )

~ use this numerical model to calculate the proportion of blocks v »
vhose grade is above the cut-off grade and to determine the mean N
grade of these blocks, ' -

IV-2 — Determination of the dlstrlbutlon of p01nt grades, -

Iet Vv be the mineralized region. Ve wiSh to estimate E
the function Pv(z) which gives the proportion of the ore on V¥
whose grade z(x) < z. Or, more formwally, if Fx(z) is the distri-
bution function of z{x), the expected value of PV(Z) (to be denoted
by EV(Z)) is simply the mean value of the point distribution Ex(z), 7}
with the average taken over the volume VvV, i,e. . : -

=1
FV(Z) v Fx(z) dx -
Thre problem of estimating P (z) is similar to fhat'of estima~ .-

ting ZV’ the average grade in V, since for a fixed z, PV is' the
mean value over V of the indicator functions Iz(z(u)) where o

I[a(w)] =1 if z() < =z

5 0 lf Z(U.) > 7 ' —

One obvious estimator of Pv(z) is, of course, the histogram 4
F#(z) of the available experimental sample values., This has the 1}
same role vis-a-vis F (z) as does the srithmetic mean Z of the — |
samples in the estlmatlon of the average grade Z. L the region o
V is large (or if it covers the whole of the mineralized zone) and -
if the sauwple points X, are distributed sufficiently uniformly. s
throughout V, then we know that Za is a satisfactory estimator L



of Zy, and similarly thet F*(z) will be a reasonable estimator of
Ev(z). On the other hand if V has been chosen in the centre of the
mineralization and is surrourided by samples which are consistently
of a lower grade than those in V (or if the sawples are not evenly
disfributed) then we know that Za ;s not a good estimator of Zy
because it does not take account of the grade dilution by the lower
grades at the boundaries. In the latter case, kriging vprovides a
much better estimator, ZKV’ of ZV' For the same reasons it is advi-
sable to estimate Ev(z) by a suitable weighting procedure using

the point samples inside and outside the region under study.

The definition of the theoretical estimator of Ev(z) requires
the techniques of disjunctive kriging which will be considered else.
In practice, we take advantage of the fact that the ZV have usual- .
1y been kriged (either in an overzll (global) kriging of V or al-
ternatively in a pamel by panel kriging of V) to define the weighted
cumulatlve histogram of the experimental data ZV as the estimator
of By (z).

As part of the kriging process, each of the samples available
was assigned its own weighting factor K (obviously O if Xa was
too far asway from V). The weighted hlstogram is -obtained by cumu-
lating to the class in which a value belong to a relative freguency
A% rather than the usual absolute freqdency (1). Each 'class of the
histogram then has a relative frequency proportional to the sum of
the'xa for that class, The drawbacks of this procedure are :

-~ the necessity of storing all the Ka used in the kriging.

-~ the slight possibility of obtaining a negative freguency which
would then be set srbitrarily to zero,

Qo the other hend, the advantages are that

- it takes-into account the position of the sample points (because
it uses the variogram). '

- the experimental histogram thus obtained has a mean of precisely

Kv*



S
B 3
Q

IVv~3 ~ Hermitian anamorphsosis model for the distribubticn of
point samplese.

Once en estimate P:(z) has been obtained for the average
distribution of polnt samples, we can find the Gaussiean anamorpho—
is 7* = ®(Y) of the associahed variable z%. If ¢(y) denotes the
istribution function of a standard normal ¥(0,1), we have

r(a(y)) = &ly)

a(y) = F*"’[G(y)l

Since the experimentally graded function P#(z) is 4 fined over the
classes z;, the relation <~ 1 ig therefore defined only over these
classes. ife can therefore '

- either model F*(z) by am appropriate distribution function 7 (or
by a combination of such.functions) so that the representation

Fm(z) is continuous and monotonic increasing, The inverse
Fm’1[G(y)] then provides a continuous model for &(y).

- or alterngtively define @(y) in a discontinuous mannex for the

values of y correspondlng to the experimental classes zl and then _

rodify this mouel to be continuocus,

In fact, the model of the function &(y) is not particnlarly
important since, as we have seen earlier, all the calculation can
be done using the Hermitian expansion of &(y). Comsequently we use
the alterngbive method and try to adjust thc graph of the p01ntu
(y N ) using a polynomial of tho type

N ¢
by 1, (¥)
0

Bl

We Xnow that the coefficients ¢, are given by the. relations
- .
= f a(y) H,(y) e(y) ay
-0 . '

The problen is to estimate these integrals numerically, given the
values of 7 = &(y) for the sarple paﬂats (=, 19Y5 )




‘We use one or theother of the following two methods :

(1) Gauss's method for integrating :the integrai giving ¢n
is estimated from the values of @(ya), & = 13...5k where
~ the points y, are defined theoretically as the solutions
", of the equation Hk(y) = 0, so that

: k . A
¢y = 2 oly) H (yy) W (W, appropriate weights)

(see reference A, Maréchal : "The practice of Transfer
functions : Numerical methods and their applications®),

(ii) Exact integration of a simplified representation .of a(y)

"(i.e. linear or quadratic) in the classes (zl,A ) of

i+1
the histogram,

In both cases it is'nécessafy to assume the form taken by the
experimental histogram, especially for its tails. Both methods are
interactive by nature : they allow us to try different numerical
values Ior the tails of the histogramn,

i

Iastly in this section we consider representing F, (z) as an

.anamorphouLS function expanded in terms of Hermite polynomlals,

i,e,

by By (¥)
BBl

It should be noted that &(y) completely defines the model of
the distribution function, Fv(z), and in particular

1l

Yo
- 2
N by

2 %7 = Variance [Ev(z)] Z? - Z%
1 ) L

Hean [Ev(z)]

i
<0

i
it

consequently, since the structural analysis of the ssmple values
Z(X ) has a pglﬂ* varicgran y(x), the variance y(V,V) must be

A

equal to Z)“n o In fact the region V usually covers praﬂtlcuLIy
nl

all the region under study and so the variogram model is chosen
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2
2

so that the sill y(w) equals ¥ =5 .

V-4 ~ J7odifying the snamorphosis for a change of support size,
_ ] z D

_ The suamorphosis function @v(y) for the variable z_ de~ -
fined in the region V can be deduced from the function ¢ using cne

of the properties of the discrete Gaussian model,

nt

N
e, () =z e 1, ()

vhere the coefficient r satisfies the equation

2
2 N ¢ .
L 2y = 5% RS ns>0

n=1

2

given above for
function : : 2

Nog
S(z) =2 'i‘l-ril' an

less than ¥ ¢n
1 nl

can be obtained by reeding the charts (if the variogran

v(a) is a linear combination of standard variograms) or otherwise

by nuwerical integration of Y(h) over the block v. The eguation
r

cen easily be solved numerically because the

is a monotonic increasing function of r ; it suffices to increase
r from O to 4 until the valune of'Z% is reached (this is necessarily

IV-5 ~ Caleulation of the oversll (i.e. global)cut-off grade/

tonmase curve, .

If the block size for selection is v, the recoverable

reserves in the region V are found by considering

T,(zc) - the recoverable tommage for cut~off grade z .

cC

Qv(zc) ~ the total quantity of metal recovered,‘

Iet To dencte the total tonnage.containea in V, Since EV(Z) is

o
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the distribution function corresponding to the anawmorphosis func-—
tion @, y we have

i

n(2) = 2, [1= Bylz,)]
‘ QV(ZC) = D Jm z d Fv(z)
2
c

Since gz = @v(Y), E%(Z) = ¢(y).

To begin with, the value of Vo corresponding to Z,
L
2o = 2 n! Hn(ye)

¢ n=0

is determined numerically. The value of TV(ZC) can then be deber—
mined directly from the integral G(y_ ). (Excellent numerical ap-
proximations are available for this function in all mathematical
tables).

a,(z) =1 [1 - ely,)]

The calculation of QV is slightly more complicated :

aylz,) = 1, j 2,(7) z(y) av
. ZC )
N ¢n rn o
=1, 2 — j H(y) &(y) ay
=0 '
yC

A direct consequence of the relation defining the Hermite poly—
nomigls is 3

J 5 (y) ely) &y = H_, (@)

Hence

5 ) = e ol e Y Ty
QV(ZC. =T { by [} = Gly,) ~ 5\YC).§3 ey 2, (¥, i

The average grade recovered mv(z{) is then



H
N
Ny

}

| Qy(z ) .{
n(a,) = TV o | o
’ viic

IV-6 - Concluding remarks on the calculation of the grade/ -

tonnaze curve, ’ o |

In the preceding sections, it has been shown that the -
discrete Gaussian wodel allows us to estimate the recovérable re-
serves for blocks of size v provided it is assumed that the blocks |
can be selected freely. It is clear that this will never be the -
case in reslity, However these technigues provide a nethod for |
estimating the recoverable reserves Very soon after the initial -
geological studies have been carried out, A more precise estima~
tion of these reserves can be carried out labter using transfer
fimctions, L ’

v
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SELECTING MINEABLE BLOCKS : EXPERIMENTAL, RESULTS OBSERVED ON A
SIMULATED OREBODY

A. Maréchal

Centre de Morphologie Mathé&matique, Ecole Nationale’
Supérieure des Mines de Paris, Fontainebleau, France.

ABSTRACT. The problem of optimal selection from estimates is stu-
died theoretically in a simple case : it is shown that the solu-
tion is to apply a cut—off criterion to the conditional expectation
of each panel's grade ; but if it is impossible to compute such an
estimator, then no simple, nearly optimal substitute can theoreti-
cally be found. However, we know that kriging is the best linear
least—square approximation of comnditional expectation, so we may
hope that it would be a good practical substitute : this is expe—
rimentally shown on a two—dimensional simulated orebody on which
selection is performed with various estimators.

0. INTRODUCTION

When assuming that the true block's grades are known, it is
easy to demonstrate that maximizing a linear benefit by selecting
mineable blocks is achieved by using a cut—off grade criterion on
the true block's grades. When reality is unknown, the problem is
set in probabilistic terms : if the objective function is the ex-
pected value of a linear benefit, the optimal procedure consists
in wusing a cut-off grade criterion on the conditional expectation
of the block's grades. However, in practice the conditional expec—
tation cannot be determined and will be replaced by a linear esti-
mator of the block's grade. Hence it can be expected that the result
obtained with this procedure will not be so good as the optimum
selection. However, the actual loss in expected profit is diffi-
cult to determine theoretically. Therefore it is interesting to
compare the results of the true and approximate selections made on
a simulated orebody. Moreover, we shall take profit of the knowledge



of both true and estimated values to point out some experimental
properties of the estimators used in geostatistics.

1. A VERY SIMPLE CASE OF SELECTION

In order to allow an easy theoretical exposition, let us ima-
gine a simple situation : we mine a mineralized layer whose width
is considered as constant, with a mining method based on elemen-—
tary mineable panels of tonnage T,. We essentially assume that mno
technical constraints of accessibility are imposed on mining, so
that any subset of elementary panels Pi is technically mineable.

We assume that the total profit B yielded by mining a topél
tonnage T of mean ore grade m is :

B=pmT - P, T — P,
P : sale price of metal/ton metal
P, ¢ mining and processing cost/ton of ore

p2 : fixed costs
To simplify the notation, we shall write the profit as
B=rp [T(m—mc) - r] with m, = PI/P , T = pz/p

Théere is no loss of generality in taking p = 1.

1.1 Selection when the true block grades are known

We know each m, , mean grade of the panel Pi' Selection will
consist in choosing a subset {Pi, i€ I} of the sets of panels Pi.
Mining this subset will yield the total profit :

B= Yy, T,(m.-m ) - r

. 4
i€T i e
Maximizing B consists in choosing I so that each term (mi_mc)

> 0, that is keeping each panel whose ore grade m, is greater or
equal to the cut—off m, . If the corresponding maximized profit B

is positive, mining the orebody is profitable for these precise
economical conditiomns.



1.2 Selection when the true block grades are unknown

We must abandon the deterministic representation of grades
and replace it by a probabilistic onme. Let us consider the quanti-
ties, either known or unknown, which arise in the problem :

- Mi’ i =1, N : Panel mean grades (unknown).

- Zaj’ j=1,n : Available sample grades (known).
According to the commonly used probabilistic representation,

we define the vectorial random variable (v.R.V.) n+N dimensional
(Mi’ i=1,N, Zaj’ j = 1l,n).

The total profit yielded by mining the subset {Pi, iel L&s

then a random variable B = 2, Tl(Mi—m ) - r. Optimization méy
i€1 ¢
then apply to various quantities, such as

Max E(B), or Max (Prob B> b ) or Min {Prob B < bm}

The selection of one of those criteria depends of the company
policy : the most commonly used among large companies seems to be
maximizing the expected profit E(B). Moreover, it is the only cri-
terion which allows an easy theoretical computation.

In order to ease the presentation, we may, without any loss
of generality, take r = O and Tl = 1. Furthermore, we note that

Bi being the profit yielded by each panel Pi’ Max E(B) = 7, E(Bi)
iel

with {i €1 ebE(Bi) > 0} . This relation is due to the linearity

of the operator E and to our hypothesis of no technical constraints

in the choice of mineable panels : hence the problem comes down to
examining, for a given panel Pi’ whether E(BB > 0 or not,

In the practical situation, selection will involve the known

values of sample grades Za' = zaj’ j = 1,n. The a priori R.V. Mi

is then replaced by the conditionalized variable

(Milzaj =240 3= 1,n) and the profit B, by :

1

(Bi/Zq5 = 245

acoording to the information (Zaj = zaj’ j = 1,n) consists in defi-

ning a function Ci(zal""zan) taking only two values : 1, when Pi

Z ....). Defining a selection criterion of panel Pi



is selected, and O when Pi is abandoned. So, after selection, pro-
fit is

o
B.| Z . = .5ee¢) = C, ‘e . . = cese™
( 1| aj zaJ’ ) Cl(za]’ Zan)(Ml zo‘J %aj H%)
. *
P Yo= = i
and noting mi(°al""zan’ E(Mi Zaj zaj"‘)’ it follows
(e} *
EB. '= o @ 0 @ = - . LN '—
( 1| ZaJ ZaJ ) Cl(zal, Zon )(ml mc)
The condition E(lezaj = zaj"') 2 0 defines our selection criterium.
C.( z_ ) = 1 when m*( ) &
i zai"" on i zu]"'zan 2 mc
= 0 when m*(z ) <
iv%al***%an e

In another way, H(u) being the step function, H(u) =1 u = O,
H(u) = 0, u €0, we have

( ) = Hm, - m)
Ci ZyeeeBy) T o, mC
Provided that the estimate of each panel grade Mi is

*
mi(zal,...zan) = E(Mil Zocj = zaj...)

the selection criterium is identical to the one found in the deter—
ministic case, i.e. selecting each panel, the estimated grade of
which is higher than the cut-off grade. Furthermore, as a conse-—
quence of the preceding reasoning, we shall estimate the unknown
optimal real profit B? zuj = zaj"' with the estimator

* *
Bi = Ci(zaj"'zan)(mi mc)
. . . o
B, . = ceae)e
which is precisely E( 1’ ZaJ zmJ )

Conclusion : If we are able to determine the function

mi(z s+e+Z_ ), conditional expectation of Mi’ not only can we

ol an
select optimally the reserves, but we can estimate the optimal re-
covered profit without bias.

1.3 Practical near-—optimal selection

In practical situations, we cannot determine E(Mi[ Zaj = Zaj")



because it requires knowledge of the whole distribution of the
multidimensional v.R.V, (Mi’ Zal""zan) which is inaccessible to

statistical inference. We shall usually bé restricted to a linear
. * a
estimator m, of the unknown panel grade Mi : mz = Ai Za’ so that

our selection criterion will only be a function Ci(mz). This means

that we reduce our use of the initial set of information {Zal"'zan}
. a o .

to the single value mt =A Z 0’ S that our initial a priori R.V.

Mi is replaced by the condltlonallzed variable M, Im , and the post-

-selection profit B? Im C. (m )(M Im - m )

/
The rest follows as before, noting ak%(mi) = E(Milnﬁ) g
o * - ¥ ¥y _
E(B; [m) = ¢, @) e (m}) - m)

Just ‘as in section 2, the condition E(B |m ) ® O defines our
selection criterium as Ci(mi = H(yﬂ%(mi) - mc), together with an

unbiased estimator of lemi :
X - * _ ¥ _
Bf = B, @) - m) .ok @) - m)

Let us now consider the main difference from the results of
section 2 :

-~ The optimum derived from this new criteripn 1s necessarily smal-
ler, in expected value, than the optimum achieved by cutting on
conditional expectation : the reason is that we actually have op-
timized the selection on the R.V. Milm:'which is only an "approxima-

tion" of the R.V. that we have optimized before, i.e. Milzm =2z ..

. . . *
= The cut—off procedure 1s to be applied, not on the estimate m,,
but on the function u%&(m:), which must also be used to estimate

the recovered profit without bias.

From these remarks, we conclude that the "estimate" m;

arises only as an element of conditionalization. The true estima-
tor used for the cut—off procedure and for the estimator B;_is ac-

tually o&é.(m%), and an optimal selection will be performed only
if we are able to determine it. The amount of statistical informa-
tion required for the determination of a“km ) is a little smaller

than for the determination of E(Mi zuj")' Actually we need a



the use of a scattered estimate will improve only the "apparent"
estimated profit B?, while probably reducing the true profit Bi

we finally obtain a lower, and, even worse, a grossly overestima-
ted profit.

1.4 Influence of the quantity of information

Recalling the formnlatign of the optimal selection seen in
section 2, we may say that B. being the post—selection profit,

we find a function m¥(z ,...za ) in the set of n variable, measu-
rable functions sucﬁ t%at by follow1ng the selection procedurew we

optimize E(B?). Now if we suppose that the available 1nformat10n :
is only a s?bset of {Zaj, j =1, n} ,we shall find our optimizing
function m: (zak’ k = 1,n'") in the set of n'-variable functions, a
subset of the preceding one, hence cbtaining a lower expected pro-
fit., This is a well-known property of any optimizing procedure.

Though this result is only exact for the true optimizing pro-
cedure, we may expect to find it also when optimizing with linear
estimators, for instance with kriging estimators : we shall see an
experimental example of this property in part II.

2, THE STMULATED OREBODY AND THE ESTIMATORS

2.1 Simulated orebody.

We have simulated a two—dimensional distribution of point -
grades, by the classical "Turning band method". The simulated ore-
body is divided into 500 square panels of 22 x 22 m.;, on 10 lines
of 50 panels. In each panel, we have simulated a 11 x 1} points
grid, the mean value of which was taken as the panel's mean ore
grade., Consider the central value of each panel as sampled : so
the exploration campaign consists of a regular 22 x 22 m. grid
with 500 samples. In Fig., ! and 2 we show the experimental vario-
grams and histograms of samples. The experiment consisted in com-
paring, for different estimators, the profit yielded by selecting
panels with a cut—off criterion applied to the estimated panel's
mean ore grade. To avoid the computation of special estimators at
the border of the orebody, we made the comparison on the 48 x 8 in-
teridor blocks of the simulated orebody.
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2.2 The estimators

T

For each 22 x 22 m. panel's grade, we build four estimators :

a disjunctive kriging estimator

a kriging estimator

a zone of influence estimator

a kriging estimator using only the information of a 44 x 44 m,
grid.

g
.

o

o

e 2 The first three estimators using the 22 x 22 m.
information are computed, for each panel P,,
7% 6 with the 9 nearest samples and the overall
[ ]
mean of the 500 samples,
) P
3 e With the last kriging estimate, we esti-
mate the same panels as before, with the four
nearest samples and the overall mean of the
125 samples. We note that this compels
® us to distinguish three different posi-
tion of panels.
4 2
E .
* L 2

2.2,1. Kriging with 22 x 22m. grid.

* —_ —_ —
zy =+ 2@, - 1)+ 0@, -0+ 2@, - e
m* = arithmetic mean of the 500 samples
Z& = value of sample number 5
22 = mean value of samples n° 2, 4, 6, 8
Zs = mean value of samples n® 1, 3, 7, 9

. 1 2 . .
Weightsx , X ,VAB are calculated with the kriging system of

residuals, with the model of variogram appearing in Fig. 1 @

2 .
Al = 0.416 3 A7 =0.110 ; XB = 0,033 cé = 0.327



2.2.2 Disjunctive kriging with the 22 x 22 m., grid. The point-
based variable Z(x) is considered as an anamorphosis of a Gaussian
R.F. Y(x), i.e. Z =@ (¥), and this function ¢ is expressed as

a development in term of normalized Hermite polynomial n,- Z =

n
23 fzITp(Y). In our study, we tried @Q(Y) = eY, so that we made

p=0
a structural study of variable Y = log Z on the 500 samples (see
DK
Fig. 3 and 4). We recall that the D.K. estimator is Z, =2, f (Z )
- - - o . ;.DK'V a o O
where functions f  are developed, which gives ZV = fz +

o
n P P .
> (2 £ n (Z&)) where coefficients fd are computed in the fol-
o —
p=1
lowing systems :
P P P P

for p=1,...n %? £ Paug™ fo Pay a,B = 1,N
P ]\/fp ' P P
Ppy = y/P (xBYAE o = [ o (xa-x8) ]

. Y
In our problem, the function e  was developed up to degree 5,
the samples xa were the 9 points surrounding the panel and covariance

(h) is the normalized one corresponding to the variogram of
ogarithms. (See fig: 3) . In ZV’ experimental values intervene in

terms such as n_(Y ), so that we must use each sample in an indi-
vidual manner :*however, it remains clear that for geometrical rea-
sons, we shall have the following identity :

p=1,5 £ =g = =
= P _ gP - gP - £P
p=1,5 £ =f=£0=¢f
pfaj o =.5 a = 2 o =1 In conclusion, the whole
D.K. estimator is determined
= U, - . O - . .
! 0.3725 0.0992 0.0265 by the resolution of 5 3x3
0.1977 0.0456 0.0111 linear systems. We also note

- 0.0745| - 0.0144 |- 0.00346 that our D.K. estimator does
not use any permanence of

0.0223 0.00357| 0.00077 law hypothesis.
- 0.0062 0.00075 |- 0.00014

v BN
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2.3 Polygonial zone-of-influence estimator

According to the method of influence zone, each panel's esti-
mator is the central sample value : in our case, the direct conse—
quence is that, for estimating our ‘48 x 8 = 384 panels, we shall
use only 384 of our available 500 samples.

2.4 Rriging with the 44 x 44 m. grid

. As shown in the preceding figure, we suppose that we know
only 125 samples on a 44 x 44 m. grid, with which we estimate the
same 384 22 x 22 m., panels as before. As previously noted, we have
to determine 3 different kriging configurations, according to the
relative position of the samples and the panel to be estimated.

3. EXPERIMENTAL RESULTS

We shall present the experimental results in order to point
out the properties of the different estimators with respect to
three problems

- for a given amount of information, quality of the estima-
tors with respect to the magnitude of the level of estimation.

— for a given amount of information, quality of the selection
obtained by applying a cut-off grade to the estimators.

- quality of the selection of the kriging estimator when the
amount of information changes.

3.1 Exrors of estimation

On the following table, we see the results of the three esti-
mators, computed with the 22 x 22 m. grid information :

D.K. : Disjunctive Kriging.

K.1. : Kriging

POLY : Central value of panels.
me) [p°e) | of | m* D2V | 0P vyen2ce)
D.K. | 0.040 {0.323]0.29 1.424 0.879 1.201
K.l. | 0.030 {0.380 | 0.327 | 1.434 0.930 1.310
.| POLY | 0.039 [1.1280.98 1.425 2.585 . 3.713

TABLE 1



2 . .
m(e), D (&) : experimental mean and variance of errors

2

Og

: estimation variance of each panel's grade

2 . ' . .
m*, D (v*1V*) : experimental mean and variance of estimated va—
lues.

We note that :

- with respect to the global estimation, the three estimators
are nearly equivalent. The variance of estimation of the mean va=
lue of the 384 panels (exaat value 1.464) computed with the vario-
gram model of Fig., 1 is o~ 0.002, the corresponding standard

deviation of which is o = 0.045. The error in the global estima-

tion is thus smaller than the theoretical standard deviation of er-
ror,

" — with respect to the variance of error in estimating each
panel, the estimators are ranking as forecast, though the observed
variance of errors is slightly higher than the theoretical varian-
ces of estimation.

~ with respect to the variance of dispersion of estimates

Dz(v*lV*), we see that, although being better, D.K. estimates are
less scattered than K.l and POLY.

2
- The last value D (V*WV*) + Dz(e) was computed to recall that
the theoretical smoothing relation, D2(V1V) = DZKV*IV*) + DZ(E),
is only valid when v¥ is calculated by kriging. The theoretical

value Dzi(y|V) being 1.34, we actually see that only the kriging
estimates follow the relation.

- the histogram of kriging errors is fairly different from |
a Gaussian ome (Fig. 5) : it is not truly symmetric and, above all,
largely more skewed in the central classes. The histogram of errors
from other estimators have a similar shape.

3.2 Optimization of the selection.

For each estimate, selection is achieved by cut-off on the
estimated values. With the selected values, we estimate profit B¥,

which is B = 3 (ﬁz - mb) or, defining as T(m ) the tonnage af-
i€rI ¢
ter selection and as m*(mc) its estimated mean ore grade, we find :

- B¥ = T(m) [ (@) - m_ ]
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For each selection, we know the actual mean ore grade uv(uz)
corresponding to the selected tonnage T(mc), so that we can com—
pare the estimated profit B¥ to the actual recovered profit B =
T(mc) [mv(mq) - mc] . I remind the reader that the aim of this com-—

parison is to check whether or not the selectionwith a given esti-
mate is close :to the optimal selection performed with the condition-
al expectation estimator : as this estimator is actually complica-
ted, we shall compare our results with the D.K. estimator which is
very close to the conditional expectation. We can see on Fig. 7

that the D.K. estimator verifies very closely the fundamental pro-
perty of conditional expectation : the mean of the true values of

a block having a given estimation is equal to this estimatiom.

(A1l the numerical results on Figures 10 to 14 appear on Table 2).

'Truc values /
1 / X/
2r /
/ Mean of Frue values for
/ a given class of esrimated

values.
Estimator : D. K

T 7

, Estimared

Fig. 7



3.2.1 Actual profit recovered. The largest profit will be re-
covered by selection on estimates having the same property as con-—
ditional expectation, i.e. the same tonnage—cut—off curve and the
same property of conditional unbiasedness. We see on Fig. 6 that
the D.K. and K.l tonnage curves are very close, while the POLY one
is quite distinct. In the same way, Fig. 8 shows that kriging is
"nearly" conditionally unbiased, while in Fig. 9 we see a notice-
able discrepancy between the experimental curve and the unit slope

line.

The consequence, appearing in Fig. 10, is that selection on
kriging estimates gives a near optimal result, whatever the cut-
off grade may be, while selection on zone-of-influence estlmates
induces a loss of profit which is especially important for hlgh
cut-off. ,

Therefore we may conclude that kriging is a near*optimal tool
for any cut—off grade. Conversely, the polygon method is systema-
tically non—optimal and so leads to waste of reserves.

3.2.2 Estimation of recovered profit. We have seen that the pro-
perty of conditional unbiasedness implies that an estimator gives
an unbiased estimation of the selected reserves.

B¥= (@) [n (@) - m ] while B=T@)[mm) - m_]

Thus — if it exists - the bias will appear to be proportional
to my - n*, difference between the true and estimated mean grade

of the selected reserve. We see in Fig. 11, 12 and 13 the experi-
mental curves mv(m*) corresponding to different cut—off grades

and for estimators D.K., K.l and POLY respectively. For each esti-
mator, the bias will be proportional to the deviation between

mV(m*) and the unit slope line.. We see that the bias is small and

non systematic for D.K. and K.1, corresponding to statistical fluc-
tuations, while the bias of estimation from POLY is systematic :
not only will a selection from POLY give a loss of profit (compared
with the optimum one) but furthermore the estimation of the profit
will be dangerously overvalued.

3.2.3 Influence of the quantity of information. In the first
section, ‘we have recalled the fact that the expected optimum profit
was a non decreasing function of the quantity of information : we
have just seen experimentally that kriging was a fairly good approxi-
mation of conditional expectation, so that in practice it will re-
place it. We shall see on the following results (Fig. 14 and Table 2)
the true benefit resulting from a selection on kriging estimates,
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K.1 being built with the 22 x 22 m. information, K.2 with the 44

X 44 m. information : we note the degrading of the quality of the
selection and by comparison with Fig. 13, we see that this degra-
ding is greater between K.l and K.2 than between K.l and POLY.
Although it is the best linear estimator,kriging will give a low
quality selection if the information is not sufficient (of course,
using polygon estimation would be even worse), and this property
gives a direct "monetary" value to mining information. As a secon-~
dary effect of the deficiency of information, we also note in Table
2, that the lower profit is, moreover, ill-estimated.

Mrue values

Mean of true values For
a given class of esrimated.
values,

Esrimaror : POLY

ES
N

‘Fig., 9

4, CONCLUSION

, Esrimated
i

The preceding experimental results were obtained from a simu-
lated oreBody of lognormal type and fairly large relative disper-

sion :

M2

1.25. Such a random function is very different from

a Gaussian ome, for which kriging is theoretically the optimal so-
lution. The first important experimental conclusion is that kriging
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is a robust approximation of conditional expectation and keeps
its important property (conditional unbiasedness) even for a very
particular R,F. The second conclusion is drawn from the compari-
son between D.K., K.l, POLY and K.2 concerning the actual reco-
vered profit : we have already noted that the results of K.2 were
worse than the results of POLY, although the experimental estima-
tion variance of the panels were 1.13 and 0.65 respectively. This
emphasizes the fact that the quality of selection is not entirely
related to the estimation variance of each panel, but is largely
function of the overall estimation variance of the whole orebody.
Lastly, the drawbacks of an imprecise estimator seem to be the
same, whatever the reasons of the lack of precision (i.e. wrong
estimator or lack of information) :

- loss of actual recovered profit.

~ poor estimation of recovered profit.
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TRUE VALUES

O A

.0 384 1.464 | 562.2

0.5 338 | .1.611 375.5

1 225 | .2.049 236.

1.5.] 148 | 2.467 .} 143,1

2 90 2.948 85.3

2.5 44 | 3.726 53.9

3 29 | 4.211 35
3.5 17 | 4.915 24,1
4 11 5.507 16.6

: Tonnage of Selected panels

¢ Cut~off grade

T T L Py m

: estimated mean grade of selected panels
true mean grade'of selected panels

: estimated profit of selected orebody

true profit of selected orebody



D.Kl

me | T AN N B B
0 | 384 17424 1.4641 546.8 | 562.2
0.5] 337 | 1.577 1.608| 362.9 | 373.4
Ao 246 1 1.875.( 1,927 215.3 228
1.5] 142 2.329 2.430 117.7 132.1
2 76 | 2.817 2.949 62.1 72.1
2.5 34 3.539 3.459 35.3 32.6
3 19 | 4.143 | 4.293 21.7 24.6
3.5 11 4.782 4.701 14.1 13.2
4 6 | 5.67 5.56 10 9.4
POLY
m | T my | om | B
0 384 1.425 1.464 547 562,2
0.5y 309 1.688 1.69 367.1 367.7
1 192 | 2.287 2,135y 247.1 216
1.5 115 { 2.983 2.549 170.5 120.5
2 73 | 3.624 2.934 118.6 68.2
2.5 45 | 4.583 3.261 93.7 34.2
3 32 | 5.329.| 3.535 74.5 17.1
3.5 26 | 5.831 3.668 60.6 4.4
4 20 | 6.479 | 3.919 49.6 -1.6




mo| Ty |y B B
0. | 384 | 1.433 | 1.464 | 550.3 | 562.2
0.5 | 348 | 1.54 | 1.574 | 361.9 | 373.8
1| 248 | 1.852 | 1.916 | 211.3 | 227.2
1.5 | 136 | 2.358 | 2.455 | 116.7 | 129.9
2 72 | 2.901 | 2.983 | 64.9 | 70.8
2.5 | 32 | 3.746 | 3.492 | 39.9 | 31.7
3 21 | 4.245 | 3.999 | 26.1 | 21
3.5 | 12 | 5.026 | 4.59 18.3 | 13.1
4 8 | 5.646 | 4.375 | 13.2 3
K.2
m_ T m; my B B
0 | 384 | 1.418 | 1.464 | 544.5 | 562.2
0.5 | 384 | 1.418 | 1.464 | 352.5 | 370.2
1| 206 | 1.582 | 1.694 | 172.3 | 205
1.5 | 142 | 1.949 | 2.234 | 63.8 | 104
2 48 | 2.379 | 3.154 | 18.2 | 55.4
2.5 | 15| 2.726 | 3.596 3.4 | 1644
3, 2 | 3.40 | 5.32 0.8 | 4.6
3.5 1 13.63 | 7.93 | 0.1 4.
4 0




GEOSTATISTICS FOR
CONDITIONAL SIMULATION OF OREBODTES

Simulation techniques are frequently used to solve various
problems of Uperational Research in the fields of mining industry
and more generally of earth sciences (hydrogeology, gravimetry,
meteorology....). First, the model to be simulated is characteri-
zed, for example the spatial dispersion of grades in an orebody.
Then a .simulation technique is elaborated, which must be operational
particularly in terms of computer time. The efficiency of the simu~
lation produced is obviously linked to the capacity of the model to
fit the main characteristics of the revealed reality. Now, one of
the most important of these cheoracteristics, namely the spatial
avto-correlation of variasbles, is often ignored by the models com~
monly preserted in classical literature,

The originality of the Conditional S3imulation derives 3

- First, from the fact thut these simulations meet the particu-
lar spatial auto-correlation functicn (covariance or variogram)

‘which characterizes the reality observed.

- Second, from the conditionalization of the experimental data
the simulated 7alues at duta locations are eyual to the experimental
values, ' .

- .TPhird, from the possibility to work in the real %-dimensional
space. The simulation tectimigue proposed (turning bands method) con-
sists in simulating on lines ({~dimensional space), then in turning
these lines in the 3~dimensional space. This procedure avoids the
well-known explosion of computer time and memories involved by clas-
sical procedures when extended to several dimensions spaces. This
last point represents the very originality of Conditional Simulation
techniques with regard to Spectral Analysis technigues



I — ATMS OF A STMULATION

Before a mine starts, it is often important to predict the
fluctuations at various scaies (day, month, year) of the various
characteristics of the recovered ore. The daily fluctuations of
the overburden ratio or the mineralized thiclkness may condition
the extraction procedure or the choice of the mining tool. The
fluctuations at various scales of the grades may condition the
existence of a blending station or the,flexibility of the mill.

A perfect knowledge of the recovered ore would be required to
study these dispersions, and more precisely :

- if zo(xj,xz,xﬁ) = z&(x) denote the true grade value at any lo-
3

cation x € R’ of the 5-dimension space with coordinates x1,x2,x3,

one would requlre the knowledge of the real function z (x) For

lack of such knowledge, a simulation =z (x) of that rcailty is

needed.,

4

Information about the real surface consists of
1 - local knowledge of values zo(xi) at data locations xi ¢ 1.

2 - structural knowledge of the spatial auto-correlations between
data zo(xi), Zo(xj)‘ These spatial auto-correlations characterize

the "fluctuations pattern”", i.e. the. degree of regulatiry of the
real surface zo(x).

Hence, the simulated surface zc(x) must meet this information,
i.e, @ ) :
1 - at dats locations x; € I, simulated values and experimental va-— -
st be e t 2 \X;) =12 <)
lues must be equal C(*{l) O(Xl)

2 — the simulated surface mist present the same "fluctuation pattern"
that the real surface. ' ‘

imen the real surface zo(x) is known only at a limited number

of locations X5 € I, the simulated surface can be known on almost

every point x of the deposit. It is then possible to apply to that



Corm

simulation the various processes of extraction , hauling, stock-
piling, etc..., to study their technical or economical consequences
and by feed-back correct these processes. '

This idea of simulating orebodies is not new. Disposing of T

high performance computers, memy authors have proposed various deter—
ministic or probabilistic simulations of the mine reality (see in
summary [ 7]}, J.W. Harbaugh, 1970 - [14], Y.C. KI#, 1973). But most J
of these "classical" simulation procedures fail to reproduce'the -
most important characteristic of reality; namely the spatial auto- "
correlations of variables. Variables are auto-correlated in all de-
posits ; these auto-correlations can be characterized by ddvariances,. ;
correlograms, or, still better, by variograms. Geostatistics shows

that fluctuations of grades, thiclmesses or any other variables are !

- |

variable considered. Hence, it is of prime importance that the simu—"’{

directly linked to the particular auto-correlation function of the

lation zc(x) meets this very particular auto-correlation function.

T1 — THE PROBABILISTIC RUPRESENTATION OF REALITY

_Before exposing the Conditional Simulation procedure, let's .
recall how Geostatistics characterizes the spatial display of a va—
riable éo(x) (see also [1], G. smatheron, p. 50).° ‘ . T

. . . | _ i
Consider a 3-dimensional deposit D surveyed by drill-holes and f:$
cores of equal sgétion and length. Let x = (x1,xé,x3) € R be a point ~
of the 3-dimensional space and 3{1',}c2,}<'.,5 be its coordinates. Let .

zo(x) = ZO(X1’X2’X3) be the grade of the core which gravity centre
is located at point x. The dimensions of the core are generally
small cnough with regard to the extension of deposit D ; we will. _

then consider the grade zo(x) as a punctual grade. ' .

The deposit D is constituted ol an'infinity of punctual grades
{zo(x), x € D}, some of them being known at data locations

lzo(xi), x. € I}. Consider any line within tne deposit, the true

1



i curve zo(x) is a saw-tooth like curve which however presents struc-

- tural characteristics (see Fig. 1)

--There exist pocr zones and rich zones.

-~ 2 grades z (x) and z (x+h) distant of h are on average more

similar as their dlstdnoe h decrease

The provabilistic representation of zo(x) will take these. struc-—
tural characteristics into account :

Locally at each point X, the true value zo(x1)'is interpreted
as a particular rezlization of a random variable Z(x ). The two
rardom variables Z(x ) and a(x1+h) are correlated, . that is, their
‘ two realizations z (x ) and z kx1+h) are not independent. Now, the
- whole reglity {zo(x), x € D} is 1nterpreted as a particular reali-
— - zation of a random function Z(x), this random function can be seen
' as the set of-an'infinity of correlated random variables located at
. . ~each point x : {%(x), x € D}.

Consider the first two moments of the random function Z(x) :
.- moment of order 1 or expected value : m(x) = E{Z(x)}

- - mowent of order 2 or covariance :

C(x,h) = B{z2(x).2(x+n}} - m(x) m(x+h)

All throughout this article, we will suppose the hypothesis of local
fﬁ stationarity of order 2, that is, for distances n inferior to a cer-~
- tain limit, the two previous moments are independent of the location
i X. % ' .

E{z(x)} = m constant whatever x may be. For mere reasons of

- writing siwplicity, we will consider the constdnt m as nought Hence

- B{4(x) 4(x+h)} = C(h) whatever x may be.

In practice, there is always a scale within which reality meets that

hypothesis of local stationarity.

-~ Geostatistics uses another moment of order 2, the variogranm :

2y(h) = B{{2(x) ~ Z(x+h]2} which requires a weaker hypothesis : local

(1]



stationarity of increments [Z%(x)-Z(x+h)]. When the covariance exists, ‘i
both tools -~ covarisnce and vuriogram — are identical and correspond

to each other by the relatiop . | __!

(1) . y(h) = (o) - C(h)

The covariance or the variogram appears as the sought after auto-
correlation function that characterizes the "fluctuations pattern" or |
degree of regularity of the true surface {zo(x), x € D}. 2y(h), for

example, is estimated from the experimental.data : W

: N
2 yx(n) = § Z lz0x) ~z (x,+0)}% .
i= ‘

if there are N couples of data distant of h. |

Iet's recall now how that simple variogrem tool can characterize _

the "fluctuations pattern" of reality. _ _j

Variances of Dispersion - (see also [1], G. .iatheron, p.66).

—

The dlsp6r81on of true punctual values z (x) when x describes

.
an area V < D included in the deposit is chdracterlzed by a dispersion-|

»

variance which depends oniy on the variogram : T
02(0/m) =1, fax [y(eylay = For,v) -

=5 Y X=YIAy = YUV, .
v v v 1

¥(V,V) denoting the mean value of y(h) when the two extremities il -
and M' of vector B = wa' describe independently the volume V. An -
. ¥
estimator DZ’(O/V) of that variance is the a priori variance of data
{zo(xi), x; € vi. _ .
2* S M, 5 2 :
(o/V) = Z {z(x;) AO(Xj)] 3

n(n~1) i<j N
if there are n data zo(xj), zo(xj),... within area V.

Similarly, the dispersion variance of miean grade ZP(X) of blocks,-

of volume P within the arca V depends only on the variogram : -



(2) p°(P/V) = ¥(V,V) - Y(2,B) |  withPc Ve D

Y(»,P) denoting the mean value of y(h) when the two extremities of
vector H describe independently the volume P. |

Herce, Geostatistics interpret the reality {zo(x), x € D} as a par-
ticular realization of a random function %(x) characterized by a
particular variqgram 2 y(h), this variqgram being estimated from

the real data {zo(xi), x; € I}. Now, simulation merely consists in
drawing azother realization {zs(x), X € D} 3 zs(x) is not the reali-
ty z,(x), but both zs(x) and'zo(x) are drawn from the same random
function Z(x) characterized by the auto-correlation function vario-
gram 2 y{(h). Conditionalization is a second operation that consists
in seledting among all the possible simulations zs(x), the zc(x)

ones that meet.the experimental values at data locations, i.e. 3
pel : ’ :

zchi) = zo(xi) v x; € Information (see Fig. 1)
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fig:1 Reality and simulaticns

€ Data locations e Z) Reality

e Zs(x) Non conditional simulation
——-—— Z ) Conditional simulation

S Z';‘(x) Kriging

fig:2 Reality-Simulation_Kriging
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Simulation or ¥stimation -~

A question arises : couldn't the 81mulated surface {z (x), X € D}
be considered as an estimation of the real unknown surface
2 (x), x € D} 2 Obviously z o(x) is an estimator of reallty z (x), but
a very poor one j; more pr801se1y H '

The quality of an estimator z*(x) of a reality zo(x) is charac—
terized by the estimation varisnce or mean quadratic error, the error
Z(x) - 2Z¥(x) being considered as a random function :

() of = B{[a(x) - z*(x)]?

—~ The best linear estimator zz(x} is given by the formalism of
Kriging (see also [i], G. wmatheron, p. 11%) that precisely minimizes
the previous estimation variance, whereas the cohditional simulation
Z (x) considered as an estimator provides an estimation variance
tw1ce greater than the kriging variance (see demonstration further
in III-1) : ' '

E{[2,(x) - 2(x0)1%} = 2 B{[7g(x) - 2(x)]%} = 2 o}

The Ariged value is on average closer to reality, but the
kriged surface itz (x), x € D} has no reason to reflect the same
"fluctuations pattern" as the real surface {z_(x), x € D}. In parti-
cular, the kriged surface will smooth the real fluctuations ; see
Figure 2 : the dispersion variance D[ *(0/V) of the kriged value
considered as a random function ZK(X) is inferior to the dlsper81on
variance D (O/V) of the true values : ' '

22*(0/v) < p2(0/7)

In summary, simulation and estimation have two different purposes @

- the simulation {zc(x), er D} reflects the structural charac-
teristics of the mvealed reality. For problems dealing with ore cha~
racteristics fluctuations, simulation is required.

— the estimation, in particular the kriging {z§(x), x € D}



minimizes the estimation variance but smoothes the. true spatial
fluctuations. For problems dealing with resources or recovered
reserves estimation, kriging is required. '

III - CO TDITTONAL STMOLATTON ~ THEORY

-,

IITI-1 - Conditionalization.,

At each point X € Deposit, consider the real value z (x)
and the kriged value z (x) They differ of an error :

2, (x) = zy(x) + [z (x)-25(x)]

Thls error is un¥mown, just like the true'value Z (x) 1tself and
will be simulated. ‘he kriging error [z (X)—A (x ] has a very parti-
cular property which is the key to the Theory of Conditionai 51mu-
lations : this erroT considered as a random function [Z(x)- Y (x)]

is orthogonal to 2 (x), i.e. in terms of covariance 3

E{ZK(x)[Z(x')-cZK(x').]} =0 Y x, x' €D which entails :
E{Z (x) A_(x Jl o+ h{[Z\A) LK(X)][A(L )-% (x )J}
= B{2(x) 2(x")} = C(x=x") = C(h)

This property derives directly from the minimization of the estima~
tion variance of Kriging (see [1], G. iatheron, p. 123).

Now, if we consider a random function Zs(x) independent of 2(x)
but isomorphic to it, i.e. Zs(x) admits the same covariance C(h)
as Z(x), the same kriging procedure leads to the analogous decompo-
sition : '

Zs(x) (X) + [Z (x) Y(X)]

- _ * L. %, .
wWoreover, LZS(XJ ~ Z R(x)] is igsomorphic to [Z(x) - ZK(x)]. Hence
, .
the rendom function : '

Zp(x) = 4 (X) + LZ (X)~' k(x)]



constructed by superimposing tne residuals [Z (x) ZS K(X)] of the
second random function Zg (x) to the kriging Z (x) of the initial
random function Z(x) is 1somorph1c to z(x), i.e. 2, (x) admits the

same covariance C(h) as Z(x). Furthermore, the correspondlng reali-

zations

(8 5o () = 2y(x) + [25(x)-25 ()]

are conditional to the real experimental data : at any deata location
X5 € I, by deflnltlon of kriging, the two residuals z(x ) - =z (x )
and z (x ) - zs K(x ) vanish, it comes then :

zc(xi) = z(xi) Y x; €1

Hence the random function Z, (x) und its realizations z, (x) give a

comglete solutlon to the problem of Conditional ulmulatlon :

‘- the blmulated surface {zc(x), x € D} does pass by the experi-
mental data ond reflects the same "fluctuations pattern® (i.e} same

5

covariance or variogram) than the real surface.

HOTES : -~z (x), kriged value of Z (x), is a linear combination of
nelTthTlné data : =z (x) = F‘X z (x.)

~The weighting factors K are glven by the kriginzg system
" which is a system of llnear equdtlons (see [1], G. iiatheron,

p. 124).

-7 (x) is thg kriged value of z (x) based on the same data

paubprn as 2, (1). It is a 11near oomblnatlon of the data .

z (x ) locatnd at the experimental points x €1 ‘
*,

ZS,K

(;) =2 Ay 7 (x )

i

Obviouély the weighting factors Xi are identical for z: Kﬂx) and z;(x).
. ?

This teﬂhplque of conditicnalization provides at every point
X e Deposit, both the simulated value z (x) and “the kriged value
Z (x) The estimation variance of the ulmulatlon ac(x) considered as

arn cstimator of Z(x) is derived from formula 4
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2 * : :

Ef[2,(x)-2(x)]7} = 2 B{[2,(x)-2(x)]°} N

In terms of estimation variance, the kriged value is twice better o
than the simulated value. Estimation is not the purpose of simula-~ {

tion.

III-2 — Non-Conditional Simulation.

The following problem remaing : to generate a realization"
zs(x) of a random function Z(x) with imposed covariance C(h). zs(x) -
does not have to ve conditional to the real data, i.e. -at data loca- -
tions x; 3 zs(xi) can be different from zo(xi).

-~ Tet us recall that the writingszs(x) or zo(x) denote variables
spread in the 3-dimensional space (x € R2) and that the covariance
C(h) is a function of the modulus h of the vector H. S

In the literature, there exist numerous probabilistic procedures n
- - %o generate one-dimensional realizations'{zs(x), X € R1] of stochas-
~ - tic process Z(x) with imposed covariance. But when extended to 3-di- ;J
mension problems, these procedures reveal unefficient, if not unrea-
sonable in terms of computer time. They generally consist (see [5],
G.M. Jenkins and D.G. Watts, [4], D. Guibal) :

*

- either in simulsating orthogsonal random measures the variance | i
density of which meets the spectrum measure of the imposed covariance.

- or in considering moving averages (on circles, spheres, or any :
figure) which describe a field with a Poisson dispersionm.

- The originality of the "turning-bands" method initiated‘by~G.
Ilatheron and the Centre de worphologie de Fontainebleau (see ref. Ty
(2], [3] and [4]) consists in reducing any 3-dimensional simulation
to simple one-~dimensional simulations on lines that turn in the 3- ,
dimensional space. *his "turning bands" method provides 3~dimensiona1-«g
simulations with acceptable computer costs of the order of the costs .

t

required by classical 1-dimensional procedures. : .

The turning bands method.

defined by the

In the 3-dimensicnal space, consider the line D1 .
S
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unit vector 31 (see Figure %).e On line D consider a one~-dimensional

1? )
random function Y(u1) stationary of order 2, i.e. with

- a nought expected value B{Y} = 0

- a {-dimensional stationary covarisnce 0‘1)(hﬁ )
) ' 1

—

(51, V1,'W1) represents a unit system of orthogoﬁal axis, and

(b, » B hw1),the projections of vector R on these axes.
1 1

— The 3~dimensional random function Z1(u1, v W1) defined by

1?
29 (0, vyw) = y(uy)
is stationary of order 2 with a nought expected value and a 3-dimen-—

sional covariance :

eyta) - c1(hu1,.ﬁv1',hw1) = C(”(hu1)

" To generate a realization z, of Z1, the value y(u1) of the 1-dimen-—

i
sional realization at point u, of line D1 is assigned in practice
to all the points interior to the band centred on the place.{u.1 =

~ Constant} (see Fig. 3). The thickness of the band is the spacing

of .the values y(u1) on line D1

fig:3 The turning bands
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— We then consider N directions Uy sUoseoelyye.ely uhiformlyidis-
tributed on the unit sphere. A new realization y(ui) of a. ruandom
function Yi equivalent to Y is generated on every line Di, the N
random functions iY » 1 = 1,8} being independent. To each 1-dimen-~
sional reslization y(u ) correspondsthe 5—d1menblonal realization

Z . (ulavlyw ) = Y(u )

N , o
~ We then consider the sum z = 2 z4 which is a realization
i=1 ) 4
of a 3-dimensional randuir function Z(x1,x2,x3), stationary of order

2, with a nought expected value and a covariance that -tends towards
the fellowing isotropic covariance when the number of lines N - EPS I

¢(h,,hy,h,) = C(h) = \jf {1« n, 4 >) du

1/2 unit
spl}ere

—

<h, us>-= h denoting the projection of vector h on axis U.

h = Vh?+h2+h2 is the modulus of vector h . The preceding integral

is written with spherical coordinates (See Pig. 3) :

¥

‘ 2mn
.C(h) =\[\ deu[\ (1)(ln cos ¢|) sin ¢ dg = ~[ (1)(s)ds

0 ) (o)

The 3-dimensional covariance C(h) is imposed, hence the 1-dimensional

covariance 0(1)(3) derives from formula :

(5) ey =L L s o)

It is shown that the function C(1)(s) given by that formula is a
covariance function (see [2], v. watheron). Hence, there always
exists a solution to the problem : what is the covariance CH (s)
of the {-dimensional random function Y{(u) to be simulated on the
lines Di? By turning tiese lines in the space, the sought after
realization of the j-dimensional random function %(x) of imposed
covariance C{h) is obtained.

NOTHS -~ In practice, N is never infinite. Ve may consider for example..

the N = 15 lines that join the middles of opposite edges of a regular
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isocahedron., The sum z = 2 z; will then reflect a covariance
i=1
W= 2 D em w
Cd(h) = 2 C''(<h, u, >)
: h
which differs from the limit covariance C(h) = %%v/ 0(1)(s)ds. The

bias between Cd(h) and C(h) can be theoretically cagculated using
the geometrical properties of the regular isocashedron. It has been
shown in practice (see ref. [4], D. Gaibal, p. 24) that it is suf-
ficient to introduce a multiplicétive corrective factor.:

- if 0(1)(3) was a coustant k, it would come :
.for the limit covariance : ¢(h) = 2 mk
for the practical covariance : Cd(h) =15 k

Hence we could consider that the covariance Cd(h) provided by the

isocehedron approximation is :

15
C(h) # 5= ¢C(h)

i

~— The identification of an expected value L{4(x)} = m # 0 is imme-

diate. As the previous S-dimensional realigation corresponds to a
nought expected value, it is sufficient to add a constant equal to

‘the imposed expected value m to each simulated value z(x)

IIT-% - QCne-dimension simulations.

The very last problem left is to generate realizations of
the 1-dimensional random function Y(u) with the known imposed cova-
riance C ' R . '
' 0(1)(s) = B{Y(u) Y(u+s)}

the expected value of Y(u) being nought : E{Y(u)} = 0. There exist
several methods to generate these i-dimensional realizations. The
most classical method is based on spectral analysis ; its advan-—
tage is to be absolutely general, whatever the imposed covariance

0(1)(8) may be, but in practice, this spectral analysis procedure
may require heavy Fourier transtorms calculations.

Particular cases occur guite frequently in practice, when the
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covariance 0(1)( s) can be written as a convolutlon product of a ‘L{
kmovm function f{u) by its transposed f(u) f(-u) : o

) L e _
(6) 0(1)(s)~= f x f iJ~ f(u).f(urs)du - -

=00 R ""l

Then the procedure of moving average with the imposed weighting l
function f(u) reveals to be much easier and economical than the o
general spectral analysis procedure., Precisely

- We start from a stationary {-dimensional random measure T(dv) 3
with a Virsc covariance measure, for example the differential forms
of a Peiason process or a PBrownian movement. Then with each measure [

P(dv) is associated the 1-dimensional random function Y(u) defined
+o0 . . i

ﬂu)=]ﬁ ﬂuw)TMw) : L

-00

by @

Y(u). appears as a statibnary random function the covarisnce of which -
; 9

is precisely : 0(1)(5) = f * £ , (This is a classical probabilistic .-

result - see also [1], &. uatheron p. 14 and kxercise 10, p. 104). .

-~ In practice, A discrete approximation ot the previous random mea-

gure T(dv) is used :. _ i

- Pirst, we start drawing iundependent realizations of a random
variable T, and affect these values to each mesh~point of a regular
grii defined on line D - see Fig. 4. The random variable T presents |

2“. SEV (32 —

a nought expected value and an imposed variance E{TZ} =g
ral subroutine packages provide such realizations of a random va~ -

riable, for example the IBi Sub-package RANDU.

Iet ti ,...ti,...t y«o.. be these independent realizations !

-k
at locations i-Y,...i,...i+k... on line D. The constant spacing

i+k

is b.

- second, we consider the moving average Yy defined at every
location i Dby, the imposed weilghting function f(u), i.e. :

3 .f(kb) o
Vi = D tyy "

(= =0 i

Tac values ¥y >un be inturpreted as a realization of a {-dimensional
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random function Y, = Y(u) with a nought expected value and the

following ccvariance 3

¢{"e) = By, ¥, ) = L{*“ . .2(xb) }whm £(k'b)
:L+ o= — o0 j.-f-k * k,:_:'___ooj“i+s+k’ }

With the charge 3 & s+x', it comes :

400

00 ; . : .
R EZ‘ R Y .f(kb).f[(e-—s)b];

(n (”m - 5{ »

This covarlanco (7) is the discrete approximation of the imposed

covariance C ? (s) of formula (6).

Formula (7) must be developed according to each particular
weibhtin% function £ ; the small bias vetween the discreet cova-
riance C ( ) and the iuposed covariance 0(1)( s) is then easily

2

corrected by acting on tiro parameters : variance o and spacing b,

Yi
e : - ; : ' — ~u
Weighting : function fu)
l:? .
tik TN Y . Lok oy

o -

o spherkal ¢
T } .
) 3
: - .
cxponcntml A

i

0 A ranqe a

fig: 5 Spherical and exponential
. - schemes



Some practical examules. - -1

The preceding moving averase procedure provides {-dimensional
realizations reflecting covariarces which can be written as a con- ,
R ) v
volution precduct (see formula (86)) : 0(1)(5) =f * £,

Now, the two 3~dimensional covariunces C(h) most frequently
used in Gecstavistics, namely the sphericel covariance and the expo-
nential covaricnce, correspond precisely to the t{-dimensional imposed
covariznces 0&1)(3) taat can be written as convolution products.

sore precisely, with the previous notations, and C(h) being the ;
covariznce oi the 3-dimersional random function {Z(x), x € BJI : .

~-1 - The sphcrical coveriance is written —
( T, 3
( X[1 - %% + _33 ] v Osh<a
(7)C(h) = ( 28 with X, a > 0
( : ‘
(0 v h2a : o

The corresponding variogrwn is deduced from formula (1) : i
Y(h) = C(O) d C(h) (See Mg, 5)

The constant ¥ is called "sill" of the variogram. Independence bet— =
ween the 2 varisbles 4(x) and Z(x+h) is reached for distances h su-
perior 1o a. The distunce a, which characterizes the zone of influen- .
ce of the variable Z(x), is called "range" of the variogram.

- 2 - The exponential covariance is written :

(8) ¢ =%xe® y naso with X, a >0 =
The corresponding semi—variogram is (see Fig. 5) :

y(h) =K1 -¢e]  yna>o0

If we want to simulate %S—-diwcnsional realizations that reflect the -
2 previous covariances C(h), we wust first simulate 1-~dimensional = o
realizations on lines that reflect the covariance 0(1)(3) given by -
formula (5) : .



=18 -

1 - For the spherical covariance, it comes :

( . 3 ,
K - 3s 25” 1 .
(1)(3)_ ( on [1 - a © i) ] v O<s <a
{ O Y S > a

This covarlance is nothing but the convolution product t (1)(5)
£ * f w1th the following weighting function :

2V-£&;-. u ir . -2 <cu s-?
2 _ 2 2
( T a -
f(u)z(
(o ' if not

The demonstration is immediate,
2 - For the exponential covarisnce it comes :

(1) _ K o -as
C 7(s) = 5 (1-as) e v s g 0

This COVdeuﬂC@ is notking but the convolution product : C(l)(s)
T * f with the following welghting function :

E 2K°"(1 an)e ™ i we 0
£(u) o :
, 0 if not : u<O

It is recalled that théApractical discrete approximations C§1)(S),

differ from the previous expressions 0(1)(5) (see formula (7)), and
that these differences must be corrected (see precise calculations
in ref. [4], D. Guibal, p. 19 and p. 30).

NOTE -~ The two examiles of covariance C(h) (spherical and exponential)
given here nuve no abgolute character, They are frequently used in

practlce

~ first, for the simplicity of their mathematical expressions.
This fact is of considerazblc nelp, vecause Geostatistics constantly
considers integrals of the covariance or variogram function.
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-~ second, because they depend on two parameters‘only,'sill X
and raage a, that can be easily deduced from the available eXperi—

mental covariance or variogram. » ' ' : i

. e i

I1I~4 — Gaussian Anamorphosis.

nhe reglonalization of the true values {zo(x), X € Deposit} N
has been interpreted as a particular realization of a random func- |
tion {z(x), X € D}. This random function is defined by its'spatial'
law, and not only by the first 2 moments - mean and covariance - |
imposed to the simulation. Hence, the simulated value {z (x), x € D}
does not reflect the whole space law of 4(x), but only the first two --
moments imposed.'ln practice, this is not too embarassing for we -I
have shown (see Chapber II and formula (2)) that all dispersion va-
riances depend only on these imposed first two moments. iforeover, ,{
experimentzl data seldom allows recognition of moments of order su-—

perior to 2. | !

The turning bands method, that consists in summing up in space .
a great number I of independent realizations defined on lines, gene—~ vm[
rates realizations z, (x) of a random function Z, (x) with a Gaussian
- space law (central llmlt theorem). Hence, under the statlonary hypo- j
thesis, the dispersion law of z (x) - x being fixed - is Gaussian and’
independent of x. Therefore, the histogram of the simlated values T;
{z,(x), x € D}, which is an estimation of that dispersion law of
Zc(x) - X being fixed — will be of a Gaussian type.

In practice, real values {z (x), x € D} are very often p051t1ve
or nought {thicknesses, brades, ecc..). Hence, the experlmental nis-
togram of real data {z (x }s 1 € Information} will reflect a log—
normsl, Gamma or other dl pbrulon law that ensures =z (x) > 0, ' o7
¥ x € D. Whereas the simulation, being Gaussian, may present a fair | -
proportion of negative simulated values : uc(x) < 0,

—

Hence, it is of prime importance that the histogram of simula-
ted values reflects the sane dispersion law as the experimental
histogram of real data. This is tne purpose of the Gaussian anamor— -

phosis @ : ‘ -

{z,(x), % € D} being the real values, let g g, (x) = Flz (x)] be the -
transformed of AO(X) by function ¥, such thqt {go(x), x € D} presentSp'

s

I

i;(
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a Gausolan histogram, Instead of simulating =z (x), we shall 31mu1ate
its transform & (x). This simulation {g (x), x € D} will reflect a
Gaussian hlgtogram. Hence, the inverse transformation o w1ll pro-
vide the sought after simulation izc(x) = F 1{gc(x)}, x € D} that
presents the good histogram, i.e. a histogram similar to the his-
togram of veal data {z_(x;), i € I}. Obviously the covariance C(h)
imposed to the sinulation of g (x) is deduced from the available
data {ﬁo(xi) = F{zo(xi)}, ie Lf.

Figure 6 shows the ekperimental histogram of real values
{zo(xi), i € I}. A lognormal dispersion law could be fitted to that
experimental histogram. Hence, the transformed variable go(x)

Log {zo(x)} will present a Gauwssian histogram. The spatial regiona-
lization {go(x), x € D} is then considered as a particular realiza-
tion of the random function {G(x), x € D} with imposed expected value
and covariance; These two imposed moments are deduced from the avail-

. able data {go(xi) = Tog {z (x )i, 1 ¢ 11 The turning bands method

then provides a simulation {gc(&), X € D} that is conditional to the
data, i.e. at each location x5 of real data

8(x;) = g (x;) = ILog {zo(:;i)} : viel

Thz histogram of the,simulated values {g, (x), x € D} belng
Gaussian, the inverse transformation z (x) = exp {g (x)} will pro-
vide a simulation {zc(x), x € D} that :

- presents a logncrmal histogram

~ is conditional to the real data z, (x.) =z (x.) v i 6 I

- reflects the same first 2 moments, expected value and cova-
riaence, as the revealed reality {ao(xi), ie I}.
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~ tig:7 Graphic cznclrhorphosis

Graphical Anamorphosis.

In practice, if a precise and simple dispersion law - for
example lognormal or Gamma - cannot be fitted to the experimental
histogram of real data {Zo(xi), i € I}, the anamorphosis I will be
done graphically : ‘

The two following cuimulative histograms (see PMig. 7) are consi-
dered : Cd
— i

- the theoretical cumulative histogram of the reduced Gaussian
variable G, i.e. the curve thal gives the probability law Prob{G < g}ii;

—
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~ the experimental cumulative histogram of the real data
{z, (x ), i € I}. Bach class (zl, zg ) of the experimental cuxrve
corresponds graphically to a class (g ’ gl+1) of the theoretical
Gaussian curve. Ve then proceed to a llnear interpolation within
each class, z € [zl,-zl+1] or g € [gl,gl+1] Hence, the bijection
.g_> z 1s graphically defined, i.e. the arnamorphosis

go(x) - Fiz (x)]

This graphical procedure is nothiﬁg'but the well-known Nonte—
Carlo technique (see [14], Y.u. Kim, [7], .W. Harbaugh, and many
others) '

111-5 - Simultaneous simulations of several variables.

In practice, we often have to deal with several intercor-
related variables, for example : the simulation of an orebody uSually'

congists in simulating simultaneously various variables such as :

~ the two thicknesses of overburden and ore

- the various corresponding metal accumulations, a metal accu-

'mulation,being defined as the product of a thickness by the average
metal grade on this thickness. '

Structural Analysis.

Iet {zk(x), x € D, k=1 ton} be then vaiiables defined on
the deposit D. : ' '

Before simulating them, we have to characterizé:their spafial
"fluctuation pattern" : ' ‘

1 - Bach of these variables zk(x) is consid.red as a particular
realization of a random function Zk(x), stationary of order 2, charac—
terized by the first 2 moments -

Expected value : E{Zk(x)} ='mk = Constant

3 ey~ - .___"\r - — 2
Covariance : Ckk(h) = L{Ak(x) Zk(x+h)} my

these two moments being estimated frowm the available data
{Zk(xi)’,xi € I}. The covariance Ckk(h) characterizes the spatial
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auto- correlations of Zk(x).

2 — Now the n variables are inter-correlated in space, i.e.
there exist cross—covariances : '

Ckk!(h) = E{2,(x) Zys (x#h)} = mp my v k, k' = 1 ton ;
these cross covariances being estimated from the available data

{Zk(Xi)y Zk'(xj.) ’ Xi’xj €I} : ’ | -
NOTE - The classical correlabion coefficient between Zk(x) and Zk,(x)
is nothing but : Ckk'(O)

P17\ foad®) Gy (0)

This correlation coefficient characterizes only local inter-—cor- |
relation between two variables iocated at the same point x (i.e.
.-for h = 0), when the cross—covariance Ckk'(h) characterizes the spa—~
tial inter-correlation (i.e. for any u). : =

Hence, the "fluctuation pattern" of the set of the n variables
{zk(x), Xx € D, k = 1 to n} is characterized by the covariance matrix
“{Ckkr(h)}, just as the "luctuation pattern" of the single variable -~

{zk(x), x € D} was characterized by the single covariance - ~
C = (
() = G (n)

Conditional Simulations. : : : -

Simulating n variables with an imposed covariance matrix presents :

(3 . ) 3 . . Y -, . ) '—")
no difference from simulating one variable with an Imposed covariance
function. The turning bards method applies :

- Pirst, we simulate on lines 1-dimensional realizations of the

n random functions {Yk(u), k = 1 to n} with the imposed 1-dimensional
covariance matrix {C&&?(s)}. vach covariance Ci&%(s) of this matrix

is given by formula (5) : : ' -

1 > ‘
G () = 2 g ® O (o) -

SR

—~ Second, these lines are turnced in the 3-dimensional space,
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- thus generating the desired 3-dimensional realizations of the n

random functions {Zk(x), k= 1 to n} with the imposed 3-dimensional
covariance natrix- {Ckk,(h)}.

In practice, difficulbties arise mainly from 2 facts 3

i = 'Experimental data {zk(xi), zk,(xj) H Xi;zj ¢ I} may not

allow correct estimation of all the terms of the covariance matrix
{Ckk'(h)}‘ Usually, the direct covariances Ckk(h) are well estimated,
whereas some Cross—covariances Ckk,(h) are less easily estimated.

2 - Spectral analysis alWays provides a solution to the problem
of simulating {-dimensional realigations reflecting the imposed co-
variance matrix {C ik)( s)}, but may require heavy calculations (see

ref. [5], G.M. Jenkins, p. 521). T'e simple method of moving average
exposed in II1I-3 for simulation of one single variable can be exten~
ded to simultaneous simulation of n variables if all the covariances

of metrix {Cil?(s)} are proportional fto & unique covariance 0(1)(3),
wnich is a convelution product :
(1) (1), ,
ckk,(_s) = Ayt » © (s) v k, X =1 ton
(9)
0(1)(3) = fxf Macr being a constant

In IEI-;, we have seen how to generate a {-dimensional reallzatlon

Pe

f * f Consider n such reallzaﬁlons p1,...p2,...;@,n...pn independent

(u) of a random function P(u) with the imposed covarlance C 1) (s) =
of each other, and the n following linear combinations @
n :
yk(u.) = Ez_) B B (w) ¥ k=1 ton
=1
The n realizations {yk(u), c = 1 to n} thus obtained correspond to

n random furnctions {Yk(u), ¥.= 1 to n}, the covariance matrix of
wnich is

: . |
Ci};z(s) i [en1 akeakvﬁ] .ot vy =1ton
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(1)

with the following constants identification

n

821 2y0 B T Ay

The covariunce matrix of {Yk(u), k = 1 to n} is precisely the im-
posed covariance matrix of formula (9).



IV — PIRST CASE STUDY : THE PRONY DEPOSIT

(Readers can refer to [9], [10], [12], Ch. Huijbregts and A.G.
Journel for more detailed accounts on the geostatistical sequential
exploration of the Prony oreboiy). '

Presentation of the Deposit.

The Prouny deposit (lew Caledonia) is a subhorizontal fbrmation
of nickel-laterites which are products of wéathering of basic rocks,
largely pewxidotites. The deposit is surveyed by systematic grids of

vertlcdl boreholes, each borehole is analyzed mPter by meter for
Ni grade and imourity Mg grade (see Fig. 8).

Sequential exploration of the deposits provided Successively
-~ global and local estimation of the resources in situ
-~ global and local estimation of the recovered reserves, with a
limit mineable ore thickness critcrion. '

Then, there was the problém of predicting tie fluctuations of
overburden ratios and of grades (¥ and M) that ekploitation and

‘milling will meet at various scales (day ~ month - year).

A séiution td that problem could have been the drilling of a
systematic square grid of 1Um. spacing : 17,600 boreholes on the
first production zone, which is unreasonable. With the helﬁfof the
available grid of 100m. spacing (176-boreholes), conditional_simu—»

lation pfovides the imulated data of these 17600'boreholes with

10m. spacing. Hence, that key problem of predlctlng ore charac—

teristics fiuctuatlons receives an 1mmedlate and 1nexpen31ve so- . |
1ut10n. ' ‘ '

Prom a practical point of view, it was proceeded as follows
to realize these conditional 31mu1atlon° 3
Vertical structursl analysis.

Vertical profiles of Wi grades show a common form. From the
top downwards a progressive enrichment is observed, followed by a
fairly rapid decrease in grade. In geostatistical terms, this re-
presents a "vertical drift" of Wi grades ; residual fluctuations
are superimposed on this drift or mean tendency. Universal Xriging
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permits EQtlmathL of thla drlft curve frbm.the déﬁé.of;eaqh bofe—
hole (see Jg‘j_g. 8) ' SRUETRENEI S N
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(ref. [97) thet an estimator of that vertical series of mean Ni

grades i3 DTCClSSlJ the previons vert¢ca1 irmxt curve,

The entire nineralized thickness cut by each borehole cannot -

be exploited econonlcdlLy. On” each unﬂt of exploitation (approxima—

o

tely a 20 x 20 w® panel), only a certain useful thickness is Tetdlﬂed
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the thickness defined by a specific cut—-off greade gé_in nickel.
This cut-off grade ought to be applied to the drift curve repre-
sentative of the panel ; hence, for each cut—off value‘gé, a cer-
tain nuwber of "service variables" which are .spread in the 2-dimen-
sional horizontal space (coordinates(x1,x2) =X §|R2) are defined :

81(x) : overburden thickness (see Pig. 8)
Sz(x) : thickness of the retained ore

S.(x) : Ni-metal accumulation corresponding to the retained
thickness 32(x). SB(X) is the product of Sz(x) by the corresponding
average Hi grade read on the drift curve,

Horizontal structural analysis.

The first production zone has been surveyed with a-systematic
square grid of 100 m. spacing. lioreover, two cross-shaped grids
witn 20 m. spacing have been drilled to recognize the short-dis-
tances structures. That information allowed the characterization
of the horigzontal structures of lhe service—variableS'S1(x), Sz(x),

Sb(x). Figure 10 shows .the Following examples :

-~ The experimental histogram of data {Sz(xi), x5 €I = 100 m.
O/’l" Nl -

H

spacin:; grid} for the cut-off £

- The etperimenTal points and the theoretical semi-variograms
models . Y3 (n) adjusted. The two variables consldered are the prece-
ding ore thickness 5, (x) for g, = 0/ Wi and the corresponding Ni~ .
metal accuulation S7(4) ' -

- On tab¢e 9 : the 1ocal correlatlon coeff101enxs pﬁ ~g and -

ps -S” tlmdted from uhe aata {%(x ), X; € I}
S P27Y3

Conditional vinulations

The conditioning regl data are located on the 176 mesh-points
of the. available grid of 100m. spacing : {81(xi) (x ), S (x ),

X4 € I}. The two thicimnes;es of overburden S1(x) and retalned ore

Sz(x) were simulated independently with the only constralnt..

S1(X) + Sz(x) < 40 meters



The two variables Sz(x) and Sj(x) were simulated simultaneously
with an imposcd covariance matrix of tie form (9) (see Chapter

III-5).

Five cut—-off grades in nickel,'gc € [0 to 1;5%] were consi-
dered. The corresponding 5 sroups of service-variables {S1(x), S2(x),
SB(X) were simulated independently. ' '

The various precéding service-variables were simulated on a

systematic 10 m. spacing grid corresponding to 17600 boreholes.
Simulated data are equal to real data at each one of the 176 loca-

tions of real boreheles.

Histograms, variograns,Across—variograms, and correlation coef-
ficienis vetween simulated values were systématically compared with
the corresponding features deduced from real experimental data. All
these verifications were positive.

examples :

~ The histogram of simulated data.{Sz(x)} for the cut-off grade

gc = O‘/" ..N:j- e

-~ ''he two semi-variograms Y.
J

data {82(x), SB(X)} for g,

~ On table 9

' cuiioff |

: the local correlation coefficients py
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Figure 10 shows the following

and YSB

= Gy Ni.

-

_E"xpcr'xm'cntal

Simulat

deduced from the simulated

deduced from the simulated data for g,

9. |Fsi-52 | £s2-55 | £S)-5; | Fsp-53
0.0 0.87 0.83
1.0 | -0.35 0.99 |[-0.25 0.98

Table:9 Correlations coefficients

-
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v - *LCOUD CASE STUDY — A SIWULATION DATA BﬁoE . hw

It has already been indicated that the two models of 3-dimen— (ﬁ
sional covariances or variograms most frequently used in practice ‘
were the spherical and the exponential scheme (see Chapter III-3,
formulae (7) aud (8)). These two schemes depend on two parameters
only : . L - -

.~ the sill K ¢ which is a multiplicatife factor

~ the range a which characterizes .the zone of influence (see

Fig. 5). Yow, we can record on masmetic tapes or disks a simulation
data base constituted of various 3-dimensional realizations of ran- |
dom functions, the isctropic covariances of which ure spherical or
exponential with a unigue sill K = 1 and various ranges a. In prac—-
tice, if we look Tor a particular realization with an imposed expo- ~
nential or spherical covariance (K and a being fixed), it is suffi~-
cient to draw the adequatec. realization (spherical or exponential -
with o range close to the fixed value a) from the simulation data
base, and tov multiply each simuluted variable by lhe fixed square-

root \JE. . '

As an example, consider a subhorizontal sedimentary deposit —
with a preferential horizontal struclure due for instance to hori-
zontel suratifications. The %~dimersionel evperimental variogram
characteristic of the spatial display of grade in such deposit may
be adjusted by the following anlsotrOplc model conutltuted of three
1ntermesued otructureo :

~ : : [ I
' : f,.2 2 2 2 2 —
\ - ¥ |
(10) y(nx hy h ) h°,+' 1 (\'h hy h ) + Az YZ(VZh h )

(hx,hv,hq) being the three coordinates of vector B, and
o £

K, K

o K

1 Ko being three positive constants, N

Yy aaud P being two spherical schemes with ranges aqr 8y and sills
equal to 1, ilence, the spatial display of the variable grade g(x,y,Z)‘;
is dnterpreted as tne sum of three independent realizations of turce

randon functions Gor Gyo G, : ‘ , s
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We want to simulate a 3-dimensional realization g_(x,y,2)
~)

that will reflect the previous anisotropic variogram Y(hx’hy’hz)‘

1) Go(x,y,z) characterizes a white noise (a nugget effect in
geostatistical term)‘i.e- 2 microstructure of very small range,
that is to say with practically no spatial auto-correlation, or an
error of measure. All the ValuQS’{go(x,y,z), Xy y? z € Deposit]
are indeperdent of each other ; their simulation is very easily
done by drawing random numbers with the imposed dispersion variance

K .
(o

2) G1(x,y,2) charucterizes an isotropic %-dimensional structure
with range ay- The simulation data base provides a simulated reali~
zation g, S(x,y,z) that reflects the imposed spherical scheme K1 Yqe

b}

3) G 2( ,U,z) char;ctcrlze the norizontal stratification pheno-
menon ¢ the varianle 8o varies only in the horizontal plane, i.e, ¢

gz(x,y,z) = 02(£,J,Z ) whatever z £ z' may bve.
Phe semi-variogram X, Yo depends on the horizontal distance

.2 .z . ) _ '
h; + n§ only, and will ususzlly present a grealer range 8y > 8.

On any horizontal plane (z = z ), the simulatidn data base provides
a realization g2 (A YRR ) tnqt reflects the imposed spherical scheme

KQ Yo The 3~d1menglona1 realization is hence @

S(x,y,z) = gz’S(X:Y:ZO) whatever z may be

'4)'33:5ummiﬁg'up‘the three ,independent components, we obtain
the flnal dewlred glmuldtlon of the variable grade : . '

1“

H.éé(X{Y1Z) OQ n(X’3 Z) + b1 (X y,z) * g2 S(X,y’&)

5) dNow, if we want = conditional sinuvlation, i.e. a simulatiOn
8o (x,¥,z) that mects the real experimental values at data locations
{x 11Y40%5 € 1}, we proceed as indicated in Chepter III-1, formula

(4) :
\ * N 5
6o (0¥y2)= gy(x,yyu) + [o,005,2) - 8y o x0¥,2))



The Centre de ilorpholog ie wathématique of Fontainebleau has
realized that simulation data base over a paralleleplpedlc volume
of 550 x 110 X 20 cubic units (see Figure 11). The imposed 3-dimen-—
sional isotropic scheme is %he spherical scheme with & sill X = 1
and various ranges a varying from 10 to 200 units. Hence, for each
range a,,1,210.000 values were simulated. By grouping the punctual
values over panels of dimensions 11 x 11 x 20 cubic units, we ob-

tain the corresponding simulations of 500 panels and if'required,
the simulations of the 500 vertical bentrally located boreholes
(see ®ig. 11).

—

h JL/\
~ —
——'-" °

fig:l The simulation data base DR

verlical d&écﬁon

.

From that simulation datz base, a 3—d1m€n31onal anloOLrOplc

orebody has been 31mu1ated On that orebody, the Centre de morpholo~
gle Hathématique 1ntendo to

- test var1ous eﬁtlmatlon procedures : e otaflstlco.— ad just-

o>
ment by mcar squares - polygons of influence - inverse and inverse
square distunce weightings

- verily some practical approximations of Geostatistics

- hence, bring out an cusentlal contribution to answer the old

question : Gcostutistics or morce classical procedure 9

On Figure 12, we can sce as examples

= the vertical profile of simulated mean grades of a panel of

section 11 %X 11 squerc units and 20 units height.

drill-hole -
AN -
A

3



-~ the vertical profiles of simulated grades of the centraily
located borehole snd of another borehole distant of 4 units, there-

. fore still interior to the preceding panel.

A random vertical drift has been simulated in that orebody 3
the fluctuations around that vertical drift are characterized by

a variogranm of the type (10) previously discussed.

e can note on Figure 12 that the fluctuations (saw tooth as—
pect) of the borehole grades are not representative of the fluc-

tuations of the panel mean grades.

Yeimulated | | | - .
] gradkes '

40 /

D "
oL

e Panel
204 . ‘ rrbatt D_ril'.—holg D‘
i ©——@ Drill-hole D, -

1
}
iy OTR
i.
-t

Lo verticat o
75 direction

8-». .. .

fig:12 Panel grades and drill-holes grades



VI - TIIRD CASE STUDY — ST#ULATION OF RAIN- L '1
This practical example is ‘derived from the prominent study
(ref. [8}, 1973) of J.P. DEIHOWE and P. DELFINER.

.
o s

The desertic pfovihce of ¥nedi (7 chad Central Afrlca) is being '}
surveyed for water supply. The problem is to evaluate the quantity
of water that a single rainfall can pour down on a limited area. - —{
Over the Kadjemeur area, a certain number of rain gauges (see their MJ
location on Wigure 13) have recorded the water height of one rain- -
fall. As rainfalls are not frequent in ¥nedi, it was necessary to
simulate over the area various rainfalls similar to the real one
recorded by the rain gauges. Thus, hydrogeologists would be able }
to evaluate the true dispersion of water heights over the area and at
the same time critically reconsider the number and the location of o
their rain gauges. The study proceeded as follows : '

1) An experimental semi~variogram was drawn from the rain- i
gauges data (weter heights), and revealed to be more or less iso- “
tropic and linear : y(h) = aln}. Bigure 13 shows the e¢xperimental -
points of that semi~variogram and the adjusted linear model. Figure
13 also shows the estimated map of the true rainfall kriged on the
basis of the rain gauges data, as well as the corresponding map of ~
the estimation standard deviations., It can be noted that the highest
standard deviations are located on the right hand-side .of the map, -
where rain gauges are rare. The ghaded zones correspond to water ‘
heights superior to 40 mllllmeters. L S S o

_ 2) Three conditional 31mulat10ns of the varlable water~helgnt -
have been reslized on a regular 1 km. spacing grid. These three si- _
mulated rainfalls reflect the previous auto-correlation function,
i.e. the linear variogram, and meet the true -experimental water L
heignts at ruin-gauges locations (sec Figure 14).

It appears that :

~ The true dispersion of water heights is much greater than
the dispersion that could have been estimated from the kriged map -

of Figpure 13, JStudies of water runolf and recuperation must be

done on tne simulated maps and not on the estimwated map.

- tne three simulated rainfalls can differ considcrably on high -
standard deviaiion zones, i.e. on thc zones with few rain-gauges. .
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CONC LU3TONS

For various problems, ‘simulation of orebodies, and more gene-
rally simulations of regionalized phenomena, appear as the only
approach that does not require the expersive iavestments of very
precise éys%ematic survéys or important bulk samples. The availa-
bility of high performance computers, and above all ‘the originality
of the turning bands method that reduces any 3-dimensional simula—-

tion to several 1-dimensional simulations, now allow the realiza-
tion of such 3-dimensional multi-variable simulations within reason-
able computer costs. The practical experience already gained by the
Centre de :iorphologie ilathématigue of lontainebleau predicts consi-
derable developments of these Conditional Simulations in fields as
differents as : [ining indusbtry : simulation of extraction, blending,
milling procedures etc,..

~ sieteorology - liydrology : simulation of rainfalls, ground
waters, atmospheric disturbarces etc...

- Gravimetry - Bathymetry : simulation of submerine surfaces,

marine survey lines, etc...

~ 0il Industry : simulation of reservoirs

Acknowledgements — This:study was realized with the help of the

research engineers of the Centre de morphologie Liathématique of
Fontainebleau. Dr. G. satheron kindly reviewed the manuscript.
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SIMULATION - OF MINING PROCESSES ON A MODEL DEPOSIT

Mining geostatistics has for a long time been concerned with
the problems of evaluating in situ ore reseryeé. In the last few
years geostatistics has also been applied to the field of ore pro-
cessing. The problem is to study the effects of various proposed
mining methods or mineralurgical processes on the ore under treat-
ment, The central idea is to simulate the process in guestion on
a model of the deposit., After the statistical characteristics of
the ore in situ (i.e. its mean and its variability) have been re-
produced in the model, the real ore and the ore in the model will "
undergo exactly the same changes as the process under study is car-
ried out. Consequently the simulation of mineral processes on a .
model enables us to predict the effect of the process on the ore,
These simulations therefore provide an sdditional method for stu-
dying mining projects which can assist the decision makers in |
choosing the method best suited to the deposit under study. Several
projects can easily be evaluated without actuvally having to put them
into operation., The methods developed by " downstream gebstatis~
ticg" provide a new approach to the problems of ore selection, howmo-
genization and mine plenning, which take account of the technical
constraints inherent in a particular mining method, of the type of
production equipment used, of the way in which the orée is being
processed, and so on.

Before the simulation itself can be commenced, 4 preliminary
operations must be carried out :

- firstly, to determine the parameters of the problem ; that is,
the technical constraints imposed by the type of mineraliza-—
tion, the factors known to influence the results, the tech-
nical and economic criteria used to judge the quality of the
results and to compare different processes.

-~ secondly, to take account of the amount of information which
is likely to be available to tne decision makers at the time
when the final selection and mining planning will be carried



out. In the case where this information will not 2ll be available
when the processing commences, this information will be replaced

by simulated values in order to duplicate the real conditions.

- thlrdly, to build a numerical model of the dep031t Conditional
simulations prov1de just such a model.,

-~ finally, to model the process which one wishes to simulate ; that
is, to provide a realistic representation which can be programmed
and can give the characteristics of the ore at the end of the pro-

cessing for specified initial conditions,

The simulation is carried out from the point of view of the enf'
gineer, who must make the day-to~day decisions concerning the pro-
duction. The proposed method of simulation does not attempt to use

a computer program to 0ptimize the output, firstly because these
programs tend to be cumbersome and time~consuming, and secondly

because it is not always possible to unite such a program given the
number of factors which have to be taken into account. Rather than
attempt this, a mini-computer with a conversational mode is used to

. 1

simulate the decisions made by the production engineer, Several fea- ~

sible decisions can be tested with the computer, providing the end

results of these decisions. The process which best satisfies the
menagement's objectives can then be chosen, ‘

At this point an example of a simulation of an open pit mine
is presented. The text may be found in "Hining Geostatistics", by
A. Journel, pp. 688-698, to be published by Academic Press. '



Czse study ¢ Choice of a mlnlrv me2 th od from a nurerical¥* model

of a.dep031t. after Deraisme, J. (1977).

* To avoid confusion, the term "simulation" will be used
here only for the simulation of the various methods of mining
and blending ; the simulated deposit will be referred to as
the numerical model.

The numerical model.

The deposit model used in thisfstudj does not represent an
actual deposit, but rather a type of deposit having characteris—
tics similer to the homogeneous zone in a porphyry copper depo— ..f
sit (e.g. the sulphide zone). -

The zone G of homogeneous mineralization considered here
has horizontal dimensions 450 x 450 m? and consists of 4 levels
of parallelepipedic blocks v with a square horizontal section
18 X 18 mz and a 5 m. height. The numerical model consists of
the true grades of the blocks and the grades of vertical drill

~ intersections centred on these blocks, The following characteris—

tics were imposed on the model : '

*

~ mean grade : m = 1% Cu

~ dispeLsion.variance of the true block grades : D2CV/G) =
0.235(%)2 , i.e. a relative standard deviation of 48% : D(v/G) =
0048’ . .

~ a strongly asymuetrical histogram of the true block grades;
as showm on Figure VII-19.

~ an isotropic regionzlization of the grades charactexrized by
a spherical model with nugset effect, and a range of appr0x1ma~
tely 70 n.

Figure VII-19 also shows the histogram of the block values
kriged from the central drill core intersections on a horizontal
18 % 18 m. grid. This histogram of kriged values has a mean
m¥ = 1% Cu ard a variance Dg*(v/G) = 0.185(%)2 ; the kriging

2 = 0.032(9)2

vaeriance. is = GK =
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Fig. VII—-19 — Histograms of true and kriged block grades.

gutline of probleus.. - ) ) . -
) 5 N

The minimam mining units are blocks 148 x 18 x 5 I’y each
containing 4730 tons of ore. The mining rate is fixed at 35000

tons/day vihich is eguivalent to 8 blocks. A year'!s production

consists of 280 days. The mill is plarmed to treat this daily -~

production. The metal recovery is a function of the mill capa~ -

city to absorb fluctuations in the feed grade. Autowatic pro- -

cess control of

but it is expensive and not adapted to all scales of variObility%
since it is usuzlly designed to respond to small scale (houxrly)

P

and not to large scale fluctuations (deily — fortnightly).

the milling operation is & possible solution, -



In this study, the period of overall feed grade regulation
was considered to be two weeks., The miner predicts the quality
of the ore.to be sent to the mill during the next fortnight and
durinz this period it is the niner's responsibility to ensure
that the fluctuations in the daily wmean grade are not signifi-
cantly different from his prediction. The short term (e.g.
hourly) fluctuations of the mill feed grade are the responsi-
bility of the metvallurgist and the process controls,

It is assumed here that grade is the primary variable affect-
ing mill operation. Any other regionalized parameter (impurity

grades, crushing indexes, etc...) can also be simulated and used
in an snalogous menner, -

Projected mining methods.

Three different mining methods were considered to meet the
required degree of homogeneization of dally mean grades over a
fortnight production., These methods are all non-selective =

every block is eventually sent to the mill,

i‘ethod 1 : Zone G is mined by two 10 ﬁ. high benéhes, cf..Figure
VII-20-a. From each bench, a big shovel of limited manoceuvrabi-
1ity ean extract two contiguous 18 x 18 x 10 m3 blocks per day.
The two shovels advance parallel to the wining front and camnot
reverse : they must extract all the ore along any given front
(18 x 25 = 450 m. long) before beginning on the next fromt. AL
extracted ore is sent directly to the mill, Since the motion

of the shovels is pre—determined in this method, there is no
choice for the mining engineer, woo mast relinguish his part in’
the houogeneization process.

Lethod 1'. «ining is identical to the previous wmethod, but some
of the mined ore can be sent to a stockpile where honogeneiza-—
tion can tazke place, cf, Figure VII~-20-b,

The stoclpile consists of two sub-piles, one rlch,_the other
poor. The maximum capacity of the total stockpile is a 2-day's
production (70000 toans), which is the equivalent of 8 large blocks.
. block will be sent to the stockpile vihen there is a risk that
its mean grade affects the day's nean feed grade. Yhen & bloclk
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is sent to the rich subpile, the equivalent of a block is taken

away from the poor subpile to wmeet the daily required tonnuge

(35000 tons).

In sddition, the existence of the stockpile provides sone
¢ ’ b

degree of flexibility to the mining operation, since on certain
o ] & i » g

days, three blocks may be extracted from one tench and one on

the other, provided that equilibrium is restored within 8 days ;

alternatively, 5 blocks may be extracted within any given dey,

provided that this over-—production is balanced by an eguivalent

under—-production within the next 8 days. But mining is expected -

to adhere to the norm as often as possiblé, i.e. daily produc—

tion of 2 blocks pexr bvench,
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iethed 2 @ The same zone G is mined by feur 5 m, high benches,

cf,. Figure VII-21. From each of these benches, z moblile shovel
can extract two small 18 x 18 x.5 m3 blocks per day. The resultin,
™ - daily prpﬁuction of 35000 tons is sent directly:to the will,

The mobility of the sunovels allows the choice of the 8 blacks
to be extracted, to best stabilize the daily mean grades over i
the fortnight. All the ore of any given mining front (450 m. long)
must be extracted before beginning on the next, and the total
L moving distance of each shovel is to be kept to a minimum.

| The . homogenization obtained by blending the production

coming froa the four working levels will result in higher mining
costs.

Y Y uaNT & : X o
; o &\":"T\$‘l\'\\“’ '

Fig. VII-21 - View of the wining fronts (5 m. hign blb“ks)
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Simulation of the mining vrocesses. 1

only wmethod 1, for which the path of the big shovels is
entirely determined, is completely simulated by compuber. ‘E
For ithe methods, 1' and 2, the daily decisions such as which
block to mine, and vhether to send it to the mill-or to the _'“}
stockpile, are made by an operating nining engineer, just as =
tirey would be in a real situation. The decislons were made g

tﬂ;ougn'v1suallzatlon of the state of the fronts and the stock— A
piles, taking the past and imxe€diate future mill feed grades
into account, The decision of fﬁe mining engineexr is certainly
not always optimal, but the object of this study is precisely
to reproduce reality (including, in particular, human errors). i
and not an absolute optimum which is often inaccessible in
practice, | ' o

The engineer'makes‘all his decisions on the basis of kriged |
estimates of the mining blocks, the blocks being kriged from the |
central drill core intersections. However, it is the true block
grgdea that are delivered to the mill, cf. section VT—ArB.

As for the type of bTendlng performed within the subplles
considered in method 1', it is assumed that the true mean greade
of the unit taken from a subpile is a normally distributed ran-—

dom variable, with : ' <
- - : o

~ an expectation m_ equal to the true wean grade of the subpile

S
at the time considered. This instant mean grade vaxries around -

1.6% Cu for the xrich subpile, and 0.65% Cu for the poor subpile.

~ a fixed relative sﬁandard deviation cs/m equal to O. 25(% )2 <~i
for the rich subpile ard 0. B(p) for the poor. These values -
were cnosep so that the confidence interval [ms + 2 GS] for
the rich subpile for example, includes a2ll individual true »
block grades sent to this particular subpile during the course - !
of one year. '

This model of the blending effect of the stockpile is very

simplistic and pessimistic, but is enough to give an order of .

magnitude of the influence of the stockpile on the homogeniza- o
tion of the will feed grades, 1In a real case, it would be =



simple matter to replace this model either by
system or a more preclse probabilistic model.

a deterministic
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For the 3 simulated nethods of mining zone §, Figure VII~22
shows tne variation in daily wmean grades during the first twvo
conths (60 production days). J. Deraisme's study was carried
out for a year's preduction (280 days)} but there is not enough
space here to show.all the results. ‘

- The full line curves show the variations of the true daily
grajdes (i.e. the homogerization actually achieved), while the

broken line curves_represert the variation of the estimated
daily grades (i.e. the hox ogen1za+1on predicted on the basis 'i
of the kriged block grad°s) : ~ :'“*

The mill operator will obviously prefer m°tLOuS 1t and 27 l
to method 1, waich the nmining engineer may prefer because of
its lower mining cost. Thus there is a real problem involved

wiaich can only be solved by assigning costs to the mill recovery
losses caused by method 1, and tc balance these costs with the
ones caused by stockpiling (method {') or by the more flexible
mining operation of method 2. ‘ : |

Table VII-23 gives the different dispersion variances obser—
ved at different scales, and thus gives an overall picture of

the effect of each mining method on the fluctuations of the

mili-feed grades. : S {
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liethod 1| iiethod 1'] ifethod 2

Dispersion variance 0;0452 0.00i15 0.0074

1 day within.7 days | 0.0362 0.0040 0.0018
Dispers?on;variande 0.0501 0;0136 -1 0.0082
1 day within 15 days 0.0422 0.0052 - 0.0016
Dispers@on_varianée 0.0525 0.0156 ° 0.0106
1 day within 1 month ‘ 0.0474 0.0070 0.0038

Dispersion variance' . '
) 4oy within 1 year 0.0816 | 0.0405 0.0310

Dispersion vaeriance A
15 days within { year| 0-0280 | 0.0249 0.0227

Table VIT-23 — Dispersion variances for the 3 mining methods.
' (when there are two values, the upper one re—
fers to the true grades while the lower refers
to estimates).

fhe following remarks can be made about these results :
— There is a considerable variation in the fluctuations of the
daily grades sent to the mill, depending on the mining method
used. The dispersion variance of the daily grades in f£ifteen
days for method 1 is six times greater than for method 2. These
orders of umegnitude of the mill-feed grades variabilities at
various scales can be predicted only by simulaticn. Stendard
estimation procedures (including kriging) are irrelevant for
predicting these variavbilities, for they take no account of
the destructuring effect of wining, trucking, stockpiling, etc..



————

— The devietion between the dispersions resulting from the
different mining wethods increzses as the time interval de-—
creases. Thus,.vwhatever method is used, the anount and "loca—
tion of the oré extrected during a given fortnight will be‘ap~

ES

proxicztely constant, and the dispersion variances of a Tort-

night’s mean grade over one year will 2lso be approximately

the same. On the other hand, methods {' and 2 are particulariy
efficient in stabilizing the daily grades within any week or
fortnight.

S

of true grades. This is a result of the classical swoothing pro-_
L

perty of the kriging estimator, cf. relation (VI~1 or 2) : the"

dispersion of estimetors is not a good estimate of the real dis-~

persion. TFor method 2, even though the homogenization of the
estimncsted grades is nezrly pexrfect, there is still an dirredu—
cible fluctuation of the true grades, due to the estimation va-
riznce of the daily gredes, cf. PFigure VII-22.

The experimental estimation variances of the deaily grades
for each method are :

method 1 : o¢f = 0.0089 (%)2

kg N

wethod 1' t o2 = 0.0131 ()2 :

H

N

tlethod 2 ¢ o

il

0.0061 (352 | B

BN

. N - < . . R~

Wote that for methods | and 2, the dispersion varisnce D~ of

the true grades can be deduced from that of the estimated gra—
3% . e . . - 2

des Di by the approximzie smoothing relation (VI-2) =

2. 2% 2
DT = DK + GE

This relation is notv applicable for method 1' because daily pro—.

duction doss not only core from the wmine but alse from the stock_

pile.

~ ¥or one year of simulated production, 17% of the production

£
from wethol 1' passed through tae stockpile. This represents a

—~ The dispersions of estimated grades are always less than those
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considerzble proportion for a stockpile with a maxwimuz capasity
of 2 days production. In fact, to obtain the homogenization
shown on Pigure VII-22, almost 50% of production days involved
departure from normal production (2 blocks per bench). (ne solu-
tion would ve to increase the capacity of the stockpile by, for
exanple, a23ding a2 third subpile of average quality ore, In any

case, it would appear that tae capacity of the stockpile should
not be greater than 3 or 4 days! production. iethod 1! produces
dispersions of the sawe order of mmgnitude as those of method 2
and since 1its mining cost is lower" (10 ra. benches instead of 5 m, )

a feasibility study would probably result in method 1’ being cho-—
sen, '

- Globally, there is no selection involved in any of the methods
considered in this study., However, in his more complete study,
Veraisnme (1377) studied various selection criteria for method 2
and coumpared the results of applying these criteria on the simu-
lations to the resulbs that could be predicted on the basis of
grade histograms alone, The differences were significant, armi
illustrate the well-lmown effects of concentration and dilution
of reserves : a rich block with a grade above the cut—-off will
not be selected when it is located in an overall poor zonre ; con-—
versely, a poor block with a grade below the cut-off will be se-
lezted when located in an overall rich zone. The prediction
made on the basis of the grade histogram (cf. the various tech—
niques outlined in section VI-a) are unable to take account of
this spatial localization of rich and poor grades ; wmore gene-—
rally, they cannot take the technological conditions of the
mining operation into account. Once again, a solution is ai-
forded by the simulation of the mining operation on a numerical
ncdel of the deposit : the simulations can be used to evaluate
tnhe effect of these technological conditions‘on‘tha actual re—
covery of tae reserves,

P



Any mining or mineralurgical process can be simulated in this
way ; for exampley extraction of the ore, haulage, stockpiling,
processing... Several other studies (see J. Deraisme : "Simulations
sur modéles de processus miniers et minéralurgiques". Thise de Doc—

téurflngénieur, 1578) have been carried out, The principal conclu~
sions ‘of the studies were : '

‘- the optimal size of a stockpiie can be determined after only . .-

a few iterations by these simulations.

- by dividing the model of the deposit into sufficiently fine
blocks it is possible to simulate the operation of an ore -
stockpile used for homogenizing plant feed. .

~ day-to-day mine planning decisions can be tested by these
simulations and then put into operation by using a mini-
computer in a conversational mode,

At present the work in progress to make "geostatistical mine-
ral processing" a practical and useful tool in the decision-making
process for mining projects, is being cerried in 4 main areas :

- a diversification of the type of deposits studied.

~ more parameters are being taken into account (in particular,

the granulometric properties of the ore at the end of the
crushing proress). "

~ the simulation of the éomplete production cycle from extrac—
tion up to the concentration of the metal,

= the improvement of the simulations, particularly from the-
point of view of the visual presentation of the results.,



