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POREWORD

I have written down here the lectures I gave in 1970 at the Summer School of Fontainebleau.
This text is the outcome of several years of reflection on the amoiguous character of the interpre-
tation in probabilistic terms of a unique but partly unknown natural phenomenon, and about the dif-
ficult problems raised when seeking the conditions which allow statistical inference starting from
a single realization of a non-stationary random function. Thus I have laid more emphasis on me-
thodological problems than on the mathematical aspects of the theory. From a practical point of
view, the useful results have already been given in [9] (except for universal kriging) but which
are now presented in a new light. The solution to the above-mentioned methodological problem is
to introduce a hypothesis of quasi-stationarity, weak anough to be always physically conceivable.
The combination of-chapter 1 (transitive methods) and chapter 2 (intrinsic random functions theory)
shows that the problem of statistical inference is solvable (and therefore the operative theory) in-

sofar as it concerns the global estimation of a regionalized variable. Chapter 4, devoted to uni-

versal kriging, leads to an analogous conclusion concerning the problem of local estimation. I have

not presented universal kriging in terms of Hilbertian space in order to avoid any mathematical dif-
ficulty and to concentrate more on methodological problems. The reader is referred to [6] for the
proofs of certain results (particularly the theorems of existence and uniqueness). On the contrary

I have studied from various points of view the prime concept of drift (functional drift, random
drift, maximum likelihood, theory of interpolators) which emphasize its physically ambiguous cha-~
racter, or at least show that the drift is closely related to considerations of scale, and also
show that these apparently contrary points of view lead to convergent conclusions : this will at

least appear as reassuring from the methodological point of view.

Finally, a word about the exercises given at the end of each chapter, some of which were ac-—
tually discussed during the Summer School in 1970. Some of them are simply application exercises
meant to make the actual use of a rather abstract theory more familiar to the reader. Others are
complementary to the chapter itself and in some cases produce results which have fundamental metho-
dological consequences. In each case a solution is given, as well as the procedure to follow %o
find it, and the methodological conclusions to be drawn therefrom. That is enough, I think, to

convince the reader of the necessity to do these exercises conscientiously.

G. MATHERON



0 - INTRODUCTION .

0-1  NOTATIONS

The symbols x, y, 2z refer to points of the n-dimensional space ( n = 1, 2 or 3) ; dx, dy,
dz to elements of length ( n = 1), surface (n = 2) or volume (n = 3) centred on these points, and

£(x), g(y).«-. to functions of these points.
The integral extended over the whole space of a function f£(x) will be denoted by :
Jf(x) dx

For example, when n = 3, and calling (x1, X5 x3) the three coordinates of the point x,

this notation produceé the explicit form :
+00 +00 +0
£(x) d; =j dx, J dx, J f(x1,x2,x3) dxj
00 =00 =00

In the same way f£(x) dx will denote the integral of a function f(x) over a domain A

A
of the n-dimensional space.

b L When n = 2, for example, and when A is the rectangle shown opposite,
2

we have explicitly :

52_____ . b

1 b,
f(x) dx = J dx‘| f f(xi,xz) dx2
A 31 ay

8.1 ' 01

These notations are both very condensed and very expressive : initially, they can be intei’preted
in the case of the one-dimensional space where their significance is generally clear. The exten-

sion to two or three dimensions follows easily from this.

Example : Let V be a volume and g(h) = g(h1,h2,h3) a function of the vector h with coordinates
h., h2, h3. et x = (x,,xz,x3) and y = (y1,y2,y3) be the origin and the end of this vector h, that
is to say h = y = x.  When the extremities x and y of the vector h sweep the volume V, each one on

its own account, the mean value of the function g(h) will be denoted by :



4, J’dx g(y-x) ay
v v

In explicit notation, this can be written as :

1 - . - . -
;2 JJde1 dx2 dx3 IJJS(Y, x1 H Y2 12 H Y3 x}) dy1 dya dy3
v v

The first notation is a symbolic one, showing directly the concept of mean value ; the second one

is an algorithm showing the course to follow in calculating this quantity, but its significance

is not so apparent at first sight as in the first case.

0-2_ CONVOLUTION (Moving Average)

~ The comvolution of two functions f1(x) and fz(x) is the fu.nctionlg(x) defined by :

g(x) = ff1(y) f(x-y) dy = jfz(y) £, (x-y) dy

This is denoted by :

This operation of convolution plays a fundamental r8le in geostatistics as in probability theory

and theoretical physics. It can be commected with the intuitive notion of "moving average"

Regularization of a function f(weighted moving average of this function)

P .
- Let p(y) be a weighting function. The value at the point X, of the

\
Fr-
7
-

moving average of the function f weighted by p is :

-

——

-~
7

£(5,) = [oly) 2lxgep) ay - sz(-y) £(x,-y) ay

b 4
5 S
/

X



(the weight p(y) dy is given fo the value taken by f at x, + ¥, and the second expression is ob-
tained by changing y into -y).

Let p be the reflection of p at the origin (definition : p(x) = p(-x)). fp(xo) is the value at

v
xooff*p:

This moving average fp of the function f (weighted by p) is called the regularization (of f by p).

Example 1 (taking a sample v located at the point x).

let v be the sample located at the origin of coordinates, and k(x) its indicator (k(x) = 1 if
x € v and k(x) = 0 if x g v). Let us take the weighting function p(x) = ;}- k(x). The correspond-

ing moving average

. M
fv_v f*k

represents the average grade of the sample v taken at the point x. Explicitly, we have :

£, (x) =;'; Jf(x+y) ay
v

Example 2 ( Radioactivity) . -

If a unit mass of a radioactive substance is placed at the origin O of the coordinates, the ra-
diocactivity at a distance d is given by A e')‘d/d. (A is a constant, A the absorbtion coefficient
of the medium). Let f£(x) be the grade of this radioactive substance at the point x, and let d(x—xo)
be the distance between two points x and x,. The mass £(x) dx placed at x induces at x, the radio-

—hd(xo-x)
activity A € /d(xo—x) . £(x) dx. Thus, the radioactivity observed at x is :

-J\d(xa-x)
A Jf(x) & dx
. d(xo-x)

This is none other than the convolution Af * p (with a weighting function p(x) = e-)‘d/d, which is
symmetric : p = B).



0-3 GEOSTATISTICS AND THE THEORY OF REGIONALIZED VARTABILES.

Geostatistica are the application of the theory of the regionalized variables to the es-
timation of mineral deposits (with all that this implies). - More generally, when a phenomenon
spreads in space and exhibits a certain sp.atial structure, we shall say that it is regionaligzed.
Earth sciences, among others, offer numerous examples. If £(x) denotes the value at the point x

of a characteristic f of this phenomenon, we shall say that f{(x) is a regionalized variable (abv.

Re. V.). This is a neutral term, purely descriptive, and prior, in particular, to all probabilis-

tic interpretation.

From the mathematical point of view, a Re. V. then is simply a function f£{x) of the point x

but is, generally, a very irregular function ; ex : a grade in a mineral deposit.

It shows two contradictory (or complementary) aspects :
-~ a random aspect (marked irregularity and unpredictable variations from one point to another)
- a structured aspect (it must reflect in some extent the sitructural characteristics of the

regionalized phenomenon).

The theory of regionalized variables has therefore two main purposes :

- on theoretical grounds, to express these structural properties in an adequate form.

- on practical grounds, to solve the problem of the estimation of a Re. V. from fragmentary

sampling data.
These two purposes are related : for the same network of samples, the error of estimation de-
pends on the structural characteristics ; for example, it becomes greater when the Re. V. is more

irregular and more discontinuous in its spatial variations.

Field and support of a Re. V.

The field V of a Re. V. is the region where it differs from zero. A panel is a subset V' of V.

Support - Often the function £(x) in itself is unknown , but instead only its mean value fv(x)
in a sample v drawn at the point x. This regularization fv(x) is actually more regular than the
Re, V. f£(x). The volume v is called the support of the Re. V. fv(x), regularization of f. Another

important task of the thcory of the regionalized variables will be to determine the characteristics



of fo, ¥nowing those of f. Ex : to predict in an orebody the characteristics of panels V' (vari-
able fv,), kmowing those of £ or £ (samples). More generally, we will try to relate the character-
istics of £ to those of a regularization fp »through a given function p (see prev:iaus example about
radicactivity).

0-4 TRANSITIVE METHODS AND INTRINSIC THEORY.
To achieve these objectives, two groups of methods are available :
- transitive methods : absolutely general, and in particular not necessitating any hypo-

‘thesis of a probabilistic nature and, a fortiori, any hypothesis of stationarity.

- intrinsic theory : an application of the random functions theory ; probabilistic inter-
pretations are introduced, as well as a certain hypothesis of stationarity (the intrinsic hypothe-

gis). -

From the theoretical point of view, these two groups of methods lead %o equivalent results :
this is important for the methodology, for it shows that the results of the intrj.nsic theory do_not

depend upon the hypothesis of stationarity (bésides, it is possible to build a probabilistic theory
free from this hypothesis, which still produces ‘the principal results of geostatistics).

Here we come up against a methodological problem of prime importance, as well forl the theory
itself as for the critical study of the value of the results to which it leads. It is clear that
the ambiguous, locally erratic character of a Re. V. calls for a probabilistic interpretation and
as a matter of fact, our second group of methods makes use explicitly of the theory of random func-
tions. But then, there arise two fundamental questions, the first of which is :

a/ What is the true epistomological meaning of the interpretation of a unique natural pheno-
menon (the Rs. V.) as being a realization of a random function (i.e. as the result of drawing at
random from an infinite population of regionalized variables considered as "possiblen)?

In fact, such a probabilistic interpretation is in itself a conceptualization of reality

(a constitutive model), .rather than an assumption capable of being proved or disproved by experi-

ment. It is justified only insofar as it creates a better picture of reality, and allows to solve

effectively practical problems which would otherwise be unsolvable. Thus it seems wise to try,



first of all, to see how far it 1s possible to go without appealing to this interpretation, and we
will see that in fact it is possible to go quite far. Hence this first group of methods called
transitive methods in which, geemingly, there appears no probabilistic concept. Here, the Re. V.
is characterized by its transitive covariogram g(h), not probabilistic, which sums up its essential
structural features and allows - if it is kmown - the complete solution of certain practical pro-

blems like estimation.

If we could effectively determine the covariogram g(h) starting from fragmentary sampling data,
if would be possible to leave it at that and to avoid any probabilistic interpretation. But such 1s
not the case, and a more precise analysis will show that it is necessary (in order, for example, to
compute an estimation variance) to introduce a special kind of assumption concerning the behaviour
of g(h) near the origin : assumption whose epistemological significance is exactly a disguised pas-
sage to expectations. So, as it is not really possible to avoid a probabilistic interpretation, it

is better to introduce it explicitly. The second fundamental question arises from this :

b/Once this probabilistic interpretation is admitted, is gtatistical inference from a single

realization possible ? In other words, starting from the only material at our disposal (the Re. V.
itgelf or a fragmentary sample of it), is it really possible to reconstruct, at least in part, the
probability distribution of the hypothetical random function of which our Re. V. would be a reali-

zation ?

In order to give a positive answer to this second question, hy'potheses. are often introduced,
like stationarity and ergodicity, far stronger than is really necessary : in many applications
these nypotheses are glaringly false (examples : an ore-body where assays decrease more or less
regularly outwards from a rich core ; submarine topography where depth increases geawards, etc...,
these are obviously non—stationarz_ phenomena). Even more frequently these hypotheses appear to be
unverifiable : therefore we will constantly try to weaken them, and to reduce them to the indispen=-
sable, permissible minimum. More precisely, queation b/ above may. be replaced by the following

one :

b'/ Which minimal probabilistic characteristic is it necessary to lmow in order to solve a
given practical problem (for example the computation of an estimation va.ria.nc;e) and which minimal
assumption is it necessary to introduce in order to make the estimation of this characteristic pos-
gible, starting from a single realization ?

Generally, this minimal assumption, weak enough to be physically conceivable, will be the as-



sumption that the random function is guasi-intrinsic (i.e. locally equivalent to an intrinsic R.F.)

while the minimum characteristic which is necessary and possible to estimate, will be essentially

associated with the behaviour near the origin of a variogram or a quasi-stationarity covariance

function.

This reduction of the problem to its minimum probabilistic characteristics explains the success
of the tranéitive methods (which, once their probabilistic content is explicitly stated, obviously
do not require any hypothesis of statibnarity), and also the equivalence of their reéults with those
given by the intrinsic theory. Moreover, it emphasizes the prime importance of the behaviour near
the origin of a variogram or of a transitive covariogram. Finally, from a practical point of
view, it shows that we are very often correct in applying to outwardly non-stationary phenomena,
computational methods which were initially thought to be justifiable only under some stationary

hypothesis.

In practice, the intrinsic theory is easier to use, and will almost alwaya'be employed, except
in thé particular'and very important case of the estimation of a surface or a volume (geometrical

problem).

Bibliography : (see references at the end of this booklet)

[4] is the complete theory of the regionalized variables. In [5] there is an abstract of this
theory followed by a complete treatise on applied geostatistics, including the étudy qf'economical
6ptimisatioﬁ problems (the original Frenchytext can be consulted at the library'of the School of
Mines of Paris). The thesis of J. Serra [7] gives ﬁ very complete general account (without any ma-
thematical difficulties) and also a detailed study of the spherical scheme. Treatise {3] is most-
ly obsolete, exc.pt for the part dealing with the De Wijsian scheme : based on this seme scheme,
the Carlier's thesis studies the special problems of estimation of radiocactive substances. Finally
the probl:ms of economical optimisation are discussed in two contributions to the French Annales
des Mines [8], but the cssential parts of these are to be tound in [5]. The complete theory of

universal lkriging is given in [6].



CHAPTER 1

TRANSITIVE METHODS

1=1__INTRODUCTORY EXAMPLE.

Let us consider the simplest "transition" phenomenon which can be imagined : the presence
or absence of a characteristic. Consider, for example, a geological formation S of limited extent :
a bore hole drilled at the point x either encounters it or does not. ILet k(x) be the indicator of
S, i.e. the function defined by :

0 if x£8
X(x) =
1 i xe S

We are concerned here with a unique phenomenon for which no probabilistic formulation is possible :
to speak of the probability that a given point x may belong to S would not make much gense. It can
be noted that in this case all interest will be concentrated on the boundary of S. Indeed, k(x) is
constant inside S and also outside S, and it is only while crossing this boundary that k(x) varies,
changing from O to 1 and from 1 to O. Hence the names "transition phenomenon" and "transitive me-

thods".
The area S of the formation is obviously given by :

Sa Jk(x) dx

The value of S 1s of great interest from a practical point of view :
most often, this is what we want to estimate from a grid of drill-holes. However, this scalar pa=-
rameter tells us nothing of a structural nature. Indeed, the structure of a set can be defined as
the system of relations existing between the elements or subsets of this set. Hence we will get in-

formation of a structural nature about our surface S only by using two points simultaneously.

Let then x and x+h be two points (i.e. the smallest structuring set can can be imagined).
Consider then the expression k(x) k(x+h) : it is equal to 1 if both x and x+h belong to S, and



to O otherwise. But to say that x+h belongs to S is equivalent to saying that x belongs to the
translate S_h of S by the translation by a vector -h. Then

1 if xesSNS_,

k(x) k(x+h) =
0 i£xg£SNS,y

By integrating this expression with respect to x, we get a function of h

E(n) = Jk(x) k(x+h) dx = Meas (SN S_y)

which represents the measure (the area) of the intersection of S with its translation S , by -h.

This function is symmetric since the two intersections S N S—h and S N Sh are deduced from one an-
other by translation. The function X(h) is the geometrical covariogram aésociated with 5. It gives
a cert_aj._n image of the shape of the set § :

Properties of the geometrical covariogram K(h).

a/ Symmetry : K(h) = K(-h) ; inequalities 0 s K(h) s K(0)

Relations : s = K(0)

s? = JK(h) dh

b/ Ranges : The range a(a) in direction a is the distance beyond which K(h) becomes equal to
zero in this direction. It is thus the largest dimension of S in this direction.

i

¢/ Slope at. the origin (derivatives on left and right sides) :

Xy

If the modulus &6r of h is small, we have

K(h) = K(0) - 61; Da

8r ]I)(1 is one half of the small surface swept by the vector 6r, the
origin of which describes the boundary of S. Da is the diametral

variation of S in the direction g (if S is convex, this is the appa-



rent diameter in this direction).

Although a derivative K;(O) = - Da does exist in each direction, it should be noted that the
function K(h), in itself, is not differentiable at h = 0. Exercise 6 (at the end of this chapter)

-
shows how Minkowski's formula relates the derivatives Kq(o) in different directions to the para-
meter of S (or to ifs surface in the three-dimensional case). These are very useful relationships

in mathematical morphology.

1-2 THE TRANSITIVE COVARIOGRAM.

Iet f(x) be a Re. V. which vanishes identically outside a bounded field V. The transitive

covariogram of this Re. V. is the function g(h) defined by

(1-1) g(n) = Jf(x) £(x+h) dx

Properties of the transitive covariogram g(h).

a/ Symmetry : g(h) =‘g(-h) inequality |g{k) < g(0) = f[f(x)]2 dx

let Q = f£(x) dx be the quantity of metal. Then

(1-2) Q2 = J’g(h) dn

(To demonstrate this, first substitute for g the expression (1-1) and integrate first with respect

to h).

b/ Range : a(a) is defined by the condition g(h) = O when |h| > a(a) for the vector h in di-

rection a : it is a property of the field of the Re. V.

¢/ Behaviour of g(h) near the origin : the regularity of g(h) near the origin reflects the

properties of continuity of the Re. V. in its variations in space, This follows from :

80 - 5 = 4 [trtem) - 20012 ax

If f(x) is piecewise continuous, g(h) has a linear behaviour near the origin. If f(x) is differen-
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tiable, g(h) has a parabolic behaviour.

[

N

h

Nugget effect Piecewise continuous Re. V. Differentiable Re. V.

It may happen that g(h) is not continuous at h = 0 : in other words, g(0) is greater than the 1li-
mit of g(h) when h tends to 0. This is called the nugget effect. Rather than representing an ac-
tual discontinuity, it is more often a reflection of a very rapid transition zone which appears on
the experimental covariogram as a discontinuity. In the proba.bilistic- part of the theory, we shall
deal in greater detail with this‘ nugget effect and- with its interpretation as a scale phenomenon

(see also exercise 7 of this chapter, and for the interpretation as a Dirac measure, see exercises

16 to 20).

Isotropic case - In practical applications we try (by means, for example, of a linear transforma-
tion) to make g(h) depend only on the modulus

= - 2 2 2
:r:—|h|--\A1«f-l12+...‘+151

of the vector h so that it can be eﬁ:pressed. in the form of a function g(r) of the single parameter

2

r. As functions of the coordinates h1, h ceey hn’ only the even powers r k of 'r are indefinitely

2k+1

2)
differentiable at h = 0. The odd powers r , the powers r}‘ (A real, non integer) and also log-
arithmic terms such as rzn log r are irregular at h = 0. So in the isotropic case we can distin-~
guish two parts in the limited expansion of g{(r) near the origin : a regular part containing only

A

terms of even integer degree and an irregular part (terms in r*, A ¢ B different from an even in-

teger, or else, terms in 8 log r)

g(r) = g(0) + a, 24 iieiet DMy Erzk log T
A k

-Egula.r part irregular part
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The term of lowest degree in the irregular part characterizes very precisely the irregularity of

the Re. V. in its variations in space. Example : the geometric Re. V. associated with a surface S
has a covariogram K(h) = S - Djh| . The term of lowest degree of the irregular part is of degree

1 in this case.

4/ The covariogram g(h)_is a positive-definite fumction. A function g(h) is said to be positi-

ve-definite if, for any integer k > 0, any set x1, x2,...,xk of points of the n-dimentional space

and any system k1,..,hk of real numbers, we have :

(1=3) iZ’Jj Mg Ay g(xi-xj) 20

These positive-definite functions play a great part in physics (where they have in general an ener-
getical meaning)and in probability theory (characteristic functions of probability distributions

are of this type). We will see in Chapter 2 that covariance functions of R.F are also of this type.

let us show that a transitive covariogram is a positive-definite function. From (1-1) we can
write :

Z Ay A g(xi—xj) = T Ay Ay J}(y) f(y+xi-xj) dy =
1, 1,4J

= Z A )‘j J-f(y+xj) f(y+xi) dy = J’[Zl) Ay f(y+xi)]2 dy =2 O

Thus, when choosirg a model for a transitive covariogram, one must restrict oneself to positi-
ve-definite functions (we will see in paragraph 1-4 that this condition expresses the fact that

the estimation variances are necessarily positive).

According to Bochner's classical theorem, a continuous function is positive definite if and

only if it is the Fourier transform of a summable pogitive measure, This gives a second proof of

this important property of the transitive covariogram. Let ¢ be the Fourier transform of the Re. V.
£(x) and G that of its covariogram g = f * f The Pourier transform of a convolution is the ordi-
nary product of the Fourier transforms of the two factors. As f (f(x) = f(-x)) has as a Pourier
transform the conjugate & of &, we get here

(1-4) ¢=1]a|?



whence G z O.

Remark - From the mathematical point of view, the covariogram g and its Fourier transform are per—
fectly equivalent to each other. As relationship (1-4) is very simple, it is sometimes more con-
venient (in some theoretical demonstrations) to use G instead of g itself. But from the practical
point of view and in the applications, the covariogram g is in general a far better tool than G.
Indeed the behaviour of g(h) near h = 0 is almost always a decisive criterion : in the Fourier trans-
form, the image of propertieé near h = 0 are properties of G near infinity. In gemeral it is

not very easy to appreciate the behaviour of an experimental curve at infinity. Therefore, harmo-
nic analysis is not a very useful tool for the practical applications of the Re. V. theory. The
same remark will apply to the probabilistic version of the theory where the covariance or the va-

riogram will be used directly instead of their Fourier transforms.

1-3 REGUIARIZATION AND GRADING.

1=3-1 Regularizatiori of a Re. V.

Let £(x) be a Re. Vv, p(x) a weight function, fp =f % ; the regularization of f£ by

p. Alreedy, relation (1-1) can be written as :

v

g=tf*f

which shows that the transitive covariogram is the auto-regularization of the Re. V. The covario-
v v
gramgp=f*;*\f*p=f*f*p*§=fp*fpcan'alsobeput:Lnthefom:

EP=S’P

with P = p * 5 : we get the regulariged covaxjiogram. bx regularizing g by the tralsitive covariogram

P of the weight function p : it is a more regular function than g in the same way as fp is more re-
gular than the initial Re, V. f .
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1=3-2 Grading.

The rest of this paragraph will be devoted to what is called grading, an operation
which plays a great part in the Re. V. theory (for example, it enables one tc reduce the computa-
tion of an estimation variance in the n-dimensional space to a succession of much simpler operations
executed in the one-dimensional space). In mining terms, grading is simply the abstract transposi-

tion of placing a bore—-nole at the point (x1,x2) of the topographical surface.

It f3(x) = fs(x1,x2,x3) is a Re. V. in the three-dimensional space, it is said that the Re. V.

fz(xt,xz) = J}3(x1,x2,x3) dxs

defined in the two-dimensional space is deduced from f3 by grading (grading of order 1, parallel
to the X3 axis). For example, if fB(X) is the punctual assay at x, then f3(x1,x2) is the accumula-

tion (quantity of metal per square meter) of the bore-hole located at the point (x1,x2).

Gradings of higher order can be defined without difficulty. For example, grading of order 2
(parallel to the X X, plane) leads to the Re. V.

f1(x3) = a[Jés(x1,x2,x3) dx, dx,

defined in the one-dimensional space (the Xz axis), and which represents, in mining terms, the

quantity of metal per meter of dip at the level x The thing to note is that the co=-

3
variogram g(x1,x2) of f2 deduced from f3 by grading, is deduced from the covariogram gB(ht’hZ'h3)

of f3 by this same grading procedure. In short : grading has the same effect at the same time on

the Re. V. and on its associated covariogram.

This result can be demonstrated with the help of relation (1-4). let fn(x1,...,xn) ve a Re. V.
in ®?, @n(u1,..,un) being its Pourier transform. The Fourier transform of fn_1(x1,...,xn_1) dedu-
ced from fn by grading of order 1 parallel to the X, axis is :

(1-5) @n_1(u1,...,un_1) = Qn(u1,...,u 0)

n-1’

In other words, in accordance with a well-known process found in probability theory when passing

to a marginal distribution, ¢n—1 is obtained by putting u, = 0 in the expression of @n. Calling



g, and g, _, the covariograms of £ and £ _., G and Gymy their Pourier tramsforms taken in their

respective spaces B and ', we éet, from (1-4) ¢
G, = |°n|2 K G = |@
From (1-5) follows : .
Gn_1(u-1,...,un_1) = |<‘."1,1'(ui,...,un_1,0|2 = Gn(u1,...,un_1,0)

So G is obtained by putting u, = 0 in the expression of Gn' According to the reciprocity of the

n-1
Pourier transform, and to the expression (1-5), it follows therefore that 8noy is deduced from &y

by grading.

1=-3-3 Grading_in the isotropic case.

Examine now the isotropic case, i.e. when the Re. V. fn(x), x € B® has a covario-
gram gn(r), which is a function of the vector radius r = Ihl only. It is no longer necessary to
specify the direction in which grading will be performed.‘ The gradings of order 1, 2,... lead to

the Re. V. £ £ _pr+++r With covariograms g _,(r), g,.,(r) which are functions of the vector

n-1’
radius only (in their respective spaces with n-t, n-2,... dimensions). From the preceding remarks,

these covariograms are deduced from &n by grading and we get without any difficulty :

g 8y (T) = 2J g,(Vh2r?) an
(=}

‘sn_z(r) =2 nJ g,( Vh24r?) nan
[*}

2

Puttin3u2=h2+r , we get :

(1-6)

By (T) = ZL g (u) —228—
. g i \luz-r2
j

nep(T) = 2 nJ g,(u) u du
r
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Thus, there is. a remarkable difference between gradings of order | and 2. A grading of order 2
(#nd more generally, of even order) is an elementary operation. It can be easily inverted by dif-

ferentiation :
. 1 ,
(1-7) 8y(T) = 3z 8y p(T)

On the contrary, a grading of order 1 (and more generally, of odd order) is a more difficult opera-
tion because of the root under the integration symbol, and thus cannot be easily inverted.

But it can be shown that gradings, and their inverse, or degradings, considered as operators
acting upon isotropic functions of the gn(r) type, form a group (cf[4]). In order to get an expres-
sion for the degrading of order 1 (gn_1 - gn), it is possible, first, to carry out a degrading of
order 2 which leads from (1-7) to :

(r) = == g _, (r)

gx1+1 2nr n-1

next, to carry out a grading of order 1 which gives, from (1-6) :

00 o0

g(r): 2 g (u)u_du_=_—1-J' g' (u)—dl_
n l n+1 \ /uz-rz n A n-1 \ /u2—r2'

In other words, we have egqtablished in this way the converse expresaions of the grading and degre-—

ding of order 1 :

(
(
(
(1-8) g
(
é

An interesting application of these comverse formulae will be found in Exercise 11 bis : it shows
how the size distribution of a population of spheres in the three—dimensional space can be recons-—
tituted from the size distributions of circles or intersections {chords) induced on planes or li-

nes.

Now considering t h i i i
ing the problem from the Fourier transform point of view, let G = I, &, be the
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trandform of the covariogram g, (taken in a n-dimensional space). As the function g 1is isotropic,
its transform depends only on the vector radiua

2
p=Vu$=... + ug

in the n-dimensional space where the transforms J  are defined. Thua Gn is itself an isotropic
function G(p). Prom relationship (1-5), we get Fpey Bne by putting u = O in the expression for
Fy, 8pe Now, putting u, = 0 leads to the expression \/uf + see + “ﬁ-l- s, 1.e. the vector radius
in the n-1 dimensional space, and which will still be designated by p. Accordingly, as a function

G(p)_of the vector redius p in the Fourier space, the, ‘transform G of the isotropic covariogram g
is unchanged by_grading ( and by degrading as well)

(1-9) G(p) = 3, 8y = Fp_y Bpy = Fpyq Bpyq = on-

This is often a comvenient analytical method of expressing a grading or degrading opération.

Correspondence principle.

Iet us examine now the behaviour during this grading operation of whatlia the most interesting
part of an isotropic covariogram ; the irregular part of its limited expansion near the origin (pa~
ragraph 1-4). The essential result (the proof of which can be found in [4]) is : the grad opera~

tion can be extended term by term on_the irregular part of g {z), by_the correspondence rule :
(1=10) RN Ay M (A a non integer)

This correspondence principle gives the limited expansion of gn_1(r), except for an even integer
geries. There is no analogous rule for the- regular part (but this is of no importance for we will
see that estimation variances only depend: on. the irregular part). The power of the irregular'term
of lowest degree has thus incressed of 1 amd: this emphasizes the regularizing effect of grading.

Concerning the terms of odd integer degree and the logarithmic terms of the irregular part,
the term by term correspondence principle gives :

er 2k+1

logr~A2kr

1,21:4»1

(1=11)
2k+2
- A2k+1 r log r
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Thus by successive gradings a singular sequence in which odd terms and logarithmic terms alternate

is obtained. For examﬁle

logr—-nr

T - - r2 log r

Computation of the coefficients éh - For an exact demonstration, the reader is referred to [4].

Here only a symbolic justification is given, the principle of which will also be used for the com-
putation of estimation variances. As a distribution®(and not as a function, and this is why this

justification is only symbolic) rk hasg, in the n-dimensional space, for a Fourier transform :

A+n
5 o= =l résss)
T A, n A Atn
n LA P(-E) p
(A non integer). According to (1-9), the grading of order 1 carried out on r* leads to Fp-1 Fn .
Computing 3,_, p""n from the formula above, we get :
n+1 A+l
5 A-n _ M2 r(- 55 4
n~1 P - A+n
F(—E-)

from which the coefficient A, appearing in (1-10) may be deduced with the help of the functions
I (BEuler functions).

. r(- 3% ri+ %
(1-12) = = tg A 2 _
g r(- %) A YT L2

Again this justification is only symbolic. In particular, it does not show that the correspondence
rule only gives the result of the grading operation except for an even integer series. But this re-
sult (1-12) is nevertheless correct. In the singular sequence (1-11) we get (by passages to the

1imit which we do not need to stress here)

e 2%kn)?

A =17 2
1.3...(2k+1) (2k+1)

2k

(1=13)

e e et an T

-2k
- -2 (2k+1)!
A2k+1 -

k! (k+1)!
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1-4 ESTIMATION OF A RE. V.

In this fundamental paragraph, the estimation variance will be defined in the case of a
regular grid and two equivalent expressions (rigorous) which are valid in the n-dimensional space
will be given. In paragraph (1-4-2) the case of a stratified random network will be analysed. Then
we will look for approximation methods, first in the t-dimensional space (1-4-3), next in the two
or three-d:unensmnal spaces (1-4-4), and these results will be applied to the geometrical problem
(1-4~5). Finally, the critica.l study of the conditions according to which these results might be
put to use will lead us to prepare the passage to the probabilistic version of the theory (1-4-6).

1-4-1 Exact expression of the estimation variance (regular grid)

Por brevity, the argument is developped for the one-dimensional space only, but
the results may be generalized without difficulty to the n-dimensional space. Iet f£(x) be a Re. V;
The quantity of metal

00

Q =J f£(x) dx

is estimated by means of a regular sampling grid of spacing a. In other words, if X, is the loca-
tion of (any) one of the samples, we kmow the numerical values f(x°+pa) of the Re. V. f(x) for p

a positive or negative integer. In fact, only a finite number of these values are different from

0 for £(x) has a bounded field ; in what follows, the problem of the convergence of series will not
arise for only a finite number of terms is involved. In practice, it is sufficient for the grid to
extend slightly outside the field.

We take as an estimator of the quantity of metal Q :

» @
Q (xo) = a p=Z:-wf(::°+-pa)

This is a periodic function (of period a) of X since it obviously does not matter whether we
take as origin of the grid one or another of the samples. The estimation error is [Q - Q*(xo)]
it is also a periodic function of Xy and its possible amplitude will be characterized by an esti-

mation variance denoted by a?(a).
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In accordance with our methodological line of approach (paragraph 0-4), no probabilistic in-‘-
terpretation of the Re. V. itself will be introduced. It represents a unique physical reality, per--
fectly determined (even if it is not perfectly known). But as we know nothing about it to begin
with, we will set our sampling grid "anywhere" or "at random" with regard to this unlmown pheno-
menon. It is easy enough to give the expression "anywhere" a more precise epistemological meaning :
we assume that everything follows from having the origin X, of the grid placed at random on a seg-
ment of length a in accordance with a uniform probability distribution. Thig assumption simply
means that initially, we do not know the exact location of a deterministic phenomenon, and does not
imply that we are, as yet, very seriously engaged epistemologically.

Following the random setting of the origin x_ within the segment (O,a), the estimator Q’(xo)

QO

becomes a random variable. Let us calculate its expectation and variance : its variance will be,

by definition, the estimation variance cz(a). We have for the expectation :

—00 v

- a dx M\
E(Q ) =J —ac-’- a X f(x,+pa) =j £(x) dx = Q
P
[+

r

Our estimator is thus witaout biag. The estimation variance is then

a
o?(a) = Q"% - @2 =1 j [Q%(x,)]? ax, - @2
[¢]

Let us compute the integral of [Q'(xo)]z. We have

» +00 +00
(e (x))] = a2 T T flx +pa) £(x +qa) = a®

= =00 q_:—on

% z f(x°+pa) f(x0+pa+ka)
P

By integration from O to a we get :

a a

J [Q*(xo)]2 dx, = a2 § J T f(x +pa) f(x +parka) dx, =
o o P
+00
= a %() J f(xo) f(xo+ka) dx = a %‘,g(ka)

Taking into account the relationship (1-2), we get the formula :
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+00
400
(1-14) : o%(a) = a kE_m g(ka) -j g(h) dh .

-—00

For the n-dimensional space we get a quite analogous result. For example, where n = 3, and with

a parallelepipedic grid 8, 8, agy we get @

a%(8,,8,,85) = (8, 8, 85) %1 §2§3 g(k,a,,k.8,,kz85) - g(h) db

REMARK - The estimation variance (1-14) appears as the difference between an approximate value and
the exact value of the integral Jg(h) dh. Hence it becomes smaller as :

- the grid spacing decreases,

- the function g, and therefore the Re. V. itself, becomes more regular. If the grid spa-
cing a is small compared to the range, formula (1-14) contains a great many terms. So we shall try
to find approximation formulae (see paragraphs 1-4-3 and 1-4-4). Ve can develop a second equiva-

lent expression for the estimation variance by using the Pourier transform of the covariogram g. -

The egtimator Q'(xo), as a periodic function, has the following expansion as a Fourier series :

x

+0 2inp =2

Q(x,)) = T c e a
p=—c0 P

-2inp §

a
»
cp:éjq (xo)e
°

Replacing Q*(xo) by its explicit expression, we notice that the Fourier coefficient Cp is :

a b 4 +00
-2ixp = -2inp &
c,=Z J fx+kn) € & ax =f £ly) € 8 gy
k (s] -00

Consequently, by writing the Pourier tranaform of f£(x) as ®(u), we get :

c, = 2(2)

In particular, C, = @(o) = Q. From the orthogonality properties of the trigonometric functions, it
followe that :
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o?(a) = T |¢P|2 -q?
P

and, taking (1-4) into account :

(1-15) : o?(a) =T (&) - (o)
P

This formula, equivalent to (1-14), shows that cz(a) is positive as soon as G is a positive func-
tion (thus as soon as g is positive definite). It can te extended to the n-dimensional case. For IBz,

: 3
for example, with the rectangular grid (31,32), we get :

(1-16) o (a1,a ) = E G<2 9-3 - G(o0,0)

NOTE : Thus, we have above all the important following conclusion : the estimation variance 02(3)

only depends on the transitive covariogram g(h)_and on the grid spacing a. Fornula (1=-14) also shows
that it depends linearly on g. Thus if we knew the real covariogram of a Re. V., we would be able

to solve the problem of estimation in an entirely satisfactory way, and without probabilizing the
true phenomenon. To prepare the reader for the change-over to the point of view of paragraph (1-4-6),
let us show that in fact there is something illusory in the above arguments.

If the only available data are the f(x°+pa.), for a given x,, the true covariogram g(h) will not
be known. Only the numerical values of the g(ka) can be estimated by means of the estimators :

8’(1‘8) =alX f(x°+pa) f(x°+pa+ka)
D

In the same way, we can only use the square [Q*(xo)]2 of the estimator Q*(xo) itself to estimate
Q2 - fg(h) dh. But if we substitute these estimators in formula (1-14), we get identically O, as

it can easily be shown by :

a2 &' (k) - [Q7(x,)]% -

This result is easy to understand : by replacing the true values by their estimates in (1-14), we
have implicitly substituted for the true Re. V. f(x), continuously defined on the line, its restric-
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tion to the discrete set of the sampling points x, +pa themselves. Thus the result obtained simply
means that Q*(xo) is an excellent estimator of Q*(xo) itself, as @:ox_xld te suspected. In other words,

this means that it is illusory to hope, by _means of purely empirical procedures, %o get both an es-
timation of Q and the accuracy of this estimation from the same experimental material (the f(5°+25).

To get out of this methodological deadlock, it is necessary to turn to a theoretical model.

Thus, an appropriate mathematical expression g(h;A,u..) will be chosen, and the one or more para~
meters A, p,... will be chosen so as to f£it best with the experimental g'(ka) (it is useless, and
illusory, to try to f£it the theoretical curve exactly to the experimental points) : formula (1-14)
will be applied to this theoretical g(h). The result so obtained will have exactly as much value

as the choice of the theoretical model of covariogram.

But this choice is by no means an arbitrary one. Firstly, the function g(h3;A,u) must be posi-
tive definite (paragraph i{-2). Next, there is an extreme importance to be attached to the analyti-
cal behaviour of the function near the origin, i.e. its irregular part : the order of the irregu-
lar term of lowest degree, and eventually the existence of a nugget effect, have the significance
of physical laws and are thus objective characteristics of the actual phenomenon. With the help
of experience, especially from those occasions where particularly close sampling grids were avail-
able, certain types of phenomena can be quickly recognized as having a typical analytical covario-
gram behaviour. As it will be seen later (paragraph 1-4-3) that the estimation variance depends
mainly on the behaviour of the covariogram, the problem is reduced on the whole to determining
the coefficient of the irregular t'erm of lowest degree : in general this can be done experimental-

ly and satisfactorily.

1=4-2 Case of a stratified random grid.

Iet £(x) be a Re. V. in ", g(h) its covariogram, and V the parallelepiped of si-
des Bys85pcer 8y centred at the origin. Iet hi be the vectors with components Py@yrecerPply which
are integer multiples of the sides of V, so that the translates vhi of V by the vectors h:L cover
the whole space. The stratified random grid defined by the parallelepiped V is constructed in the
following way :

~ an origin x, € V is chosen

~ for_ any index i, a point Ki € V is chosen at random, so that ‘the Xi are inde-
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pendent and follow the same uniform probability distribution within V.
~ a sample is taken at each of the points X, + hi + X, .

The estimator Q’(xo) of the quantity of metal for a given x, € V, is then :

Q*(xo) =§ v f(x°+hi+xi)

For a given x, the v f(xo+hi+xi) are independent random variables. Their expectations and their

variances can be expressed with the help of the regularization :

fv(x) =% ff(n-y) dy
)

(which is the mean of f within the ﬁa.rallelepiped vy centred at x). We get :

d jf(xo+hi+y) dy = fv(xo+hi)

E(f(xo+hi+xi)|xo) 7
v

D2(£(x +h;+X, |x,) = & sz(xomi»fy) dy - £2(x +h,)

v

These variables being independent for a given X, we deduce the conditional expectation and vari-

ance of Q’(xo) :
( E(Q'lxo) =§ v 2 (x +h;) =Q

D2(Q*|x°) = v2§) Dz(f(xo+hi+xi)|xo) = v g(o) - VZZ;) fg(xo«rhi)

For a given X Q*(xo) is thus an unbiased estimator. But - just as in the previous paragraph -
our ignorance at the start about the true location of the real phenomenon can be expressed by con-
sidering X, as a random variable, independent of the Xi, and following a uniform probability distri-
bution within v. As E(Q’|x°) = Q does not depend on X, the a priori variance of Q.(xo) - that is
the estimation variance of the stratified random grid - is obtained directly : taking the expecta-

tion of the conditional variance D2(Q“|xo) with respect to x_, we get :

o’



26

DZ(Q*Ixo) dx,

"

04" = ¢

=

v g(o) - V§ ff‘f(xo-v-hi) dx, =
v

v g(o) - v ffg(x) dx

Let g be the covariogram of the regularization fv' Prom paragraph (1-3-1), it can be deduced from
the geometrical covariogram K(h) of the parallelepiped v by the relationship :

g, =herk

v

In particular

Sv(O) = '15 f&(h) E(h) dn = fg(x) dx
v

According to Cauchy's algorithm, gv(o) represents the mean value of g(x-y) when x and y sweep se-
parately the volume v (cf. exercise 2), and the estimation variance we are seeking can be written

as ¢
p2(Q") = v[a(o) - g,(0)]

It depends only upon the behaviour of g(h) within a neighbourhood of the origin which is precise-
ly defined by the parallelepiped v itself.

1-4-3 Approximation formulae in the one-dimensional space.

Iet £(x) be a Re. V. in a one-dimensional space, g(h) its covariogram, and a the
sampling interval. When the spacing a is small, formula (1=14) contains a large number of terms,
and it becomes desirable to obtain approximation formulae to speed up calculations. As a matter
of fact, the interest of the approximation formulae about to be established goes far beyond rea-
sons of simple convenience, and has a fundamental epistemological significance regarding the pro-
blem with which we are concerned. Indeed, it will be seen that the estimation variance ca(a.) de=
pends only on the analytical behaviour of g(h) near h = O when a is small (except for a fluctua-

ting term whose meaning will be examined).
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The estimatioh variance cz(a) in formula (1-14) appears as the numerical error which would be
made in computing the integral ufg(h) dn with the help of the discrete sums a T g(ka). Thug, if
g(h) were a sufficiently regular function (that is differentiable enough times gveryyggzg), it -
would be possible to compute cz(a) directly with the help of classical methods based upon the Euler-
Mac-Laurin formula. But in general, g(h) is not sufficiently regular for any h. The theoretical
models of covariograms that are used in practice locate analytical irregularities at two critical

spots :
~ near the origin, as already seen

~ but also near h = b, where b is the range, as the intersection at b of g(h) with the axis
can be more or less acute. Anywhere else, the theoretical models of g(h) never present any analy-
tical irregularity. Obviously this does not mean that this applies also to actual covariograms.
But the true ones are never determined by experiment, and as previously seen at the end of para-
graph (1-4-1), we always have.to substitute a theoretical model for them. In paragraph (1-4-6) we
shall examine the epistemological meaning of the equivocal operation of replacing the true (unknown)
covariogram by an analytically simple theoretical model whose irregularities are concentrated near

the origin and near the range.

For the moment, we begin with the assumption that the irregularities are effectively located
at these two spots. Without going into the calculations at this stage (cf. [4]), it is possible
to show that when a is small, the estimation variance is the sum of two terms :

a%(a) = T(a) + 2(a)

The first one, T(a), the extension term, depends on the behaviour of g(h) near the origin ; the

second one, Z(a), the fluctuating term or Zitterbewegung, depends on the behaviour of g(h) near
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the range b.

Concerning the fiuctuating term Z(a), it can be shown that this depends essentially on the
quantity s = b/a modulo % (more precisely, we may find an integer n such that na < b < (n+1)a, and

put ¢ = b':B ). 2(a) is a periodic function of &, of period 1, and can be expanded in a Fourler

series which has no constant term, and so has a mean value equal to O when e varies between 0 and

1

fze(a) de = 0
°

It is poasible to determine the theoretical expression for this fluctuating term. Its amplitude is
not negligible, and it can even be very great (see fig. 1 and Ex. 14). However, in prastice, the
exact value of this term can never be calculated as the true value of the range b is only kmown up
to ¢+ a, thus up to ¢, which 1is % modulo 1, and therefore completely indeterminste. But as the mean
value of this fluctuating term with respect to € € [0,1] is always equal to O, it seems justifiable
to neglect it, and this will be done in what follows. The disguised probabilistic character of

this approximation will be noticed and we shall refer again to it in paragraph 1-4-6.

Iet us now study th'.e principal term T(a), or extension term, linked %o the;analytical beha-
viour of g(h) near h = 0. A detailed analytical study (cf. [4]) showa that it depends only on the
irregular part of the limited expa.nsionvof g(h) near the origin. More preciely; the validity of
a principle of term by term correspondence can be established, similar to that encountered when

studying grading in the isotropic case : each term in |h|>‘ in the expansion of g(h) makes a con=-
tribution of T, a** to g?(a), with a coefficient T, which is only a function of A :

(1~18) la* ~ 7, a™**

When A is an even integer, we get '1!1 = 0, and this corroborates the fact that the regular part of.

the covariogram makes no contribution to the expansion of the estimation variance. When A is an
odd integer, the rule (1-18) still holds good. For a logarithmic term in h2n log h, we get :

)
h2n logh = T2n a1+2n
' . - R . d
with ‘1.'2n equal to the value at A = 2n of the derivative VY TJ\'

Eal
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Computation of the coefficient T, : A rigorous calculation of T, will be found in [4]. Here we

will be content with a symbolic justification (similar to that already given in the computation of

the coefficient Aﬂ of the grading rule). If G(u) is the Fourier transform of the covariogram g, we

get, according to (1-15) :

o¥a) = 2 T o(®)
p=1

If |h|k had been taken to be the covariogram, the transform G (in the sense of distributions)

would be :

1
lul 1+A

r(&%l)
G(u) = —— 2

M3 r(= %,)

T

and if formula (1-15) remains valid for this Pourier transform taken in the sense of distributions,
we get :

(A
1+X F(-E_) ot 1

2 2. a
o(a) =
. 1 A — 1A
M3 (=3 p=1 p

2
and hence the expression of Tk :
(1-19) r e
1-1 =
A 1 A py T+A
A3 r{-3) p=t p

In fact, this value as found by a somewhat approximate reasoning is the true value. In particu-

lar :

ET1='%

3
1

= 0,0609 ....

The correspondence principle gives a rapid and easy calculation of the estimation variance. But
it must be remembered that the Zitterbewegung has been neglected, the amplitude of which can be
very great, and also that the result has bevn obtained from only a limited expansion of oz(a) near

a =0, and so is only true for small grid spacings. When a is large, the general formula {(1-14)
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contains only a few terms, and thus can be used directly. When the spacing .a becomes greater than
the range, only the term corresponding to k = O remains in (1-14) and we obtain the following sim—

ple formula 3

(1=20) cz(a) = a g(o) - Ig(h) dh (a201)

the probabilistic significance of which is given in Exercise 15.

EBMARK - If L = na is the mineralized length, and n the number of positive samples, the estimation

variance corresponding to the covariogram in r)‘ is s

o2(a) = A al** = (A.)\ ARES) ;%-T

It is in inverse ratio to n“'}‘ (and not proportional to 1/n as would have been suggested by a mal-

adroit application of classical statistics).

1-4~4 Approximation formulae in R®-.

The two-dimensional case will be studied thoroughly, the generg,lization to the n-
dimensional case following immediately. Our aim is to find a second approximation principle, which
en.ablesnthe computation of an estimation variance 0’2(&1,32) to be reduced to the sum of two estima-
tion variances in a single dimension case, each obeying the correspondence rule (1-18) = (1-19) and
S0 being easy to compute. This‘principle will be called the principle of composition of line terms
and slice terms. let us first examine the intuitive significance of this principle. Iet (9'1’a2)

with a, > a, be a rectangular grid, £{x,y) a Re. V. in the plane,

. . . ] 2
g(h1,h2) its covariogram, and g1(h) the covariogram deduced by gra-

ding along the y axis. Our principle states that the estimation

variance 02(a1,52) with a rectangular grid is the sum

(1-20) az(a1.az) = cf(.ai) + a, °§(32)

(R R X KN I NN NN

. w

of two terms : the first one, c?(a1) is computed from relationship (1-14) applied to the covario-
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gram 51 deduced by grading. It represents the error made in estimating the quantity of metal §
from the lines of greatest sampling density (parallel to the y axis) : it is the slice term. The

second one, a ag(az) is called the line term. It represents the error made when estimating the

1
accumulations of the lines from the punctual samples. cg(az) 1s computed with the help of formula

(1=14) applied to the spacing a, and to the one-dimensional covariogram g(o,h). The principle
(1-20) states thus that : when computing estimation variances, it may be assumed that the eTrors
made in estimating the line accumulations from the samples, and in estimating the quantity of me-

tal from the accumulations (auggosedy known) are without correlation.

Let us give a more precise statement of this principle, before giving an approximate justifi-
cation. In order to condense notations, ‘a will designate the linear operator associated, according
to (1-14), with the estimation variance with a spacing of a :

+00 +00
g=a T s(ka)-J g(h) dnh
=wc0

-0

s

Let (xo,yo) be the coordinates of one of the samples. Let
I'i(xo) = J‘f(xoo-i a, 3y ) dy

be the accumulation of the line i at the abscissa X, + i a,, and :

+00
Li(x,5,) = a, T flx,*i a, 5 TP a,)

p==co

the estimator of I‘i which we can form. As seen in paragraph 1-4-1, x_and ¥, have to be considered

)
as two independant random variables having uniform probability densities on (o,a,‘) and (o,a.z) reg-

pectively. Thus the accumulation I.i(xo) is a random variable and clearly, for a given X, :
E *
(Lilxo) = I'i(xo)
In order to estimate Q = ff(x,y) dx 4y, we form the following estimator :

Q(xy,¥,) = &, T 5y(xgv,)



32

and the estimation error can be written as :

(1=21) Q-Q*=(Q-31§ Li)+a1§(lii-1-:)

The first term is the error made when estimating Q from the accumulations. From the definition of
grading, the variance of this term (slice term) is obtained when applying (1-14) to the covarioe
gram g, deduced from 32(h1,h2) by grading along the y axis, that is, with our notation :

2 _
oi(a,) = ‘a1 &y

The other term is the sum of the errors I‘i - LI made when estimating each one of the accumulations
with the help of the punctual samples. For each line i, the expectation of this error is equal o

0, as seen previously when X, is given :
*
E(Li-_Lilxo) =0
For a given x_, the Re. V. f(xo+i a1,y) defined on the line i has for its covariogram g, in one

dimension :

+00
(1=-22) gi(h) = J f(x°+i a1,y) f(xo+1 ai,y+h) dy

00
and the conditional variance of L,-Lj is then
2 * N
D°(L,-L,fx ) = 68'2 8y

We now assume (justified further on) that the Li-Iu; can be considered as being without correlation
at a given X5 The conditional variance of the line-term is then :

2 2

2 *
aé T DY(L-Lilx.) =aX g _ &g
11 iilo 1i 32;

»
As E(I‘i'Li) = 0, the a priori variance of the line term is then obtained by taking the expectation

with respect to X, ®
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However, it can be seen that the linear operator 3&2 allows the discrete sum to be changed for the
integral. Using (1-22), we find for the line term :

31 +00
a, 8, J dx, Z J f(x,r 18, 5 ¥) £lxy+i a5 y+h) dy =
2 J id,

+00 +00
=a, 4, J dx L £(x,y) £(x,y+h) dy = a, 8, g(o,h)
2 2

=00

The line term is thus :

_ 2
a, 632 g(o,h) = a, cz(az)

according to (1-20). To obtain the relationship (1-20) itself, we still have to admit there is no

correlation between the two errors Q - a, z L, and a, Z)(Li-L;) of (1-21).

This principle of composition of line-term and slice-term has a very great importance, first
for practical reasons for it allows the easy computation of an approximate value of the estimation
variance, but also for methodological reasons : for, taking into account the correspondence prin-
ciple, it shows that in two dimensions as well, the estimation variance depends mostly on the be-
haviour of g(h) near the origin. We will find this composition principle again in a similar form
in the probabilistic version of the theory. Thus it is not a useless exercise to give a justifi-

cation of it, even a symbolic one.

A

To do that, we shall use the correspondence principle. To any term in r of the covario-

A

gram's irregular part, there corresponds by grading the term A?\ 't in the covariogram 8, deduced

2+A
141 2
of the slice-term (relationships (1-18) and (1-19)),,and similarly the contribution to the line-
A 1+A
2

by grading (relationshipe (1-10) and (1-12)). Thus we get the term A T in the expression

is T, a, a

tere of r N2

+ Our correspondence principle is thus expressed by the correspondence

rule :

147
+ T a8

(1-23) PR 4T

221
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-20) by applying rule (1-23) (provided that the co-
N

Conversely; we can f£ind again the principle (1
linear transformation). This

variogram g is isotropic or can be reduced to the isotropic form by a

rule will now be justified :

Justification of rule (1-23) :
Start from the general formula (1-16) where G(u,v) is the Pourier transform of the covario-
gram &. ’

02(31,32) = p?q G(E1 ’ %2) - G(o,0)

In the double sum X  the terms corresponding to q = O give the glice-term
Prq

oiap) =Z 6 , 0) - 6(o,0)
p

Indeed, G(u,0) is the transform of the covariogram deduced by grading ST(h) : formula (1-15) shows

then that this term is in fact the variamce (in one dimension) c$(31) = €, &, computed from the

a
1
covariogran gy - The second term, or line term, has thus the following exact expression :

T @ ,12)
¢
1 pe~—w By 83

N
ST

In order to justify (1-23), we have to show that the contribution of a term in r™ (in the expan-

sion of g) is T}\ a, a%ﬂ‘ . In two dimensions, the tranaform of r® s

A
3 rA - ’ r{1 + 2) 1
2 2 - 1+2
2 (u2 + v,2) 2

So we have to establish the following relationship :

s TU1+3) = 4w ,
(1-24) uﬂ T(-_%)— z <'—é-—2> 1+% T)\ 31 2

[}

'D

q=1 pa—=e B+

a a

N N

1

For a given integer q, we have :
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(1-25) T 1 (az)uz 5 1
- : e = (F v 1 A
p==00 <L2 . 25) 1+ > q . p=—oo 1 p2 a2 1+
+
a5 a) qZ a?

But a, is supposed to be small compared with 8, and the quantity :

is small. The Riemamm sum X -—-bgz— 1+ A @gives therefore a good estimate of the integral
2

p (1+ ® )

+00

J dx2 1+ A
(1+x) .2

-

On the other hand, it can be shown that the error made in replacing this integral by the discrete

sum is of a high order in b. Then with excellent precision, we have :

1+A
: re)

400
z A ¢ ‘f dx A =4 W —2—
P Geozd) "2 " VT 2)"F 0 r(t+ 3

a
Replacing b by its value q—i— in (1-25), we get :
1

1A
- a al*h r(= 1
) TSI

Substituting this result in the firat member of (1-24), it follows that :

14
1+A 2 N3 - 1

7\+12- r(- %) q=1 qH)‘

But, according to (1-19), this is none other than T)\ 8, aé”‘ , 8o that ‘relationship (1-24) is proved,

as well as the correspondence rule (1-23), and the composition principle is justified.
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1=4-5 Application to the estimation of a surface.

We can apply the composition principle of the previous paragraph to the estimation
of & surface. The Re. V. to be estimated here is the indicator k(x) of the set S. As already
seen, the geometric covariogram E(h) associated with S is linear near the origin (paragraph 1-1),
and we have

K(h) = S = |h|IJ(z * ase
in which Da represents half the diametral variation of S in the direction « of the vector h.

a/ We shall consider the isotropic case first, i.e. the case where Da = D is almost indepen-

dent of the direction a . With '].‘1 = - % and A1T2 = - 0,0609, the rule (1-23) gives the estimation

variance of S for a rectangular grid (31,32) in the form

- 2 _ 1 2 3

(1-26) og=D 3 (32 ay + 0,0609 9'2) (a1 < az)
02

We can also determine the relative wvariance —2 . We do not, in fact, know the true value of §, but
S

only an estimation of it, n a, a, where n denotes the number of boreholes having positive value.

Dividing by (n a, 32)3/2 S, we obtain the following interesting expression :

cg 1 D \ ’ a ay 3/2
(1=27) 5? = ;375 TT? (% _Eé + 0,0609 (;;) J

The true value of the diametral variation is alse unknown. To estimate it, we replace the set S

by the union of positive bores' influence zones (rectangles a1 3.2)

+ + - We next count _the numbers 2N,I and 2N2 respectively parallel %o 8,
and. 857 which constitute the perimeter of the contour obtained. The
* 0 + correspending diametral variations are D, = N1 a, and D, =N, a, .
. . - In the isotropic case, we have
+ 0 + D= l‘l1 a, = N2 a,
Replace D in (1-26) and divide by s? = (Na, 32)2 . This gives :
) 2
o (r,)
- =. 1 rl 1
(1-28) 2= = [ g ¥, + 0,061 N ] (N2 < §,)

s N 2
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b/ Nevertheless, the contour will not in general be sufficiently isotropic for Da to be re-
garded as a constant D. It will present, for example, a'pri.ncipal axis of elongation. If one of,
the sides of the grid pattern is parallel to this principal axis - which will often be so - the
above formula (1-28) still remains applicable : indeed, by taking this direction as the x axis and
by multiplying the ordinates by asuitable factor, we get a new figure - isotropic this time - (at
least to a first approximation) for which (1-28) is valid. But this linear transformation has chan-
ged neither N‘l or N2, nor the relative variance 02/32, so that (1-28) is still valid in the case
of the original anisotropic figure.

Exemple - On the figure below, the mineralized area is egstimated as being 10 times the area of the
grid rectangle a, a,. It contains a gap (or lacuna). N1 and Na must in-

00000
O+ ++0 clude the interior elements as well as the exterior ones : hence we read
0+0+0 " on the figure
O+ ++ 0
°+0+0)a 2D, =12 a i.e. N, =6
ooo0qo’ ! ! ! !

2 N

2D2=8 a, i.e, 2,=4

Therefore :

g

S _ 1 4

32 = m [ g + 0,061
leading to a relative standard deviation cs/s = 1—.% and a relative error range of + 22% .

However, we must remember that this calculation disregards the fluctuating term or Zitterbe-

wegung whose amplitude, as we know, can be very gZreat.
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Zitterbewegung in the es-
timation of the surface

of a circle
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Pig:+. -~ Zitterbewegung in the estimation of the suy-
tace of the circle of unit diameter, by means of a square
grid network. Absecissae, the grid spaci . Ordinates,
the corresponding estimation variance o%(a). The curve
shown as an unbroken line represents the exact value,
calculated on the basis of the exact formula (IV,1,14).
The curve shown as a dashed_line represents the formula
g2(a) = 0.2276a% + 0.00477a® obtained by neglecting the
Zitterbewegung and retaining the first two terms of the

limited expansion given by the principle of correspond-
ence,
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1-4-6_Passage to the probabilistic version of the theory.

In this first chapter we have followed the spontaneocus and in a way naive point
of view which consists in taking the phenomenon as it comes without making any particular assump-
tions about it. However, though transitive methods pretended at the start to build up the theory
of Re. V. without any probabilistic interpretation, this ambition soon appeared to be unjustified.
First, an unexpected phenomenon such as the Zitterbewegung (paragraph 1-4-3) is characteristic of
a prerandom situation well known to physiciasts : where a slight change in the initial conditions,
experimentally unnoticeable (here the ratio range upon spacing modulo 1) entails, after some time,
a radical modification of the observed'phenomenon. Moreover,‘should the covariogfam g be known per-
fectly, it would show small undulations, singular points, a host of structural details.which would
give aimost as much information as the Re. V. itself. But this is never experimentally obtainable.
Starting from a discontinuous set of experimental points, we fit the covariogram toc a theoretical
model, which is a regular and continuous curve, except in the neighbourhood of the origin ard the
range (ending note of paragraph 1-4-1). More precisely, we make an assumption about the analytical
behaviour (in B* for example) of g(h) near the origin. In fact, it is absolutely not certain that
the true g(h) should show such a simple type of analytical behaviour. From the mathematical point
of view, the smoothing or regularizing operations involved by such an assumption are very difficult
to analyze with accuracy. Obviously, they obliterate the detailed structure of g(h) and all the po-
tential information it contains- Though the mathematical character of these operations is somewhat
obscure, their epistemological significance is obvious : they congtitute a disguised passage to
expectations. Thus transitive methods, meant at the start to be purely geometrical, emerge, when
the conditions of their effective use are analyzed, as being rich in implicit probabilistic con-

tents.

Hence we will bring into the open the probabilistic assumptions which the transitive methods
‘concealed, and this wiil be our theory of intrinsic random functioﬁé. But the natural phenomena we
are interested in must in general be considered as unique, so statistical inference will not be
(theoretically) possible, unless a special hypothesis, such as the stationary or intrinsic type, is
used, Sometimes this hypothesis will appear as likely, sometimes as being contrary to the experi-
mental data, and in any case as arbitrary. Now it may seem illusory to interpret a natural phenome-
non as a realization of a random function, unless we are sure we can reconstitute, without ambigui-
ty? the proper probability lﬁw of this R.F. from the real phenomenon. Hence there appears to be a
new contradiction. It has just appeared that the transitive representations contained an unaclmow-

ledged probabilistic content: but they did not involve any stationarity hypothesis (hence their



methodological interest). let us now bring fully into the open their previously concealed probabi-

listic assumptions, but it will now appear that they only have sign:l.fica.nce when the hypothesis of

stationarity is used, which the transitive methods did not need.

Bringing together these two contrary points of view clearly reveals the solution : the proba~
bilistic interpretation is inevitable, but the ypothesis of stationarity is not in fact necessary.
The Re. V, in general, haas to be cclms'idered as a realization of a non-stationary R.F., and the
basic tool will be a non-stationary ;:ova.riance function C(x,y) depending separately on the two hold
points x and y (and not only on the dlfference x-y). Statistical inference will gtill remain impos-—

gsible, that is to say that it will not be possible to determine C(x,y) from the available data.

But we do not need to know the actual value of this covariance. To see this, we only need to trans=—

pbse the results of the transitive methods in probabilistic terms. For example, to estimate a vo-
lume V with indicator k(x) and geometric covariogram K(h), the transitive methods show that it is

necessary to kmow the function :
g(h) = jk(x) f£(x) k(x+h) £(x+h) £(x) dx

In the probabilistic version, the covariogram g(h) becomes a R.F. itself, and it is necessary and
sufficient to lmow its expectation E[g(h)] in order to solve the problem of estimation. But this

expectation is deduced from the non-stationary covariance by the relationship :

(1-29) | E[g(n)] =jk(x) k(x+h) C(x,x+h) dx

In fact it is this very relationship which was already implicitly applied when substituting a theo-
retical model for the true unknown g(h).A This expectation, apart from a factor, is not different
from the pseudo-covariance C(h), the mean value of C(x,y) within the volume V to be estimated and
which would be attributed to the random function if it were considered as stationary (but which may
not be so). We have in faet :

Tw) = gy f K(x) k(xsh) C(x,x+h) dx = %}l

Hence it is sufficient to know the expectation E[g(h)] or the mean covariance T(h) in order to sol-
ve the problem of estimation. Moreover, the approximation methods which were found show that it is
even sufficient to lmow.~only the behaviour near the origin of this function E(g(h)] or T(h). In

what follows, it will be shown that stgtistical inference from a single malization is possible for

what concerns us (the behaviour near the origin), and that only a hypothesis of quasi-stationarity
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needs to be specified : but this time the hypothesis will be weak enough to be physically conceiva-
ble in all the cases which concern us. In other words, the problem of estimation can be solved

within the bounds of our probabilistic interpretation, and using only the available experimental

data.

We can now appreciate the methodological importance of this first chapter, which may have
looked rather theoretical at first sight: once probabilised, the results of the transitive method
show the possibility of getting rid of the famous hypothesis of stationarity ; therefore, we have
given quite a detailed account of it. ILet us pass on now to the probabilistic theory.

1-5 EXERCISES ON TRANSITIVE METHODS.

1=5—1 Exercises on paragraphs 1-1 and 1-2.

Exercise | (Triangular covariogram) - Consider in a space of one dimension a Re. V. f£(x) equal to
1 in the interval (0,b) and zero elsewhere (indicator of the segment of length b).

a) Find its geometric covariogram-
(Solution : K(h) = b - |n| when |a| s b, = O when |h| > b. (Notice the linear behaviour
near h = 0 and the straight intersection at h = B)-

b) Same question in B2 for the rectangle a x b. (Sol. : K(h1,h2) = (a - |b1|)(b - |h2|)
when |h1| < a and 1h2| <b) and in B> for the parallelepiped a x b x c.

Exercise 2 (Cauchy's Formula) - Let V be a set belonging to &, K(n) ite geometric covariogram, and
g(h) any function of the vector h. Show that the mean value of g(x-y) when the two ex=
tremities x and y of the argument of g sweep V separately, can be deduced from K(h) by
the formula : ’

-1-2 de fg(x—y) dy = 4 fG(h) K(h) dn
vy v v2

(Solution : write down explicitly the double integral witu the help of the indicator
of V, and change the variables and the order of integrations. This algorithm is used
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constantly in the Re. V. theory).

Application : (cf. Ex. 1) If g = g(r) only depends on the modulus r of h, r = |n|, the
mean value of g within the rectangle a x b is 3

a b '
—25{)-2- J dx j (a-x) (b-y) &( Vx%yd) ax ay
a

o o

Exercise 3 - Consiger in R! the function f£(x) =€ 2 when x 2 O and £(x) = O when x < 0 . Find its

covariogram.

(Solution : g(h) = %E e.‘alh| (1inear behaviour near the origin)).

Exercise 4 - Consider the function #£(x) = x within the interval (-b,*b) and = O otherwise. Shew
that g(h) = § v° - b¥|n| + }iv%| (linear at the origin). Prove that Jg(h)d.h = 0 and
interpret. :

Exercise 5 - In IR1, let £(x) be the function f(x) = (b2-x2) when -b < x < b and f£(x) = O otherwise.

Show that the associated 'covariogram is :
2 3 ' 5
o - o(-45 - § 2P g )

(Note the principal irregular term in }:13 : it is a continuous function. Rather than

waking a direct computation, prove that if £ is differentiable, then its covariogram
v v . 5

g = £ * £ has for a second derivative g" = - £ * (£f'), and use the results of Ex. 3.

Integrate g" twice, Aoticing that g'(0) = O and compute g{o) direcjtly)-

Bxercice 6 - (Minkowski's formula) -: Let S be a sufficiently regular set inmz, K(h) its geometric
covariogram, 2S48 its perimeter. Establish the relationship :

T
28 = - JK;(o) da

[+]

] .
(put - Ka(o) in the form of a curvilinear integral % chos (6-2)| ds on the contour of
S, and integrate first with respect to «).
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Likewise, if V is a set in fRs, K(h) its gevmetric covariogram, and S its surface, show

that :

I O
S=-5 Jiw(o) dw

(dw 1s the elementary solid angle around direction w, integrate over 4 = steradians),
(These formulae are useful in mathematical morphology : they allow the perimeter or spe-
cific surface to be reconstituted from the derivative of the covariance function or of

the covariogram, i.e. from purely linear observations).

Exercise 7 (Bugget effect) - In m‘, the interval (O,b) is divided into n equal intervals of length

ﬁ . Consider n independent random variables xi with the same expectation m and the
same variance 02 .« Put £(x) = X; when (i-1)a<ia, i=1,2,...n, and £(x) = O outside

a =

(0,b). Find the expectation g(h) of the covariogram of f£(x).

(Solution : o2(b-n|h|) + m?(b-|hn|) when |n| s a, m’(b-|h|) when a < |h| < b, O other-

wise. When a is small, or n great, this scheme corresponds to a nugget effect).

Exercise 8 (Size distribution of a convex grain) - a) Let S be a convex set of fR2 , & its geometric

covariogram expressed in the form g(r,a), r, « being the polar coordinates. When a is
given, the derivative with fespect tor, - g'(r,a) is the measure of the projection of
the intersection S N Sh onto a line perpendicular to the direction a. Deduce that the
size distribution of the intersections of S in the direction a follows the probability

distribution function Fa(r) defined by :

1 - Fa(r) = EM

8'(0.(!)

Deduce that, for a given ¢ and for r = 0 , g(r,a) is a convex function of r.

b) The direction g is now drawm at random with density :

D
_“.da=_5'_(2:£l da (0<aqsgm)
28 2B

(cf. Ex. 6) to verify that this is indeed a probability distribution. This distribution
gives to each direction a a probability proportional to the apparent contour of S in

that direction, and corresponds exactly to the (conditional) distribution of the inter-
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gections of S with a previous layout of random straight lines with unifdrmly distributed
directions on o,x). Show that the corresponding size distribution is :

T
1 F(h) = - —— Jg'(h a) da
o 28 R
0
with the mean value E(h) == =
2£

Exercise 9 (Geometric covariogram of a s here) - Calculate the geometric covariogram of a sphere of
diameter D in 3.3 .

(K(h) = (1 - 'LFL l-l—é-) when |h| < D. Start from -x(n) =% (0%-n?) (ct.
previous exercise) and integrate, remembering that g(o) = —5— ).

\

1=5=-2 FExercises on grading.

Exercise 10 (grading of order 2) - Perform directly the isotropic grading of order 2 on the func-
tion gn('r) = (Osrs<1) gn(r) =0 ( r > 1). Deduce that the coefficients A, of re-
lationship (1-10) verify :

- .
W VS Bl v
L B A+2
(Solution : gn_z(r) = k+2 (1- ) for r s 1, and O when r > 1. The grading of order
2 follows the rule r™ ~ Al L ™2 in the irregular part ; the rule gives the result
only except for a series of even integral powers, which is reduced to a constant in

this case..

2 .
Exercise 11 - Covariogram of the function f£(x) = = (%. - xz) when -D < x < D, or O otherwise on g’

(intersection of the sphere of dismeter D by a plane at the reading x).

(Solution : &( (-5 - —- + 1+ lJ—é—-) ]J5 . Perform the greding of order 2
directly on the geometric ccvariogram of Ex. 9. Comps.re with Ex. 5)-
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Exercise 11 bis (Reconstitution of thé size distribution of spheres) - A population of spheres in

m} is given. let 0y be the number of spheres per unit of volume, and F3(D) be their

size distribution. In other words, 63[1-F3(D)] is the number of spheres with diameters

2 D per unit volume. These spheres induce respectively circles and chords on the planes
and lines of ﬁ}- let eé be the number of circles per unit surface, and 1-F2(D) be their
gize distributibn (size distribution induced by F; on the planes) ; in the same way,

let 8, be the number of intersections per unit length and 1-F1(D) be the size distribu-
tion of these intersections (induced on the lines by F3 or by'Fz) .

a/ Eatablish : .

I

@
M)
—

91[1—31(11)] =

) —D\/%? -<‘I-‘F2(D)> ap = % 93}[ 6—F3(D)> 2D (_iD

o,[1-F,(n)] = (1-r5(0)) @D

|
[<2]
N
e
-

g
(for example, establish first 61[1—P1(h)] = ezf \/172-h2 Fz(dD), and integrate by
parts). h

b/ Invert these relationships : using (1-8), show that (for example) :

8, P, (h) 3% 95 h{1-F3(h)]

oo

' d
8,[1-F,(n)] = % eJh F (u) 4

Vuz—h2

"
Deduce 85 = % FI(O) 8, » 8, = é-( & F1(u) du , and reconstitute the size distribution
()

of the circles and the spheres from that of the chords.

. . 2

Exercise 12 (Grading on the Gaussian exponential) - Show that a grading of order 1 transforms e-ar
: T ,-ar

into a e



1=5~3 FExercises on egtimation.

Exercise {3 (Expomential covariogram) - Consider a Re. V. £(x) whose tramsitive covariogram in one

dimension is g(k) = e-klh'. Form the exact expression of the estimation variance aa(a),
find its principal part, and draw conclusions concerning the abgence of a Zitterbewe-
gung.

(Solution : o2(a) = a (1_ 2}\3 -1 -5;) ,p% ws

By taking the expansion further, we could identify the terms T1, T3, TS... of rela~
tionships (1-18). In particular, I,=- -&)

Exercise 14 (Triangular covariogram) - Consider in @' £(x) = 1 within (0,b).

a/ Pind the covariogram of f(x).
(Solution : g(h) = b - |h| when |h| & b and O elsewhere. Establish this result geome-

trically)-

b/ Calculate the estimation variance for a grid having a small spacing a, by

means of the approximation formula. (Sol.: 1/6 32).

¢/ Consider a layout of n+2 boreholes S, 51,...,811, Speq OB 8 re@lu grid, the
first and last of which are negative, the others positive. We try to‘estima.te b, the
length of an interval, each extremity of which can'fa.ll anywhere on the segments(so ’
S1) and (Sn ’ sn+1) respectively,independently of each other,and with uniform probabi-
lity. The length b is then a random variable. Show that E(b) = na and D%(b) = a?/6 :
the estimation variance as given by the approximation formula is thus found again, but

we cannot obtain the fluctuating term.

4/ Calculate the exact value of 0-2'(3). To do this, let b = na + cawith 0 s ¢ < 1.
As £ is unknown in practiee, consider it to be a Re. V. with uniform probability density
on (0,1) and re-establish the approximate formula of b.

(Solution : If the first positive sample is at x (O < x < a), we get the estimation
(n+1)a when x < €a and na when ea < x < a. A8 X is set at random on (0,a) with uniform
density, this estimation is a R:V. of expectation b and variance (e -52)32 . This ex-
pression includes the Zitterbewegung).
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Exercise 15 (Estimation variance in the random case) - Let £(x) be a Re. V. in two dimensions, ha-

ving a covariogrmﬁ g(h) and a ném 8. If the rectangular grid pattern (‘a‘1 , 32) is

darge with respect to S, at the mos one sample is positive. We may consider tlhe sample

as falling at random within a rectangle (31, 32) containing S. The estimator is Q' =
a,a, £(x) if this ssmple falls at a point x € S, and 0. otherwise. Q *(x) 1s thus a R.V.

Show directly that E(Q™) = (e(x) ax = q, E[(@")?] = [f[f(x)]? ax] a,a, and D3(Q") =
a, &(0) -.Jé(h) an.

1=5~4 Transitive theory for measures.

Exercise 16 (Generalization of the transitive theory for measures) - let £(x) be a summable positi-
ve function in B® . Suppose that J‘t(x)dx = 1 (which is permissible) and consider f(x)
ag the probability density associated with a vectorial variable X = (11, xz,...&) . Iet
X and X' be two independent variables obeying the same law f. Show that the covariogram
= f » f is the probability density of the variable X-X'.

Exercise 17 (Continuation) - Iet X = (x1.x2,...§1) be a vectorial variable, y its probability dis-
tribution (positive measure with sum equal to { defined on Rn) not necessarily having
a density. The covariogram g = u * ;\fw:Lll be defined as the measure giving the distri-
bution of X-X' , X and X' designating two random variables of same distribution u.

a/ Study the case where p is a discrete distribution concentrated at N points Xy

Xy eeeXy with P(x-xi) N' Show that g ia the discrete distribution comprising the

ness ﬁ» at the origin and the mass 12 at each of the points -z, i# j.
N

b/ The N points x; of a/ abave are now considered as random, mutually independent,
set in [Rp' according to the same distribution with density f. The distribution g is then
considered as a conditional distribution for a given x - Show that the corresponding
a prlori (deconditioned) distribution is of the form :- B

v
g=g6+ (- ex¢

(6 Dirac measure : ﬁ» 5 thus designates a mass ﬁ gset at 0 , and signifies a nugget effect:
in parsgraph 1-2, the nugget effect is described as a very sharp and highly localised



Exercise 18

Exercise 19

transition zone around the origin. It is then natural, at the limit, to idealize the
nugget effect by symbolizing 1t with a Dirac measure placed at 0).

(Continuation) - p 1sta positive function of sum one. Show that the regularization
n* 1’5 is the density of X=-Y, X apd Y designatiﬁg two independent vectorial variables
with respective distributior p and p. Interpret the covariogram u * ff * p * 5 of the
regularization u * P (distribution of X-X' - Y+Y'). Study the case where p is the dis-—
crete distribution of Ex. 17 a/. When the points x; are random (as in Ex. 17 b/) the
abgve covariogram p * ﬁ * p* f;' represents a conditional distribution. By decondition=~

with respect to x,, show that the a priori corresponding distribution is :
i

v

ol -Porgrert

From these exercises, conclude that it is natural to symbolize a nugget effect with a
Dirac ineasure seﬁ at 0. A covariogram with a nugget effect will have the form g = C5 +
+ 8y where 84 is continuous near the origin. If we regularize the measure whose cova~
riogram is g by the function p, we get a function with covariogrem g * P= C P + 8, * P
(P=p*p) so tim—t the rule of paragraph 1-3=1 remains valid.

(Continuation) - Iet Wn De the distribution of the veetorial variable (x,,xz....xn) ha~

Exercige 20

ving n components. Grading along the x, axis makes us pass from By to the marginal dis-
tribution u,_, of the n-i variables (x1,x2,...xn_1). Show that the covariogram u, , *
:‘n-1 is deduced from the covariogram Hyy * ﬁ'n by the same grading process.

More generally, if P is a function (or a measure) on B , and Ppey the function
(or the measure) deduced from Py by grading, the regularization By * i)'n becomes [T »*
\6'11-1 through this same gradding process. How does a nugget effect behave when it is
graded ? ‘

(Continuation)- (Estimation in the'presence of a nugget effect) - Let £ be a measure

with covariogram g = C§ + g4 comprising a nugget effect and a continuous component gy

Let k(x) be the indicator of a small volume v, K its covariogram. f is regularized by
v

1/~ k(x), that is £, = ;l- £ * k: fv(x) is the grade of a sample v set at x- Samples v

are taken on & regular grid a = (a,‘,a.z,...a.n). Show that the estimation variance is of
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the type az(a) = °12;(a) + df(a), af(a) being calculated from g, by means of the formue
lae of paragraph 1-4-{ . THe supplementary term, or nugget term is az(a) =

a 3200.% P
=G (—1_—v— - 1) or else C[V/V' - 1] : V is the volume of the field, V' the total
volume of the samples (i.e. the supplementary term produced by the nugget effect is’

in inverse ratio to the total volume of the samples).
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CHAPTER 2

THEORY OF INTRINSIC RANDOM FUNCTIONS

oy = e

1 __GENERAL DEFINITIONS

Notion of a Random Function.

In probability theory, a sequence of k random variables (rov.) ‘[1, Yz,...Yk (gene-
rally non-independent) defines a vectorial random variable (or random vector) Y = (‘Y1,Y2,...Yk)
with k components. When the number k of these components becomes infinite, we get an infinite fa=-
mily 6f r.v.'s: this is a random function. In particular, 1if x is a point describing the space of
n dimensions K®, an infinite family (Yx)xe can be defined. Thus, to every point x  of the space,
there corresponds.an ordinary r.v. Yxo , also denoted by Y(xo)- Y(x) is then a function of the
point x, whose "value" at x, is not a number but a r.v. (namely Y(xo)). We say that Y(x) is a ran-
dom function (for short R.F.). It will be noted that generally the r.v.'s corresponding to two sup-

port points x, and x,, i.e. Y(x1) and Y(xz) are not independent.

1
If Y is an ordinary r.v., the result of drawing Y at random according to its probability dis-— '
tribution is a particular numerical value y. In the same way, if Y is a vectorial r.v. (Y,,YZ...Yk),
a random drawing of Y according to its distribution (of k variables) gives a vector y = (yi,yz..-yk)
i.e. k particular numerical values. Finally, if ¥(x) is a R.P. - i.e. a vectorial r.v. with an in-
finite number of components - the drawing at random .of Y(x) according to its distribution (of an
infinite number of variables) gives a particular numerical function y(x), generally a highly irre-

gular one. The function y(x) is said to be a realization of the R.F. Y(x).

A realization y(x) of a R.F. Y(x) can always be considered as a regionalized variable. Conver-
sely, a given Re. V. y(x) can be regarded as the realization of a certain R.P., ¥(x) : this inger-
pretation makes the application of the probabilistic theory of R.F.'s to the Re. V.'s possible.

Remarks - 1/ It can never be said that a given By .v. y(x) is a R.F.. This would make no more sense
than to say that the number 98 is a r.v. The correct statement of the basic probabilistic hypothe-
sis we wish to introduce is : y(x) is a realization of a random function Y(x).
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2/ For this probabilistic hypothesis to have real significance, we should be able to re-
constitute, at least in part, the law of the R.P. Y(x), of which y(x) is supposed to be a realiza~
tion, and that implies that statistical inference 1is possible. But in general, statistical infer-
ence 18 not possible if we have only one realization y(x) of ¥(x) at our disposal. (In the same
way, the distribution of a r.v. Y cannot be reconstituted on the basis of the numerical result y =
= 98 of a single trial). To make statistical inference possible, the introduction of supplementary
hypotheses about the R.P. Y(x) is necessary in order to reduce the number of "parameters” on which
its law depends. Such is the aim of the stationarity hypothesis we are going to define : a station-
ary R.F. is, in a way, repeating itself in space, and this repetition gives a new opportunity for
statistical inference, starting from a single realization. Let us now aspecify this hypothesis :

Stationary R.F. — A R.F. X(x) is called stationary when its law is invariant under translation:

in other words if Xy 9Xype-e9Xy BTE k arbitrary support points (k being any integer) and h any vec=-

2
tor, the k r.v. Y(x1), Y(xz),...,Y(xk) have the same distribution (of k variables) as the k r.v.
Y(x1+h), Y(12+h),...,Y(xk+h). In what follows, Y(x) will represent a stationary R.F.

Expectation. ~ Consider a support point x_. If the ordinary r.v. Y(xo) has an expectation,

()
this is a function m(xo) = E[Y(xo)] of the support point x, . But Y(x) is stationary, and conse-—

gquently m(x°+h) = m(xo) for any vector h ; hence m(xo) is a constent m independemt of x, :
m = E[Y(x)]

Even if we have to replace Y(x) by [Y(x)-m], we will very often assume that m = O, (provided that
this expectation does actually exist)..

The covariance K(h). - Consider now the two points x, and x°+h. If the two r.v.'s Y(xo) and
Y(x°+h) have finite variances, (and hence also an expectation m which we snall suppose to be equal
to Q) they also have a covariance K(xo;h) which in pranciple depernds on the support point x, and
on the vector h. But as Y(x) is stationary, we have : K(x°+a;h) = K(xo;h) for any vector a : hence
'K(xo;h) is independent of x,, and we will simply write X(h) as :

(2-1) k(n) = B[Y(x) ¥(x+h)]

Compare this definition of the covariance with that of the transitive covariogram : K(h) is the pro-
babilistic transposition of g(h). When h = 0, we have K(o) = E([Y(x)]e) : it is the variance of the
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T.V. Y(xo). The stationary R.P. Y(x) has a covariance function K(h) if and only if it has a finite
variance K(o). '

Second order stationary hypothesis. - A R.F. Y(x) is said to be stationary of the second order
if the r.v. Y(xo) has an expectation independent of the support point x,, and if, for any vector h,

the covariance

K(h) = E[Y(z +n) ¥(x )] - m§

exists and is independent of X, . This hypothesis (which does not imply stationarity in the strict
sense, as we have defined it above) is sufficient for the theory of the Re. V. But it does suppose

& finite a priori variance K(o).

Infinite a priori variance. - Many phenomena have an almost unlimited capacity of dispersion,
and cannot be properly described by attributing to them a finite a priori variance : this assertion

is perhaps surprising, but we have to realize that nature is setting a sort of trap here. When sam-
ples v are taken from a field V, we get a histogram from which it is always possible to calculate
a variance which takes thus a perfectly definite value. But this experimental variance is in fact

a function az(v/v) of the support v and the field V. In particular, it increases as the field in-
creases. If the samples of size v have a finite a priori variance, this should appear as the limit
of the experimental variance az(v/v) in an infinite V.

It was in this way that the South African School (D.G. Krige, etc...), starting from hundreds
of thousand of samples drawn from the large gold ore-body of the Rand, have been able to calculate
the variance of these samples in darger and larger panels,. then in an entire concession, and then
in the whole Rand ore=body : thus they have obtained an experimental relationship of the form

a?(v/¥) = a log (V/¥)

The' variance increases in accordance with this logarithmic rule (the De Wijs formula) right up to
the last experimental point, for which the ratio V/¥ is about ten thousand million. It can be con-
cluded, beyond any . doubt, that in this case, an a priori finite variance does not exist.

Hence we must replace the stationary of second order hypothesis by a weaker hypothesis of the
same meaning :
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.Intrinsic Hypothesis.- Even when the a priori variance K(o) does not exist (i.e. is infinite)

it may happen that the increments Y(i°+h) - Y(xo) have a finite variance. Hence we will say that

the R.F. Y(xp)obeys the intrinsic hypothesis if, for any vector h, the increment ‘[(xo)h - Y(xo) has

an expectation and a variance which are independent of the support point x (but depend on h),i.e. ¢
E[Y(x+h) ~ Y(x)] = m(h)

p?[(¥(xsh) - ¥(x)) ] = 2 y(n)

The function m(h) is the linear drift. To show that it is linear in h, we start from the obvious

relationship:

Y(x+h" + h') = Y(x) = [¥(x+h" + h') - ¥(x+h')] + [Y(x+h') - ¥(x)]

and pass on to 'expectations, whence : m(h'+h") = m(h') + m(h"). Anyway, we can assume that this 1t-

near drift m(h) is equal to zero, even if we have to replace Y(x) by ¥(x) - m(x).
The function y(k)
(2-2) v(h) = § D2[(¥(x+h) - ¥(x))?]

is called the gemi-variogram, or intrinsic function. A R.F. satisfying the intrinsic hypothesis (or

I.R.P.) constitutes what is called an intrinsic scheme, characterized by its semi-variogram.

Remark. If Y(x) obeys the stationary hypothesis of second order, it also obeys the intrinsic hypo~

thesis, and we have in that case
(2-3) v(h) = K(o) - E(h)

As |E(h)| s K(o), we have y(h) = 2 K(o) so that the semi-variogram of a stationary R.F. of second
order i3 necessarily bounded. There are intrinsic schemes in general use, the semi-variograms of
which are not bounded, and which consequently cannot satiasfy the stationary hypothesis of secord
order (i.e. they have an infinite a priori variance). Ex. : De Wijs scheme (y(h) = 3 a log |h|),
linear scheme (y(h) = A |n|).. l
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22 PRdPERI'IES OF THE COVARTANCE AND OF THE SEMI-VARIOGRAM.

A covariance or a semi-variogram are symmetric functions :
K(h) = E(-h) , y(h) = y(-h)
In addition, a covariance verifies Schwarz's inequality :
|&(h)| = K(o)

In the case of a variogram , we find only y(h) = Oand y(0o) = 0. However, it can be shown that the
increase of a variogram at infinity is necessarily less rapid than that of |h|2, that is :

1 _
2. a2 T "0

These conditions are necessary, but even if a function K or y satisfies them, it does not follow
that there is a stationary or intrinsic R.P. having this particular covariance or that particular
semi-variogram. In fact, it is so if and only if K belongs to the class of "positive-definite"
functions, and -y to that of the "conditional positive-definite" functions. For example, the func-

A for A 2 2. These condi-

tions log r and rl with A <« 2 can be used as a semi-variogram but nor r
tions express, amongst others, that the formulae which will be established about extension variances
or estimation variances necessarily lead to positive values (which would not always be the case,

had we taken any ordinary function as a semi-variogram).

These conditions deserve looking into more carefully, even if only to define more precisely the
class of linear combinations we can use when there i1s no finite a priori variance.

2=2=1 Authorized linear comhinations.

Consider first the stationary case of order two ; take m = 0, and take N points

X sTppeesXy of ® and N coefficients A1,k2,...kN. The expression

(2-4) Y= ? Ay Y(xy)
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is a random variable (being a finite linear combination of rev.). As a covariance function K(h)

does exist by hypothesis, Y has a finite variance, and an elementary calculation gives :

5 .
D(Y) = T Ny A K(x,-x,)
(2-5) (Y) i M Mg xi xj

The obvious condition D2(Y) > 0 expresses the requirement that any covariance function is positive-
definite (paragraph 1-3). Conversely, if K(h) is a positive-definite type function, the possibility
of constructing a R.F. with precisely this covariance K(h) jcan bte demonstrated. Formula (2-5) ap~
pears in slightly different forms, in all parts of the theory. For the moment, note that in the

gationary case of order two, any finite linear combination has a finite variance, and hence using

them is always legitimate.

This is not the case when only a variogram exists, without a covariance. In this case, only

linear combinations such as (2-4) obeying the condition
(2-6) Z Az =0
i

have a finite variance. Thus, in the case of an I.R.F. without a covariance, only linear combina-

tions with the sum of coefficients equal to zero can be used. This plays a fundamental part in all

the intrinsic theory. It can be shown that this condition (2-6) is sufficient. If it is verified,

it can be written as :
T Ay Y(xi) =T Ay [Y(xi) - ¥(o)]
i i
Now the(non-stationary)R.F. defined by :
Z(x) = Y(x) - Y(o)
has a covariance function C(x,y) = E[{Z(x) Z(y)], as 2(x), as an increment of the I.R.P.Y(x), has a

finite variance. Let us determine this (non-stationary) covariance funetion C(x,y) : it will be

useful later on. The simplest way to do this is to start from the definition of the variogram :

2 y(=x,y) = E[(Yx--‘lo-‘fy*-Yo)]2 =2 y(x) + 2 y(y) - 2 ¢(x,y)
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Whence 3

(=7 . c(x,y) = yix) + v(y) - v(x,¥)
When (2-6) is true, the linear combination T A Yxi =X xi(Yxi—Yo) has the finite variance :

D2(Y)

S A As C(x,,x.)
i’jij 175

that is, talking into account (2-7)

d%(Y) = -iE Moy v(xi-xj)_ + ? Ay ? Ay vrizy) o+ Z:’J "1? Ay v(xy)
whence, from (2-6) :

D2(Y) == Ay A (=X.)
(2-8) (1) 1?3_ 1 Ay v(xygmxy

This is another result which will be very useful in what follows : as soon as the sum of coefficients
of a linear combination is equal to 0, we can compute its variance from formula (2-5), as if a cova~
riance K(h) existed, on condition that K is replaced by =-y.This device is of very general applica-

tion and often has a great simplifying effect on calculations.

Conversely, if there is no a priori finite variance, a linear combination with a finite varian-
ce is necesearily a linear combination of increments of the R.F. Y(x) for only these increments have
a finite a priori variance. Consequently, this combination obeys {2-6), which is thus necessar'y and
sufficient, as previously stated.

Thus, the condition that -y must be conditionnally positive-definite can be introduced very na~
turally. By definition, a function g(h) will be said to be conditionnal]_.y' _positive-definite if for
any integer N, any system of N points Xy3Xgyee Xy in ﬂl.i, and any system of coefficients h1,h2,h3-..

Ay obeying the condition 2 Ay.= 0, we have :

Z Ay Ay alxy-xy) 20
1,3
As the allowed linear combinationa have a positive or zero variance, relationship (_2-8) indeed

means that -y is conditionnally positive-definite. Copversely, if -y is cohditionna.lly positive~
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definite, it can be shown that ft is possible to construct an I.R.F. with y as a semi-variogram.
This is thus a necessary and sufficient condition.

2-2-2 Continuity q.m. and other properties.

We shall next consider further properties of a covariance or of a covariogram.

Ag in the transitive methods, our attention will be concentrated on the behaviour near the origin.

a/ It will be seen that the variogram gives a precise significance to the tradi-
tional notion of the zone of influence of a sample : its more or lesas rapid increase in fact re-
flects the greater or lesser rate of deterioration of the influence of the sample over the more

and more distant parts of the ore-body.

b/ Anisotropies become apparent with the different behaviour of the variogram in
different directions in space. In the absence of any anisotropy, y(h) = y(r) only depends on the
modulus r of h and not on its direction. It is said that there is a geometric anisotropy when a

simple linear transformation of the coordinates is sufficient to restore isotropy.

There are more complex kinds of anisotropy. For example, in a three-dimensiqna.l space, it may
happen that Y(x) only depends on the third coordinate x5 and consequently is constant in the planes
parallel to the two other axes of coordinates. The semi-variogram thus only depends on the third
component of h, y(h) = y(h_5). Again, more often, Y(x) will not be actually constant in the hori-
zontal plane, but will vary there less rapidly or more regularly than in the vertical direction.

In this case, we will take as a semi-variogram y(h) = Yo(h1,h2,h3) + -(1(213) (zonal anisotropy).

¢/ Range. In the stationary case of secomd order, the range a(a) in the direction

a is the value of the distance beyond which, in that direction, Y(x) and Y(x+h) are without corre-

v(n)

lation (or have a negligible one): K(h) = 0 (or ¢ 0) for |h| 2 a(a).

e e e i e e e e i

siil ¢ From ¢/, K(h) = 0 is equivalent to w(h) = K{(o) = y(w). The range is

also the distance beyond which the semi-variogram has reached its

limiting value y(wo) or sill. Hence an intrinsic R.F. with an un-

bounded variogram cannot have a finite range.

Range a
d/ Behaviour near the origin. The continuity and the regularity in

the space of the R.F. Y(x) are expressed by the behaviour of the y(h) near the origin. In order of
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decreasing regularity, there are roughly four types to be found :

Parabolic trend : y(h) is twice differentiable at h = 0. ¥(x) is
then itself differentiable (mean square convergence) and thus

h  presents a high degree of regularity.

Linear behaviour (obligue tangent at the origin) : y(h) is conti-
nuous at h = 0 but non-differentiable. Y(x) is continuous (in the
mean square) but not differentiable and thus less regular.

\/ ] Bugget effect : y(h) does not approach O when h approaches 0 (dis-
) continuity at the origi.n). Y(x) is not even continuous in the mean

square, and is thus highly irregular:

Limiting case - completely random : Y(x) and Y(x') are independent

for any two distinct points, regardless of how close they are
(white noise of the physicists, or pu.re'nugget effect).

. Irregular part : In the isotropic case (y(h) = y(r)) and without a nugget effect, we shall
characterize the behaviour of y(h) by a limited expansion such as :

Y(r)=Eamr2n+2ckrk+2cznrmlogr

In the same way as with the transitive covariograms, we will distinguish a regular part (terms
of even integer degree) and an irregular part (terms in r}‘ with A different from an even integer,
and also logarithmic terms such as z-‘?n log r)- In the absence of an irregular part, the R.F. would
be indefinitely differentiable, and thus perfectly regular. Hence it is only the irregular part
which represents the degree of irregularity of the ramdom function, and in the irregular part it
is the term of lowest degree which plays the principal r6le : we can define the degree of irregula-
rity of the R.F. as the degree A of the principal irregular term. We shall now consider some com-
plementary mathematical indications (but without going into details, as these are clagsical results).

e/ Continuity and differentiation in the mean square. The R.F. Y(x) is said to be

continuous in the mean square (continuous gq.m.) if we have :

E([Y(xm) - Y(x)]z) -0 when |h| - ©
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This condition is satisfied (by definition) if and only if y(h) is continuous at h = 0, i.e. if

there is no mugget effect-

In a one~dimensional space, we define the R.F. Y'(x) ag the derivative in the mean square sense
(derivative q.m.) of the R.P. Y(x) if

E ([M‘lﬁ'—uﬁ - Y'(x)]2> -0 when |n| -0

There are similar definitions for n-dimensional spaces (n # 1).

It can be shown that an intrinsic R.P. Y(x) has a derivative q.m. Y'(x) if and only if y(h)
is twice differentiable at h = O. The second derivative y"(h) then exists for any h, and Y'(x) is
stationary of second order (even if Y(x) is only intrinsic) and has as a covariance the function
~y"(h). In the same way, Y(x) is differentiable n times q.m. if and only if the derivative y(m)

exists at h = 0 (and then it exists for any h).

If A is the degree of the principal irregular term of y(h), then Y(x) has a derivative q.m.

2n

of order n if and only if A > 2n (if this irregular term is r“ log r, then Y(x) is (n-1) times

differentiable q.m. (but not n times).

2-3 REGULARIZATION OF AN INTRINSIC R.P.

In order to simplify this account, we will give the argument in the case of a stationary
R.P. of second order which has a covariance function K(h), but all the results obtained with the
aid of the intrinsic function y(h) = K(o) - K(h) still remain valid in the case of an intrinsic R.F.
(and hence even if y(h) is not bounded, and if consequently the covariance K(h) does not exist) :
this follows simply from tie calculation mechanism seen in paragraph 2-2-1. (The following results

are still classical ones)-

2-3-1__Stochastic Integral. I =J ¥(x) p(x) dx
v

The integral I is defined as the 1limit in the mean square (l.q.m.) (if it does
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exist) of the discrete sums :

n
I, = ’E' Y(xi) p(xy) & x4

(the A x, are small separate elements of volume, the reunion of which is v, and x; is a point be-

longing to A xi). The stochagtic integral I is thus a random variable, like the In .

It can be demonstrated that this R.V. exists if and only if the integral

(2-9) ' p3(1) =‘§p(x) dx [K(x-Y)P(Y) dy
v v

is finite, and D2(I) is then the (finite) variance of this r.v. (2-9) is easily shown again by the
following calculation (not rigourous) :

12 =f¥(x) p(x) dx Y(y) p(y) dy
v v

E(1%) =jp(x) ax IE[Y(x) I(y)] p(y) dy
v

v

=fp(x) ax |K(x-y) p(y) dy
v v '

(this calculation is not rigourous as it is not quite evident at the start whether the exchange of
the symbols J’and E i3 justified : in fact, it can be shown that this exchange is legitimate).

2=3=2 Stochastic Convolution.

The convolution Y # £ of the R.F. Y(x) by an ordinary function ¥(x) is the sto-
chastic integral (if it does exist)

'jy(x-x-) £(x') dx'

In this way the regularization Yp = Y * D of the R.F. Y(x) by the weighting function p(x) can be
defined. It is the'"weighted moving average® :

Yp(x) = JY(x+x’) p(x') dx'
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Caution : the regularization Yp(x) 'is still a random function (though more regular than Y(x), it
is still random) : it is not enough to smooth or regularize a R.FP. by a moving average process to

make the random character of this function disappear as if by magic.

The variance of the regularization ‘Ip is given by formula (2-9) above, and Yp exists in the

gense of q.m. integration if and only if DZ(I) < o . Let us compute the covariance :

B{Y(x,)) ¥(x +h)] of ¥(x ) and Y(x +h)

We get :

Yp(xo) Yp(xo+h) =J‘J‘p(x') p(x") Y(x +x') Y(x +h+x") dx' ax"

Passing on to expectations, by exchanging E and J, we get :

E[Yp(xo) Yp(xo+h)]=jjl((h+x"-x') p(x') p(x") dx' 4x"

This covariance does not depend on x,, but only on h. Hence the regularization Yp is stationary of

second order and has the covariance :

(2-10) Kp(h) =Jp(X) dx JK(h'fx-y) p(y) dy

This formula is a generalization of (2-9). To present it in a more synthetic form, let us make the

change of variables x = y+ z. We get :
K(n) = fK(x+z) dzfp(yw) p(y) dy

Let P be the transitive covariogram (P = p * p) of the weighting function p. By definition we have
P(z) = jp(y+z) p(y) d(y), hence :

K (n) =fK(h+z) P(z) dz
i.e., in the form of a convolution (for P = 5)

(2-11) K =K#*#P=K#*D
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We thus obtain the covariance Kp of the regularization Yp by regularizing the covariance K(h) of
Y by the transitive cova;riogram of the weighting function. Compare this result with that obtained

for the transitive methods.

The gemi-variogram Y, of the regularization Yp is Kp(o) - Kp(h). By replacing K(h) by K(0) -
y(h) in (2-9) and (2-10), we notice that K(0) is eliminated and we get :

(2=12) : Yp(h) = Jy(h#-z) P(z) dz —jy(z) P(z) dz
which can also be written as :

= * -
Yp =Y P-A

with a constant .A determined by the condition yp(o) = 0. These relations remain valid for any in-

trinsic R.P. (even if the covariance does not exist) (see note above).

2-3-3 Grading.

Grading is a particular case of regularization. In the transitive methods we could
integrate the Re. V. from =« to +w with respect to one of the coordinates, x5 for example, as this
Be., V. vanished outside a bounded field. In this case, we can only integrate over a finite length
¢ . Hence, we shall call grading over a constant thiclmess £ the operation which allows us to pass

from the R.F. Y3(x1,xé,x3) in three dimensions to the R.F. Y2(x1,x2) defined in two dimensions,
i.e. @ :
4
5“P§)=%IY“vﬁﬁﬂdﬁ
()

If Y3(x) is a punctual assay in a stratiform formation of thiclmess e, ‘Iz(x1,12) is the mean grade
of the borehole at the geographical point (x,x,) .

It is not very difficult to establish the formula giving the variogram Vz(ht’hz) of the R.F.
Ya(x,‘,xa) - which is obviously intrinsic like Ys(x) - as a function of the variogram ys of Y3
(this can be done by the reader as an exercise). In the case when Y3 = 73(1') is an isotropic func-

tidn, the following algorithm (straight grading over constant thiclkness in the isotropic case) is
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obtained : e

4
Yn_1(r) = fz J (Z-x) Yn ( r2+x2)dx - ?2 j (E-x) Yn(x) dx
Q

[+}

which is in fact a simple particular case of (2-12).

As in the transitive methods, there is here also a term by term correspondence rule between

the irregular parts of v,(r) and y,_,(r). These rules, somewhat less simple than in the transitive

case, are written as :

rr*w#%%ﬁ-}k—
(2-13) J r&2 log T = A,y r22+1 + A;n rzz;2 log r
' kr2n+1 = Aone EE%:E log r + A;n+2 EE%;Z
The coefficients Ak’ A2n’ A2n+1 a;e the same as those which appear in the transiti%e methods (formu=-

lae (1-10) to (1-13)) and this is the first demonstration of the close affinity between the two as-

pects (transitive and probabilistic) of the theory. However, notice that the rules (2-13) are less

1+A
simple than (1-10). Instead of ri*r , we get ELF— , but the coefficient % is due to obvious dimen-
sional reasons (in the intrinsic theory, we deal with mean grades rather than with accumulations as
1+
in the transitive case). But above all, besides the principal term A?t r7_ - which the exact equi-
v oR2t

valent of the transitive term - there is a complementary term Ax rez y whose coefficient A; needs

not be given explicitly (cf. [4]). This complementary term comes from the finite character (grading
under finite thiclmess ) of the integration domain or, better, from the presence of a term in

x v( Vr2+x2) under the integration symbol of the straight grading algorithm- However, this comple-
mentary term is in r2+k, and thus of higher order than the principal one, and the principal part

of yn_1(r) near r = 0 is thus the same as would be given by the transitive rule.

Note also that the domain of validity of the expansion of Yn_1(r) obtained by rule (2-13) is

necessarily within the sphere of radius £ . At large distances, it follows quite simply, from the

straight grading algorithm that

a
Tp1(2) # v, () - iz .J(Z-X) (%) (r >>¢)

(]

so that the variogram deduced by grading is the same as the initial one, apart from a constant.
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2-4 EXTENSTON AND ESTIMATION VARIANCES
2-4=-1 Extension variancev.

First of all we shall define the fundamental idea of extension variance. let Y(x)
ve a R.P. which we will for the moment suppose to be stationary of order 2, and let E(h) bve its co-
variance. Iet us call Z(v) and Z(v') the"average grades” of the two domains v and v' in an n-dimen-
sional space, i.e. the stochastic integrals : ' ‘

(v) =% Y(x) dax ; 3(¥') = %._J’ ¥(x) dx

v v'

Formula (2=9) shows that, if v and v' are bounded, 2(v) and Z(v') have finite variances. The first

one, for instance, can be expressed as @

?v) =1 de jx(x—y) dy
v2 v

v
In the same way, we can calculate the covariance g(v,v') of Z(v) and Z(v'). From

2(v) %(v') = ;v f‘f(x) ‘deY(y) ay

v

we deduce by passing on to expectations that

olv,7) = = Jax fE[Y(x) 1) lay = Fr jdx _fx(x-y) ay
v v! v !

We will call the extension variance of v to v' (or of v' to v) the variance of the error Z(v') -
Z(v) that we make by attributing to v' the average grade Z(v) of v. This extension variance 0123 is
equal to :

012; = o2(v) + a?(v') - 2 a(v,v")

Taking into account the values calculated above, we get :
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o% = -12 J‘dx JK(x-y) dy + —13 ‘J‘ dx J K(x-y) dy.
v v!
v v\ v

v L] 1]
- w-?-.-fdx i K(x-y) dy
v 1]

Replacing K(h) by EK(o) - y(h), we see that the constant K(o) disappeérs from the expression for

a% , and we get the following fundamental formula

(2-14) c% = w—?r jdx jy(x—y) dy - i-z de Jy(x—y) dy - = j ax j: v(x=y) ay
v ' v v '

v'2 vt

It can be shown that (2-14) remains valid for any intrinsic R.P., even if the covariance K(h) does

not exist (as a consequence of paragraph 2-2-1).

2~4-2 Estimation variance.

Suppose now that instead of knowing the "average grade" 2Z(v') of Y(x) in a volume

v', we know the average grade

N |
' == 3 Y(xi)

of N samples drawn at the N points x;- 2' is a random variable, the characteristics of which are
easily deduced from K(h) or y(h). We shall call the eatimation variance aﬁ (of v by the N samples

drewn at the N points x,) the variance of the difference [2(v) - 2'] . To get the expression for
cﬁ » We have, at each step of the argument which led us to (2-14), to replace the integrals over
v' by discrete sums on the N points x. Thus we get the second fundamental formula :

(2-15) cﬁ = % ? ‘[‘1(11-:) ax - 1 de J.y(x-y) dy - -1-2 Zz y(xi-xj)
i

v v R

This formula, in which exact and approximate expressions for the same integrals alternate, has a
remarkable structure, analogous, although more complex, to that of formula (1-14) in the transiti-

ve methods. Notice, in particular, that the estimation variance decreases as :

- the sample grid is more closely spaced and more representative of the geometry of the volu-

me v we wish to estimate,
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- the function y(h) is more regular (because the R.F: Y(x) itself is more regular in its va-

riations in space).

In practice however, if N is great formula (2-15) leads to tiring calculations. We shall give
later on simpler approximation formulae which will also allow a methodologically instructive com=-

parison with the similar formulae of the transitive methods.

Remark - There is no concef)tual difference between the notions of extension variances and estima~
tion variances. Formula (2-15) is a particular case of (2-14), v' being replaced by the union of

the N points x,. Practice has reserved the term of extension variance to the extension of a single
sample in its "influence zone", and that of estimation variance to fhe extension of a greater num—

ber of samples in the whole ore-body, or in a large panel.

2-4-3 Variance of v within V.

The notion of variance cz(v/V) of a sample v within a field V seexﬁs at first sight
experimentally evident. Nevertheless it has a precise sense only when the volume V appears as the
reunion V = J vy of separate volumes Vi each equal to v, and deduced from each other by transla-
‘tion. When n samples vy have been taken in any volume V' and when their assays Yi are known, what

is numerically computed

-2

- Y)

52=%-213 (1,

represents an estimation of the variance of v within V = | vy (reunion of the n volumes vy of the
actusl samples) ard not in the domain V' as we could be inclined to believe. These experimental
results lead to the two following definitions ¢

a/ Pirst, examine the case when the samples vy are reduced to points (and when of course the
relationship V = | vy is true as V is clearly the reunion of the punctual sets it contains) ; the
variance ca(O/V) of the punctual samples within V is then defined. Let

V) = § Jr(x) ax
v
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be the average grade of V,For a given realization 'Y(x), Z(V) is an ordinary integral, and the ex~

verimental variance of the punctual sample assays is

(2-16) | a2(0/%) = ¢ j[Y(x) - 2% ax
v

This relationship can also be interpreted by saying that sz(o/v) is the conditional variance (for
8 _given realization) of the random variable Y(x) obtained when setting a point x at random within

V with a uniform probability density. We will call variance cz(v(!) of ¥ within V the variance of

the random variable obtained when deconditioning the random variable Y(x) with respect to the reali-
zation, that is to say the variance of the randor variable Y = Y(x) where this time ¥(x) is the R.F.
itself (and no longer a realization of it), and x any point of V. Por a given realization, the con-

ditional expectation of Y(x) is evidently Z(V). We get thus

a®(o/v) = E[s¥(0/M)] = vlemx) - 2(N]2 ax
v

But E{Y(x) - Z(V)]2 is also the extension variance to V of the punctual sample set at x. Thus, the

variance 02(042) is the mean value when x € V of the extension variance to V of the punctual sample

set at x. The expression of this variance is then easily deduced from (2-14) :

(2-17) a®(0/v) = i, jdx Jv(x—y) dy
iy A

It is the mean value of y(x-y) when x and y sweep V separately.

b/ When V is the reunion of N separate volumes Vi» with assays Zi, the experimental variance
2 ;X 2
2v) = ¢ T [2-2(M)]
i=1

is the variarnce of the finite population composed of the N values Zi {(which are numbers, for a gi-
ven realization) or, otherwise, the variance of the random variable Zi obtained when drawing one of
the N indices i at random. Deconditioning with respect to the realization, we obtain a random va-
riable Zi’ where the index is drawn at randcm as above, and where zi is now a stochastic integral
{(and no longer a numerical one)- The variance of this deconditicned variable is (by definition) the

variance oz(v/V) of v within V. As previously, we find that it is equal to the mean value with res-

pect to i
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a(0/1) = § T Elz-aMI]?

of the extension variance of vy to V. Pormula (2-14) leads easily to :

(2-18) (v /v) = %2 fdx jv(x-y) dy - i-z de JY(X-Y) dy
. v v v v

In particular
(2-19) 2w /N) = 62(0/7) =~ d2(0/%)

¢/ In the general case when Vv and V are any volumes at all, not necegsarily geometrically com-

patible, we define the variance by the same formula (2-19) : this quantity is thus only a simple
artifice of calculation. It can even take negative values : in particular, we always have az(v/V) =
= - qz(V/v).

a/ Additivity relationship . ILet v, V and V' be three volumes with for instance v V< V' .
Prom {2-19) we get

o2(v/V) = a?(0V) = oB(0/v)
o2(v/v1) = o%(0/7") - oP(0/v)-
and}by difference
G2w/) = (v N) = aP(0/7") = GP(0/V) = G2(VA)
or

(2-20) a2(v/V1) = GA(v/V) + (V')

The variance of the sample v within the field V' is equal to the sum of the variances of v within
the panel V and of the panel V in the field V'.

e/ Covariance of v and v' within V. We can define in an analogous manner the covariance

a(v, v'/¥) of two samples v and v' (the distance and mutual disposition of which remain fixed)
within the field V. We get :
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o(v,v'/V) = %2 de JY»(x-y) dy - v-%r de jv(x—y) ay
v v v v!

£/ It is often convenient to express the estimation variance (2-15) or the extension variance
(2-14) by means of the variances and covariances of the samples within an arbitrary field V. For
example we get identically

2 . 2 201 '
og = a°(v/V) + o*(v'/V) = 2 a(v,v'/V)
and as can be seen by substituting the expressions for the variances and covariances within V : the
term 1 ‘J _£ disappears and the three remaining terms give the second member of (2-14). Hence we
v .

2
v
get a perhaps more intuitive expression of the variance.

2-4-4 Application : Random or stratified random networks.

The case of the regular network, which is by far the most difficult, will be dealt
with later on and we will analyze first the case of two usual types of random networks.

a/ Purely random network. To estimate the grade 2(v) of a volume V, we have the values Y(x1>

of the R.F. at N points . located "anywhere" within V. We will assume that each Xy has been placed
at random within V with a uniform probability density, and independently from the other samples.

We can get the estimation variance a§ by integrating (2-15) over V with respect to each x;. This is
an easy calculation, but it is even simpler to notice that the partial errors Y(xi) - Z(V) are in-
dependent of each other for a given realization and have the same variance s2(O/V) : the resulting

error, which is § T (¥(x;) - 2(V)]? , has thus the variance :
a§ = ﬁ se(o/v)

By deconditioning with respect to the realization, we find that the estimation variance in the case
of a purely random network, is equal to the variance of a sample within the field V divided by the

number of samples N, that is :

c§ = % cz(O/V)
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b/ Stratified random nétwork. The volume V to be estimated is in this case divided into N
equal and separate zones of influence v, . Within each v; 8 sampie is drawn at a point Xy chosen
at random within the influence zone v, with a uniform probability density, and independently of the
other samples.We cén calculate crg by integrating (2-15) with respect to x; within vy for each of the
v, 's, but 1t is easier to notice that the total error is '

§ Tl - 26vp)

and that each partial error [Y(xi) - Z(vi)] is independent of the others and has a variance aa(o/v).
Reasoning as above, first on a given realization and then by deconditioning, it follows that :

o = § o0/

In the case of a stratified random network, the estimation variance is thus equal to the variance
of a sample within its influence zone, divided by the number N of samples.

Remark - It is obvious that the stratified random network always gives better results that the pu-
rely random network. Indeed from (2-20) we get :

3 [62(0/M) - a®(0/)] = § P /M) 2 0

2=5 APPROXTMATION METHODS IN ONE DIMENSION. N

Since the general formula (2-15) is rather cumbersome to manipulate numerically once the
number N of samples becomes great, it will be better if we derive some approximation methods which
will simplify the calculation of estimation variances. Moreover, we will see when we do this that
the close relationship with the corresponding formulae obtained for the transitive methods will re-
appear, relationship whose methodological importance was underlined in the section on grading. We ‘
shall consider initially a one-dimensional space.

2=5-1_The correspondence principle.

Let L = Na be a segment composed of n contiguous segments of the same length a,
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at each centre x, of which a punctual sample has been taken. In order to estimate the value

x5
N NP 2w = frw ax
L
a
we construct the estimator : Z*(L) = % z Y(xi)
i

The corresponding estimation variance is given by the general formula (2-15). Performing computations

similar to those already presented in the transitive methods, we come to a term by term correspond-

ence principle between the irregular part of the gemi-variogram y(h) and the expansion of the esti-
Ence princip.g ax ml-Variogram Llne esti

mation variance near a = 0. This principle may be expressed by the following rules :

A ak ah
B|* ~-T, § + T S5 (A > 0 and not an even integer)

L}
A A g

2n

(
(
{
(2-21) §
{ I81% 205 |n| - - 1, &

When A is an even integer, Tx is equal to O (but not T;). The coefficients TX have the game value

as those appearing in the rule ({-18) for transitive methods.

As in the case of grading, a supplementary term of higher order (in 1/N2) appears, which here

also is linked with the finite character of the operations in the intrinsic case (mean value of a

finite number N of samples, and not, as in the transitive case, an integral theoretically ranging

from - « to + ). In practice, this supplementary term is negligible when N is not very small.

The rules (2-21) allow us to obtain an approximate value of the estimation variance for very
small spacings of a. This expression is valid only provided that a is inferior to the limit T,
beyond which the expansion of y(h) itself can no longer be used. For any value of a greater than

r, » We have to introduce a second principle of approximation :

2-5-2 Principle of composition of elementary extension variances.

a/ Auxiliary intrinsic functions. In addition to y(h), the following functions are

constantly used in practice :
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x(h) = % _Jhy(x) dx

[o]

. b
F(h) = fa L x X(x) dx = §2 Jh(h-x) v(x) dx

0

P(h) is the mean value of y(h') when the two extremities of h' sweep the segment (0,h). According-
1y, the variunce of the segment h within the segment L is '

o?(n/1) = F(L) - P(h)

Likewise, the covariances are calculated from X(h). The covariance within L of the segment h with
one of its (oint) extremities is

a(0,h/L) = P(L) - X(h)

b/ Elementary extension variance. This is the extension variance to the segment h of the sam-
ple set at the center of this segment. It is given by : ‘

(2-22) | a% = 2 X (1-2’-) - Ph)

Equation (2-22) is deduced from (2-15) and the two relations established in &/ .

¢/ Elementary extension \fariancea corbination principle. Consider the problem of estimating
the gﬁ!ade of the segment L = na divided into n zones of influence of length a, at the centre of

each of which a sample has been talen. lLet Yi be the grade of the
sample i, zi that of its zone of in.flﬁence, and Z ='-1]1-E Zi that of

- ——— L. The total error is the mean

¥ ? Ty - 2y)

of the partial errors Yi - zi . The apprcximation principle used is to assume that these partial
errors are independent of each other (this principle is verified to a very reasonable degree of
approximation for the usual types of y(h)). Since the variance of Y; ~ 2, is exactly the same as
the elementary extension variance calculated in (2-22), it follows that
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(2-23) 2=1o2=1(2x % - ra)]

The estimation variance is thus obtained by dividing the elementary extension variance of each sam-

ple within its zone of influence by the number of samples n.

d/ The case of a closed arrangement. Starting from n+1 samples taken along a regular grid,

the segment L = na made up of the portion between the first and last sample is to be estimated. It
can be shown that this closed arrangement is equivalent to that analysed

in ¢), and the estimation variance is the same as that given in (2-23)

(provided that n is greater than 1). Hence the closed arrangement of

n+1 samples is equivalent to the centralized arrangement of n samples.
Remark - For n = 1, the closed arrangement of two samples leads to the estimation variance

v 0}2:1 = 2 X(n) - (1) - § v(n)

which differs fror the elementary extension variance (2-23). We are not Justified in dividing
cf: by n, as the partial errors arising in the estimation of the two consecutive closed segments
are not at all independent (these two figures, in particular, have a common central

sample),

e/ Comparison of the two approximation principles. When a is small, a correspondence principle

similar to (2-21) can be deduced from (2-23), whose coefficients are not numerically very different
from the T, (at least if A is not too great) so that the rules (2-21) and (2-23) are practically
equivalent. For simplicity, the rule (2-23) is always used in practice, as it remains valid in al-

most all cases, i.e. for large and small sample intervals.

2-6__ APPROXIMATION METHOD IN B-.

The case of a two~dimensional space will now be studied in some detail. It may be gene-
ralized, by analogy, without difficulty. The approximation principle used will be that of the prin-

ciple of composition of the line and slice terms studied in detdil in peragraph 1-4-4. An equiva-
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lent justification to that given for tke transitive methods could be presented, but the calcula-

tions are far more complicated.

We shall suppose that the semi-varlogram is isotropic (i.e. it only depends on r). In the case

of a geometric anisotropy, it is easy to reduce the situation to this case.

a/ The auxiliary functions. As in the case above, it is convenient to introduce the following

functions :
yb(h) : mean of y(x-y) when x and y describe the two parallel sides of
B length b of the rectangle b x h (except for a constant, yb(h) can be de-
5 rived from y(h) by grading of order 1).

xb(h) : mean of y(x~y), X describing one of the sides b and y the rectangle itself. Then
Z,(n) =% Tp(x) dx
()

F(b,h) : mean of y(x-y) when x and y sweer the rectangle. This function is symmetrical in b and h,

and proves to be

h h
P(b,h) = -2'2 J x Xb(x) dx = -2'2 J (h-x) Yb(x) dx
h o h o

Q(b,h) : mean of y(x-y) when x describes b and y describes h or, instead, x sweeps the rectangle

while y remains at one of its cormers.

b/ Extension of a median segment to its influence zone.

(2-24) . a% =2% (%) - F(n,b) - 1,(0)

¢/ Estimation of S by equidistant parallel drives.

Let b,‘,b ,...,bn be the lengths of the n drives, h being their equidistance. The surface

2
S to be estimated is similar to that of the reunion of the influence rectangles of the n drives.

Formula (2-24) gives the extension variance of bi to its rectangle of influence, og . I£ Y is the
. ) i
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grade of o, Z; that of its zone of influence, then it is asgsumed that the

(‘Yi-zi) are independent, and that the total error

h / v, (14-7,)
/ Zby

leads to a variance which is calculated by weighting the extension variances 012.: by the squares
i
of the bi . In this way, the estimation variance is
2 2
z by aEi

(2-25) og = m
i

NOTE : If the b values are equal, this leads simply to a% = % 9g, -
i

d/ Composition of a line term and a slice term.

In the preceding case c/, it very often ﬁappena that the real grades of the drives are not
known perfectly, but are only estimated from a regular grid of samples with a spacing of a (a < h).
Hence the errors which arise in estimating the lines with the samples, and S itself from the lines

(supposed to be known) are independent of each other. The estimation variance is then :
2_1 .2 i *
(2—26) GE = ﬁ [+ (a) + W

0‘2(8) is the extension variance (2-23) of a point sample qithin its segment of influence, and N is

the total number of samples. % 02(5) is the line term, the variance of the error made,in estima~

ting the lines by the samples.

The second term, given in (2-25) is the slice term, the variance of the error made in extend-
ing the grade of the lines to their slices of influence.

This composition principle (2-26) is valid provided that a is less than h. It is particular-

1y applicable to the case of a reconnaissance on a rectangular grid pattern a, h.
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e/ Case of a square grid. The extension variance of a borehole to its square of influence,
¢ o s s o at the centre of which it is located, ia :
L] L [ 4 L] °
. r-:_‘| . L] . (2_27) G% =2 Q(% ’ %) - P(afa)
e
L] L] L4 - L]

For a square grid, it can be shown that the errors made in estimating each square by the sample

set at 1ts centre are independent. Hence the estimation variance of N samples is
2_1.2
°" ° ¥ %€

wtth o2 given by (2-27).

£/ Graphs. Por each isotropic scheme, i.e. for each y(r),results are given in the form of
graphs :

1/ The function F(a,b) defined in s/ which enables the variance of a sample within the rect-
angle a, b to be calculated.

2/ The extension variance (2-24) of a median of length b to the rectangle b,h - and in par-
ticular the case where b = 0, in which case the elementary extension variance is obtained once again

3/ The extension variance (2-27) to the square a,a. These three graphs allow any estimation
variance to be calculated quiclkly.

Case of the three dimensions., Exactly as above but now with three kinds of terms :
- line term : extension of punctual samples to lines.
- (slice or) section term : extension of lines to sections.

- block terms : extension of sections to blocks.

The following graphs (in addition to those above) have to be drawn up @

]
- extension variance of a median plane b,c to its right-angled parallele-

piped of influence.

- extension of a borehole of length b to its right prism of influence

a, b, ¢c. This function P(a,b,c,) will be used to calculate the variance

of a sample within this parallelepiped.
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2=-7 THE NUGGET EFFECT.

2=7-1 Genegis of the nugget effect.

A semi-variogram of finite range characterizes what is called ‘a transition pheno-
menon ; beyond the distance a, independence is reached, and tne range gives the scale of the elemen—
tary structures of the corresponding regionalked phenomenon. There is often in addition the super-
imposition of several structures of quite different scales, intermeshed with each other. The expe-
rimental variogram then exhibits a succession of thresholds and levels, the analysis of which al-
lows the reconstitution of the hierarchy of these "gigogne structures". The notion of scale plays
a fundamental part here. At the scale of a dozen or a hundred meters, a transition phenomenon which
has, for instance, a range of the_order of centimeters is no longer apparent on the experimental
v(h), except as a discontinuity at the origin, or "nugget effect". In a general way, all nugget ef=-
fects are reflectians of a transition structure, the dimensions fo which are considerably exceeded
by the working scale : the details and the characteristics of this prior structure have long since
ceased to be perceptible, and the larger scale has bérely preserved a single parameter - the nugget

constant - which gives a kind of overall undifferentiated measure of the "intensity" of this hidden
atructure.

To analyze the genesis of a nugget effect, start at the point level and imagine that on a pri-
mary structure of dimension a, a macro-regionalization - that is a gecondary structure of much lar—
ger dimensions - is superimposed. If the primary structure only existed, the corresponding Re. V.

could be described as a realization of a R.P. having a covariance C(h) of range a, or a semi-vario-

gram :
Y1(h) = C - C(h)
of range a, and such that y1(w) = C -~ C(0). To take the macro-regionalization into account, we must

add a second component yz(h) which represents the secondary structure and which varies only very

slowly at the scale of the primary structure :
y(h) = C - C(h) + Yg(h)

This y(h) exhibits near the origin a zone of very rapid increase,

the dimension of which is of the same order as a. At the scale of

the macro-structure, this y(h) hence exhibits a nugget effect of

ll
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amplitude C.

2-7-2 Macroscopic influence of the nugget effect.

Let us examine the conseéuences of this nugget effect. At‘ f£irst, at the mecrosco-
pic level, the samples taken will no longer be points, but their volume will be quite large in re-
gard to a. We shall determine the semi-vé.riogra.m Yv(h) of these samples v (the only one experimental-
1y accessible). Yo is the sum of the very continuous component Yo (which has not been sensibly al-
tered by this regularization) and of what we obtain by applying formula (2-12) to the component
C - ¢(h) . Therefore this nugget component is :

yp(h) = 12 de JC(x-y) dy = 1.2 de JC(h+x—y) dy

_ 'y % : oy %
We shall now consider p We know that YP(°) = 0, but when h exceeds the dimensions of the volume
v then |h+x-y| 2 2 if x € v and ¥ € v, and C(h+x-y) = O. Thus only the first term remains as long
as h is not very small, and a discontinuity is observed experimentally at the origin, the value ag

of which (the nugget variance) is

2_1 -
op = 2 de JC(x y) dy

v v

On the other hand, by hypothesis the dimensions of v are large in respect to a, and

J-c(x-y) dy = C(h) dh
v

’ (integral extended through the whole space) except when x is at a distance less than a from the
boundary of v. But these points: occupy a negligible volume, and their influence, which is of the
order of a, can be disregarded. Thus there remains

ag = &2 jdx c(h) da = 31- Jc(n) dh
v

2

The nugget constant cp observed experimentally is in inverse ratio to the volume of samples:




5

and the coefficient A = C(h) dh, which is the integral of the covariance C(h) of the micro-struc-
tures, is the only indication of them remaining at the scale of the volumes v.

In the same way the nugget effect increases the variance of v within V, and the extension and
estimation variances. For cz(v/V) for instance, the contribution of the.nugget effect will bve

1, lax }c(z-y) ay - 1 jdx j-c(x-y) dy
v? '[r J:r v? v v

i.e., from the previous calculation :

» (3-4)

In the estimation variance of V by N samples of size v, a similar nugget component is found, equal

)

In every case, the variance due to the nugget effect is in inverse ratio to the volume of the sam-

to

s (-

<t~

ples. It is as if the Re. V. itself has two independent components, one very regular and correspond-
ing to the semi-variogram Yor the other completely random and discontinuous and taking into account

the nugget effect.

Representation of a nugget effect by a Dirac measure.

As it has been seen, the macroscopically observable effects of a nugget effect depend only on

the constant :

A= JC(h) dh

and not on the exact form of the micro-covariance C(h). At the macroscopic level, the nugget effect
can thus be symbolized by a Dirac measure A5 (mass A set at O) replacing the function G(h). The
exercises 16 to 20 on the transitive methods have made us familiar with this point of view. In the
probabilistic version, the punctual variogram y is replaced by y1(h) - A5 (with the sign - , as it
concerns a variogram). The usual formulae immediately produce again the nugget term A/v observed

at the macroscopic scale.
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Strictly speaking, to. justify the introduction of this Dirac measure into the expression of
the variogram or of the punctual covariance, it would be -necessary to refer to the random measures
theory (and no longer to a R.F.), which we do not do here (cf. [4]). In fact, the ‘Dirac measure is
thé covariance of a random measure corresponding, for example, to a Poissonian setting of points in

an n-dimensional space. Some details about this will be found in the exercises (9 and 10).

2-8 THE DE WIJSIAN SCHEME.

The De Wijsian scheme is defined by the intrinsic function (isotropic)
y(r) =3 alogr

The coefficient a is the absolute dispersion : it characterizés the dispersion of the pure state
phenomenon, i.e. independently of all the influence from the geometry of the field or of the sup-
port- It will be noticed that log r tends to - « when r - O, go that the function log r cannot,
strictly speaking, be the variogram of an I.R.F. In fact, this logarithmic variogram (log r is a
measure, and no longer a function) cha.ra_.cterizeé a random measure, and no longer a R.F. But ‘the re-
gularizations of this random measure are again R.F., and it can be shown that their variograms are
deduced from the logarithmic function according to the rules valid for R.F. In pzactice, this means

that the. De Wijsian scheme can be uged as if it were an I.R.PF., provided that we never reason at

the punctual level, but always on regularizations.

2-8-1 TLinear equivalents.

Put : .
Fv) = 12 Jd.z Jlog {x=y| dy
o5

v

{mean value of log |h| within the volume v.: it is a function which depends not only on the measure
of the volume v, but also on its form). We get from relation (2-18) :

(2-28) : o?(v/¥) = 3 o[F(V) - F(v)]
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In the same De Wijsian orebody, if two samples v and v' obey F(v) = F(v'), they will have the same
variance in any panel. They will be said to be equivalent. If we take as a set.v a atraight seg-
ment of length £ , we get

F (8) = og ¢ - 2

(this can be demonstrated by means of the auxiliary functions of 2-5-2, a/). We will call the linear
equivalent of a sample v the length of the segment ' equivalent to v, that is to say the length

defined by

log € - % = B(v)
In the same way, let L be the linear equivalent of the field V

Fv)

I

log L - %
By difference we have

F(V) - F(v) = log (L/O)

and (2-28) then gives :

(2-29) © Ay = 3 a log (L/8)

This formula gives a quick way of calculating the variance. It is often used in the opposite way,
to evaluate the absolute dispersion from the experimental variance of the samples within their

field : if v and V are geometrically similar, we have V/v = (I/e)3 , and (2-28) is reduced to the
De Wijs formula : oz(v/v) = a log (V/v)-

Approximate calculation of linear equivalents. - With excellent precision, the linear equi-

valent of the rectangle of sides a and b is a+b.

In the case of a right-angled parallelepiped (a,b,c), c referring to the smallest gide, we get
this time with a rather rough approximation, the linear equivalent as a+b + 0,7 c. For greater pre~

cision, refer to graph 1.
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Application : behaviour of the semi-variogram of the semples v when h is large with respect to

the dimensions of v {the De Wijaian scheme is never employed at the point level, for log r is infi-
nite at r = 0, but only through :;egula.rizations"). Let vy, be the semi-variogram of sampies v dis-
tant h from each other. 2 yv(h) is the extension variance of these two samples, and formula (2-14)
leads to

Yv(h) = 3% f-[‘log |b+x=y| dx dy - 3 a F(v)

v v
When h is greater than the dimensions of v, the first term is no% vez;y different from 3 a log r.
The second term is 3 a(log £ - 3/2), € bveing the linear equivalent of v, Then for h great enough

in regard to v, we get :

= r a
(2-30) 1,(r) =3 alogz+93

™

This formula is very importent in practical applications.

2-8-2 The two dimensional De Wijsian scheme.

In the preceding application, we can take v as a segment of length Emcving in a
direction parallel to itself. After (2-30), we get :

UL AL

I'A Ye(h) =3alog§+9-2‘-’- when h >> ¢

On the contrary, when h is small, the grading rule log r - =% r/¢ gives

= a
(2=31) ya(h) =3ax Z

From the exact expression of yz(h) (deduced from log r by grading) the extension variance 2 to its
rectangle of 1nﬂuepce ' ,h is computed : graph 2. When h 1s small compared with € (in practice,
it is enough that h s £ ), we can use (2-31) to calculate this extension variance directly, which
leads to :

1 = At the point level, the De Wijsian scheme 1s no longer a function but a random distribution.
But the regularizations of this scheme are again R.F'as.
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2_% h
(2-32) 9 =3 2

€

- Application : Stratiform orebody developed by parallel drives.

::—_—__:.11 a/ Let us first of all assume that the real grades of the drives are
| I .
r— | known and calculate the slice-term. 1f h is the equidistance of the

levels, the extension variance cré of the level of length Zi to its
o

influence slice can be read on graph 2. The slice term is then :

T
|
z ejz. 0123
2 i
oo =
BTz g)?

If each one of the levels has a length é’i greater than h, c% is given by (2-32) and, putting L =
1
=3 ?i (total developed length), we get

Telkl
o2 =q3% S 9
E- %72 2 *271

Consequence : an orebody four times bigger than a.nothér one, other things being equal, needs less

than half the valuation cost per ton of ore for the same precision.

b/ If the mean values of the levels are estimated by means of channel samples regularly spa~
ced at an interval a, a line term has to be added. When evaluating it, it is no longer possible to
neglect the thiclkmess p of the formation (p is small, by hypothesis, with regard to h or to the le~
vel lengths [i , but not with respect to a).Again, graph 2 gives the extension variance o%(a) of
a channel of length p to ita rectangle of influence a,p. The line term is then :

! |
N ) ! 1 4%(a) = 2 6%(a)
] i .

C—.
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Note : In most of statiform or lode orebodies, the third dimension, that of thicimess, is not equi-

valent to the two others. There is an anisotropy. The length p which is to be assigned to the chan-
nel can thus be different from the real one. This equivalent thiékness p is determined by noticing,
from (2-30), that the experimental semi-variogram of the channels has the value

y(h) = 3 « [log (%) + %] when h > p

It is the value so determined which is to be used in the calculation of az(a).

A-thin seam proved by boreholes on a square grid.- Let p be the equivalent thickmess of the

formation, defined as in the preceding not_e. We have to calculate the extension variance of a bore
to its square (a,a) of influence. By assimilating this square to a circle having the same surface,
we get (cf. Bxercise 11) :

c§=_3a[logg§'-%]

We deduce the estimation variance by dividing by the number of boreholes n :

2 _ 2
o2 = 28 [10g 22 - 1)

2-8-3 The De Wijgsian scheme in the three-dimensional space.

Graph 1 gives the linear equivalent of a right-angled parallelepiped.

Estimation of mass., - The line term and the section term are calculated as above (from graph 2).
For the block term, as the case may be, graph 3, 4 or 5 will be used ( extension variances of large
sections ab, medium sections ac and small sections bec, a2 b = c).
Massive deposits proved by boreholes on a square grid. - The extension variance a% of a bore
i
of thickness h

4 to its right prism h,,a,a of influence is read from graph 6. We get then

2 2
Zhi cEi

fo? B et———
E 2
b,
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(if the h; are equal or nearly so, then : % ag ).
i

2-9 THE SPHERICAL SCHEME
To represent a transition phenomenon, schemes of the following form can be used :
y(h) = A[K(o) - K(n)]

where K is the geometric covariogram of the volume v (cf. Exercise 9, ch. 1). If we take as v the

sphere of diameter a, we get (cf. ex. 9 of the transitive methods) :

(
( 3(1—%

[ 1~y

3
+J2.%) (In] < a)

' 0 (|n]

N
[

The spherical scheme is thus defined by the semi-variogram :

(
( -

when r < a

c (2

ol

-
ﬂJﬁu

y(r) =

[¢) when r 2 a

The range is a, the 8ill is C = y(w), the slope at the origin is % .

[ [e]

In practical applications, a and C are determined by successive approximations : we start from
values a, and C1 obtained by simple interpolation on the experimental semi-variogram ; then graph 7
is used to calcdlate the theoretical variance of a sample in its field ; if this variance is, for
example, greater than the experimantsl variance of the samples in their field, then we can either

lower 01, or increase a,- The solution is quickly reached.
We have at our disposal only the graphs relative to the one or two-dimensional case :

Graph 7 : variance of a point within a rectangle.
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Graph 8 : élementary extension variance of a point to its segment of influence (calculation
of the line term) ; extension variance of a point to ite square of influence {square grid patterns).

Gi'aph 9 : extension variance of a median segment to its rectangle of influence (calculation of

the slice term).

Remark - In practice, transition phenomena are very often accompanied by a nugget effect : in this

case they can be represented by a spherical scheme with nugget effect co :

@




GRAPH I

LINEAR EQUIVALENCE IN A DE WIJSIAN SCHEME

The parallelepiped a x b x ¢c (a 2 b 2 ¢) is
equivalent to the linear sample Aa

The curves are graduated in terms of A.
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GRAPH 3

DE WIJSIAN SCHEME
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GRAPH 3 -

Extension variance of
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within the influence
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GRAPEH 4

DE WIJSIAN SCHEME.

Graph 4 - Extension vari-
ance of an intermediate
gection 1 x p within its
zone of influence of ris-
h=1l2h2p

The curves are graduated
in terms of
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GRAPH 5

DE WIJSIAN SCHEME

Graph 5 - Extension
varianee of a small
section 1 x p to its
zone of influence of
rise

h=h2120p

|-

The curves are gradua-
ted in terms of

1 .2
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Graph 5 =
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EXTENSION VARIANCE ¢ OF THE

b LR RE

GRADE OF AN AXIAL BORE WITHIN

a1

- ITS ZONE OF INFLUENCE as. a func-
" tion of the grid spacing a and
the thickness h.
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GRAPH 6 : DE WIJSIAN SCHEME
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.GRAPH 9 : SPHERICAL SCHEME
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2=-10 STATISTICAL INFERENCE AND QUASI-STATIONARITY.

2-10-1 Quasi-stationary R.F.

Let us now return to the methodological problem raised in paragraph 1-4-6+
We have to show - thanks to a rather weak hypothesis like the one of quasi-stationarity - that the
problem of the global estimation of a given field V is solvable. This arises frqm the two following

points :

~ The estimation variance (at least for small grid spacings) only depends upon

the behaviour near the origin of a "mean" covariance or covariogram.

~ This behaviour is experimentally obtainable, in other words we can arrive at

what we want to know by statistical inference from a single realization, provided that the R.F. is

not differentiable q.m.
3

It should be possible to take as a basic minimal hypothesis the quasi-intrinsic character, i.e.
the existance of a locally sfationary variogram y which deforms only slowly in spacé. Here we shall
1imit ourselves to the slightly stronger hypothesis of quasi-stationarity now béing specified : a
random function Z(x) will be quasi-stationary if it has an expectation m{x) and a centred covariance

C(x,y) such that :

a/ m(x) is a very regular function slowly varying in space (at the scale of the grid) : more

precisely, m(x) can be considered as constant in a domain of the size of the grid.

b/ There is a function of three arguments K(h;x,y) such that C(x,y) = K(x-y;x,y) and such that,
for a given h, K(h;x,y) is a very regular and slowly varying (in the same sense as in a/) function
of the two arguments x and y. In other words, when x and y belong to the'samg domain whose dimensions
are those of the é:id, K(h;x,y) only deperds on h, and it is as if the covariance C was locally sfa—

tionary.

In fact, we shall even make a somewhat more restrictive hypothesis. We shall assume that in

the domain V we want to' estimate, the function X has an expénsion as an integral series of the form :

K(h;x,y) = Z =, (x) mﬁ(y) C, ()
n

where the Sy designate regular functions slowing varying at the scale of the grid, and the Cn(h) are
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covariance functions. -

It is then possible to find stationary R.F.'s of the second order Yn(x), with zero expectation
and mutually independent, such that :

Z(x) = o(x) + T @, (x) Y (x)
n

This expansion is sufficiently general for what we have in mind. But problems like the computation
of an estimation variance, estimation of a variogram and variance of this estimation; etc... will
be seen to be linearly dependent on the independent components Yn(x). It will be sufficient if we
handle the components Yn(x) separately, and sum up the results obtained. We thereby get an impor-

tant simplification, for we are reduced to the case when Z(x) is of the form
(2-33) 2(x) = m(x) + =(x) ¥(x)

and thus has the expectation m(x) and a centred covariance of the form
(2-34) C(x,y) = alx) uly) C (x-y)

Let us now examine how our two problems appear when relationships (2-33) and (2-34) are verified-

2-10-2 Computation of the estimation variance.

For simplification, the argument will be given for the one-dimensional case when
the interval (0,L) is estimated from n samples on a regular grid of spacing a = L/n with a centred
sampling arrangement. let x = (1 - %)a be the sampling points and

a

2, =1 ax) ax
(i-1)a

be the.true agsay of the influence zone number i. The estimation error associated with the estima-

1 .
tor 3§ Z(xi) is

3 Z (axy) - 1]
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In the term Z(xi) - 24, the contribution of m(x) is negligible, for m(x) is-considered as being
constant over the influence zone : m(x) plays no part in this problem. There remains
ia .
2(x,) - 2, = alxy) Uxy) - 3 a(x) Y(x) dx-
(i~-1)a

and, o(x) being considered as constant over an influence zone :
ia

Z(xi) -2 = m(xi) [Y(xi) --;- J’A Y(x) dx] = m(xi) [Y(xi) - Yi]
(i-1)a )

The variance of this individual error is thus :

p2(a(x,) - 3,] = [a(x;)]? cgo

\

where c% is the extension variance of x; %o its influence zone computed with the covariance C  of

o
¥(x). Now, the approximation methods introduced in paragraph 2-5 show that these individual errors
can be consgidered as independent. It follows that the estimation variance is :

L

2 1 2 1 2 .
T o(x) #1,0 f()ax
21‘”‘1 nznoao"x

2 _ 2
9Est = °E

B~

B d & 4 [ ot ax
[o]

Hence, this estimation variance would be the same if we had the stationary covariance :

S A
c(n) = G (n) } J.wz(x) dax

o

Iet then CG(h) be the (pseudo-stationary) mean covariance :
’ L-h ¢ (n) I~h
CT(h) = ﬁ-ﬁ J ¢(x,x+h) dx = %‘n_ a(x) =(x+h) dx
. (S

[o]

When h s a, =(x+h) is not different from =(x), and we have :
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L-h L
IJ-'H J w(x) =(x+h) dx.{}.-}-‘ J.‘az_(x) dx

o] Q

Thus, when h < a, C(h) = T(h) and the estimation variance is the seme as that for a stationary R.F.

with a covariance which would be precisely this mean covariance C(n).

When a is small, we still have to show that it is possible to estimate T(o) - T(n).

2-10-3 Possibility of statistical inference.

Put Y(n) = (o) - T(n), yo(h) = Co(o) - Co(h) etc... We are trying to estimate
the behaviour of 8(h) near the origin, i.e. of Yy(h) when a is small. Therefore, we take as .an es-

timator :

I~h L-h
Y’(h) = 3(-1::—_-57 J‘ [=(x+h) Yo a(x) Yx]a dx #»Z—lj’—hy J @2(x) [Yx-rh - Yx]z dx

o o
With the approximations already made, this estimator is without bias :
* -
Ely (0)] = ¥(n)
Its variance remains to be evaluated. Here, it is necessary to,introduce an assunption about the
distribution of the R.P., for moments of order 4 will necessarily intervene. The simplest way is to

limit ourselves to the Gaussian case as in Exercise 16. The computations made in paragraphs a/ and

b/ of this exercise remain valid here and give :

I-h h
(2-35) Dy*(w)] = —1— J a?(x)dx f{’wz(y)dy [y (x=y+n) + v (x-y-h) - 2 y(x-y)]? ay
Z(L-h) . 0 ' o

Let us evaluate this integral when a si small. Obviously it is equivalent to

I L
-2-%? J I('uz(x) =2(y) [v,(x=y+h) + y (x-y-h) - 2 y(x-y)1? ax 4y
[e] [s]

Put
F(u) = [y (uth) + y,(u-h) = 2 y (w)]?
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and let R be the transitive covariogram of the function equal to uz_(x) on (0,L) and O elsewhere.
From Cauchy's algorithm, it follows that :

. L
p?[y*(n)] = iz J'“R(u) F(u) du

(o]

When u > h, P(u) ia a regular furnction of u, equivalent to h4|_7"(u)]2. Hence the variance is of the
form -

h
p?[y*(n)] = a n* + ﬂl‘%l J F(w) du

(+]

Evefything depends now on the behaviour of F(u) near 0. Let b n* (eventually b n2 log h) the prin-

cipal part of y, at h = O. That of P(u) is :

2
b2 82 [(1 + %)h r-pr-a2 uM]

Hence, the variance will be of the form

(2-36) Dz[yf(h)] =ant+ 1-:‘2 n'*t2r

Thus, two cases are to be distinguished :

a/ A < 2 (R.P. non differentiable q.m.) The relative variance, for h small, is :

2r * :
—L"—LEJ-D h = A' h"'z)‘d-%h
L

[v(n)]

It is thus il.n.finitely small compared with h and statistical inference is possible. In the limiting
case when y(h) has a behaviour term in n2 log h, a relative variance in A'/log h would be found :
Theoretically, statistical inference would at11l be possible, but would be very difficult to do in

practice because of the véry slow rate of decrease of 1/log h.

b/ A = 2 (R.F. differentiable q.m.) The relative variance D>(y )/y? tends to a constant A' dif-
ferent from O when h tends to O. This means (unless L is very great with respect to the range of

Co(h)) that statistical inference is impossible.

In short, gtatigtical inference is always possible when the R.F. is not differentiable g.m.,
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and only in this case is the problem solvable in all generality. This quite singular circumstance

which penalizes R.F!s which are too re ar and prohibits the inference of their covariance when

the reslization is not very extensive will be appreciated in full when we study universal kriging

and in particular the notion of random drift.

2-11 EXERCISES ON INTRINSIC RANDOM FUNCTIONS.

2-11=1 Construction of I.R.F's.

Exercise 1 -

Exercise 2 ~

Exercise 3 -

An origin X, having been chosen at random on (0,a), the straight line is divided into
segments of length a with subdivision pointa X+ ka (k a positive or negative integer)*
Let Y(x) be a R.F. taking, for each of these segments of length a, a random constant
value Y. The values are drawn by chance irdependently from one segment to another dc-
cording to the same law of probability, with mean value m and variance 02 . Calculate
the probability that x and x+h belong to the same segment a. ‘
(Solution : 1 - |n|/a when |h| s &, O otherwise)-

Derive from this the semi-variogram of Y(x). (l%l o? when |n| s & and a2

otherwise).
Same question as in 1, but the lengths of the segments are now randomly distributed,
independently from each other, and follow the same exponential law e'kh.(in other
words, the points of discontinuity constitute a Poisson process).

(Solution : Prob {x and x+h € same segment} =e™ | Then y(h) = (1 -e ™My 42,

Consider a Poisson process on the line (random points separated by independent seg-
ments obeying the same law of density a e~ 2X), A R.P. Y(x) is defined (except for a
constant) by taking Y(x) = gSte outside the poissonian points x and, at each x
Y+(xi) - Y_(xi) = X;, with independent r v 's x; obeying the seme distribution of ex~-
pectation m and variance c? .

Show that the R.F. Y(x) is intrinsic (but not stationary of order 2), has a drift

m a h and semi-variogram % a(m2 + cz)thl (linear).

(Solution : This process is a compound Poisson process with independent and stationary

increments. To compute the drift, calculate the expectations E[Y(x+h) - ¥(x)] and
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E[Y(x+h) - Y(x)]? conditionally when the number n of poissonian points falling within
x and z+h 1s given, and then decondition with respect to n). :

Exercise 4 --a/ Let Y(x) be a stationary R.F. of order 2, m its expectation, C(h). its covariance,
Show that the R.F. Z(x) = I,Y(y)' dy is intrinsic (but not stationary of order 2) and

0 -.h .
that it has a drift mh and a semi variogram y(h) “L (h~x) C(z)dx.

(Solution : start from y" = C)-

b/ Application to the process with random slopes : consider polasonian discontinuity
points aa in Ex. 3, with the slope [1 remaining constant in the intervals between those
points. These slopes [I are random, independent, have a zero expectation and a variance
@, in each of these intervals. Show that the px;ocess Y(x) so defined (except for a

2
constant) is an I.R.F. (non statiorary od order 2) without drift, and with semi-vario-
gran o, -QT']:Q—I . Notice the parmbolic behaviour near h = 0 of tip variogram.
a
(Solution : 'this procegs is of the type of Ex. 2, and it is sufficient to apply a/ to

Y'(x)).

2-11-2 Exercises on estimation variances.

Exercise 5 - Consider the semi-variogram n* (0O <« A < 2) in a one-dimensional space. Calculate the
auxiliary functions X and F, the elementary extension variance of a central point to
its segment of influence, and the extension variance to this segment of ita two extre-~
mities (closed arrangement). Compare and discuss.

Solution :

A A A
.2 o2mt ar g ) (2 _ ]\
)= g3 3 FB) = ofiGoay ¢ e (le' M-Z) ; (ﬁf 2) &

We have‘o% > 0123, when A >. 1 , whereas the expressions are equal when A = { : when

A > 1A, there is-high continuity, and a single well-placed sample is better than two
ill;placed ones ; when A < 1, we are not far from the purely random situation and two
samples, even badl& placed, are always more informative than a signle one. When A = 1,
the two conditions are equivalent. I
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Exercise 6 - In a one-dimensional space with y(h) = n* , compute the estimation variance of the seg-

ment L = na by n point samples, in the three rollowing cases :

regular grid (closed arrangement) 1—11 )\—31- [l}\ - ﬁ:} a")
2 .

A
stratified random grid (% Kfﬁ)

purely random grid (n A+1 Y] L)

Exercise 7 - Consider, in a two-dimensional space, the semi-variogram r}‘ and an orebody developed

by drives, whose lengths are greater than the level interval h.

a/ Calculate the extensionv variance of a level of length 8 to its rectangle of influen-
ce ¢,n.
(grading under constant thickness € transforms r into A r)‘ﬂ/e (or log r into nr/€);

thus :
1+ 1+
2 _, 2 e n
ETARE | M3 | e T PTE

b/ Deduce from this the estimation variance (weight by the squares of the lengths).

Put L= T éi and S = L h, and write this variance in the form

S1+k . - x
B= - (De Wijsiancase : A==, B=¢, ¢

)
L2+}\ 2

SR

Exercise 8 - Same problem as in 7, but assume in addition that the levels are estimated from channel

samples with a spacing a. Compute the line term (% a“‘}‘ with C = 7\%1_ [lx- }\—15 ]) .

Economic optimization : let = be the cost per meter of drive, P, the cosf of each sam=
ple, and €o = pc/“’ . Optimize the precision for a given net cost or, equivalently, the
cost for a given precision.

(It amounts to minimizing C h 31”‘ + B h2+}‘ under the condition 31?' + 'h1—a = C. We get

(¢}
the following relationship :

which gives the spacing h of the levels as a function of the spacing a of the channel

samples.



104

2-11-3 Exercises on the nugget effect, De Wijsian and spherical schemes.

Exercise 9 -~ Nugget effect in the pure state.- We are given nuggets set at points distributed in
space according to a Poisson scheme (definition : the number N(v) of nuggets contained
in v is a Poisson r.v. of expectation Av ; if v and v' are disjointed, N(v) and N(v')
are independentj-

a/ Take out volumes v, and put Y(x) = N(vx), Ve designating the translate of v located
at point x. Show that the covariance of Y(x) and Y(x+h) is the variance of N(vx N vx+h)

or A K(h), K(h) designating the geometric covariogram of the volume v.

b/ The nuggets are now supposed to have random independent weights (mean Pg» variance
ag ), and Y(x) is the sum P1‘+ «+.Py of the weights of the N = N(vx) nuggets contained
inv_. Calculate the mean and the variance of Y(x) (E(Y) = v ) J D3(Y) = Lv(pg + GS)'
What. is the covariance of Y(x) and Y(x+h) ? (replace v by K(h)).

Exercise 10 - Dilution scheme.- We are given Poisson points as in Ex. 9. Iet f£f(x) be a function and

I(x) = Z}f(x—xi), x; designating the location of the different nuggets. Thus Y(x) is a
i
dilution of these nuclei. Find the covariance K(h) of Y(x).
v
(Solution : A g(h), with g = £ * £).

(Only the case where f has a compact support can be examined : consider two points X,

and X, * h and a bounded domainbv containing the translates by X,

support of f. First reason conditionally when the number n of poissonian points fal-

and X, + h of the

ling within V is fixed, then decondition with respect to n. Notice also how interpre-
tation by means of the covariance measure A5 of the poissonian points makes this re-

sult intuitive).

Exercise 11 - Consider the De Wijs scheme y(r) = log r in a two-dimensional space. It will be re-
called that if g is a harmonic function inside a circle, its mean value within the
circle (or on its circumference} is equal to its value at the centre : log r is a

harmonic function except for r = O°

a/ ¢(r), X(R), F(R), CO(R) designate the mean value of log r, respectively, on the cir-
cumference of a circle of radius R, between this circle and its circumference, within
this circle, and between this circle and its centre. Show that G(R) = X(R) = log r ;
F(R) = log R - 1/4 ;5 G(R) = log R - 1/2 (the first two relations result from the theo=

ry of harmonic functions To calculate F(R), vary R4F(R) and show that gi R4F(R) =
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= 4 B X(R). For C(R), integrate 2 nr X(r)).

b/ Compute the estimation variance of a circular panel from its circumference (cg =

2 X(R) - F(R) - C(R) =-1- ).

¢/ Extension variance to the circle of a small central element whose linear equiva-
lent is £ (log B/Z + 3/4). If L is the linear equivalent of the circle, this estima-
tion variance is also log (L/8) - 1/2. - Wnence, deduce that the extension variance
of a sample equivalent to 1in the square (a,a) at whose centre it is set, is approxi-

mately log'-zeg - 1/2-

Exercise {2 - Spherical scheme in the one-dimensional space.- a/ Compute the auxiliary functions

of the spherical scheme :

Y(@)=%£-Ja--%3 when € < a, 1 when L2 a
a
2 1 ¢ "
-3 3-3 53 1-% %
£ £ " 3 ; a®
D=3 5 % 3 -1 5% 5

b/ Compute the elementary extension variance of a sample within its segment of influ-
ence b when b.< a and b 2 2 a, and interpret the results.

olp
'
n

b
Tav7m 3 a 1-%

[¥)1 2
Wl

2-11-4 Exercises on large grids.

The three following exercises constitute a test. If the reader is able to under-
stand the first two exercises and do the corresponding computations (which are easy in themselves)
he has certainly assimilated the mental processes of a geostatistician. Moreover, if he can accept
the critical conclusions of the last exercise without becoming confused (for large grids the princi-
ple of composition of line and slice terms is not valid, and the principle of composition of elemen-
ta.ry extension variances applies only very approximately) this shows his comprehension goes deeply

and allows him to weight the significance and limits of each of the approximate assumptions which
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render geostatistics operative.

Prom an epistemological point of view, it will be noted that for large grids (i.e. greater
than the range) the exact form of the covariance or of the y(h) loses all its importance : K(Rn)
onlj intervenes by virtue of its value C at the’ origin and by its first moments (4, and A, 1n R',
Ay A Aé and Ay in g2 s in Rs, we must go up to A‘S)' Thus, in B2 for example, all the schemes
_are reduced to a unique type depending only on the four essential parameters AO, A1, A2 and A3 and
on the parsmeter C (which only intervenes as a multiplying factor). Por large grids, we¢ are rela-
tively near the comdit¥ens of validity of classical statistics : to the egtimation variance C/n
which classical statistics would give, geostatistical computation adds corrective terms whose coef-

ficients are the A:I. themselves.

Exercise 13 (1 dimension) - Let y(h) = y(z) ve an (isotropic) variogram of the tramsitive type, i.e.
of the form :

y(r) = C - K(r) with K(r) = O when r > range.

1/ In a one-dimensional space, when 8 > range, we have :

2
c- K& = 22 j (¢-x) R(x) dx = 32 S (€-x K(x) dax
&9 e° 3

Deduce from this :
' A A
&) = C - TO + =%
7

P =¢ %
RRPY)

with :

2/ Extension variance for a grid spacing a > range :

. ' A A
22 a _ =C-=2-1
og 2X > F(a) = C < 32

For a drive of length £ = na, the gstimation variance is
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A A,

Tfc-F-m

este

Exercise 14 (2 dimensions) - 1/ Punction ¥(a,b). The mean value of y(h) = y(r) in the rectangle

(a,b) est 3

a b
F(a,b) = -ﬁ;‘ (a=x) (b=3) v (Vx%y?) ax ay
a'b ° o

2/ let y(h) = C = K(h) be a transition scheme (i.e. K(h) s Owhenr = |h| >¢ , ¢
being the range)+ For large grids (a,b > range) 1/ gives :

C - Ma,b) = —24—2 fﬁjn(&-X) (=) E(Vz2y?) ax ay
a b o Yo

Deduce from this :

ORELEE R R TR

o0 N

A1=-}.IR'2K(h)dh=2‘{rK(r)dr

(]

witﬁ :

A =2| 2 Kr) ar
[+]

5-21“1-3 K(r) ar

3/ Deduce from 2/ X(a;b), y(a;b) and Q(a;b) (still for a,b > range).(X(a;b) = xb(a)).
Apply : 2 2 .2 '

Q(as;b) = 3?"-:3 (i‘iﬂ)

% A A
this must give : I=C-ﬁ%+—_2!-,y=c
ab
A

Q=c- 75
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. . h
4/ Extension variance of a drive £in €xh . ), e,% > range.
) ' e
e
o2=2x(},8)- Pn,0 - FE)

Fep-n(Ef) -2 Grod) 5T

5/ Estimation variance of S by drives of length €1 > range (equidistence of the drives
h > range). Put T Zl = L , N number of drives.

Eéiag A : '
1 i 5o 1 _X§
T &2 f-a,(%+;2)+2;2(m haL)"‘%th‘i

2
h n . hN by _ b
8- (8 2 )+ 2 4, (32 ) * 4 g2
' 6/ Estimation of § by drives (equidistance h > range) sampled at a spacing & > range :

ofet = B C - Ay (%*g"'hs%) r24 (:%"E‘S) *%;

7/ Extension variance of a borehole . Ia
T A A A3
2 - a a) _ S0 = el - 2
2=2q(5,8) -HNaa) =¢ <1-43 +3

hence the estimation variance of S :

2 a
l2-cé& - g=la o _"2
2B CFT-"E A4S T

Exercise 15 (Critical study) - 1/ Iet us_take a critical look : - for h = a, formula 6/ is not con-

sistent with the result found in 7/ (except for tne first term !—? which is the approxi-
mation of classical statistics). Between the two principles of approximation :

~ composition of slice terr and line term (used in 6/)

~ composition of elementary extensisn variances (used in 7/)

At least one is unusable in the case of large grids.
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_On second thought, it appeérs that the estimation variance associated with a rectangu-
lar grid (a,b) must depend only on the surface ab of the rectangle and not on the ra-
tio a/b (a > b) when a and b are greater than the range. Formula 6/ makes this ratio
a/h intervene explicitly . It can be concluded that the principle of composition of
line terms and slice terms cannot be applied to large grids, and that formula 7/ must

be preferred.

2/ To verify this rigourously, start from the general formula :

"1-2?.31: = ';'2 J J’K(x-y) dx dy - ﬁ% ? JK(xi-y) dy + %2 iE' LENE
3 S yd

When the distances |xi-xj| between the boreholes and the distances from the boreholes
to the boundary of S are greater than the range, this can be reduced to the (rigourous)
formula : ' '

2 -¢ F(s)+c-2ﬂA1
Ogst = Y ~ Y- "%

which is valid whatever the shape of the grid (and which can be applied, in particu-
lar, even to irregular grids)-
C - PF(S) depends only on the surface S {and not on the grid) and its principal part
(for S large) is = A1/S ; hence the approximation forimula
A

St |
OBst "N T F
3/ Now look whether the principle of composition of elementary extension variances

gives better results. We get :
‘ A
b c
F2a(E ) -Reml-f-ng-2 (e d) -

The first two terms are good. The terms of higher order (in A2 and A3) are not ac-
ceptable, for they still depend on a and b whereas the exact formula only makea the
geometry of S intervene. Nevertheless this tormula is better than 6/ (in which the

first term only is good).

4/ As in parasgraph 2/ above, show that the estimation variance of a segment L by a
A
grid of spacing a > range, is (rigourocusly) C - F(L) + % -2 1? .
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Deduce from this that the estimation variance for one dimension. (Ex. 13 § 2/) is in "

fact

A A
2 _¢C_o._
9Est "N~ T ;%

Thus , for one dimensionm, the principle of composition of elementary extension varian-

ces gives the exact value of the first two terms, but not that of the third one.

5/ Conclude from the above that only the first two terms of the formula of paragraph
5/ BEx. 14 are valid (estimation variance of S by perfectly sampled drives).

To restore the exact formula, S will be supposed to be the rectangle € % h and the
argument will be given directly on the variogram y' deduced by grading from y (under
constant thickness). For h greater than the range, the function F'(h) of this one-di-

mensional transitive scheme is of the form

A
F'(h) = C' --hﬂ+

(cf. Ex. '13). Show directly that the new constant C' is

. kA
c -C-F(C,o)-e 7

>

To determine the new coefficients A; and A; , proceed by identification with ¢,h)
(Ex. 14, par- 2/), which gives :

' A1 A
Ay =m Z - 2 -2'5
A
A= 28 -
1 L g2
Show by applying the result of paragraph 4/ above that the estimation variance for
drives of length £ and at equal level interval of h = % is :

t L]

. A A

2 _¢ _ o _ 4
9ggt = X H - 52

2 _A 1 A
Bt =T~ M (52 8) * 2 F (é‘%)*i;%

Compare with Ex. 14, Paragraph 5/ .
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2-11=5 Statistical inference for R.F.'s.

Exercise 16 (Estimation of a variogram) : Let Y(x) be an I.R.F. on the straight line R’, v(h) its

gsemi-variogram. A realization of Y(x) is supbosed to be known in the interval (0,L)

and to estimate y(h), the following estimator is formed :

I~h
y*(h) = Er%:ET }L [Y(x+h) - Y(x)]2 dx

a/ Show that y* is an unbiased estimator : E[y*(h)] = y(n).

b/ (Qgggg) Let X1, X2, X3 and X4 be four Gaussian r.v.'s with zero expectation, and

let cij be their covariance matrix. Show that

E(X, X, X5 X,) = 0y, 054 + 043 Opy * 014 I3

(proceed by identification of the term in u1 u2 u3 u4 in the characteristic function

with four variables. This lemma can as well be admitted without demomstration).

¢/ The increments of the I.R.F. Y(x) are supposed to have Gaussian distributions
(N.B. : the object of this hypothesis is simply to get the computation of moments
of order 4). By using the lemma b/, establish the relationship :

E(Y,, Y )2 (¥ )%] = 4 y3(n) + 2 [y(x-y+h) + y(x-y-h) - 2y(x-y)]1?

v+~ Yy

and deduce from this the variance DZ[y"(h)] of the estimator y (h)

2 I-h X
p?[y*(n)] = —— ‘[ dx ~[ [y(z-y+h) + y(z=y~h) - 2y(x-y)]? ay
. (I-h)? J A

(use the symmetry in x and y of the function to be integrated).

4/ Do the explicit computations for y(h) = =|h| (the process Y(y) is then the brown-
ian movement). Therefore, show first (with h = 0) that
I~h x

2
Dz{y*(h)] = ..;40_2 j dx J- [h—xﬂ-y]2 dy
(I-0)< 4 Sup(0, (2-h))
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and distinguish two cases :
. . 3 4
For h < L/2 3 y"(0)] = (?%ﬁ‘%ﬁé @2

For h 2 I/2 D3[y'(n)] = (2 %+ 4 (I-n)2 - $n (L—hD a?

In particular, when h is very small, the relative variance is :

p2ly"(n)] ’4
[y(m) ]2 i

Y
It tends to O with h, and consequently statistical inference is possible in normal
circumstances in so far as it concerns the behaviour of y(h) near the origin, and
this is true even if we have only a single realization at our disposal. On the con-

trary, as_soon as h is not very_small compared with L, the relative variance becomes

very_large and statistical inference is no longer possible : the experimental vario-
gram 7’ will "usually" differ considerably from its expectation y(h). For example,
for h = I/2, the relative variance is equal to 1 (i.e. very large)-

Exercise 17 (Estimation of the variance 02(041.)). - In the same conditions as above, the variance

of the punctual samples in L is estimated by

0 -

. .
s? =1 f [¥(x) - 7% ax with Y=% J-LY(x) dx
[¢]

a/ Put s2 in the form %}J’Lff (Yx-Yy)(Yx-Yy,)dx dy dy' and show that E(S°%) =
o %0 o

= a2(0/L).

b/ Compute the variance D%(32) when the increments of Y(x) are supposed to be Gaus-
sian. To do this, deduce the expression for s* (which is a gextuple integral), use
lemma b/ of Ex. 16 to obtain the argument of this integral, and show that the result
can be expressed with the help of the auxiliary functions X and P in the form

L
2%(s?) = 2[H(]? + £, f (Ix) y3(x) ax - & fxz ¥(x) ax
L [~} . L (]

- §3 fx(L-x) X(x) X(L-x) dx
L

(]
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c/ Apply b/ to the case y(h) = =|h|, and show that the relative variance on §2 15 e-’
qual to 4/5 ( that is : very large) : the fluctuations of the experimental variance
around its expectation always have a very large amplitude.

Exercise 18 (gseudo—covariance).- It is very often assumed without a thorough examination, that the
Re. V;'s can be considered as realizations of stationary R.F.'s of order 2 (whereas
very often a more accurate study shows that only the increments of this R.F. have mo-
ments of order 2 - in other words, very often there is no covariance C(h), but only
a variogram y(h)). Now it happens that the procedures of statistical inference which
are used, as a consequence of the biases they produce, systematically make this hypo=-

thesis plausible, even when it is completely false.

We will only demonstrate this phenomenon by means of an example : that of the brownian
movement with semi-variogram y(h) = |h|, a realization of which is known in the inter-

val (0,L). Thus we suppose that :
{ E[¥(x+n) - ¥(x)] = O

1 P?[¥(x+n) - ¥(2)] = |n]

Usually, to estimate the hypothetical covariance C(h), which in fact does not exist

here, the (experimental) values of the following expressions are combuted :
L
-4 I Y(x) dx
o}
¢*(x,y) = [¥(x) - TI[¥(y) - T]

and the "experimental covariance®" is deduced from them :
I~h

3_7-5 J C’(x+h,x) dx

[>]

c*(n)

Now with the semi-variogram y(h) = |h|, the expectation of C (x,y) is :

2

2
L+ X3 + 2 sup(x,y)

E[C'(x,y)] =

[
il

FPor h 2 0, we have thus

2 2
§L+x+$x+h2 - 2x = 2h

E[C”(x+h,x)]

it
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and, by integrating with respect to x, we see that "the experimental covariance" has
for an expectation : »

E[c"(n)] =%L--§-h+%%
It is a parabola, with slope - é at the origin, Hence, an apparent variance c(o) =
= -;- L will be found, linked only to the length L of the segment considered, and which
constitutes a pure artefact (since the true variance is infinite). Although there is
no stationary covariance, but only a linear variogram, the biases introduced by this
procedure of estimation result in an apparent confirmation of the existence of this
covariance. It will be noted that the structure of the phenomenon is extremely dis-
torted : not only is the straight ling replaced by a parabola, but even the slope at
the origin is changed ( % instead of 1). The C'(h) is a pure artefact, and retains

almost nothing of the true structure of the phencmenon.;

It will be noted that the experimental variogram :
I-h
2 y"(n) = 'L_J-H J [¥(x+h) - (x)]? dx
°

has expectation

E(y"(1)] = v(n) = |n|

and so is not changed by the preceding bias, and consequently provides a safer method

than the covariance.
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CHAPTER 3

KRIGING

3-1 THE OBJECT OF KRIGING.

In mining terms, the problem of kriging is to find the best linear estimator possible of
the grade of a panel, taking into- account all the available information, i.e. the assay values of
the different samples that have been taken, either inside or outside the panel we want to estimate.
Kriging amounts to weighting, i.e. assigning a weight to the assay of each sample, these weights
being computed in order to minimize the resultant estimation variance according to the geometrical
characteristics of the problem (shapes, dimensions, and relative setting of the panel and the sam-
ples). Roughly, and naturally enough, kriging will assign a low weight to distant samples, and vice-
versa. But this intuitive rule can only be partly true when more complex phenomena such as "screen
effect" or "transfer of influence" appear. Of course, in order to solve a problem of kriging, i.e.
to compute effectively the proper optimal weight which is to be asaigmed to each sample, it is ne-
cessary to make certain assumptions about the geogtatistical characteristics of the orebody under
study, i.e., essentially to give oneself the covariance function or the variogram of the R.F. of
which the punctual assays are supposed to constitute a realization. In principle, it is not neces-
sary to introduce a stationary or intrinsic hypothesis, and the kriging equations have a general
scope.(In practice, of course, we have to begin with the estimation of the covariance or of the va-
riogram, starting from the experimental data, and here the hypotheais in question returns with. all
its importance). In the following chapter, the general case of the non-stationary R.F. will be

dealt with, and we shall limit ourselves for the moment to intrinsic or stationary of ordef 2 R.F's-

The first interesting thing about kriging comes from the definition itself. By minimizing the
estimation variance, we are sure to make the best use of the avallable information or, in other
words, to obtain the most precise possible estimation of the panel concermed. This is often a great
advantage, but it would not always justify the additional complications necessarily introduced by
weighting. By far, the most important practical point of kriging is not that it provides the best
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estimation possible, but that in addition it avoids any_systematic-errors. In most ore-bearing de--

posits, we select for exploitation a certain number of panels which are juged payable, and abandon
others deemed unpayable. D.G. Krige has shown that a selection based only on inside samples necessa-

rily resulted - on average- in an over-estimation of the selected panels.

The reason for this general phenomenon is that the variance of the panel's true grades is always
lower than the variance of the inside samples. In other words, the histogram of the actual grades of
the panels always contains fewer extreme grades (rich or poor) and more intermediate values than the

histogram deduced from the inside samples. If we compute what would be the effect of a selection of
panels on this last histogram, the rejected panels would be in fact less poor than foreseen, and the

chosen ones less rich.

Frequencies
~~ histogram of the panels
-~ histogram of the samples
—— —‘\\\
~ \\\
/ ~
/s oS
/ AN
// s

/
/

Grades

The notion of kriging alitows this phenomenon to be understood and its consequences corrected.
For the very reason that we have selected a rich panel, the "aureole" of outside samples will have,
in general, a lower grade than the inside ones ; yet its influence on the panel to be estimated is
not negligible since kriging has. assigned a non-zero weight to it. Failing to take this external
aureole into account inevitably introduces a cause of systematic error - one of over-evaluation.

To explain how this occurs, let us imagine a vein-type deposit developed by two drives AA' and BB'.

The grades of BB' are deemed payable, while those of AA' are payable only over a segment CC'.
If we merely take into accéunt the mean grades of BB' and CC!', we are sure to make an error of over-
estimation : the two segments AC and C'A' - although poor - have a not negligible effect on the grade
of the trapezium BB', CC' selected for mining. If it were possible to draw the precise boundary bet-
ween payable and unpayable ore, the real boundary would not lie along the straight lines BC or B'C’
but would be, in general, a very irregular curve like B D E F ... Moreover, poor enclaves would re-
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main inside the rich panel and vice-versa, so that while working we would jhave to abandon certain
rich parts and mine some poor ones : thus, expressed in a concrete manner, is the influence of the
poor segments AC and C'A' on the rich panel. (As this is a homogeneous orebody, and the existence
of a precise boundary as defined by the grades seems doubtful, we shall speak of kriging. The word
"smudging" is used when rich and poor parts, geologically heterogeneous, are separated by a conti-
nuous boundary which can be represented by a fairly regular curve such as B'D'E' and which, as be-
fore, need not follow B'C'). In this case, kriging consists in weighting the grades of BB', CC' ard
the two segments AC, C'A' by convenient coefficients, which would be, for example, 60% for BB',27%
for CC', and 13% for AC and C'A' .

A c c? A’

[ a°

The essential effect of such a weighting procedure is to eliminate - on average-~ any systema-
tic error of over—evaluation, which is particularly dreadful. Compared with this prime objective,

the improvement of the precision itself appears as a relatively minor result.

Let us now give gsome indications on the mamner in which D.G. Krige has formulated the problem
at the beginning of the fifties. South African miners had appreciated this phenomenon 2f the over-
evaluation of rich panels and applied empirical corrective coefficients. To re-determine these co-
efficients, Krige started from the hypothesis that the sampling process was correct, in other words
that the expectation of the sample assays taken inside the panel was equal to the true mean grade
of this panel. Hence, if the variables are Gaussian (in the South African case, they were in fact
lognormal, but this does not change anything essential), the regression line giving the con itional
expectation of the sample as a function of the panel grade is identical to the first bisector.
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The other regression line, giving the expectation of the panel as a function of the sample (and this
is the interesting one), has thus a slope less than 1. If the sample agsay x is greater than the ge-
neral average m, the panel expectation y is thus inferior to x, and conversely. Hence Krige correct-

ed this systematic error by using the equation
(3-1) y = o+ p(x-m)

of this second regression line, with a regreseion coefficient g < 1. More precisely, if p is the

correlation coefficiént, Oy and ay the atandard deviations of the'samples and the panels, the two

regression coefficients (respectively { and g) are

S G
1=pE , pept
Yy x
hence :
2
g,
ﬁ:-% < 1
%

The coefficient B is equal to the ratio of the variances (within the whole orebody) of the samples

and the panels.,

A more thorough examination of (3~1) suggests other possibilities. In general, the mean grade
m is unknown, and is estimated by taking the arithmetic mean m = %]E xi of the available samples
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wit.hin the orebody. But if we replace m with m*, relationship (3-1) takes the form :
*
Y =§ ai xi
of a linear combination of the grades Ii of the available samples, and with the condition :
z a; = 1

to which we will return at length. But then, instead of attributing to the outside samples - near
or distant - the same indifferentiable weight ay = -]I—:ﬁ- , 1t seems natural to try to attribute to
each one an appropriate weight a5y taking into account its location with respect to the panel to
be estimated. Thus we are led to the search for optimal welights 8y i.e. to the notion of kriging

as introduced at first.

3-2 NOTATION .

Throughout this chapter and the following one, the same system of notation will be

uged :
~ Z(x) will designate a (stationary or not) R.F. with a non-zero expectation in

general, and Y(x) a (not necessarily stationary nor intrinsic) F.R. with zero expectation : for

example, very often ¥Y(x) will be

Y(x) = 2(x) - E[2(x)]

~ § will designate a set of B on which a realization of the R.P. is known experi-
mentally. In the case where S5 is a finite set, the g.pefimenta.l points will be designated by Greek

indices, i.e. :

S={x,, a=1,2...8

~ As the case may be, the estimation of different values may be wanted : either

the value Z(xo) of the R.F. at a point x £ S , or the mean value % Z(x) dx within a domain V
v

different from S, or more generally (to condense all posaible cases into a single script) a mean

value
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2, =jp(dx) 2(x) ( {p(ax) = 1)
of Z(x) weighted by a measure p with sum | and with a support separate from S.

~ So as to do this, linear estimators will be formed starting from the available
data, which will be the 2(x), x € S. In the discrete case, we sill always denote

g, = Z(x ) (=, € 8)
and in the seme way, for functions f£(x), C(x,y), etc... : -
fa = f(xa) ’ C(xa,ya) = Caﬁ ete ...
In the discrete case, the summation convention will always be applied : the summation must be per-

formed on all indices appearing twice (in general, once in low or covariant position, and once again

in the upper or contravariant position). Hence, A% zZ, will be written instead of T A% 2. The esti-
: a
mators which we will use will thus always be written as

When S is infinite, measures with support in S will be used to form the estimators :

*

2 = Jk(dx) 2(x)
S

In general, this can even be written as [Z(x) A(dx), for the measure A has a support in S by defi-

nition.

Let us now set out the kriging equations, distinguishing three cases (stationary R.F. with
zero or known expectation ; stationary R.F. with unknown expectation ; intrinsic R.F. without drift).

In all cases, the covariance or the variogram will be supposed to be known.
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3-3 STATIONARY R.F. WITH ZERO OR A PRIORI KNOWN EXPECTATION.

Iet Y(x) be a R.F. with zero expectation, o(x,y) its covariance, S = {x | the set of ex-
perimental points (supposed at the start to be finite), Y = J‘p(dx) 2(x) the variable to be estima=-
ted. s an egtimator, we shall use the linear combination

Y 3
YK—)\KZG

and determine the coefficients A§ from the conditions which minimize the expectation of (YO—YK)2

i.e. {(as the expectation of the R.PF. is equal to O) the variance D2[YO-YK]. But this variance is :
v 12 _ p2 - a a,B
E(Y, YK] = DY) - 2 Ag °aY° + Ag AR %8

with :
(ogy_ = fotan) otxym

{ p2cx,) - [ [ptan) otz ptay)

Equating to zero the partial derivatives with respect to )\% of this quadratic form, we get the

gystem :

(3-2) ABK ep = caYo

This system of N equations with N unimowns is regular, and has a unique solution if and only if the

covariance matrix o is positive definite (thus with determinant > 0), which we will always assume.

af
The variance o§ (or kriging variance) of this optimal estimate is equal to the value of the quadra-

tic form E(Yo—‘iK)2 when we take the solution of (3-2) as the coefficients x; « But (3-2) involves :

=Ra

X [+4

a ,B
)‘K "K caﬁ C‘Yo

At the optimum, the cross and quadratic terms are thus equal, and we get :
- 2 _ 2 _ 4
(3-3) og = D(Y,) g G“Yo

In the case of punctual kriging (estimation of Y(xo) at x, £ S) the system is reduced to :
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. { .8 =

| ( KK Oaa = O‘a’xo
(3-4)
. .3
°x°,x° AK °a,x°

The solution depends of course on X, and the corresponding estimator :
Y 1
Telx,)) = rglx,) T,

is an exact interpolator, i.e. YK(xa ) = Ya if x coincides with an experimental point x, € S
0 (¢} (s}
this can be verified directly with the help of system (3-4), but it is a priori obwvious that the
estimator Ya is optimal, for its variance is zero.
o

When the set S is infinite, we try to estimate Yo with the help of an estimator of the form :
\
(3=5) Yy = Jxx(dx) ¥(x)
: S

and the system (3-2) becomes
(vyes f"x(d‘) a(x,y) = GY’Yo
' S

(3-6)
ci = DZ(YO) - ‘rkx(dx) Oe.
. A Y,

But here, some reservations are necessary. If there exists a measure AK with support on S which
verifies (3-6), this solution is unique, and (3-5) is the optimal estimator. But such a measure Ap
does not necessarily exist (at least when the covariance is very regular, cf. Exercise 8) . However,
it can be shown (cf. [6]) that & unique optimal estimator Y, always exists, which belougs to the
Hilbertian space H(S) generated by the Y(x), x € S (i.e. : 1limit in the mean square of finite 1i-
near combinations of the Y(x), x € S) . but Yy does not necessarily have a representation of the

form (3-5) with a measure Ag -

This result can be explained by noticing that the systems (3-4) or (3-6) can be written as :

E Cov [Ty - Y, Y(y)] =0 (v yes)
(3-7) _ 2 '
: { o8 = DA(Y,) - Cov (¥, Y,)
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Hence Y, is the only element of the Hilbertian space H(S) such that Yy - Y, is orthogonal to every
element Y € H(S) (i.e. with a covariance equal to O with every Y € H). This property characterizes
Y as being the orthogonal projection of Y  in H(S), hence the existence and uniqueness, but obvious-
ly this does not imply (except in the finite case when H is a Biclidean space) the existence of an

integral representation of the form (3-5).

Let Z(x) now be a R.F. with centred covariance o(x,y) and a constant expectation m = E[2(x)],
non zero, but known. We are led immediately to the preceding case by using the R.P. Y(x) = Z(x) - m.
Thus the optimal estimator is :

(3-8) Zg=m+ )\g (Za - m)

oY

(3=-8") Ig=m+ ka(u) (z(x) - m]
S

with coefficients )\; or a measure )‘K verifying the same systems (3-2) or (3-6) , and the variance
oé still having the same expression.

3~4 STATIONARY RANDOM FUNCTION WITH UNENOWN EXPECTATION.

3-4-1 Kriging equations.

let 2(x) now be a R.P, with constant but unknown expectation m, and o(x,y) its
centred covariance. Z = Jp(dx) Z(x) is to be estimated from the Z, the values of the realization
on a finite get § = [xa,a = 1,2,...N}, with the help of a linear combination of the form :

As the expectation m is unkmown, it is necessary to impose on the coefficients A% the said condi-

tion of universality ::.

(3-9) Z A% =
a
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Indeed, the beat possible linear combination is the one that minimizes the expectation of (ZO-Z*) 2.

We have

E(z,-2")2 = E(z,2) - 2 B(3, 2") + (292 =

20, _ ay2 2 - a a,B
o<(1 %K)+D(Zo) 2 A caz°+}\}\aaa

As m is unknown, this expression can only be minimized if it does not depend on m, in other words
if (3-9) is true.

This condition (3-9) can also be justified by requiring the estimator 2" to ve unbiased what-

ever the (unimown) value of m (universal estimator). As

E(3,-2) =m-nZ A
a

again we find that this expectation is zero whatever m may be, if and only if (3=-9) is true.

When the condition of universality (3-9) is verified, E(Zo - Z’) is equal to O, and consequent-
ly
_72%y2 _ p2 _ " _ p2 - a’ a«a B
E(3,-2)° =Dz, - 2) = D(3,) - 2 oa,Zo"}‘Kcaa
In expreasing that this quadratic form is minimum, regard being had to condition (3-9), we get the
following system containing a Lagrange parameter j : '

@, 2 tp
(3-10)

Z A=1

a

Multiplying the first equation (3-9) and taking into account the second one, we get :

a ,B = a_ .,
AT N °aﬁ‘>‘ aa'zoa’p.i) AT = A amzo+p

Hence the expression of the kriging variance, where the Legrange factor intervenes :

*
(3-10") 22(a"- 2,) = DX(2)) + b - 2T op g
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In the caze of punctual kriging at a poirit X, this system becomes :

(3-11) Z At =1
a

«
oA cyzx,Z

(ol e} o

Here too it can be verified that punctual kriging constitutes an exact interpolator.

It can be shown that the system (3-10) is always regular. In the continuous case, there always
existsa unique element z" € H(S), the limit in the mean square of finite linear combinations veri-

fying condition (3-9), and such that :

Cov (2" -2 ,2%y)) =0 vVvye€s

fo) ’
This unique element is the projection of Zo in the closed linear variety defined in H(S) by the uni-
versality condition, hence the existence and uniqueness of the optimal estimator Z*. Here also, Z*

has not necessarily a representation of the form fx(dx) Z2(x) with a measure A with support in S ve-

rifying S
EJ)\(dx) o(x,y) = cy'zo + 0 Yye€es
(s
(3-12) (
( Ia(ax) = 1
(s

But, if we can find a measure A obeying (3-12), then 2" = a(dx) Z(x) is the unigue solution of the

problem.

3-4-2 Optiral estimation of m.

Instead of estimating a spatial mean of the type J-p(dx) Z(x), we can also try to
estimate the expectation m = E[Z(x)] itself. We are going to determine the estimator of m and, in
the following paragraph, to examine the relation existing between o and Z*. We shall limit oursel-

ves to the case where S is finite ; the extension to the infinite case can then be deduced very
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easily, with the usual reservations about the existence of a representation of our estimator,

using measures having support in S.

To estimate m, we talke the linear combination

We next impose on the coefficients hg the universality condition

Z al=n

which expresses that m* is without bias, whatever the unimown value of m, and the coefficients Ag
are chosen s0 as to minimize E(m-m )° = D2(n") by taking this cordition into account. From

Dz(m-m*) = Ag }\g g

we deduce that the )‘a constitute the unique solution of the following system, in which there ap-
pears a Lagrange factor p, ¢

ho daa = B
(3-13)
. a _
Ty =1
a
At the optimum, we get A ® AB caa = By E A% = By 80 that the Lagrange factor B is equal to the va-
riance of the optimal estimator
(3-13") p2(w") = u,

3=4-3 _The sdditivity theorem.

At the end of paragraph 3-3, we have indicated how to form the optimal estimator
when the expectation is not zero but is known. The optimal coefficients A are computed for the
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case m = O , and a very simple correction, which-is to replace Y(x)} by Z(x) - m, is made :
= a -
(3-8) _ Zg =m+ Ag (Z, - m)

Let us show that the optimal estimator 2" for the case when m is unlmown (paragraph 3-4-1) and the
optimal estimator n" of m itself are related by the following relationship obtained by taking (3-8):

(3~-14) ¥ =n" x; (ZcL -n)

with the same coefficients A; , the solution of the system (3-2). This result has the following si-

gnificance : we _can krige as if m was known, on the condition that we replace the real unknown va-

lue m by_its optimal estimate m .

We shall consider the right hand side of (3-14) :

* a - m¥ = a a - B

@+ Ag (Zg=m) = [ag + a5 (4 E}‘K]Za -
The quantities

@ _ ,a a - B
AT =g+ Ay (1 =T Ag)
B

obey the universality condition, for :

ZAC=TAE+ 2% (1 -Za8) =
a a a g

taking into account X xg =1 (system (3-13)).
a

let us then form the expression :

Prom (3=-2) and (3-13), we get :
APo  =q + (1 -2
: Z Y K’ Mo

af @y o

Hence, the A’B do follow the first relationship (3-11), with the Lagrange factor
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(3-15) : u=(1‘-§x§) Bo

Prom the uniqueness of the solution, we do indeed have AT = A%, and relationship (3-14) follows
from it.

Concerning the variznces, we have also an additivity relationship. From (3-14), we have :

*

z -zo=(x§za—zo)+(1-§x%)m*

But system (3-2) expresses precisely that k% zZ - zo has a zero covariance with every ZB ’

a
thus also with all their linear combinations and in particular, with m* . Hence we have :

2
042"~ 2) = D(x§ 2, - 3,) * (1 - z AB)” p?(n")

i.e.
2
(3-16) 032" - 2y = af + (1 - z g 22(a")

The first term is the kriging variance cﬁ when m is lmown., The second one gives an exact measure of

the loss of ‘accuracy we suffer relative to 2, by not kmowing the true value of m.

3.5 CASE OF AN I.R.P. WITHOUT COVARIANCE.

Iet 2(x) be an I.R.P. without drift, having a variogram y but no covariance. To estimate

z, = Jp(dx) 2(x) with .Ip(dx) = 1, we look for a linear combination

* _.a
Z =X Za

such that :

a/ the "error" Al Zo is an authorized linear combination (paragraph 2-2-1), i.e. one having

a finite variance.

b/ this estimation variance is minimum.
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Condition s/ gives T A% -Jp(dx) = 0, i.e. the same universality conditiorn as in the prece-
a

ding paragraph :

T A% =
a

When this condition is verified,we know from the mechanism of paragraph (2~2-1) that the variance
of 7" - Z, can be camputed as if there existed a covariance equal to -y. Thus the aystem (3-11) can
be transposed directly : the coefficients A% of the optimal estimator constitute the unique solution

of the system

(AP Tog = p(dx) y(x,x.) - 4

(3-17)
SaA% =
(a

and the corresponding variance ai is

(3=-17") &i = -ij(dx) v(x,y) pldy) + p + A% jp(dx) v(x,x))

*
In the continuous case (with the usual restrictions about the existence of a representation of 2

by means of a measure), we have likewise :

Jx(dx) Y(x,y) = Jp(dx) (x,y) - @ (v yes)
s
(
(3-18) %Jx(dx) =1
S

U§='JJPYP*H+JJPYK

Finally, in the punctual case, we still obtain an exact interpolator.

Note - Let \*(x ) be the solution of the kriging of the point x, ¢
)\ﬂ(xo) Oep = Y(xo’xa) - p(xo)'

(3-19) z Aa(xo) =1
a

3
|
s

oé(xo) = u(xy) + ha(xo) e(x ,x )
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From the linear character of the right hand side of (3-17), the solution of the kriging of
fp(dx) 2(x) is :

A% = Ip(dx) A%(x)

There 1s superimposition, or linear combination of the punctual krigings : this relationship ap-
plies also to the Lagrange factor : ‘

po= Jp(dx) u(x)

On the other hand, the variance (3-17') cannot be obtained by linear combination of the variances
aé(xo) of the punctual krigings.

3-6 EXERCISES ON KRIGING.

Exercise 1 (Kriging of a segment of length £) - a/ Consider, on the real line B, an I.R.F. with-
out covariance with semi-variogram y(h) and four sampling points Xy X, = X, 0+ 2 N

Iy =X, + 2, T, =X+ £. We want to krige the segment (x,,%5) 0f length ¢ from the

values z1, zz, Z3, Z4 of the realization at the points X4y Xoy x3, X, Write the sys-
tem (3~17) with the help of the auxiliary functions X and P of paragraph 2-5-2.

[Show that My = Ay = % » Ay = Ag = %&,whichiaobvious by symmetry, with A the solu-
tion of : .

dve) + 132 y(0) + 3 v(20) = x(0) + 4

u

122y + 12 y(20 + 3130

> 3 2 x(28) - (&) +

Eliminate the Lagrange parameter u, hence
AL Y30 - v(20 - $ 1(0)] = 2 2(20) - 2 X(©) - } v(20)

b/ Application to the case y(h) = |h|® (0 £ « < 2) and interpretation.
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(Solution : use Exercise 5 of Chapter 2. We get

2% -k (2%-1)

1+ 2%% - 3@

A=

For ¢ = 0, A = -12- (pure nugget effect, the optimal estimator is the arithmetic mean
of the four samples). When a increases, A decreases, is equal to O when ¢ = 1 (Mar-
kovian property of the linear variogram), and becomes negative when 1 < a < 2 : when

a > 1, the realization shows good continuity and the figure below explains why ; for

Z2,+2 2.+ 2.+2
1_—?“ < Jzﬁ (for example), the estimator must be greater than —-2-2—2 , thus A < 0 :

(Compare with Exercise 12, Chapter 4)

Exercise 2 {Orebody developed by drifts and raises).- Consider an orebody developed by two regular

grids of drifts and raises, parallel respectively to two perpendicular directions.

Let zM and ZT be the mean grades of the drifts and of

the raises, Z be the unknown grade of the orebody and
A )\ 2 _ 2 2_n2 .
/ \ oy =D (Z—ZM) and op = D (Z-ZT) be the estimation va-
l\ /) riances of the orebody by the drifts and by the raises.
)4 We assume (this is true with good approximation) that
\\ —4/,

B{(2-2) (44y)] = 0.

a/ Show,that the optimal estimator (kriging) of 2 is z5 = Zy + (1=1) Zp with A =

g
= 2—’22 (weighting by the reciprocal of the respective estimation variances) and
op * Oy o2 o2
that the corresponding variance is -3 -
op + oy

(the coefficients are of the form A and A-1 because of the universality condition .

Start with

p%(2-2") = D[(A(Z-2y) + (1-N)(22)] = A2 of + (1-1)2 o3
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and minimize with respect to A).

b/ Application to the De Wijsian case when the length of the drifts and raises are

greater than their equidistance.

[Call IM and I‘I‘ the (total) léngth of the drifts and raises, and use the relationship

2
052: =a -125 §2 of 2-8-2- Then A = -—ZILE (weighting by the squares of the lengths, and
' L + .
2 1 S
o = a - ) -
K 2 2 2
Ly + Ip

Exercise 3 (Markovian pr_operfy of the exponential covariance and of the linear variogram).- This

preparatory exercise may help to understand the following exercises.

a/ A R.F. Z(x) on the real line (8) is Markovian if, for any x, , the zZ(x), x> x, and
the Z(x'), x' < x, are conditionally independent when Z(x ) is given. Show that a sta=
tionary R.F. of order 2 with Gaussian distribution is Markovian if and only if its cen=

tred covariance is of the form C e—alhl

[Two Gaussian r.v.'s are independent when their correlation coefficient is egual to O.
If x1, x x3 are Gaussian, the correlation coefficient of I and x3 for xz fixed is

p1: - P2 p22 Deduce therefrom that the R.P. is Markovian if and only if

Vi - sz)(T _ p§3) C(n+n') = C(n) C(n') (h, B! positive)]

'b/ let Z(x) be an I.R. F. on the real line. z(x) is said to have independent increments

if the z(xi) - 2(y,). are independent when the intervals (yi,xi) are disjoint or have a
single common point. Show that an I.R.P. with Gaussian increments has independent in=.
crements if and only if its variogram is linear (the I.R.P. is then a Wiener-ILevy

process or brownian motion).

[a simple calculation shows that the increments are without correlation of and only
if the variogram is linear]

Exercise 4 (exponential covariance, continuous case). - a/ On a line, let Y(x) be a R.F. with zero
expectation and é(h) = e—alh] be its covariance. The .realization of Y(x) is known in

the interval (-R, +R). Krige the point x_ =R + h (h > 0).

o
[If Y(x) is Gaussian, we can deduce from the Markovian property of Exercise 3 that

the optimal estimator is e'alhl'{(r) with variance 1 - e-2a|hl. This property, related
to the only covariance, remains if Y(x) is not Gaussian. It can be shown directly that
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the measure Ay = e2inl 6g (Dirac placed at R) is indeed the solution of (3-6) for

any y < R, and 012{ can be computed directly as well.

b/ let Z(x) be a R.F. with unkmown expectation m and e-alhl

its centred covariance.
Show that the optimal estimator o of m (when the realization is lmown on (-R, +R)
verifiés s

+ 2 R
n* -2 Ty 2R (zwﬁjz(x) ax)

Ve e e Ve Ve e

2%a") = Tz

R
{establish the relationships % (6g+6_g) e~elxyl _ o-aR ooy andj e-elz=yl gy -
~R

2 2 -aR ; - 8 1
£-2e chay for -R s y s R. Deduce from this that the measure v = 5 dx + x(6p+5_p)
R .

verifiesj vo(dx) e'ah“yl = 1 and that the measure A, = !l .y 1is the solution re-

1+aR "o

quired with the lagrange parameter p, = 2%(n") = ﬁ ]

¢/ With the same conditions as in b/ , krige the point x =R+ h (_b. > 0) by applying
the additivity relationship.

2
-ah
[Z* = E’.-alhl ZR + (1= e-alh‘)m* H DZ(Zx - Z‘) =2 - e‘zah + L1—-1—+QE_E—L ]
o]

Exercise 5 (exponential covariance, discrete case).- a/ Let Y(x) be a R.F. distributed along a line
-a|h]

with zero expectation and a stationary covariance ¢ . The realization is known at
the n+1 points of abscissae 0, 1,... n. Compute the punctual lkriging of the point

x°=i+s(0<e<1) (i < n).

[Prom the Warkovian property, we must look for a solution of the form YK = A ‘{i +
]
A X

449 + Show that the system (3-4) 1s true for Ay =0 (3 AL, JA1) , A==
Sh( 1~eja _ Sh ca
e 0 Mg =M = TERe ]

b/ With the same conditions, let 2(x) be a R.F. of covariance e-alhl and unknown ex-
pectation m. Show that the optimal estimator is of the form

. Z +2
m=(1—b)'z’+b* (Z = ==

n+1

™Mb

Z,)

i=0 %
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a

) 2 , - DZ( * - 1 +
with b (ar1) e.a. - (n=1) Ho @) (n+1) e° - (n-1)

e-ali-3| _ el ___e'ai y g={n-1)a

Py
’

n
[Pirst establish the relationship X oy ry
=0 . e -1 e -1
look for a solution of the form AWooae B(ag + ég) for the system (3-13) and proceed

by identification].

¢/ With the same conditions, krige a point x, between i and i+1 when m is unknown.

[Apply the additivity relationship]-

Exercise 6 (linear variogram).- a/ Consider, along a line, an IL.R.F. with no drift and v(h) = |n|
its variogram. The realization is lmown at the point x = R, and at a finite or infinite
number of points < R. Show that the kriging of x, = R*h (h > 0) is Z(R) itself with
o2 = 2|n|.

[this solution is suggested by the Markovian property of |h|. Verify that the measure
A(dx) = 65 is' the true solution of system (3-18) for any y < R] -

b/ The realization is now supposed to be kmown at two points X, and Xy and at any num-
ber of points outside the interval (x1,x2). Show that the kriging of x, between x, and

x, is :
. X,-X, x -x
Y (x,) = ;g:—- ¥(x,) + x——-l ¥(x,) | (%, £ x5 5 x,)

X %

2, (xg-xo)(xo-xl)

a =
K e x,

[The Markovian property suggests a solution of the type A Y1 + (1=7) YZ . Show that
X,~X,

X,~X

sure v = 6_ +.(1=A) §_ verifies |{v(dx)|x~y| = |x -y| when y < x, or y = x, . The La-
x, x, o 1 2

with A = (linear interpolation between the two nearest known points), the mea~
grange factor is equal .to 0, and the computation of cé follows ea’sily]-

Exercise 7 (linear variogram or nugget effect). - On the segment (~R,+R) a realization of an I.R.F.

is ¥nown, with a variogram which comprises a.. linear term and a nugget term. As we are

in the continuous case, we will take y = |h| - C5. (nugget effect represented by a

Dirac measure). Krige the point x_ = Reh (h > 0). To do this :

a/ Establish the relationships J-Rlx-y| chax dx = ?a—R sha R + 3_2 chay , JRIx-yI shax dx
. R a ~R
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288 Ry . 2 shay. Hemce deduce that with a = \/g :
a
R R
(|x~y|dx - C&8(dx)) chax = %? sha R, (]x-y|dx - C8(dx)) shax = - 2 22%-5 ¥
<R -R

a shax a chax

b/ Show that the function A(x) * > <haR verifies the system :

R
J A({x)dx =1, f(lx-y[dx Cs(dx)) A(x) = - y + R . Hence deduce that the opti-
-R - R
*
mal estimator is 2 (xo) = -f-~k(x) Z(x)dx , with the Lagrange parameter py = xo-R
_R

- 2 _ 1
= h and og = 2h+ 2 cha R.

[Note that the existence of a nugget effect removed the Markovian property. The den~
sity A(x) gives positive weights to all the samples. The nugget effect is said to

raige the screens].

Exercise 8 (Gaussian e;yonential). - When the covariance is very regular, it may be the case that
the kriging solution camnot be represented by a measure. Por example, consider on a
line, a stationary R.F. of covariance C(h) = € ~ ¥ and zero expectation. We want to

krige the point x_ = R + h, h > O , knowing the realization on (-R,+R). If the opti-

o +R
mal estimator is of the type Yy = -I a(dx) Y(x) , the measure A verifies
-R

2
R _ (== 2 _ (x,-¥)
j A(dx) e = e 2 v v €(~R, +R)
-R
Show that a measure A obeglng this relationship cannot exist. 2
- fg + 2y

{The measure v(dx) e 2 A(dx) should verify Jﬁ o y(dax) = . According

to the properties of tge Laplace transformation, the only measure obeying this rela-
-X

2.
tionship would be € 85 »sbut its support is not in (-R,+R)].
o

Exercise 9 (De Wijsian kriging in R%). - In % , the De Wijsian scheme has a property of Markovian

character : when the realization is lmown on a closed contour C, there is no correla-
tion between the inside and the outside of C : when kriging an element inside C, the
mowledge of information outside C does not change the solution. There 1s a total

screen effect, ﬁhich an electrical analogy allows us to understand (log r is the har-

monic potential of the plane, and plays the same rfle in mz as the Newtonian potential
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- 1/r :Lan3).

a/ let Z(x) be a De Wijsian I.R.F. in IRZ, C a closed contour on
which the realization is known; s the curvilinear abscissa of a
point of C, r(s,s') the distance between two points of abscissae
3 and 8' on C. We want to krige a small circle centred at a point
x, inside C. Let R(s) be the distance between x, and a moving
point on C. Show that the optimal estimator is 2 = jx(s) z(s)
with a function A(s) such that : °

( ‘
g JA(B) log r(s,s') dr = log R(s') +
[+]

Jk(s) dx =t

Hence deduce that A(s) is the density induced by a mass -1 placed at x, (when the potential is log

r) in other words that (C) is an equipotential curve when a mass -t is placed at x, and the density
A(s) on C.

We know that the potential is constant not only on C but also outside C. Hence, deduce that if y is
any point outside C, we have still

Jk(s) log r(s,y)ds = log r(x,,¥y) + u

[o]
and that the density A(s) still gives the kriging solution when the realization is known on C and
on any set S' inside of C (total screen effect).

b/ The Green function G(x) relative to the point x, is characterized by the two follow-
ing properties : 1/ G(x) is constant on C’

2/ G(x) - log r(xo,x) is a regular and harmonic function at any point
x inside C, including X, We lmow that the induced density A(x) is given by ?1“- %%
(derivative with respect to the positive riormal).

Hence deduce_ the kriging of a point X knowing the realization on a straight line.

[The Green function is log f, s cf. figure a,and A(x) = ;1- —211_2 1.
x“+h

¢/ Same question for an inaside point X lmowing the realization on a circle of radius
R.
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[here G = log %,, with x; the inverse of x, in an inversion of

modulus Rz]. Use polar coordinates :

h
E 4 G = 1 log 2+e.2 - ap cos 8
2 2 R B 0
Fig. a P +?—23.pcoa
We get the density
- )‘(e) = ;2—2;"2 JE = Rz-aa. 1
Fig. b 2r R r 2r R p2+'32-25pcose

Exercise 10 ( Kriging for large grids) (cf. Ex- 13 to 15, Chapter 2).- A surface S is to be kriged

from n+k samples, with k samples taken inside S and n outside. The distance between
two distinct samples, and the distance between each sample and the boundary of S are
supposed to be greater than the range. See notations of Exercises 13 to 15, Chapter
2.

a/ Write the kriging equations. Show that they reduce to :

Cki Osi+p,

L]

Eki 1

A
with Tqy = 0 for the outside samples i and Oy = 1 -§]- for the inside samples.

Deduce that the k inside samples have the same weight A and the n outside samples the
same weight A' with :

b/ Compute the kriging variance :

2 2k A nx L2 4
(cg=c-®9) -&g ng -5 xgrmx)

In particular, when S is great, we have the approximation formula :

A
o B -7
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¢/ Compare these results with €ormula (3-1) of paragraph 3-1, and show that in the .
cage of large grids', the optimal estimator is the same as that obtained initially by
Krige with his linear regression method.

® A :
[The regression coefficient is B = —L %;i—sl 1—1 . When m is known, the op-

timal -eatimator is identical to that given by the linear regression :

ZK=m+ﬂ.('1fk ?lxi-m)

X, grade of the inside semples: From (3-4-3), we have to take

* * 1 *

2 =m +8 (g § X -n)
with m" = ﬁ'ﬁ (0> I+ z XJ) (Yj outside samples). Thus, we get A and A' as before].
i 3 '

Compute the variance from the additivity x;elationahip-

. 2 2 2 kA
[With m known, the variance is cy (1-p%). Show that p< =g = gT3g - Hence deduce
that :
, - A 2 ¢
0% = a2 (1-p) + (1-8)2 D%(m") = (1-p) n g + (1-p)° F

and verify that this result is the same as in paragraph b/].
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CHAPTER 4

UNIVERSAL ERIGING

—1 INTRODUCTION

4—1-1 Review of least squares methods.

In this section, our object will be to set out in terms of non-stationary random
functions the problem of estimating drifts1 (or trends), and to show that this problem has an opti-
mal solution which ig different from those produced by the methodsa of "trend surface analysis". The
latter, which consist in general in adjusting a polynomial by a least squares method, create a feel-
ing of unease ; indeed, they produce the impression that nature has been violated by having a poly=-
nomial imposed by force, and there is no a priori reason why a polyhomial should represent the actual
‘structure of the phenomenon to be represented by it. The three main criticisms of the least square

methods are :

Firstly, the methods often show a confusion between the concept and the mode of operation. Few

authors bother to define what they mean by the "trend" which they are going to estimate by a least
squares method. The impression is often created that this famous trend is nothing more than a nume-
rical result brought about by the mode of operation - i.e perhaps a pure and simple artefact. Upen
reading the literature refering to trend, it seems that it can refer to at least three distinct
ideas : if Z(x) is the regionalized variable concerned, anmd P(x) is the polynomial adjusted by the
method of least squares to fit the lmown experimental values at points Xy xz,..., the value of x

in P(x) can be given one or the other of the following incompatible meanings :

a/ P(x) is (an estimation of) the a priori expectation E[2(x)] : it is always in this sense

that the term "drift" will be used here.

b/ P(x) is an estimate of .the true value (unknown) Z(x) taken by the regionalized variable at
point x : it is in this sense that the term "punctual kriging" will be used here. More precisely,

punctual kriging will give the best linear estimator for 2Z(x) from the given data Z(x,), Z(xz)....

1 - In order to avoid any anthropomorphical connotation, we shall always use the term "drift" ins-
tead of "trend". )
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¢/ Lastly, P(x) is sometimes given the meaning "moving average". P(xo) would thus be (an esti-
mate of) the mean value of Z(x) in an area of variable size (to be specified) surrounding the given
point x . Here, kriging will designate the best linear estimator of this moving average.

These distinctions are very important theoretically and practically. 1t is essential to def;ne
precisely whether a/, b/, or ¢/ above 1s what is meant at any particular time. In subtmarine contour-
ing problems , the true va.lueé Z(x) are to be estimated and mapped (case bv/). In mining, it is the
meaﬁ ore grade within a panei of given size which is of interest (case c¢/). In certain studies of
a more fundamental nature, where the object is to reconstitute the mechanisms which have produced
the phenomenon being studied, the drift itself would give a reflection of the struct.ure of these
mechanisms (case a/). In geophysics for example, the notion of regional moﬁaly corresponds to the
concept of drift. ’

This brings us to the second objection against the methods of least squares. It is impossible
for the same polynomial P(x) to solve the three problems set in a/, b/ and c/- It can be seen that
P(x) solves the problem a/. But in generﬁl, it is not the best solution possible ; "master" methods,
which always use the same polynomials whatever the structural characteristics of the phenomenon un=-

der study, have in general no chance to produce the optimum solution.

Thirdly, least squares mefhods have no way of defermining the magnitude of the error made by
estimating the drift from the polynomial P(x). Contrary to what is sometimes believed, the variance
of the residuals is not an est'imation variance ; the variance of the differences Z(xi) - P(xi) at
points such as x; where the data are actually known is, by construction, systematically less (and
very much less) than that of the differences Z(x) - P(x) at points x whose values are not actually
known. Thus, the variance of the residuals is not the estimation variance of 2(x) (problem b/ above).
Moreover, neither is it the estimation variance of the drift (problem a/), because in this case there
is no conceptual link between the difference Z(xi) - P(xi) and the guality of P(xi) considered as
an estimator of the a priori expectation E[Z(xi)].

However, even if the methods of least squares are unsatisfactory, the purpose they had in view,
but which they attain so badly or not at all, is concerned with a real and important problem. There
are actual phenomena which absolutely cannot be represented by (realizations of) stationary random
functions. In submarine contouring for example, it is quite certain that depth increases with in-
creasing distance from the shore. We shall try to set out and solve the important problems raised

by such drifts in terms of the theory of non-stationary ra.ndom‘ functions.
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4-1-2 Statement of the problem and general hypotheses.

The regionalized variable z(x) to be studied will be interpreted as the realiza-

tion of a random function 2(x) which in general is non-stationary. In the first set of hypotheses,
i1t will be assumed  that Z(x) has for its first and second order moments :

g E[2(x)] = m(x)
(1) (

E E[2(x) 2(y)] = m(x) m(y) + C(x,¥)

We shall say that the function m(x) is the drift of the R.F. 2(x). In fact, it seems that the only
definition of drift which is clear in concept is this one : the first moment of a non-sationary R.F.

The function C(x,y) depends on the two points x and y and is the usual (non-stationary) covariance.

In many cases (as shown in practice by Geostatistics), the hypotheses set ocut in (I) are still
too restrictive, and are better replaced by the hypotheses in (I'), which show that the increments

of the R.F. 2(x) (and not 2(x) itself) have the following first and second order moments :

E(2(x) - 2(y)] = m{x) ~ m(y)

(1)
lznz[z(x) - 2] = v(xy)

P N )

In this case, the drift m(x) is defined except for a constant only, for, in general, the expecta-

tion E[Z(x)] no longer exists : hence the point of view of hypotheses (I') amounts to studying the
random function Z(x) except for an additive constant. The function y(x,y) is the usual semi-vario-
gram. (In one dimension, Brownian motion or Poisson processes are examples of an R.F. having no

expectation, which verifjes the hypotheses of (I'), but not of (I)).

The two following problems, related but distinct, have to be solved : knowing the numerical
values in a set S (i.e. the set of points where experimental data are available) taken by a reali-

zation z(x) of the R.F. 2(x), we have to :
1/ estimate the function m(x) (over S and outside S) : this is the problem a/ above.

2/ estimate z(x) at a point x £ S (problem b/), or, more generally, estimate a "moving average"

jp(dx) z(x) where y is a measure whose support is distinect from S (problem c/).
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Moreover, it must be possible to represent by means of estimation variances the errors made in
these estimations, and to choose thé eétimators in order to minimize (as far as can be done) this

estimation variance.

Concerning this last point, it is emphasized that we shall try to find the best possible linear
estimatorof m(x) or Jp.(d.x) z(x) that can be constructed from the numerical values of z(y), y € S :
the non-linear estimators are far too complicated to be‘used in these problems, and on the other
hand their properties do not depend only on the first and second order moments which appear in ex-
pressions (I) and (I') but make the whole distribution of the R.F. 2(x) intervene. (Moreover, in the
case where this distribution is Gaussian, it is lmown that the best possible estimator colncides

with the best linear estimator).

Thus, stated in completely general terms (functions m(x) and C(y,x) being totally unlknown),the
'problem obviously cannot be solved, and is also probably meaninglesa. But in actual problems, the
idea of drift camn only have real meaning if the corresponding function m(x) verieg continuously and
regularly in relation to the scale at which we are working (and to the available experimental data):
if the function m(x) is irregular and apparently chaotic at this scale, it must be considered as the
realization of a new R.F. From the point of view of physical interpretation (i.e. non mathematical)
the idea of drift is obviously related to that of scale. Taking topography as an example, at a scale
of tens of metres, the idea of mountain is expressed by a drift ; at a scale of tens of kilometers,
it corresponds to a random function, and at this scale, the drift would rather express the notion

of a chain of mountains (see also the concept of gigogne structure [7])-

But the condition of regularity, imposed a priori on the function m(x) so that the idea of
drift has an actual physical content, means as well that a local estimate of m(x) is always possi-
ble to some extent. In fact, this condition states that in a certain vicinity V of a given point
x,, the function m(x) can be approximated with excellent precision by a function of the form :

. . 0 ¢
(1) m(x) = £(x) =e2 aef (x) = a.ef (x)

where the fe(x) are known functions, chosen once and for all (e.g. polynomials), and the ae are
unknown coefficients : the neighbourhood V of X, where the approximation (II) is acceptable without
being too large must - if the problem makes sénse ~ contain enough experimental points so that the

k+1 unknown coefficients 8y &1, +ee8q can be estimated.

v
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There remains the problem of the function C(x,y), or y(x,y), about which nothing is known a
priori. But here again and for the same reasons, it can be assumed that C or y can be assimilated
to functions of known types, at least locally, and change only slowly with distance on the working
scale.

The most favourable case will Be that of a function y (or C) of the form y(x,y) = » Yo(xyy)
where Yo is a known function, and w 1is a factor which changes slowly, and which can be regarded
as being constant in the neighbourhood V of x, ¢ as the equations which determine the optimum esti-
mators are linear and homogeneous, these estimators will only depend on Yo and not on the factor =;
the latter only affects the estimation variance, and not th® estimators themselves. In certain ca-

ses, the following simple expression can be used :
v(xy) =ar (r = |x~-y])

(linear variogram). In this case, it is sufficient that the true variogram or true covariance has a
linear behaviour near x = y and up to distances comparable with the dimensions of the neighbourhood

V described above ; this happens more often than would be thought at first sight.

In general, however, it will be convenient to introduce one or more supplementary parameters

besides the factor m. e.g. :

v(x,¥) = o r%! (0<a<?2)

[l

or else

|
2

C(x,Y) = —ar

In the first case, the parameter a is related to the degree of continuity of the Re. V. In the
second case,(exponential covariance), the paraweter a, or rather its inverse, gives a measure of

the range of the phenomenon (i.e. the distance beyond which correlations vanish).

Of course, the experimental control of this kind of hypothesis, and the estimation of the cor-
responding parameters (w and above all g or a) will raise some delicate problems of mathematical
statistics : in spite of their prime importance for practical applications, it is not possible to

discuss these questions completely here, and we will evoke them only briefly.



Summing up the problem at hand, it may be set out as follows : we have a R.F. Z(x) verifying either
hypothesis (I) 'or (I'). In the neighborhood V of & point xé, the drift is of the form (II), the
coefficients ap being unlmown. The covariance C(x,y) or the variogram y(x,y) are known a priori
(eventually except for a factor). Lastly, the numerical values of (i.e. the realization of) Z(x)

at points x belonging to the set S ¢ V are kmown. The problem is to find the best linear estimato;s
of :

10/ ‘the unknown coefficients a ) of the drift.

2°/ the numerical value of (i.e. the realization of) Z(x) at x, £ 38 ( but x, € V) or ofJ.p.(dx)

Z(x) where the support of the measure u is separate from S.

3°/ and to be able to control the validity of the hypothesis made when choosing a particular
mathematical expression for the covariance or the variogram, and to estimate the parameters on which

this expression depends.
\

To aid understanding, the theory will not be expressed in terms of Hilbertian spaces. The
reader will be referred to [6] for certain demonstrations (especially for the establishment of the l
theorems of existence and uniqueness). The notations used are those of paragraph 3-2. In fact, real
difficulties will arise only when the experimental data set S is infinite: the existence (in the
sense of Hilbertian spuces) of our optimal estimators is always ensured, but they do not necessari-
ly have a representation of the type J-A(dx) Z(x) with meesures p with support in S. In general, in
what follows,the integral equation relative to the contimuous case will be written without explicit-

1y repeating this essential reservation, which the reader should always bear in mind.

4-2 OPTIMAT, ESTIMATION OP THE DRIFT.

4-2-1_Estimation of the drift at a point.

Iet us first examine the case where the hypotheses (I) and (II) of paragraph 4-1-2

apply : existence of a drift having the representation :

m{x) = aefp(x) (€ =0,1,...k)
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in a certain neighbourhood V of the experimental data domain S, and existence of a centred cova-
riance o(x,y). The numerical values of the k+1 coefficients ae are unknown, and we want to esti-

mate the value m(xo) = fg(xo) of the drift at a point x (which can, indifferently, belong to S

a
|2
or not, but must belong to V).

For tha.tA purpose, a linear estimator of the form
m*(xo) =% Z, or j}\(dx) 2(x)
S

will be constructed, and two conditions will be imposed on the coefficients A% or on the measure

Al

a/ The estimator must be unbiased whatever the (unknown) values of the coefficients a, (uni-

e
versality c_ondition) .

b/ Taking the universaality condition into account, the variance of this estimation will be mi-
nimal (optimality condition).

In general, the argument will be given for the case where the set S is finite, and the results
sSo obtained will only be transposed to the continuous case (with the reservations expressed in the

preceding paragraph, concerning the representation of the estimators by means of measures).
Let us first examine the universality condition. It is written E[m*(xo)] = m(x, ), i.e. :
a Bl _ 4
ae)\ £, = acf (x,)

whatever the a ¢ thus

(4-2-1) @ 28 fe(xo)

or, in the continuous case :

jh(dx) £lx) = tl(x,)

3

When this condition is verified, E[m—m“]2 is equal to the variance D?(m-n") and hence no longer de-

pends on the unknown coefficients a, . This variance is :
o
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%(m") = A% AP %

The coefficients A% remain to be determined by minimizing this quadratic form, taking the univer-
sality condition (4-2-1) into account. There appear k+1 Lagrange factors e and the following
system is obtained :

kﬁ Uaﬁ = pefg
(4-2-2) (€=0,1,...%)

A% ff = fe(xo) .
Thé covariance matrix is always supposed to be strictly positive definite. It can then be shown
{c£. [6]) that the system (4-2-2) is regular and has thus one and only one solutionm, ifband only
if the k+{1 functions fe are linearly independent on S (in the algebraic sense), i.e. .ii’ :

¢ _ - .
Cp fa—Q » CE—O

In what follows, this condition will always be supposed to be fulfilled : in the applicatioﬁs how=
ever, it will always be necessary to make sure that it is so..

In the continuous case, with the usual reservations, an estimator will be sought, which is of

the form m*(xo) = ~fk(d.x) Z(x) with a measure A with support in S verifying the following system :
S .

f)\(dx) o(x;y) = u‘efe(}’) s vYyes
(4~2-3) ’
fx(dx) 2l(z) = fe(xo)

Let us now look for the variance of the estimator. At the optimum, the system (4-2-2) is verified.

By multiplying the firat relatiomship of this system by 2 & , and using the second relationship, we
get

4

A 2la 2t

o’

Hence, in the discrete case as in the continuous case, the variance of the estimator is related to

the Lagrange parameters by the formula :
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(4~2-4) Dz[m*(xo)] = 1y fe(xo)

Case when a variogram exists, but no covariance.

In all that follows, the functiom £° corresponding to { = 0 will always be the function iden=-

tically equal to 1, #%(x) = 1, and the coefficient a, Will play a particular role. Indeed the drift,
as the R.P, itself, can in fact be defined except for a constant only, and a, is really indetermi-
nate when no covariance exists. In principle, it is not possible to estimate m(xo) itself. This can
also be seen when noticing that for € = O, the universality condition (4-2-1) is reduced to T zE =
= 1 : thus this is not a permitted linear combination (paragraph 2-2-1). On the contrary, itais pos-
sible to estimate m(xo) - m(yo) for any couple of points x  and y - Indeed, let us fix x  and con-

gider the R.F. :

2'(x) = z(x) -zly,)

1

Its drift is m(x) - m(yo) = m’(xo) and, its covariance :
c(x,y) = = v(x,y) + v(xmy) + v(3Hy,)
(See paragraph 2-2-1). This time we have :
w(x) =8, i) - 2, (€= 1,2,...8)

the constant a, being eliminated. The argument can then be repeated and m'(xo) can be estimated

with the help of a permitted linear estimator :

S g N S
m (xo) A za A Za

T A*=0
[+ 4

The universality conditions are then :

A fps = cpg(xo) 8=1,2,...k

(the equation in =0 disappears, since ¢° =1 -1 = 0). The variance Dz(m'*) is :
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p%(m'™) = A% AP (- = =-2%2P Tag

Yop * Yax, * Ypy,)

because of the coadition I A% = 0, and we get the systenm :

(-kpvap=ue¢£+uo

A gl = ¢€(xo)

A% =0

Besides, u, qas = iy fg 'y fP(y'o), and the constant hy fe(yo) may be included into the Lagrange
parameter p.;. Likewise, AZ q:s =% fg because T A% = 0. Finally, we obtain the following system,
deduced from (4—2—2) by réplacing aaﬁ by - Yuﬁ , restricting the index ¢ %o the values 122,...k,
and introducing in counterpart the supplementary universality condition ¥ A% = 0 and the ccrres-

ponding parameter Bg *

EUR PRIV R
' 4 4
(4-2-5) 2 2= ehx) - 2f,) (= 1,2,...5)
Z 2=0
a

The correspording estimator A% Z, (which estimates the increment m(xo) - m(yo)) has for a variance:

(4-2-6) D20 7) = wp [£%x,) - 2l )]

4=2-2 PEatimation of the coefficijents of the drift.

First, consider the case where a covariance exists. The solution of (3-2-2) A% =
= Aa(xo) obviously depends on x, and examination of the right hand sides shows that it depends
linearly on fe(xo). When x describes V, or even simply S, the fe(x) are linearly independent. Hence
there exist a unique matrix Ag and a matrix pp. such that :

K“(xo) = k;' fe(xo) ’ “g(xo) = byg fs(xo)
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and this unique matrix is the solution of the system deduced from (4-2-2) by equating to O the
2
coefficient of £ (xo), i.e. :

}\% o’aﬁ=pesf2
(4=2-7) (£=0,1,...X)

4

The estimator m*(xo) = )‘(El z, fe(xo) is thus of the form A, f (xo) with

[4

( Ae = )\? Za
(4-2-8)

E(Ae) = ag

(whatever the unknown values of the ae are). Hence, Ae is a.universal estimator of ag , charac-
terized by the fact that for any vector be , the variance of Ae bg is minimal (taking the universa-

1lity consition into account). Thus A@ is the optimal universal estimator of the coefficient e.e .

Prom (4~-2-4), for any vector b€ :
2 (4, t) = bfpS
14 = Heg

Hence the matrix Bog of the Lagrange factors is identical to the covariance matrix of the optimal

estimators A, (in particular, it is always symmetrical) :
(4-2-9) wpg = Cov (Ap, Ag) (€=10,1,...%)

Case where there is no covariance, but only a variogram.

The system (4-2-5) also depends linearly on the fe(xo) - fg(yo). Thus a unique gatrix )\‘z
(€=1,2,...k) exists, verifying :

_ s
)‘g Yag T T Hos - “'oﬂ.

(4-2-10) g 23 =68 (&= 1,2,...%)
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The Ace' Z, ¢=1,2,...k; are the optimal estimators Ay» Ay Ay of the coefficients a,, &y ...8;
(except a ) and the matrix pp, 1s equal to the covariance mdtrix of these estimators.

(4-2-11) Bgg = Cov .(Ae v Ag) (€= 1,2y...k)

Note : To complete the system (4-2-10), it is possible to introduce a vector J\g and the function
£°(x) = 1, and to determine A by the comditions T A% = 1, AP Yes = = Hos 23

= 2~ Moo ° The system
thus completed is identical to (4-2-7).

A Yap =" wes Ta
(£=10,1,...k)
Ag r‘;=5§

We shall return in paragraph 4-6 to the interpretation that can be given to the Ag and to the 1li-

near combination

which is not a permitted linear combination, and hence has in general, no finite variance (rela=-

tionship (4-2-11) is only valid for £ and s # O).

Continuous case. - There is no difficulty in tra.nsposi;ng the system (4-2-7) or (4-2-10) to the case
where the data set S is infinite. With the usual reservations about the capability of representing
the estimators Ae (which always exist in the sense of Hilbertian spaces) by means of the messures
}\e H

Ap .-.\JS‘)\Z (ax) z(x)

the system (4-2-10) for instance, becomes :

jxe(dx) v(x,¥) = = ppg £5(y) - Bop (y € 8)
S
(4-2-12) ' jxe(u) £2(x) = 53 (€ =1,2,...X)
. L 3
Jke(dx) =0

(hpg = Cov (4p ,A5))



151

4-2-3 Tensorial A Invariance.

The optimal estimator of the drift is unchanged when a linear transformation is
2

performed on the functions £~ . Consider, for example, the case where a cpvariance o exists (the

2

argument would be the same in the case of a variogram). Let B = (Bsp) be a regular matrix, B' = (B's)

its inverse., Put

of@ = 3¢ £2(x)

the drift m(x) takes the form

( o(x) = a.} qae(x)
ae = Bes a,

With these new functions ¢ ¢ , the optimal estimator of m*(xo) is

% _ L, 'a
m (xo) =x %z,

*
with coefficients A * the solution of the system :

' ' e
2 A'B Uaﬁ pe fa
(4-2-21)
}\’a Qi - Qf(xo)

But qag = Bg fi , qae(xo) = Bg fs(xo) and the matrix B is regular . Hence, the second relationship

(4-2-2') 1is equivalent to

f“f£=qud

The system (4-2-2') itself is thus equivalent to (4-2-2) and A= A%, as the solution is unique,

hence :
% »*
m (xo) =m (xo)

The optimal estimator does not change for linear transformations of the functions fe. Concerning

1
the optimal estimator AI of the new coefficients a.z; , they verify :
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ap ofzy) = a, 2hx)

The optimal estimators are transformed according to the same law as the real coefficients, i.e., in

e

a contravariant manner with respect to the £~ .

Note - In applicationa, it often happens that too large a zone is to be studied, so that the repre-
sentation of m(x) in the form a, fe(x) is not admissible. ‘his zone is then cut into domains UPY
«se« in which the 'approximation is legitimate, but with different coefficients ap on V.I, V2 etC....

It is more convenient to place the origin of the coordinates at a point x; € ‘Ti to study the
domain V,, and this amounts to changing cpe(x) to fp(x-xi) in the basic functions. If the functions
£ e are polynomials, trigonometric functions, or, more generally, multinomial exponentials, the new
functions q;g are linearly expressed by means of the original ones : hence, from the tensorial in-
variance, this change of coordinates does not affect the optimal estimator of the drift.

In fact, it can be shown that the multinomial exponentials are tﬁe only functions having this
property (invariance by translation of the finite dimensional vectorial space generated by the fg).
Therefore, in applications, only this type of functions is used (unless the physical conditions of
the problem give a privileged rfle to a particular point of the space, and this is then chosen as

the absolute origin of the coordinates).

4~2-4 The varidgram of the residuals.

We will call the residual at the experimental point x € S the difference between

the observed value and the (optimally) estimated drift at this point, i.e. :

¢

R(x) = 2(x) - Ap £ (x)

When a covariance exists and when S is finite, the two matrices :
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respectively give the optimal estimator m: of the drift at x, and the residual at this point :

(4-2=13) o = Ai Z, » Ry = ¥z

We shall return later on to the algebraic properties of these two matrices which play an important
r8le in the problem of the indeterminability of the underlying variogram (paragraph 4-6).

When there is no covariance but only a variogram, the residuals themselves are indefinable

(as A, no longer exists), but their increments
R(x) - R(y) = 2(x) - 3(y) =m'(x) + m (3)

are well defined, since they do not depend on Ab. One can then speak of the variogram of the resi-

duals which will be, by definition, the function :

va(xy) = § B[R(x) - R(y)]? (x,y € 5)

let us compute this expectation (assuming that the n'(x) are effectively the optimal estimators of
the drift). We have :

Yp(xoy) = 3 Dz(zx-zy) - Cov (Zx-Zy)(m; - m;) + 4 0%(a] - m;)
By definition, % Dz(zx-zy) = y(x,y). From (4-2-6) and(4-2-10), we have also :
3 0% - ) = g, (5]~ £l - 2]
Let us compute the cross term. Firstly, we get :

(2,-2))(a) - my) = [£f - fi][zx-zy] J;E (dz) 2(z)
. S

then :
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E[(zx-zy) lhe(dz) 2(2)] = jxe(dz) {- v(x,2) + y(y,2)]
' S
as these are permitted linear combinations. As x and y belong to S, the first relationship (4-2-12)

then gives

¢
jxe(dg) (- v(z,2) + v(5,2)] = npy (£, - f;)

S
hence -

E(Zx-zy)(m; = "g) = Big (f£ = ’?5)(’3:" fssr)

A3 the estimators are optimal, the usual simplification occurs, the cross term is equal to the gqua—

dratic term, and the variogram of the residuals is : -

(4-2-14) Ya(x¥) = v(x¥) - % ugy (22 - 2b10e2 - 23]

As “es is positive definite, the variogram of the residuals is always less (and even much less)
than the true variogram (or, as we will call it, the underlying variogram). '

Iet then k(x) be the indicator of the experimental data set S, and K(h) its geometric covario-

gram (in the continuous case. If S is discrete, we would get analogous results). Put
* — . - ot *aq2 .
y () = m—k-)- Jk(x) k(x+h) [Zx+h Zp - W, * mx] dx

y*(h) is an unbiased estimator of the average variogram‘of the residuals:

E[y"(n)] = 7R(h) = f['b‘ fk(vx) k(x+h) yp(x,x+h) dx

But Yo(h) will be very different from the true average variogram :
R A

() = -ﬂjm- Jk(x) k(x+h) y(x,x+h) dx

Prom relationship (4~2-14), we get :

( Fo(m) = 7(n) = 4 up, 2

(4~2=15)
et -y [t xtom 1oty - it - 2
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hence YR(h) < Y(h) : it can be seen that y’(h) gives a heavily biased estimation of the true mean

‘ variogram.

In Exercise 1, paragraph ¢/, it will be geen that this bias is considerable. The bias can be
sufficiently large as to persuade the experimenter to draw false conclusions about the independence
of the residuals. This effect is of course general, and also occurs when the drift is estimated by
any other procedure (non-optimal) for instance by least squares methods : it gives to the experi-
menter the (wrong) impression that the phenomenon he is studying is reduced to the simple sum of a

drift and a white noise.

4-2-5 Comparison with the method of maximum likelihood.

In the case when the set S is finite and the R.PF. 2Z(x) is @Gaussian, the optimal es-

timator of the drift formed in paragraph 4-2-1 1s identical to the classical estimator of the maxi-

mum likelihood. Indeed, let Za be N Gaussian variables, their covariance matrix, ]3"“3 the inver-

%ap

se matrix and :

= - 2
E(za) = oy = 8 o
the- expectations of the Za’ depending on k+1 pa.rametérs a, to be estimated. The maximum likelihood
egtimator is obtained by choosing for the é.e the values which maximise the expression for the pro-
bability density of the r.v. Za at the points L corresponding to the numerical values of the rea-
lizgtion of the Za. In other words, the following quadratic form is minimized :

Baﬂ(za-ma)(zs-mﬁ) = B“ﬁ(za- ap fi)(zs- a, f;)

]
with respect to the 8y - Let Ae be the values of the a, which minimise this expression. They are

(4
obtained by solving the system

(4-2-16) A gl fi 3% = f: B 2

¢ B B

But the system (4-2-7) gives (by reversing the first relationship)

(4-2-16") A? - g £2 ugp
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and (substituting the secomnd relationship) :

el g3

Y
8 Ta Bap Pai = 81

Thus, the Lagrange parameters matrix -Iﬁ o oL (4-2-7)_1is the inverse of the matrix £ B f of the sys—
tem (4-2-16). The solution of this system is thus :. '

2]

Aé = iy f: Bua

But from (4-2-16')the optimal estimator A, can be put in the form :

Ay = Ag Zg = kgg 23 B® Zg

We have thus the numerical ei;uality Aé Ae for Zp = zB fixed, and hence the identity of the two

egtimators, as stated.

Note.~ Our optimal estimator is more general than the maximum likelihocd estimator, for it is not
related to a Gaussian hypothesis and is seneralizéd to the case where S is infinite. In applica-~

tions, the system (4-2-7) is easier to solve, -as it requires only one matrix inversion.

4-2-6 Case of a drift given in an implicit form.

In certéin applications, particularly in geodesy, it may happen that a given drift
is to be estimated, not in an explicit form m, = aa fg, but in an implicit form, by a system of 1li-
near relationships to be verified by the m . The typical problem is the following : N parameters o,
are to be estimated, these parameters being linked by N-k < N physical or geometrical relationships
(for example the 3 sides and the 3 angles of a Euclidean triéngle, verifying 3 geometrical rela~
tionships). The available data Za contain the errors Ya' i.e. :

.Za = Ya +m,
We suppose that E[Ya] = 0, and the matrix s of the covariances of the errors Y, is lmown; using the

Za, we try to form the best possible estimator mz of the unknown parameters o, (which implies,- in
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particular, that the m: themselves follow the constraints imposed to the ma). In general, a solu-

tion which is sufficiently approximate is lmown at the start so that it is possible to linearize

the congtraints. In other words, a matrix M can be found, such that the constraints are in the form :
(4"2—17) % m(l =0 (u =1, 29---’N-k)

and so that M is of rank N-k. It is obvious that (4-2-17) expresses that the vector m belongs to a
k-dimensional subspace of IRN If we choosea base fe(e = 1,2,+..k) of this subspace, the conditions

(4=-2~17) are equivalent to the existence of k coefficients ae guch that :

(4=2-17") m, = a, £,

The problem can then be reduced to the optimal estimation of the drift m: . But it is not necessa-
ry to define the fg more closely, and this problem can be treated directly starting from the con-
ditions (4-2-17) given in implicit form.

Before establishing this result, notice first of all that the optimal estimator will be (impli-
citly or explicitly) of the form : ‘

and consequently, from the equivalence of relationships (4-2-17) and (4-2-17'), will verify by it-

self the imposed conditions, i.e. :
N[g m* =0
. =
without the necessity of introducing supplementary constraints.
To be able to perform the computations in implicit form, we need the following simple lemma :

& A ;\fs torized by M (i.e. there exists a linear mapping S from
/// E2 into E3 such that A = SoM) if and only if the ker—
&
//‘9 nel of A contains the kérnel of M (thus that Mx1 = 0Q,
, e e e e s

) x, € E, involves Ax, = 0).
(N 1 1
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This condition is obviously necessary. Conversely, suppose that it is true and let x, be a point

of E,, X, € M'1(x2) a point of the inverse image of x, into E,. Any other point of this inverse i-

1
mage is of the form X, +¥, with w1 = 0. We have then A(x1+y1) = Ax1, as W1 = 0 involves Ay1 = Q.
The mapping S of E2‘ within E3 defined by Sx2 = Ax, for an x, € M’1(x2) is hence defined without am-
biguity, is obviously linear, and verifies by construction Ax1 = Sx2 =5 Mx1 for any x, € E1, thus

A= So M , which establishes the lemma.

let us return to our implicit drift. To estimate the B, s we are going to form the linear es-

timators

verifying the two usual conditions of optimality and universality :

Universality_ condition : E[m:] =m, ; OF A‘; mB =, whatever the unknown parameters L verifying

(4-2-17). In other words MZ m_= O must entail (ag - Ag) m = 0. From the lemma, this is so if and

only if the linear mapping I - A of IRN into IRN ig factorized by the mapping M of ﬁN onto KHN-k,hence
if and only if there exists a matrix s: such that :

u
(4-2-18) A 5i - Ag =5 Mﬁ

Optimality condition : for any given «, the N-k coefficients S‘;‘ must minimize the variance Dz(m:).

[

From ‘(4-2-18) we have

*

_ _ g4
ma-za samgzﬂ

hence

2 *
p2(my) = 04, = 2 S{y ¥ o(4ye + S(g) (o) W %y

(without summation on «). Equating to zero the partial derivatives with respect to s?a), we obtain

the system
-2 ' I A
(4-2-19) Sy 8 og, W = 1) o g

‘his system is necessarily regular (as the algebraically equivalent problem formulated with the fﬁ
has a unique solution). This can be verified directly (Uaa is regular and Mﬁ is of rank N-k). The
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corresponding estimation variance is :

(4-2-20) Dz(m:) = Yaa st(la) nﬁ (a)B

4-2-7 Comparison with least squares methods.

To estimate the coefficients a, of the drift ap fg(x), where the known functions
f‘(x) are (for example) polynomials, we have sometimes recourse to the least squares method. This
method will be studied and the efficiency of the estimators (non-optimal in general) that it gives
will be examined through a simple case. PFinally, we shall see in which case the least suqares me-

thod leads to the same optimal estimator as universal kriging.

a/ Theory of least squares. - ILet Z(x) be a R.P. having a drift

X 2
m(x) = 8, + §1 ae £7(x)

with unknown coefficients ap - The realization of 2(x) is known on a set S with indicator k(x) (=

if x € S, = 0 if x ¢ §). From this realization, k+1 numbers Bj, B,,...,B, minimizing the integral

are determined:

I= Jk(x) [2(x) - B, fe(x)]2 dx
These numbers verify the system obtained by equating to zero the partial derivatives 3%- , l.e.

]3j JK(X) £i(x) fe(x) ix = J.K(x) 2(x) fe(};) dx

Put
’.T!ej =é fk(x) fe(x) fj(x) dx

w
[}

Jk(x) dx being the measure of S. The preceding system can be written as (with summation from

j=01%0 j=k):

(4-2-21) B 21 k(o) a(x) elx) ax



160

i

In applications, the functions fp(x) are always chosen so that the matrix Tje has an inverse Sj L

The BJ are therefore given (by.suming from =0t £ =1k) by :

(4-2-22) . By = é S50 J¥(x) 3(x) 292) ax

It will be seen that this can be written :

B.i = xj(dx) Z(x)

with measures Aj having support in S and which have densities :

A, (dx)

-ja-x—- = -é' k(x) 336 fP(x)

These measures verify the universality conditioﬁs (i.e. those expressing the unbiased nature of the
estimator of the drift). In fact, it can be shown that : : ’

ij(dx) £3(x) = % sje J.k(x) fe(x) £3(x) dx = S5 2fs

As the matrices S and T are the inverses of each other, we have :

A\

(4~2~23) _ J-kj(dx) £23(x) = 5? (3,8 = Oy 1yau.k)

b/ Expectations and covariances of the 3" We shall begin with the simplest case, in which
Z(x) has a covariance function C(x,y). The Bj, defined by (4-2-22), which are numbers when Z(x) re-
presents the realization of a R.F., become random variables when Z(x) is considered to be the R.F.
itself (the stochastic integrals which appear in the second term of (4-2-22) do have meaning, as a
~covariance exists). Relationship (452-23) expresses, ‘as we have already noticed, that the Bj are
the unbiased estimators of the true unknown coefficients aj : in thié sense, it can be said that
the least aquares estimators are universal estimatofs (even though they are not‘, in general, opti-
mum ones). Thus, we have :

E(BJ) = aj (j =0,1,...Kk)

Let us now compute the covariance matrix



= E[(B; Bj] -8y ay

Bij
As the Bj are without bias, we can perform the computation as if a.‘_j = 0 (which amounts to replacing
2(x) vy z(x) - a, fe(x)). From (4-2-22) we get :

4

535 =L, 55 5y, [fi0 K9 20 3@ £ 2@

173
hence, passing on to the expectations :

(4-2-24) Byj = 'éz Si¢ Syq Jfk(x) k(y) 4o 2 cxy) ax ey (1,j = 0,1,...Kk)

We shall now examine the case where only a gemi-variogram y(x,y) exists, 2(x) itself no longer
has moments of order two, nor even, in general, an expectation. For £ = 0, the stochastic integral
on the right hand side of (4-2-22) no longer exists (in the sense of the convergence in the mean
square) for, from (4-2-23), we have Jxo(dx) = {. This amounts to saying that the variance of
D2(Bo) is infinite, and that the expectation E(Bo) also does not exist in general : we find here
again a circumstance already encountered several times. On the other hand, when j # 0, relation-
ship (4-2-23), written with s = 0, gives fkj(d.x) =0(j=1,2,...k). Thig condition ensures the
existence of the stochastic integral (4-2-22) (in the sense of the convergence in the mean square)

which has then a finite variance. The covariance matrix aij' limited to the indices i,j # 0, is

then given by the following relationship, similar to ( 4-2-24) :

(4225)  pyy = -y sy sy [ wa) 28 £ vz axay (1= 1200

¢/ Example of the linear variogram.- We shall take y(x,y) = |z-y|, and try to estimate a qua-

dratic drift a, + a,x + azx2 from a realization of the R.F. 2(x) given in the interval (-R, +R) of

the line R.

There is no problem in computing the matrix 'Eij and its inverse sij (i,j = 0,1,2). We get :

2] 7
[-1 0 % ’- 3 0 - 13
4 2
» 4R
R
T =0 -3- Q S = 0 2 0
Rz
r? R4
F 0 5 -8 o 45
j 4R 4r?
e P
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Hence the least squares estimators :

( ‘ ' R
g B, = %2—15 fZ(x) dx - -:iz é ‘[-xa 2(x) dx
R R
R
k|
B1=§2 g—inz(x)dx
= k] . .
B, = - ﬁZ 5 J:RZ(x) dx + ﬁ4 Jzi J:Rx ‘z(x).dx‘

For the covariance matrix limited to the indices 1i,j = 1,2 (Boo would be infinite. here) we get
- £ - = .
Big =3R » Bya =By =0 By = 1124113

. 6 . 1 .
Comparing this with exercise 1 ( =5 against for the optimal estimator, and 45-5 againsat —}-3» )
: 5R R : ’ 14R R ’
we see that the least squares estimators are distinctly more variable than the optimal estimators.

Condition of optimality for the least squares estimator :

Among the estimators of the form Bj = J.Aj(dx) 2(x) (support of xj included in S) the least
squares estimators are characterized by the two following conditions :

~ they are without bias (E(Bj) =8y, va.j)

_ﬁ(_x) .

~ the measures xj have densities which are linear combinations of the functions k(;)

We have already seen that the meast squares estimator verifies these conditions. Conversely, let us
suppose that the measures AJ verify the universality conditions (4-2-23). If the Aj's have densities
of the form %51 S;e fe(x), these conditions (4-2-23) express that the matrix S;e coincides with

jp Of the matrix a2

the inverse S , 80 that the estimators B.‘l are indeed given by (4-2-22).

An estimator verifying these two properties verifies by definition the universality conditions.
It is optimal i_f and only if it verifies the first relationships (4~2-6), i.e. we can find constants
Hyg such that :

(4-2-26) sy, Jk(x) 20 c(xy) ax = hig £(¥) 4 Yy €S
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It follows from this that the least squares estimator coincides with the _optimal estimator of -

the drift if and only if the k+t functions £ x)_are linear combinations of the k+1 distinct eigen
functions of the kermel k(x) C(x,y) k(y)_ considered as an operator acting upon the functions with

gsupport in S.

In particular, if the fg(x) are themselves eigen functions (Jk(x) f‘?(x) c(x,y) dx = pl f‘?(y)

for y € S); relationship (4-2-26) is reduced to :
s . . .
(4-2-27) Mig =é sjs n (without summation in S)
[In the case where no covariance C(x,y) exists, but only a variogram v(x,y), the condition is slight-

ly less simple. If Z =-é- J-k(x) z(x) dx represents the (spatial) average of 2(x) on S, 2z(x) - Z is
a R.F. having moments of order 1 and 2. Its covariance Tx,y) is given by :

Uzy) = - 1wy + 4 [6@) vGew) ax+ (@ 1@y ax

- 12 ij(x) k(y) v(x,y) dx dy
s

It can then be shown that the Bj of the least squares (j = 1,2,...k) colncide with the optimal es=-
timator if and only if the k functions fe(x) (2 = 1,2,...kK) are linear combinations of the k eigen

functions of the kernel T(x,y) corresponding to non-zero eigen values .

This condition is of guite a complex nature, since it calls in at the same time the functions

e

a case where this condition is automatically fulfilled. It is the case where the random part of

£°(x), the kermel C(x,y) and the geometry of the set S where the available data are. But there is

2(x)_is reduced to a simple white noise (or, in geostatistical terms, a pure nugget effect).In this

case, the covariance C(x,y) is reduced to =6{x-y), 6 being the Dirac measure and = a constant :
any function fg(x) continuous on S is then a eigen function (for the eigen value ) and this for
any set S. 1In this case, the least squares estimator is always optimal, and the covariances Big ?

from (4-2-27) are given by :
(4-2-28)

In fact, a covariance = §(x~-y) characterizes a measure, and no longer a random function. This pre-

sents no problem if the set S is continuous, for then we work only on regularizations (which are
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again R.P.'s). of this random measure. In practice, it is sufficient for the least square estima-
tor to be (nearly) optimal that the covariance is of .the form C(x,y) with a very small range (for
example, C(h) = e”8d oitn é small relative to the dimensions of §). In particular, if S is finite,
it is sufficient that this range is less than the smallest distance between two points of S.

In this case (covariance C(h) with a very small range) the least squares estimator is (nearly)
optimal, and the covariances uij are still given by relationship (4~2-28), provided that we take
as a factor o the integral C(h) extended to the whole space, i.e. :

S
= fo

Sjs still being the inverse of

\ jjs =-é fk(x) fj(x) £3(x) ax

In exercise 6, some indications for a finite set S will be found.

4-3 KRIGING.

4=3-1 Equations of Universal Kriging.

In true kriging problems, we want to estimate a weighted awerage of the type Z, =
Jp(dx) 2(x) (with Jp(c_ix) = 1) from experimental data kmown on a set S. The equations will be de-
termined for the case where the set S is finite, and, with the usual reservations, will be later
transposed to the case where S is infinite,

let us first assume that a centred (lmown) covariance o(x,y) and a drift ae fe(x) (0 =0,1,...
k, ae unknown) exist. A linear estimator of zo will be formed, i.e. :

Iy = zg z, (or 2z; = JAU(B) 2(x))
s

and we shall impose the usual conditions :
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Universality condition : we muat have E[zU - Zo] = 0 whatever the unknown values of the coef-

ficients 8, are, which givesa :
R Y
A fa =b

¢

®f = 28 plax)

Optimality condition : having regards to the preceding condition, the coefficients J\g are

chosen in order to minimize the estimgtion variance
2 _ _ 2 _ a a ,B
E D[z, Zyl = czo 2 My czo“ + AT AT o

czoa = ‘(p(dx) c(x,xa)

cgo =JJp(dx) a(x,y) pldy)

The following system is then obtained, in which there appear Lagrange parameters By asgociated with

2
U

DZ[Zo - ZU], computed when taking the first two equations into account :

the universality conditions, and where the variance of is the optimal value of the quadratic form

(
g}\g caﬁ =czo’a+pe fg
(4=3-1) % A& 2l o ol
2_ 2 14
écU-czo-kacz,a*”’e b

This system is always regular (provided that a is strictly positive definite and the fﬁ are li-

aB
nearly independent on S).

Thig sygtem cgn be transposed without any difficulty to the cagse where only a variogram y
exists. In fact, torf = 0, as usual, £° = 1. The universality condition relative to { = 0 is thus

reduced to :

But (exactly as in simple kriging, paragraph 3-5), this is exactly the condition for the error :
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-2y = pldx) 2(x) - A% zZ,

to be a permitted linear combination (i.e. having a finite variance). As J-p(dx) = {, the sum 1 -
Z A% of the coefficients of the linear combination Z - ZU must, as usual, be equal to zero. The
constant term a, of the drift, in which ‘all the difficulty in the optimal estimation of the drift
itself was concentrated, is automatically eliminated from the expression Zo - ZU and no longer in-

tervenes in kriging : this is precisely the significance of the condition A% = 1.

let us transpose the system (4~3-1) in terms of the variogram, adopting the notations of the

continuous case to lend some variety to our discourse.

g jx(dx) v(x,y) -Jp(dx) v(x,y) - by £ (y) (vy es)
(4-3-2) g_fx(dX) fe(x) -jp(dx) fe(x) (8=0,1,...x)

= - ij(dx) v(x,y) p(dy) + J‘J—A(dx) pldy) v(x,y) + by jp(dx) fe(x)

Punctual Kriging : If we wish to estimate the value z(xo) of the realization at a point x, ,
the preceding system is simplified and becomes (using the discrete case notations) :

oL

AP Yog = 1(xgrxy) = up £y

(4-3-3) Ao gl - 2lix )
E c% = 2\& Y(xa,xo) by fe(xo)

It will be noted that punctual universal kriging is an exact interpolator. This can be verified

directly by taking x, = x € § in (4-3-3). It is simpler to note that g, verifies E(Za -2, ) =
() o ) ()

= 0 and D2(Za -2, ) = 0 for any ap , and thus satisfies the universality and optimality conditions.
o (3

4-3-2 Additivity theorem.

Should the drift m(x) be lmown, the optimal eétimator of Zo =.J§(dx) Z(x)would be :
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(4=3-4) ";(za - ma) + Jm(x) p(dx)

with the coefficients A;‘of simple kriging (paragraph 3-4-1), i.e. :

(4-3-5) - g

2 2 a
O = 0, = Ay O
g K ZO K a,Zo

let us show that the circumstance already noticed in paragraph (3-4-2) is general : in other words,

the universal optimal estimator can be put in the form :
_.a - *
(4-3-6) 2y = A (2, - my) + [270) plax)

obtained by replacing in (4-3-4) the unknown expression of the drift by its optimal estimate m*(x).

This means, if we want to, that we have a right to krige the estimated regiduals 2(x)_- m'(x)_as if

they were irue residuals.

To verify (4-3-6), put

The term ZD represents the drift correction. It is of the form ZD = xg Za , with x% = kg - x% .

Let us look for the conditions to be verified by the xg . If xg is replaced by "10{‘ + xg in the first

disappear. There finally remains

relationship (4-3-1) it follows from (4-3~5) that the x% and o
o

Z
,
the following system (equivalent to (4=3-1)

_ 4
E A5 Tag = Bp g

S r,f = |p(dx) fe(x) - A% ff

This system is equivalent to (4-2-2) with the exception that fe

: (x,) is replaced by J[p(dx).— Ag(dx)]

£°(x). Consequently, if we put :

(4-3-7) bQ=Jp(dx) fe(x) - Ag 'fg

the Ag are deduced from the xg of the delinearized system (4-2-6) by the relationships :
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Ag =A% ¢
The term ZD representing the drift correction is thus )\% Za b€= Aebg ’ A@ being the optimal esti-

mator of the drift, and, replacing be by its expression (4-3-7), this gives exactly :
* *
Iy = p(dx) m (x) - x%‘ m
Hence, Z; itself is truly of the form (4=-3-6) :
- _.a ot *
2y = 2 + 2y = AE (2, - my) + [a"(x) plax)
Always as in the case of simple kriging, this additivity theorem extends to the variances, i.e. :
2 - -2
(4-3-7) D(z, - Zy) = og + o

with og = p%(zy) and o§ the simple kriging variance. Indeed the system (4-3-5) expresses exactly
that zo - ZK has a zero covariance with the linear combinations of the za , and thus, in particular

with ZD .

It can be verified without difficulty that the additivity theorem remains when there is no co-
variance, but only a variogram (in fact, for £ = 0, the universality condition relative to xg is

written :

T g =Jp(dx) -fxx(dx) =0

a

and 2, is a permitted linear combination).

4-3-3 ZXKriging considered as an interpolator.

We have already noticed that kriging (simple or universal) constitutes an exact
interpolator. This is an important property in certain applications like contouring. From the me-
thodological point of view, it may not be a useless exercise to forget for a moment the probabilis-
tic contents of the theory, and to analyze from a purely pragmatical point of view the manipulations
to which the experimental data have been subjected when kriging a point x.
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a/ Definition of- interpolators. - et S c an be the set of experimental points, and V a do-

main containing S which may colncide with Bn itself. We will define an interpolator as a linear
operator T mapping a space F(S) of functions defined on S into a space (V) of functions defined
onV :fe3S)-Tf ¢ 3(V). T will be said to be an exact interpolator if the restriction to §
of Tf is identical tc; £.

In what follows, we shall limit ourselves to the case where the set 3 = [xa y @ = 1,-..N} is
finite. A function f on 8 is then a vector (fa)' «=1,...N, and the operator T is defined by the
datum of the T &%, e* being a basis of the N-dimensional space constituted by these vectors. For
example, let us take for e® the vector of components eg = 5%, and let T*(x) be the image of this

vector., for any vector £, we have then :
(4-3-8) ? £(x) = £, T%x)

The interpolator T is exact if and only if the matrix Tg = Ta(xB) verifies f_ Tg = fB for any

f ¢ B®, and thus verifies '

(4-3-9) % = 5%

B p
Example : simple kriging is the interpolator )‘K defined by the )\%‘(x) obtained by solving the sys-
tem :
B =
(4-3-10) Ag(x) %48 = %,x

Ist ]3‘43 be the inverse matrix of caﬂ' W have then

(4-3-11) k%(x) e 90z

For x = X we get )‘g(xY) =3% 5 = 65 , and simple kriging is an exact interpolator. Moreover,

ay

the components kg(x) are, from (4-3-11),1linear combinations of the N functions Oy x = c(xa,x).
’

These two properties are characteristic : eimple kriging is the only exact interpolator whose

components are linear combinations of the functions Seox * Indeed, let T be an interpolator of
1]

the form :
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4 mﬂ(x) = B¢ %

2 X

(x) 1 an exact interpolator if and only if TP = 5P , hence s
B - gBY
6a HB aa‘v

Thus BPY = BPY , amd 7P(x) = Aﬁx(x).
In order %o characterize universal kriging, we need a new notion :

b/ Drifts compatible with an interpolator. - A function £(x), x € V is a drift consistent
with an interpolator T if the interpolation of £ by T is exact, in other words if :

(4-3-12) £ #(x) = 2(x)
The familiar condition of universality can be recognized in (4-3-12). Por x = S this condition
entails : '

(4-3-13) e =t

In other words, fa must be the eigen vector for the eigen value 1. Conversely, let fa be a vec-
tor verifying (4-3-13). The function f£(x) defined on V by :

£(x) = £, ™ (x)

8
is by construction a drift consistent with T. So (4-3-12) establishes a biunivocal correspondence
between the consistemt drifts anmd the eigen vectors associated with the proper value 1.

T is an exact interpolator if and only if 'l‘;=6a , and this is so if 'and only if all the

vectors fa are proper vectors for the eigen value 1. Consequently, I is an exact interpolator if
and only if there exist N drifts consistent with T and linearly independent on 3.

¢/ Characterization of U.K. - In the case of simple kriging, these N drifts are the functions

ca,x : this results from the system (4~3-9) itself. Consider universal kriging in the case where

the drift is of the form 8 fe(x), with @ = 1,2,...k (k < K). It defines an mterpolétor A whose
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components A%*(x) are the solution of :

( AP(x) Ieg = Og,x * ¥ ff

[4
(4-3-11)

k%ﬂfﬁ=f%ﬂ (¢=1,2,...x)

The universality conditions show that the functions fg are drifts which are consistent with this
interpolator. It being understood that these k functions fg are linearly independent on S, we re-
cognize therefore a linear space of k dimensions of drifts consistent with A. Finally, to charac-

terize universal kriging, there remains the determination of a supplementary space of N-k dimensions.

let £¥ , VvV = k+1,...N be a basis of this supplementary space. The N-k missing drifts will thus

be the f; 2B(x). To determine the £' , we shall use the additivity_theorem of paragraph 4-3-2. From

this theorem, the interpolation of the data Za leads to the function :

-

2y(0) = K (2 - &y £ + 2, 250

with coefficients Ae of the form :

where the matrix AB is the solution of the system (4-2-6). Making the expression of ZU(x) explicit,

2
we find :

Zyx) = k%(x) (ég - x; fg) Z, + xg fE(x) z,

Hence, the coefficients xs(x) of the system (4-3-11) have the following expressions :

¢

a b
B) + he £ (x)

SORSVIOROERVES

We recognize the expression of the matrix U :

U% = g% L ,Q 4
B =% "M%

introduced in paragraph 4-2-4 (the residual Za - m: is Ui ZB). Hence :
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4

(4-3-12) M) = ) Beaf et | '

From the form of the universality condition (Ag fi = 63) it is possible to choose the basis £¥ of
the missing drifts in the orthogonal of the AZ (€=1,2,...kX) 1.e. to give ourselves the relation-

ships : |
a oV _

This condition fulfilled, it follows from (4-3-13) that the N-k missing drifts are the functions :

£7(x) = AP(2) £ = Al(x) 2]

i.e. ¢

v
£%(x) = £ ) 9, x

They are linearly expressed with the help of the functions oa’# y 1.e.
( £(x) = D% s
ax
(4-3-14)
D% = f‘é BB )

We still have to charaéterize the N-k dimensional space of the vectors D% such 'that the D% Sux
’

are consistent drifts. To do this, consider the conditions (4~-3-13), noticing that the A% of the

gsystem (4-2-6) are given by :

s
A% = upg g 5

The relationship fz hg = 0 is fhen,equivalent (since the matrix 'Y/ of the Lagﬁange parameters is
strictly positive definite) to the relationship : ‘

7 3% 3 _ o
a B

Prom (4-3-14), this is also equivalent to :

(4-3-15) £l =0



Consequently, the supplementary N-k dimensional space is constituted by functions of the form
D% o for vectors D% orthogonal to the k vectors 22 , i.e. veritying (4-3-15).
’ .

4/ Probabilistic contents of universal kriging. - .As always for any exact interpolator, uni-

versal kriging is characterized by the (N-dimensional)space of the drifts consistent with it. This

space contains

1 - An imposed space of dimension k (that of the functions ap fp) the significance of which
is purely interpolatory (mon probabilistic).

2 - A supplementary space of N~k dimensions (that of the functions D% ¢ y With the or-

X
thogonality condition D% fg ='0 expressing that the vector D describes the orthogunal of the for-

mer space) with a purely probabilistic significance.

In other words, when the number of imposed drifts increases, the probabilistic contents of u-
niversal iriging decreagses while its purely interpolatory contents increases.

In particular, for k = O, simple kriging is purely probabilistic. For k = N, on the contrary
the probabilistic contents are null, and universal kriging is reduced to the purely interpolatory
process which consists of fitting a linear combination of N functions chosen beforehand to N expe-
rimental points.

4-4 UNIVERSAL KRIGING FOR A RANDOM DRIFT.

4-4-1_ Bypotheses,

Instead of considering the drift as a function m(x),unknown but not random, we may

consider the case where m(x) is a random function m(x,y), in other words, study a R.F. Z(x,w) of
the form :

(4-4~1) 2(x,w) = ¥(x,w) + m(x,w)

with E{Y(x)]= 0 . Put :
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E(Y(x) Y(y)] = olx,¥)
Eln(x) n(y)] = K(x,¥y)
e[Y(x) m(y)] = R(x,¥)

(the second covariance is not centered).

It is not necessary that the R.F.'s Y and m be :\.ﬁdependent. But, in order that the dichotomy
written in (4-3-1) should have a real physical significance, and not be a pure artefact, each of
the two components Y and m has to take into account structural features relating to distinectly dif-
ferentiated scales (gigogne structureées of J. SERRA). The R.F. m must have a very great (or infinite)
range with respect to that of Y, and moreover, at the scale of the range of Y, the variability of
m must be very small. At the scale of Y, the realization m(x,w) must thus be assimilated to a very
regular and continuous function, so that - on a certain domain V - we may write :

(4-4-2) . n(x,w) = ae(w) fe(x) (xeV)

0

the ae(m) designating r.v.'s (which depend on the domain V), and the £° the usual basic functions

. (with £° = 1) :.for example polynomials or, more.generally, continuous and sufficiently regular
functions, linearly independent on V.
Let us examine the ﬂgnifica.nbe of the hypothesis (4-4-2). We shall put :

(4-4-3) | Kyg = E(ae ag)

so that the covariance K(x,y) of the R.F. m(x) has, in the domain V where the approximation (4-4-2)
is valid, the following representation :

(4tet) . Kmy) = Kp 250 99 (xy € D)
For the covaria_.nce‘R(x,y), we f£ind
RGxy) = HI) o, fe(m R0 %) (myew

If the R.P. Y can be considered as stationary on V, RE(X) is a constant Ry . More generally, 'R[(x)
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.

will have on V a good approximate representation by means of the same functions fs(x), i.e.
R(x) = Rp, £°(x) (xeV)

(this assumption is not absolutely required, but it makes the argument much simpler) and so, final-

1y, we have for R(x,y) a result analogous to (4-4-4) :
(4-4-4") R(x,y) = Ry, fe(x) £3(y) (x,y € V)

Purthermore, the two relationships (4-4-4) and (4-4-4') appear to be the only assumptions which are

really required for what follows, and relationship (4-4-2) is only a more obvious translation of
them. From a purely pragmatical point.of view, they only mean that the functions K(x,y) and R(x,y)
vary slowly enough in space at the scale Vof the domain V of reference to be replaced on V by the
first terme of their limited expansion with respect to fe(x) £5(y). The following example will

show the significance of this hypothesis.,

Example of a Gaussian exponential.- For easier colprehension, consider the one-dimensional
space &' (we would,of course, get similar results in B°) and suppose that the covariance X has the

form :

(x=y)?

K\x!Y) = B¢ 2

with a range b greater than the length L of the reference interval V. Develop this Gaussian exponen-
tial :

2 v

' 2 6
K(X,y):B[1—Qi)_ +%Lﬂﬁ-#2§l}_+.._]

each of the terms (x,—y)21 can be expanded in its turn in monomials xé ys, and we see that K(x,y) has
effectively a limited expansion of the type (4-4-4) with fe(x) = xe .

In the case of a"guadratic drift", i.e. @ = 0,1,2, this expansion is taken to the fourth order
term, and the error is bounded by

&})—ss-‘f‘ B

&l
dmlt-'a\
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To appreciate this upper bound, notice that B can be very great (even, at the limit, infinite if m
has no covariance but only a variogram), but B/b2 is necessarily finite for it represents the coef-
ficient of the term in h2 of the variogram of m. Writing B/‘b2 = BZ' we see that the upper bound is
in 32 I.2 (%’)4, and thus of order at least 4 in L/b. If the range b is effectively great with res-
pect to L, the approximation made will be absolutely legitimate.

Note. - PFrom (4-4~1), the covariance of Z would be o + 2R + K. We may wonder whether this dichoto-
my would be really useful, and if it would not be simpler to perform ordinary kriging or cokriging
directly on this covariance. The answer is that (in the conditions of our hypotheses) the estima-
tion of this covariance is not possible in acceptable conditions. The covariance K(x,y) is not, in
general, a stationary covariance. Even if, locally ( that is at the scale of V) it can be put in
the form K(x~y), statistical inference starting from data covering a domain the size of V will not
be possible in general with a covariance which is too regular.(see par. 2-10). ’

4-4-2 Estimation of a drift.

let 2 be the value of Z(x) at the experimental points x € 5c V. S will be sup-
posed to be finite, but what follows can be transposed without difficulty to the case where S is
infinjte.

The drift m(x) is to be estimated at a point x € V, and for this we use an estimator of the

form @

* =2 N2 ' 24
M(x) = Z, =AY, AT m
The expectation of the square of the error is thus

B[K"(x) - m(x)]% = EA® v+ 0P ny - m)]2 =

s

_ a@ ,B a (4P - a,B - «
xxcaa+2x(x Rae Ru)'«xxxaa 22K+ Ko

Hypotheses (4-4~4) and (4-4-4') give :
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)

aﬂ‘-nn=aes(xpr§-fi)f£

s-

« a - @ ,B of 8 _ ,a ¢
Y Aﬁxaﬁ-zx yp * By = Kpg % AP £€23 _ p 28 52

- f£ f; + E) = Kp. (A% f£- fﬁ) (AP fg - £2)

Hence : .
(E(u:-mx)2=x“xﬂ O * 2x“r£n€s (Af’f;-fi)
(4-4-5)
+ Ep, (A% rg -thH oF g - £3)

The significance of the universality conditions appear clearly here. We cannot hope to minimize

the quadratic form (4-4-5) for any 7\“, for we do not know the KPS ans Res ; hence we have to impo-

se on the A* supplementary conditions by which (4-4~5) will no longer depend on Ry, and Kp, . The
matrix Kgs always being positive definite, these conditions are :

@ ol . g
(4-4-6) : A" S = 22
i.e. the usual universality conditions. Taking these conditions into account, there remains :
* 2 _,a,B
(4-4-5") E(xp - m )¢ =% g

It is enough then to minimize (4~4-5'), taking (4-4-6) into account, to find again the same system

as_in the ﬁsual theory - and the same estimation variance (it can be easily verified that E(M;— mx)
= B(AC m, - mx) = O when m(x,w) - without being obligatorily stationary - has itself a drift E m(x)
representable on V by an expression of the form ap fe(x)). Given the assumptions (4-4-4) and(4-4-4')
the rahdom drift is amenable to the same treatment as the functional drift.

By delinearizing the system with respect to the right hand side of (4-4-6), we get, as in the
classical case, the estimators

of the coefficients ap = al(“’) of the drift m(x) =~ ap fe(x) (x € V), and the Lagrange factors A
keep their significance. More precisely - the ap being r.v.'a, we have :
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E(Ae - ae) =0

E(ap - 8p)(4; - ay) = upy

4-4-3 An equivocal example.

Let Z(x,w) be an I.R.F. without drift, i.e. :
E(z(x) - 2(y)] =0

1 E(2(x+n) - 2(0)]% = (1)

and let p be a yery_regular weighting function with a sum equal to 1 (for example a Gaussian expo-
nential). Put : '

o(x) = Z \ﬁ = J-Z(m-y) p(y) dy
Y(x) =2-2*p
In the expansion-
Z=Y+n

m is a moving average, Y the "residual" of 2 around this moving é.verage. The variogram of m is
Y*Dp* p-< Ys P * P > ; because of the regularity of p, it has an expansion of the type (4-4-4)
in a démain V with small dimension in respect to the razige of p. We are thus in the required condi-
tions to estimate the moving average n(x), considered as a random drift, by the methods of Univer—
sal Kriging. ‘ '

Y is a stationary R.P. of order two. Its covariance o is deduced from the variogram y by the
relationship

c=-y*(-p-F+p*}

which is explicitly (with P =p * §) :
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(4-4-7) ' o(h) = = y(n) + Jv(y)[p(wh) + p(y-h)] ay -JY(Y) P(y+h) dy

In particular :

(4-4-7") 02 = 5(0) = 2 jy(x) p(x) ax -Jy(x) P(x) dx

This covariance (4~4-7) is the one which must appear in the left hand side of the optimality condi-
tions of the system of U.K.. But the conditions imposed on p (regularity, and large range with res-
pect to the neighbourhood V) entail that o(x-y) itself has an expansion of the type (4-4-4), except

for the term y(h), i.e. :

(4-4-8) o(x-y) = - y(x-y) + Pp, £lx) 23y)  (xmy € V)
The quantity to be minimized in order to estimate m(x) becomes :

a ,B = - B a ¢ s
SR A% A Yop * PPy A fa)\afs

But the universality conditions (4-4-6) then require :

kB x“oae=—x°‘x5 YaB+P€sf£fi
From (4~4-8), we also have :

o(0) = pp, 2f £3
Hence finally - the conditions (4-4-6) supposedly being verified - we havz.a. only to minimize the ex_—

pression :

AP o = a(0) - A% AP

of Yo

Hence the system :

(4=-4~9)
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and the corresponding variance is :

(4-4-9") 22 - m) = o(0) + up ££

It is noted that the system (4-4-9) does not depend on the weighting function p (provided that it
is regular and has a large range) : the same estimator Az Z(x applies to all the moving averages,
and it is only on the variance (4-4-9')_that the choice of the function p has any influence by means

of the variance o(0) defined in (4-4-7 )- and which is nothing else but the a priori variance of the
residual Y(x) - m(x).

This ambiguous result is worthy of comment :

Note 1 - The variogram y being kmown; the estimation of the moving average m(x) is in fact subject
to ordinary kriging. Instead of the system (4-4-9), we should use the following system (4-4~10) :

AP Yop = Y(¥7) p(y-x+x ) dy - u,

(4-4~10)
: Z A% =
a

which includes only one universality comdition ( I A® = 1), but where, on the other hand, the right
hand sid€ of the optimality condition contains thg variogram y, and involves explicitly the valuea
taken by y(h) for distances |h| considerably larger than the dimensions of the set S of experimental
data X, . this system (4-4-10) hence refers to a situation where we know very well the true beha-
viour of y(k) up to fairly large distances. On the contrary, in the system (4-4-9), the variogram

Y intervenes only by its terms Yap' and implies a knowledge of y only over small distances.

This question can then be seen in a different way. Let us assume (and the statistical inference
theory shows that this is a fairly general circumstance) that we are sure of our variogram y(h) on-
ly at small distances (of the oxder of tﬁe dimensions of S) so that we have a good knowledge of yaﬂ
but not of the right hand side of (4-4-10) : in this case, the system (4-4~9) gives us the best
possibie estimation of a large moving average m(x), taking the information actually available into

account.

Note 2 - In the absence of an actual drift, the optimal estimation of the drift is not rendered
meaningless : it measures a large moving average - without it being possible to specify which one -
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for it applies to any. The variance (4-4~9') of this estimator is all the larger as it is supposed

to represent a more extended movang average. If we put :

4

n(x) = ) fP(x) , M(x) = Aéf (x)

we obtain the Ae = x? Z, by delinearizing the system (4-4-9) :

- )‘g Yag = Mog fag

(4-4-11) (lys = O,.1,...n)

@ 8 _ .8
Aefa-ée

Prom (4-4-9'), the variance is then :
DZ(M; - mx) = Wgg f£ fz + a{0)

Hence :
(E(A -2)%=4(0) +
0 o/ = Hoo

(4-4-11") (%s # 0)
E(Ae - ae)(As - &s) = Mo

Hence the lLagrange parameters - except for B oo ~ 8till represent the covariances of the (Ae— ag).
On the other hand, the term Boo = relative to the coefficients }\g of sum equal to 1 - does not give
the variance of (Ao - ao) i 1t has to be overvalued by the term o(0), which is the only term depend-
ing on p. Thus, this remark suggests a solution to the apparently unsolvable problem posed by the

constant term Ao of a drift when there is no covariance,

4-4-4 The problem of the constant term A .

et 2(x) = Y1(x) + mT(x) a R.PF. having a (functional or random) drift m1(x), and a

component Y1(x) without covariance and with g variogram y(h). We can write :

Y(x)

)

1) - [¥,(xe9) 0(y) ay To= Y, =¥, % p

2(x) = m, (x) +JY1(X+y) p(y) dy m=m +Y, *p
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Iﬁ this new expansion, 2 = Y + m, the component Y has a covariance o(z,y), and the(rgndom) drift
verifies the hypotheses (4-4-4) and (4-4-4'), provided that the weighting function 1s sufficiently
regular and has a great enough range. The optimal estimation M *(x) = Ap £ (x), = xg Z, of the
drift m(x) is obtained by solving the seme system (4~4~11) as above, and leads in particu],ar to an
estimator A ¢ the corresponding variance (4, - &, )2 = 5(0) + p,, depends explicitly on the o(0)
defined in (4-4~7'), that is on the choice of the weighting function p which we.used to give a sen-

se to this expression (subtraction of a moving average). The numerical value does not depend on it.

But the system (4—4—11) is nothing else but the system (4-2-5) completed by the equations re-
lative to £ = 0. Thus, to use this completed system and to deduce an estimation Ao of the constant
term ay (wh:Lch, properly speaking, did not exist within our hypotheses) is not absurd. The expres—
sion A, + Z} Ag e(x) gives an estimat:.on of the true drift corrected by a moving average, and its
variance is the estimation variance of the drift so corrected. This variance has only a relative sig-

nificance (since it depends on the choice of the moving average). But, as the estimator itself
‘n
W) =4+ B 4, 20
€=1 Z

does not depend on this choice, it can be used to contour the drift without any problem of coupling

between the different working domains V N Vz yeess More precisely, a neighbourhood Vx (translate
of V centred at x) can be assigned to ea.ch point x, and then the set S [ V of the experimental
points contained in V . It ig then sufficient to solve the system {4-4-9) with the help of the
x, € S to form the estimator M (x) of the drift at x. Putting the origin of coordinates at this

point x, and with fe(o) =0 . (f=1,2,...n) (in the case of polynomials) it is in fact M (0) =
which is estimated for any Vx~,Aand. this method of the sliding nelghbou.rhood allows the drift to be
mapped.

4-4-5 Eriging.

The case of kriging will appear to be very gimilar. To shorten the notations, we
shall 1imit ourselves to the case of kriging a point x € V (although the general case may be studied
in the same way). We suppose that the hypotheses of paragraph 4-4-1 are still verified. We want to

form an estimator z; =% za of Zx = 2(x). Let us consider the expression :

- = 2@ - = 4@ - a -
Zx Zx A Zu Zx A Ya Yx.+)\ o, m
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and take the expectation of its square :

* 2 a a a - B - a - 2
E(_Zx - Zx) =A% 2P g ~ 2 A Oux * Oxx * 2 E(A Ya Yx)(k mB mx) + E{(an o, mx)

Taking (4-4-4) and (4-4-4') into account, we get :

EA* Y - ) (AP mg - my) = Rpg (A% fﬁ - fﬁ)(xa f; - £3)

E B(A® m, - mx)2 = gp, (A® fg - fﬁ)(xB fg - fi)

Thus, in this case also, E(Z; - Zx)2 is independent of the (unknown) Kp, if and only if the univer-
. *
sality conditions (4-4-6) are verified. Provided these conditions hold, we get E(zx - zx) =0 and :
2¢ " _ L2 B - a
I)(Zx Zx)—k)\c:a‘3 2N g oy
By minimizing this quadratic form, taking the universality condip‘ions (4-4-6) into account, we get

once again the usual U.K. system for functional drifts.

4-5 COKRIGING.

In certain problems, several regionalized variables have to be studied andestimated simul~
taneously. In [4] or [5], a systematic study of coregionalizations will be found, with the two usual
aspects (transitive, i.e. non probabilistic methods, and intrinsic theory). Hence, we shall limit
ourselves to seeing what the problem of Universal Kriging bécomes when we deal simultaneously with
several non-stationary R.F.'s. It will be seen that from a canceptual point of view, no fresh ele-
ment appears. All the difficulties (which are real) come from the notation, which is necessarily more
complex. To avoid handling chree systems of indices, we shall use the notation of the continuous case
where measures intervene instead of coefficients. This in fact is the most generel notation, equally
valid for the infinite case and for the finite case.
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4=5-1 Notation.

Iet Zi(x), i=1,2,...d, be d random functions (non stationary in general) defined
on the space E" . Each one of them poséesses a drift mi(x) representable on a certain domain Vi by
means of a linear combination (with unknown coefficients) of given functions fi(x) , L= 0y 1pe-ckye
We shall limit ourselves to the case where these R.F.'s.have covariance functions, and the task to
proceed to the case where some of them have orly a variogram will be left to the reader. In addi-
tion to the (centred) covariances of the d R.F;'s'zi , it is advisable to introcduce the cross-cova-

riances. We shall put
(45-1) | o34 (x9) = B2y(x) 2,()] - my(x) my(y)

From a theoretical point of view, the problem of estimating these drifts and of kriging these R.F.'s
when their realizations are known on sets S1 ,_52 ’ ...Sd (distinct in general) is not different
from'the similar problems already solved in the case of a single R.P. Indeed, we have never once
used the fact that the definition space of this single R.F. was the chlidean space ;e s, and all the
results obtained remain valid for a R.PF. defined on any abstract space E. In particular, we can take

as a definition space the product space
E=R"xD

of & by the set D = {1,2,...d} of tpe indices. An element of E will be a gggp;g constituted by a
point x € B and an index i € D. The d random functions 2,(x) then constitute aiunique R.F. in this
product space, and it will be demoted by 2Z(x,i). In the same way,‘the set of the d drifts mi(x)
constitutes a gingle drift m(x,i) in the product space, and this drift has - in a certain domain V
of B x D defined by the d domains Vi - a representation of the form :

(4-5-2) o(x,1i) = ap fe(x,i) (x,i) e V

The function fz(x,i) on B x D is defined in d functions ff(x) on B® and (x,i) € V denotes the set
of the couples (x,1) such that x € vy - In the same way, instead of aij(x,y) we should write

ol (x,1)(y+3)] = B(2(x,1) 2(y,3)] - m(x,1) m(y,])

For convenience, we shall keep the notation oij(x,y).
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As all the previous results remain valid for the R.F. 3(x,i), there is little point in going .
through the proofs again, as we only have t§ retranscribe these results in the notation of the new
gystem. However, it is necessary to take care concerning the linear imdependence condition of the
feon S, as this is the sole condition which guerantees the existence and uniqueness of the solu-

tions of our systems.

Iet Si y 1 € D be the set of experimental data on which the realization of the R.P. Zi(x) is
known, with in general Si # Sj when i # j. Some of these sets can be void if we have no experimen-
tal information about the corresponding R.P.'s. In the product space notation, the set S of experi-

mental points (x,i) where the realization of 2(x,i) is known is the set :

S=[(xi) : x€R", 1€D, x €5}

of the couples (x,i) such that the point x belongs to the set Si .

The linear independence condition on S of the functions f?(g,g) is thus formulated :

ey fe(x,i)=0foranyieDahdanyxeﬂnsuchthatxesi

entails g, = O. A simple example will show how natural this condition is.

Example : Suppose that D = {1,2}, in other words, we only have two R.F.'s at hand. Take as functions
£ (x,1) k1 + k2 functions such that

( k
£N(x2,2) = ... = £ (x,2) = 0
(4~5-3)

o+t ky+k,
(¢t (xy1) = cu. = ¢ (x,1) =0

These relations describe a situation where the two drifts m,(x) and m,(x) are algebraically indepen-
dent. The k1 f:ufst functions, null on V2, serve only to represent on V1 the drift m,‘(x) of the first
R.F., and the k, other functions, null on v1, represent on V, the drift mz(x) of the second R.F.

Let us suppose that 82 is void, so that we have no experimental information about Zz(x). As the
drifts m1(x) and mz(x) are, by hypothesis, algebraically independent, it is clear that the knowledge
of Z1(x) on 8, will bring no further information about the drift mz(x) of the second R.F. In fact,

¢
the functions f (x,i) are not linearly independent on S. Indeed, as 52 is void, S is reduced to



186

{S,] x {1}, that is to the set (x,i) of the couples such that 1 = { and x € S, - But, precisely, we
have fe(x,1) identically equal to zero for P> k1 , and consequently these functions are not linearly
independent on S1 .
Let us pass on now to the systems themselves. It will be noted carefully that the notation

v (v,i) €8

means precisely : for any index j € D and for any point y ¢ B> such that y_€E S‘,S .

4-5-2 Optimal estimation of the drift.

) Iet us consider the optimal estimator m*(xo,io) of the drift of the R.P. Zio(x) at
the point x  , that is, in product space notation, the optimal estimator of the drift m(xo,io) at
the point (xo,io) € B2 x D. This estimator must be linear with respect to the Z(x,1), (x,i) € S.
Hence it will have the form

m*(xo,io) =3 Jki(dx) z,(x)
1

34

with d measures Ai with supports respectively contained in the Si . The transposition of system

(4-2-3) gives then :

$> Iki(dx) 055(%:¥) = 1y £%(y, 1) vy es
1%,
(4-5-4 ? in(dx) £z, 1) = fz(xo,io)
» s
1

p2[a*(x, )] = up £%x,,1,)

In the same way, by delinearizing system (4-5-4), we get the optimal estimators Ap of the coeffici-
ents ay of the drift by using a set of measures Ai‘(dx) with supports respectively in S, , i.e. :

2= J.A:E(dx) 2,(x)
51
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by solving the system obtalned by transposing (4-2-7), i.e. :

z Lx;(ax) oy (17) = ngg @D V(D) €8
i

(4-5-5) z fxé(dx) £%(x,1) = 53
1
S,

1

( u,es = Cov (A{ y AS)

4-5-3 Punctual Cokriging.

With complete generality, we could form the equations relative to the estimation

of a quantity of the form :
z =T |piax) z,(x)
o i 1

with any measures pi (with supports respectively contained in the Vi). But we have already noticed
that the right hand sides of our gystems depend linearly on these measures p(dx). It is sufficient
then to know how to form the estimator Z*(x,i) of the kriging relative to the point (x,i) ¢ B x D

to be able to deduce from it the estimator Z: of the kriging of Zo according to the relationship :

¥ =3 Jpl(dx) z*(x,1)
° 1
Thus we will limit ourselves to writing the system for punctual kriging.

Z; (xo) is to be estimated, i.e. the value of the R.F. at the point (xo,io) of the product
o
space. The transposition of system (4-3-1) shows then that the optimal universal estimator is of

the form :

z; (x) =% Jki(dx) 2,(x)
o i/
i

with measures Ai with support in Si verifying :
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( i =C ’ 1 fe( »J) (v, :) €S
}i: LA (ax) oy 4(x,¥) jio(y %) +up, WD ¥ (3]
1

e(xop io)

(4-5-6) z ‘j-xi(dx) fz(x,i) =f
i4g .
i
2. (x0x) +pn, 292,10 =2 |akax) o, (x,x)
9% = 93 1 ‘For%g Hp o’ o rt i1 %
°° 8,
i
It will be noted that the additivity theorem remains unchanged in the case of cokriging, but there
is no point in giving the corresponding relationships explicitly here.

4—-6 THE INDETERMINABILITY OF THE UNDERLYING VARTOGRAM.

4-6-1 Statement of the problem.

We are now going to deal with the difficult (but obviously essential for the appli-
cations) problem of the estimation of the variogram y(x,y) of a non-stationary R.F. 2Z(x) having a
drift m(x). This variogram is the variogram of the true residuals %(x) - m(x), and the presence of
the drift m(x) does not allow it to be estimated directly from the experimental variogram or from
the variogram of the estimated residuals Z(x) - m*(x) (see parsgraph 4-2-4). To express the fact
that this "true" variogram is hidden (in a partly irremediable manner, as it will be seen), we shall
say that it is the underlying variogram, and the fundamental problem which is studied here is that
of the identification of the underlying variogram from a unique realization. We cannot deal here

with the delicate problems of mathematical statistics concerning the possibility of such an opera-~

tipn. More particularly, it would be proper to examine precisely the type of quasi-stationarity as-
sumption which it should be necessary to make about the true residuals 2(x) - m{(x), so as to be able
to reconstitute effectively what is theoretically possible to estimate about this underlying vario-

_gram.

Indeed, the fact is that we shall see that the problem is theoretically indetermined : at the

best, that 1s assuming that we know the expectation of the estimators that we have a right to uae
(the universal estimators), and not only the corresponding experimental values computed on several

parts of a single realization, it appears that the reconstitution of the underlying variogram remainsg
fundamentally partially indeterminate, this being of an algebraic nature, and it is essentially to
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the algebraic study of this indeterminability that we will devote ourselves in this last paragraph.

Notice that this is an absolutely general problem, which is encountered in the most common ap-
plications of classical statistics (see Ex. 16). Statistics avold this problem of fundamental in=-
determinability by introducing supplementary assumptions which are in general very strong (for exam-
ple, the independence of different r.v.'s of which we know the realization). Here also, it would be
useful to examine to what extent these too strong conditions can be weakened without rendering the
problem unsolvable. For physical reasons, we may think that an assumption of quasi-stationarity
showld be fitting. We shall only verify that indeed it is possible to considerably reduce this in=-
determinability by choosing from all the variograms compatible with the data, the one which is "the

most stationary possible" (in the sense of the least squares, for example). (cf. Ex. 17).

On the other hand, a remarkable (and quite reassuring on methodological grounds) circumstance
will appear : this fundamental indeterminability will only affect the variances of our optimal es-

timators and not the estimators themselves. In other words, all the theoretically possible under—

lying variograms lead to the same optimal estimators for the drift and for kriging, and these esti-
mators depend in no way on the supplementary physical assumptions we may introduce to remove the
indeterminability (on the contrary, the variance to be ascribed to these estimators will depend on

them) .

This result will be compared with the similar conclusion concerning the constant term a, of
the drift, a conclusion to which the interpretation of the drift as a very regular R.P. has allowed
us to come in paragraph 4-4-4. Here also, the theory of random drift allows us to foresee from the
beginning the type of indeterminability we shall meet with. We shall examine this now, before pas-
ging on,in the following paragraphs, to the proper algebraic study of the problem.

Let Z(x) be a R.F. having a functional drift of the type 8, fe(x) and a covariance o(x,y), and

let also m(x) be a random function, very regular and such that its covariance X(x,y) has, on the

working domain V, a good approximate representation of the form

K(x,y)

zp, 40 ()

The random function

[}

2'(x) = 2(x) + m(x)
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has the underlying covariance
(4-6-1) ' a'(x,¥) = a(x,y) + Kpy 0o 2y
(assuming m(x) and Y(x) to be :Lﬁdependent) and the drift

8,2%2) + a(x) = (a, + ) £5x0)

with ap definite but unlimown, whilst the be are r.v.'s (the covariance matrix of which is exactly

K?s) ¢

But, when we have only a single realization of the random function at our disposal, only the
corresponding realizations of the r.v.'s be , Which are simple numbers, have an experimental signi-
ficance. But, from the epistemological point of view, it would be illusory to think' that we really
gain information when we decide to interpret a given numerical value as a realization of a r.v.
whose distribution is unknown. As the K?s are experimentally inaccessible (and we have seen that
it is the general case) the two parameters ap and by are not really distinguishable. We may as well
decide to interpret the by as numbers : instead of o'(x,y), our R.P. Z'(x) has then the same cova=
riance a(x,y) as Z(x). Hence there is nothing in a single realization of Z'(x) which allows us to
choose between these two covariances. The algebraic indeterminability, concerming the reconstitu-
tion of the underlying covariance, will hence be at least (and we shall see that it is in fact exact-
ly) that expressed by relationship (4-6-1).

But on the other hand - reassuring circumstance - the random drift theory stated in paragraph
4-4 shows that the equations giving the optimal estimators are the same for the random drifts and
the functional drifts. Consequently, we should expect - and this will be verified - that this fun-
damental indeterminability (4-6-1) does not have‘ any repercussion on the optimal estimators them-

gselves (but only on the variances to be given to them).

Let us pass on now to the algebraic study of the problem, limiting ourselves to the case where
a covariance o(x,y) exists, and where the experimental data set S is finite.
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4-6=-2 Universal quadratic estimators. .

Within a theory of order two (i.e. : where we try to estimate the covariance,
without knowing anything a priori about the law of the R.F.), the only estimators we can use to es-
timate this covariance are quadratic estimators of the 'ty_'pe

*

= q%B
Q =9 ZaZB

A quadratic estimator Q* will be said to be universal if its mathematical expectation does not de-

pend on the coefficients a, of the drift m(x) = a, fe(x). From :

Q") = a% o g + 8y 8, 0% £2 27
it follows that a quadratic estimator Q* is universal if and only if it obeys the relationship
(4-6-2) QP ¢ f; =0

When the coefficients a.e of the drift are unknown, these universal estimators are the only utiliza-~

ble ones for the statistical inference of the covariance function. It follows from this remark that

the maximum of information which it is theoretically possible to obtain concerning the matrix dd.ﬁ

of the underlying covariances is contained in the set of the numerical values E(i}, Q* describing

the class of the universal quadratic estimators, thus in the set of the QaB a 8 for the matrices

Q% verifying (4-6-2).

To characterize the class of the universal quadratic estimators, we need scme preliminary al-
gebraic considerations. Let N be the number of experimental points X, € S, k be that of the func-
tions fg (£=1,2,...k) assumed to be linearly independent on S. We can find N~k other functions
2 (u = k+1,...N) such that the N vectors - (fi), i=1,2,...N constitute a basis for the space
an, and we may associate with this basis the dual basis formed by N co-vectors Ki = ()\g) verifying
the conditions

-6 a ) - 54 a - s
(4-6-3) M Ty =81 0 A fp =8
(in other words, the matrices }\g ahd fi are inverse). Among these co-vectors }‘i’ i=1,2...N, the

k first ones, that is }\e ’ ¢ = 1,2y...k verify the universality condition :
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(4-6-4) ' ‘ A g = 8p

In other words, for any matrix aa.B’ the estimator

(4-6-4") ' ' Ay = Ay 3,

is such that E(Af) = 8, whatever the unknown 2y are : it is a universal estimator (but not optimal

in general). We ahall write :
. ot = 4, £f
a a

and m: will be a universal estimator (non optimal) of the value of the drift at x, - The N~k other
vectors Ay, i.e. Ay » &= k+1,...N constitute a basis for the orthogonal of the £ . They verify :

a of _
Kufa—o

Thus the subspace generated by the A, 1s independent of the choice of the functions ™ , since it is
identical to the orthogonal of the fe . Let us put :

= 2
Au—kuza

These random variables verify E(Au) = 0 whatever the coefficients a, are. As the matrix }\g is re-

gular, we can change the variables, and replace the za by :
A = Af z, (i=1,2,...N)

Any quadratic estimator Q  is then of the form :

*

Q" = QM a4
We shall compute E(Q“). Since E(Au) = 0 (u = k+1,...N) whatever the &, are, we have :
E(Q") = Qij Cov(A_l Aj) + Q"pB ay 8

38

*
Consequently, Q 1s a quadratic universal estimator if and only if we have Qes =0 ({s =1,2,...k).
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Thus, all the information that it is theoretically possible to reconstitute concerning the cova-
riances matrix is contained in the fallsowing matrix (N-k) x N :

(4-6-10) Syq = Cov (A, &) (u=1#1,.0.8 5 1 =1,2,...)

4-6-3 General form of the sdmissible covarisnce matrices.

Conversely, suppose that we lknow all the information which it is theoretically pos-

sible to reconstitute, i.e. the N(N-k) numbers §,4 of relationship (4-6-10). The matrix :
= N N
sij Cov (A1 Aj) Ay Ay %
is reversible, and theoretically we have :
. g
[ =
(4-6-11) L 84y Ty fB

In this equation, the Sp, = Cov (A€ AS) (8,3 = 1,2,...k) represent the inaccessible part of the co-

variance. Hence we can write :
- = 4
(4-6-12) %ug cap*sésfaf;
The first term represents the cognizable part of the covariance matrix caﬁ’ while the undetermined

part is represented by the guadratic form s?s fﬁ f‘; . However, we have :

4
Ses fa fﬂ

= a' ! g = * oo -
}‘F Ag T, f; Cov (Za, ZB,) E(ma mB) m, D

and hence, from (4-6-12) :

»* *
- E(ma ma)
i.e. :

(4-6~-13) cm‘3 = E(Za zB -m mﬂ)
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Such is the co@g able part of the covariasnce. Any matrix of the form :
= € g3
(4-6-14) Taﬂ c(zp + Dé‘s fa fB

where ,Dea is an arbitrary symmetric matrix is quite as admissible (provided that it is positive)
as the "true"™ covariance o o * These admissible covariances are deduced from each other according

to the following relationship, where T?s is an arbitrary symmetric matrix :

(4-6=15) Tug = Yap + Tpg f£ f;

4-6-4 Consequences for the optimal estimators.

Congider for example, the system of equations of the optimal estimation of the
drift, taking as a covariance T

B the general solution (4-6-15) :
{ :B T, =1 £

2 Tap T Pls T

~3 .

¢ 5 = 8

The universality condition does not make Ty intervene, hence it does not depend on the indetermi-

g
nate matrix, the first relationship can be put in the following equivalent form :

~ S'~

] %up = s £2 - Ty, £ 5 xg
i.e., talking the uhiversality' condition into account :
( ~ ~
lg %ap =(ugg = Tpg) fi

LERE

But this system 1s identical to the system (4~2-6) written with the "true" unimown underlying cova=
riance, on the condition that we take :
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(4-6-20) ‘Bgg = ;Ps = Tl

Consequently, the indeterminability of the underlying covariance has no repercussion on the opti-
mal estimation of the drift. But, from (4-6-20),_ it affects the covariance matrix of the optimal
estimators, which remains theoretically wholly indeterminate.

When there is no covariance Gaﬁ but only a variogram, the expectation E(Z(z zB - m; m;) does
not exist in general. The expresaion (4-6-17) will have to be replaced by a similar expression cons-

tructed from the increments of the R.F. and of its estimated drift, i.e.

= i - 2 - * - * 2 l 2 * - »*
Yeg =32 E[(Zlz Za) (m, mB) 1+350° (m, ma)
where the first term is the accessible part of the underlying variogram, and the second one the in-

accessible part.

In Exercise 17, some indications will be found on how a physically plausible hypothesis like
that of local stationarity allows the difficulties associated with indeterminability to be removed
for the most part. (It will be noticed that the term o(o) = a2 representing the a priori variance

remains, in principle, inaccessible).

4-7 EXERCISES ON CHAPTER 4.

4-7-1 Exercises on drifts.

Exercigse | (Linear variogram, continuous case)
a/ let, on a straight line, f(x) be a function having a continuous second derivative.
Show ( by integration by parts) that we have for =R < y < R :

R
j |x-y| £"(x) dx = 2 £(y) - £(R) - £(~-R) + R(£'(R) - £'(-R)] - y[£'(R) + £'(-R)]
-R

GR and ‘S-R being the Dirac measures set at R and -R respectively, show that, still for
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Exercise 2

~-R<sy <R

Sp*o_p | 5g-8_g ? 2, 2
2 |=-yl = ®, —_ =~y =-¥ , RI::—yl dx =y~ + R

b/ On a straight line, consider a R.F. having a.variogram y(x,y) = |x-y| and a guadratic
drift 8,x + azx2 (defined except for a constant ao) with unknown coefficients. The rea~
lization is supposed to be kmown on (=R, R). Show that the solution of system (4-2-11)
completed for the vaiue 0 of the index € leads to the estimators :

4, =47-4 (g +2p) . 4 =35 (- 2y '52=';1%(ZR*Z-R)f‘Z% 2

R .
(Z=-% f 2(x) ax) with D3(a) =3 , DA(4,) =:§3 » Cov (4 &) =0
© R

R
[Notice, from a/, that Ae = j xe(dx) Z(x) with a measure ) which is a linear combina-
“R

6R+6_R 63.6-1?.
s y g and dx, and use the universality conditions to

tion of the measures
detenixine the coefficients of these‘combinations. Identify the Lagrange parameters in
the first relationship (4-2-11) to determine the variances.].

R=h

¢/ (Yariogram of the residuals) - Show that y (h) = o J’ % [2(x+h)-n"(x+h)-2(x) +
LR
m*(x)]2 has, in the above conditions, the expectation

5% N

2 3
e <2 -5 d - g

[Use the relationship (4-2-15). The graph is a rather flattened curve. The slope at the
origi'n is unchanged, but as soon as h is not very small, the bias is huge. For h = 2 R,
this expectation vanishes. Notice that the experimenter risks concluding that the resi-
duals are independent].

- In the same conditions as above, assume that the R.F. has only a linear drift. Show

. that the estimator Ao + A1x 1s the straight line joining the twp points ZR and Z—R y and

that the variogram of the residuals has the expectation

» 2
Ey'(0)] = b - &
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(Influence of a nugget effect) - On a straight line, consider &n -I.R.P. with a linear
drift and the variogram y(h) = |h| - C § (nugget effect represented by a Dirac measure).
Show that the solution of system (4-2-11) completed for € = O leads to the estimators

R R
Ay =D, J chax z(x) dx , A, =D, J‘ shax 2(x) dx
-R -R

2
- a = a , 2 _ - \/E
(% =35haE * ®1 " e XhaT-shaw ) D2°(a) =2b,chaR a=V§

[Uae Ex. 7, Chapter 3 to show that the measures A, and A, are of the type b chax dx

and b, shax dx, identify bo and b, with the help of the universality conditions, and

1 1

By, With the first relationship (4-2-11)].

(Linear variogram, discrete case) - Let 2Z(x) be the same R.F. as in Exercise 1 (qua-
dratic drift and linear variogram), but its realization is lkmnown at the n+1 points

x; = ih, 1=0,1,...n. We shall put L = nh.

n
n+l
a/ Iet v, be the measure 5 - §, and v, the measure I 6&;, - S5= (8 + 6

i=0

o)’ Show that

these measures verify for j = 0,1,...n :
jv1(dx) |z-3n] = (n-29) B , fvz(dx) |z-ih] = = 3(n-9) B

b/ Deduce the optimal estimators of a, and 52 :

2 -2 Z +
A B o (3o 20
_
2 +2 (-Z—m Ezi)
A = - 6 (3 ~-=2.1)
2 1 (n(n-1) 2

and the covariance matrix :

1
n(n2—1) n’

fn’-2 1 SR S |
B11 B ' P27 By 2_, p2' P22

n{n®=1) n
(deduce from a/ that the measures A, and A, are linear combinations of vy and v, 5 de-
termine the coefficients using the universality conditions ; identify the wpg o1 the
right hand side of the optimality equationm).
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’ ot
¢/ Compare with Exercise 1,9/. Hence determine the estimators A; ’ A1 and Aé of the

continuous case wher the realization is known on (0,L).
V[Put L=2R, place‘the origin of coordinates at -R and use tensorisl invariance, hence

|_ 2' v— - l=
Ag = Ay = AR+ A, R® 5 Ay =A - 24, A Az].

Exercise 5 (Exponential covariance, continuous case)_-

a/ Show that, on a.straight line, tke measures :

1+aR
2a

voldx) = $ax + 4 (65 + 6.p) 5 vy(dx) = §xax+ (85 - 6_g)

verify the integral equations : (-R s ¥ s R)

R R ' ‘
-R -R

b/ On a straight line, consider a R.F. having a linear drift and the covariance e-elxyl,

Its‘realization is known on the interval (-R, R). Show that the optimal estimators ve-

rify :
2,+2
. _ _aR 1 R =R
Ac) T 1+aR Z+ 1+aR 2

R ‘ ‘

a .a i+ aR
= a 2 x Z(x) dx + — (z, - 2 )]

1 R(1+aR + % a2 éZ) [ 2 ‘[R 2a R -R
= ! =0 2

u =
"M R(4+aR + % a® %)

Exercise 6 (Case of large grids) -

a/ The notations are those of Ex. 10 of Chapter 3 and of Ex. 13 to 15 of Chapter 2. In
&2 » consider a R.F. having a covariance K(x-y) with a small range, and N experimental
points X, 2 &= 1,2,...N éuch that their mutual distances apart are greater than the
range. We shall suppose that a drift exists, having the form ae fé(x), { = 1y¢..k. Show
that the optimal =stimators A@ are identical to those given by the least squares me-

thod. Compute their expression and the covariance matrix upg @3 a function of the matrix
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s _ & (4
T = z fa

f:' and of its inverse Sp,
a=1

(bpg = C Spg kg = Ses fi)

b/ Compute the mathematical expectation of the expression

I =

Si=

g2
E (za - 4 fa?

[Make use of the relationship between the cross term and the quadratic term at the opti-

mum. The result is I = (1 - %) cl.

(Linear drift on the circumference of a circle). -

. The

a/ In mz, consider a R.F. wita a covariance C(r) which depends only on r = |x-y
realization is supposed to be kmown on the circumference of a circle with a centre 0 and

radius R. Show that if there is a quadratic drift, the system gi&ing the optimal estima-
e

tors is not regular (the £ are not linearly independent on S, because x2 + y2 = [R2).

b/ We suppose that the preceding R.F. has a linear drift a, + a,x + asy . Form the opti-

1
mal estimators AO ’ A1 and A2 , show that they do not depend on the covariance C(r) and

that they coincide with those of the least squares methods.

[on the circumference, the drift is a_+ a, Rcos 8 + as R sin 6 ; the covariance deve-

Q
lops as a Pourier series C(2 R |sin £2']) = = b, cos (6-0') with all the b different
from 0 if C(r) is strictly positive definite. The functions 1, sin § and cos 9 are then

eigen functions for the kermel C(6-8'). Deduce that A

on 2n 2n

——1- :1— —1_ i
Ao—zan(e)de,A1 TtRfz(e) cos 8 d8 , A, = -x [z(e) sin 8 4o
o ()
b1
Only the covariance matrix depends on C(r) = Moo = Bg » Hyq = Hpp = ~3 , CTOSS terms are
. R

squal to 0].
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-7-2 Kriging and Colriging.

Exercise 8 -

Exercise 9 -

Exercise 10 -

giercise 11 -

In the conditions of Ex. 1, krige the point x, = R + h (apply the addit.{vity theorem
and the Ex. 6, a/ of Chapter 3 ; the estimator is Zy(x,)) = Zp + Ajh+ A n (2 R+ h)

with the variance

2 3 4
h " n
4= +3 + 3 =_+2h
R R2 4R’

which increases rapidly with h : extrapolation is only possible over small distances).

In the conditions of Ex. 4, krige the point x = ih+eh(0Osesx<1); 0<ic<n.
(Apply the additivity theorem, and Exercise 6, b/ of Chapter 3. We get

. » 2
ne e(1-¢) , cg =2 e(1-e)h + §.€_U2'_€2_h ).

z* =c 2
(xo) N n(n%-1)

+ (1--‘5)2i - A

i+1 2

In the conditions of Ex. 5, krige x, = R + h. (Apply the additivity theorem and Ex. 4
of Chapter 3).

(Case of large grids) - In the conditions of Ex. 6, we want to estimate a domain V

large with respect to the range. We suppose that n of the N = n + n' points x, are
inside V and n' outside, and that they are all located at distances greater than the
range from the boundary of V. Form the optimal estimator of V in the presence of a
drift a, fe(x) and compute the associated variance.

(Apply the additivity theorem and Ex. 10 of Chapter 3. To avoid confusion in notationm,

.

B will be the term A1 of that exercise. Putting

1 n' B 1 n B
A= —— b = o A' = e - anim e
n+n' n+nt cv n+n' n+n' cv

i and j' respectively denoting the inside and outside samples, the estimator is :

n e n' e
Zy =2 1Z=>1 (z; - A, ) + A T (zj. - fj. Ae)

=y
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with the variance

c§+ v H&‘ , gfe - (k?ff+ A Zj:' ff.) (Azi:f?l + A %;' f?,)

Exercise 12 (multinomial interpolator) - Consider n points X, Xy...%, 00 & straight line. The

polynomial of degree n-1 such that P(xi) =32, is :

(x—x1)(x—x2)...(x—xi_1)(x-xi+1)...(x—xn)

P(x) =2

ioCegmx ) (xg=xp) en e (my=xy ) (xy=%5 0 )ee o (x5-x)) i

Form the expression for the cubic interpolator associated with the four points

2 3

=—2 =—2 :.é = 2’ i = .
x, s a, X, 51 %3 =35 X, 3 5, i.e., b+ h1x + b2 x< + b3 x P(x)
Integrate from - % to % . Show that

3/2 2,+2
1 J- 1 Z.+2 +
- P(x)dx =b_ + = b, 2 13 22° _1 1%
& Ja 0" T2 2228 A2 - L

-2

Compare with Exercise 1t of chapter 3 for the negative weight of the external data.

Exercise 13 (Cokriging in the presence of a non-gystematical error)- let Zo(x) be a R.F., C(x;Y) its
covariance, a, fe(x) its drift with unknown coefficients ag . Let e(x) be another R.F. with zero
expectation and a covariance Ce(x,y) : e(x) is independent of Z, . let Z1(x) = Zo(x) + e(x).

- - = - C
a/ Show that Coo = Co C,o=C, and C,, =C+

1 €

b/ The realization of %, is supposed to be known on S1 (So is void). Show that the opti-

i
mal estimators A, = xz(dx) Z1(x) are solution of the system :

¢

n(ax) [Cxy) + € (6] = wg, £5(9) (y €5,
1

J; rpldx) 3(x) = 87
1

fv«fvﬁfv«rv«
n——

(the drift of Z1 would be estimated in exactly the same way).
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o/ Erige 2,(x,) at a point z, (belonging or not to S,). Show that Z,(x)) = Aax)z,(x)
s
with . 1
[aan teem) v o e = ) s w2ty wes)
S

1
fx(u) o) = 2lx)
5
(This system is not identical to that obtained by kriging Z1(x°) ; in particular, Z;(xo)

is not an exact interpolator for Z1(x)).

In the same way, write the kriging system of z1(x°) (x, £ Sl) and compare the two vari-
ances using the hypothesis that C, is a nugget effect (the estimation of zo(xo) is bet-
ter than that of 2Z,(x ).

Exercise 14 (Cokriging in the presence of a systematical error) - Let Zo(x) be a stationary R.PF.,
C(h) its (kmown) covariance, m, its unknown expectation. let ¢(x) be another stationary

R.F., Cs(h) its covariance and €. its (unknown) expectation. e(x) is independent of

[o]
z,(x). Z1(x) = zo(x) + e(x).

a/ Show that coo =C = C 3 C‘|1 =C + Cs . To represent fhe drifts, introduce the two

01
functions f (x,i) defined by

£%x,0) = 1, £%(x,1) =0, £ (x,0) = 0, £'(x,1) = 1

The drift m(x,1i) of 2(x,i) is a, °(x,i) + a f’(x,i)', with aj = m  , a, =m, =m  + €.

1 1 1
Show that the linear independence condition is realized only if the two gsets So and S1

are not void (if So is void, there is no hope of éeparating, in m,, the systematic error

1 ’
€, from the true expectation mo).

b/ Form the equations of the optimal estimators A, =Jkg(dx) Z,(x) +Jké(dx) Z1(x) and

0 1

_ | 1
A, —J.)\'(dx) Z,(x) +jk1(dx) Z1(dx).
o] 1
The universality conditions are J‘J\;'(dx) = 53‘, those of optimality :
s :
i
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. Jﬂxz o(x,y) +‘[x} c(x,y) = up, (y € 8)
S S
o 1
Acé C(x,}') "'J‘}\E [C(X,Y) + Cs(x’y)] = I-l»e1 (y € 51)
S S
o 1

¢/ Krige zo(xo) at a point x, £ S, -

Universality : j)\o(dx) =1, JA1(dx) = 0 ; Optimality :
S ]

o
Jko(dx) C(x,y) + Jk,(dx) C(x,y) = Clx,h¥) + ny (y € 855)
S S
o] 1
J‘ko(dx) C(x,y) + J;,(dx) [cl(x,y) + Cs(x,y)] = C(xo,y) * By (y € S’)
S
o 1

Exercise 15 (Simplified case of Cokriging) -

a/ If S1 = 52 = ... =58 =5 (the & realizations of the Zi(x) being known on the same

set 3) and if the 4 drifts mi(x) are expressed by the same functions fp(g) and are li-

nearly independent, it is better to change the notation and put mi(x) = a;p fegx) with
an unknown matrix ap - Denoting by cij(x,y) the cross covariances, by Ajp = Ai% zja
(notation in the finite case S = {x_ , a = 1,2,...8}, 1,§ = 1,2,...d, £=0,1,...%)

Ja i od -
Ay zja the lriging of x € S, for the sys

tems of the equations for the xgg and the Aia . (We get respedtively :

the optimal estimator of a;p , by Z;(xo)

Ja S _ J S
M £ =6 85
J = 8 -
( "18 T55v58a = P1jr;0s fa (hygrpg = OOV Ajp Ayiq)
and : Ja o8 _ ] o8
2 A £, =8y T(xy)
(
(1
- ]
(M 95i*sBa T Bij';s . )

s
b/ Let B; be a regular 4 x d matrix, and B 3 its inverse. Consider the R.F.'s Zi =

Bi Zj deduced from the preceding ones by the matrix Bg . Show that the coefficients
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Ai% and hi“ of the precedihg optimal estimators vary at one time in a covariant manner

and at another time in a contravariant manner, whilst the Lagrange parameters behave in

' ' ’ 1y 1y 5 i
a covariant wey (i.e. ujy s - = iy Bg byege = 3 ARy BY AT ).

¢/ Let zi(x) be 'd R.F.'s as above, independent, having the same covariance function o(x,y).

Show that o, = 0 or g , whether j # j' or j = j'. Deduce from this that the opti-

3i'iBa Ba
mal estimators of the drift and of kriging for the R.F. Zi(x) do not call in the other
R.F.'s Zj, j#1i, i.e. :

=y 2 7,(x.) = A% 2
Ajp = Ay 24, 1'%, ia

with coefficients (independent of i) verifying :

RERE (e 22 = 0,
and -
s -
g)\soap=pesfa gkaoaﬁ—pef{;

a/ Let z;(x) be R.P.'s defined as in a/ such that oij(x,y) = Kij o(x,y) with a strictly
positive definite matrix Kij and a covariance function o(x,y). Show that we may find d
independent random functions Zi(x) as in ¢/ having the same covariance function o(x,y)
such that Zj'_(x) = B;:]_ Zj(x) with a matrix Bg'. verifying : '

K

- J gd'
110 ‘Zj) Bj Bi

(diagonalize the matrix Ky ).

J
Deduce that the optimal estimators' coefficients are the same as in paragraph ¢/, hence
that the drift or the kriging of one of these R.P.'s is egtimated as if it alone was

present. (B'i' Bg, 5‘} = 53: )

(Apply the variation law of the coefficient found in b/ : in applications, the case

where all the cross-covariances are proportional to the same given covariance is par-

ticularly interesting, because of the great simplification this allows).
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4-7-3 Indeterminability of the underlying covariance.

Exercise 16 (n correlated Gaussian variables) - ILet xt, XZ’“'Xn be n Gaussian variables having the
2

same expectation m, the same variance ¢ , and such that the X, Xj have, pair by pair,

the same correlation coefficient Pij =P (L # ).

a/ Show that the covariance matrix is o5y = [(1-p) 8i4 * p]cr2 , and as for an inverse :

B, = — (s e
1 (1-p)e? s (oo

Compute the determinant of 94 5 (& (1-p)n_1 (1+(n=1)p)+« Deduce that the density

f(x1,...xr'1) of these variables verifies
~ 2log £ =nlog 2n +n log a? + (n-1) log (t=p) + [t + (n=-1)p]

+ 2 B.. (x.-m) (x,-m)
T ’

2

(it will be noticed that the eigenvalues of gy are (1=-p)o® of order n-1 (eigenvectors

ay such that & ay = and 1 + (n-1)p of order 1 (eigenvectors : a; = 1). Notice the

0)
s 1
condition 1 2 p 2 - == ).

b/ A realization (x1, x2...xn) of X,, }{2,...)g,1 is supposed to be Mmown. Form the esti-

2

mators of the maximum likelihood m*, s® and r of m, 02 and p. To do this, put

_ - - _m)2
S1 = Z} (xi m) S2 = Z} (xi m)
i i
a3 3sS
and notice that #:-n y Hg=-251,and:
T B, (x,-m)(x,-n) L Z 2)
L (x-m)(x.-m) = ———t——— (5, ~ ——— 5
j ot J (1-p)a? 2 14+ (n-1)o

ij

Show that the equation in m gives S‘I =0, i.e. o = Z X5 that the equation in s

leads to :

S

2_1
(1-r) s =S,

and that the equation in r leads to an absurd result, in which the experimental data
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. no longer appear.

Exercise 17 -

Conclude that (1-p)o2 can be estimated (if need be), but not a2 and p separately.

¢/ Explain this result with the help of the theory of quadratic universal estimators.
(@% x, x; 1s universal 12 T Q' = 0. But E(q') %, X;) s then equal to z ot oy,
ij J
= (1=-p) P Qii = (1-p) 62 " represents the inaccessible part of the covariance, and
i

2

p and o° cannot be separated).

d/ Show that these conclusions remain valid for k independent vectorial variables
(xf,...3§), all of which have the same covariance dij as above, but a different ex~
pectation my = E(Xg).

On a atraight line, consider a R.F. having a covariance o(x,y) and a linear drift

+
B.o 31

lization is supposed to be known in the interval (-R, R).

x . The covariance as well as the coefficients a, and 31 are unknown. The rea-

a/ In order to estimate a, and a,, we use the universal (but obviously not optimal
in general)estimators
L, JWha 2yl
0 2 ™M 2

(c2L. Exercise 2). Show that

20, ) 2 1 20, ) =
Dhy) = g * Spr * 29g,-n) » DA = by (opg + o g = 2 95, p)

and Cov (4, Ai) = Cov (A1 A,) = 0. (These two variances represent the inaccessible

part of the covariance).

Deduce the general form of the admissible covariances t(x,y) as a function of one of

them o{x,y) :

t(x,)’) = U(X,Y) + DO + D1 Xy (X,Y € ('R’ R))

b/ Suppose that, among all the possible covariances, the "true" unknown covariance is
the most stationary possible. To find it, start from a particular solution <(x,y) ’

equal for instance to E(Zx 2

v - m; m;), obtained by experiment. Put :



o(x,x+n) = ©(x,x+h) = D, - D, x(x+h) (0Oshs< 2R)

R-h B=-h
o(h) = -2-;-_3 o({x,x+h) dx , 7T(h) = ﬁ J (x,x+h)
LR L

hence

3(n) = T(n) - 0, + D, [ § (28-h)? - R(R-h)]

Determine D, in order to minimize the integral :

1
2R -h
j dh J'R [o(x,x+h) - 3(h)]% ax
] =R

{(notice that D, ig eliminated and remains indeterminate).
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Absolute dispersion (De Wijsian scheme)

Accumulation
Additivity relationship
(Variances)
Additivity theorem
(Kriging)
(Universal Kriging)
Anisotropy, geometric
zonal
Auxiliary Intrinsic function
Auto-regularization

B
Behaviour of g(h)
y(n)
Bias (on the covariogram of the
residuals
Block term
c

Cauchy's Algorithm
Closed arrangement of samples
Cokriging
Composition of a line term and
- a slice term
Continuity of a R.PF.
m.q.0.

Convolution

INDEX

80
15

68
126
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166
57
57
71
14

57

155
76

41
3
183
31
75
57
58

Convolution (stochastic)
Correspondence principle
Covariance
of a regularization
of v and v'
of v and v' within V
Covariogram, geometric
" transitive

" regularized

De Wijs formula
Differentiation q.m.

Diametral variation

Drift
" linear
" randon

Elementary Extension variance
combination principle
Equivalent, linear
samples

Estimation variance

of a surface

Exact interpolator

60
18
51
61
64
68
10

14

52
58
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36

139
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72
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80
81

21
65
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Expectation
Extension term

" variance

F
Pield (of a Re. V.)
G
Geometric problem
Gigogne structure
Grad ing
. under constant thickness
I

Indicator (of a set)
Infinite a priori variance
Influence zone ‘
Integral, stoéhastic
Intrinsic function

" hypothesis
in..tﬁe mean sgquare

Isotropic covariogram

" variogram
K
Kriging
‘equations
variance
punctual

51
28
64

77
15
62

52
57
59
53
53
58
12
58

115

121
123

121
121,125

Large grilds
Line term

Maximum likelihood
Measures (transitive theory for)
Measure, random
Minkowski's formula -
Moving average
" " welighted

Non~-gtationary R.P.

Nugget effect

" " genesis of a

Nugget variance

Panel

Pogitive-definite function

Quasi-stationarity

Quantity of metal
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3
76

155
47
80
42

139

12
58

77
8

96
11



Random functiony
" variable
Random network

" network, stratified

Range

Realization of a R.F.
Regionalized phenomenon
" variable
Regular grids
Regularization of a functioh
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" of a R.F.

Schwartz inequality

Screen effect

Second-order stationarity
Section term
Semi-variogram

" " regularized
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Slice term
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Spherical scheme

Stationary R.PF.

Stratified (see random network)
Structuring set

Support of a Re.V;
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50
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1
57

50

70

14
59

54
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52
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57
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51
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Tensorial invariance

Term by term grading

correspondence (variances)

Transition phenomenon

Underlying variogram

Universal estimator
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Universality, condition
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Zitterbewegung

151

18
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