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ABSTRACT

Secrutinizing polemics between Dr. D. G. Krige and
Prof. E. H. T. Whitten, it appears that the kriging proce-
dure is valid for stationary or intrinsic random functions,
whereas the polynomial interpolation procedure should be
applied only in specific cases [an error e(x) superimposed
to a regular phenomenon m(x)]. It is shown, by a nume-
rical example, how striking but fallacious evidence for a
real trend may occur as a result of purely random cumu-
lative effects.
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N the proceedings of the Symposium on Mathema-

tical Statistics and Computer Applications (1),
we can read of a very instructive controversy between
Dr. D. G. Krige and Prof. E. H. T. Whitten. The
vigour, and sometimes the acrimony, of the debates,
and the methodological importance of the arguments
involved, indicate that there is a fundamental under-
lying problem. We could state it as follows: is it pos-
sible for mathematical geology to accede to the true
dignity of a really rational and scientific discipline,
or shall it be nothing but a purely mechanical applica-
tion of computers?

The question was the following: in the Rand gold-
field, which is the best method to use in order to
estimate the gold content of an unexploited panel
when knowing only the gold content of samples taken
in its neighbourhood? Krige’s approach is based on
a precise probabilistic background; we must use as an
estimator, he says, the conditional expected value of
the panel’s gold content, relative to the hypothesis
that available samples are assuming given values. He
stresses the fact that it is necessary to know exactly
what a given estimator is estimating (here, the mean
gold content of a minimal block measuring 100 by
100 ft), and adds that polynomial (or other) inter-
polation procedures fail to verify such a condition;
with a least-squares fitted polynomial, P(x), we do
not know specifically what the value taken at point x
is related to.

For practical purposes, instead of using a condi-
tional expected value, Krige adopts a linear regres-
sion formula; i.e., the linear expression corresponding
to the minimal estimation variance. Denoting the gold
content of the sample that could be taken at a given
point, x, by f(x), and the panel to be estimated by S,
the actual but unknown content of this panel is:

We then take an estimator, E(S), of the form:

n

S fx) (Eq. 1I)
i=1
where X, X, ... X, denote points actually sampled. The
A coefficients minimize the estimation variance; they
can be obtained by solving a linear system, the matrix
of which depends only on the variogram (4).

E(s) =

Estimator (I) appears as a weighted moving aver-
age; indeed, it is not an arbitrary one, but the speci-
fic one that minimizes the estimation variance. It is
known as the kriging estimator.*

Prof. Whitten did not agree with such an approach,
and produced two sorts of arguments. His first ob-
jection is that, if calculated on the basis of an area
of 100 by 100 ft, and estimator like (II) will tend to
suppress all structural features relative to lower

-scales, and miss important geological information.

The first point does not seem to be founded. Ob-
viously, the kriging estimator (II) may be fitted for
estimating the punctual content, f(x), at an arbi-
trary point x. We obtain:

n
Elfx)|= =

i=1 )
with coefficients x: (x) depending on x and minimiz-
ing the estimation variance for f(x). The kriging
estimator (II) itself appears as a moving average of
the punctual kriging (III), exactly in the same way
as the value of (I) is itself a moving average of f(x).
Indeed, it can easily be shown that the A coefficients
of Eq. II can be deduced from the x(x) of Eq. III

by putting:
ho= —1 f A (X) dx
s s

It is then clear that the punctual estimator (III)
expresses in the best way all the available informa-
tion. If microstructures are present, and may be ap-
proached on the basis of available samples, estimator
(ITII) answers Prof. Whitten’s first objection. For
exploitation purposes, however, minimal-size panels
are the only interesting features, so that it is practi-
cally necessary and theoretically correct to neglect
such microstructures by using directly the kriging
(11) estimator, which gives us the best estimation of
what we precisely want to estimate.

Prof. Whitten’s second objection is the following:

local fluctuations (i.e., precisely those microstruc-
tures that Dr. Krige was formerly reproached to ne-

ME)fx) . (Eq. IIT)

*This terminology is classical in France, since 1960.
We kindly suggest to Dr. Krige’s friends and colleagues
to use it, instead of the really misleading expression
“weighted moving average.”
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glect) are generally. méénvinglvess,'énd should be elim-
inated. Only regional trends are of - interest. Each
-value of f(x) may be represented as the sum:

fx) =mE) +e®X) ... . (Eq. IV)

. where m(x) is a very regular and continuous func-
tion expressing the trend, and e(x) is a meaningless
random fluctuatlon to be eliminated. Moving-average
procedures fail to separate substance or essence —
‘i.e, m(x) — from accidents or appearance — i.e.,
e(x). Accordlng to Prof. Whltten only 1nterpolat10n
procedures can do this.

As a matter of fact, in physics or information the-
ory, a model like (IV) is often useful, when an in-
terestlng phenomenon or a message is altered by a
noise. Naturally, such a distinction between message
and noise requires a serious theoretical background
to be asserted a priori. When such a theoretical back-
ground is missing (as is generally the case in geolo-
gy), distinction between m(x) and e(x), which could
appear purely empirical, expresses nothing but inge-
nuous metaphysics, or perceptive illusion (see the ex-
ample below). In geology, the so-called “trend” m(x)
has generally exactly the same stochastical character
as noise itself, a distinction between m(x) and e(x)

being only a matter of scales. In brief, such a dis-

tinction does not appear to be founded on a criterion
that could be stated in a rational language.

‘Furthermore, when criticizing the moving-average
_procedure, Prof. Whitten did not see that the polyno-
mial interpolation is itself a moving-average proce-
dure.

Indeed, it consists of finding a function, P(x), of
the form:

Pk) =

where Q.(x) are given functions (for instance, mono-
mial functions when using -polynomial interpolation).
The coefficients a. are determined by minimizing the
quadratic form:
n-
2 ) — Za.Q, (xi)]?
i=1 , r »
and can be obtained by solving the linear system:
E ar Qr'(xi) Qq (xi) = E Qr (xi) f(X'.)
1, q 1
Hence, the a. coefficients are linearly related to the
experimental values, f(x;). We may write:
a, = IB,,if (%)
1

and, putting those expressiohs in Eq: V, we obtain:
Px) = ZB,, :f(x)Q: (x)
L, r .

or:

by putting p. = 3,B.Q.(x). Hence, polynomial inter-

polation appears itself as a moving-average proce- °

dure. However, if, among all the possible choices for
the weighting coefficients, kriging leads us to the
minimal estimation variance, any other choice, includ-
ing the mterpolatlon formula (VI), will, of course,
give a greater variance, and a less eff1c1ent estima-
tion for what we want.

We may add the following remark: if one is given

fourteen experimental points, it is always possible to -
find a 13-degree polynomial fitting them exactly. If, -

in Eq. V, the number of the Q. functions equals the
number, n, of available data, we will have exactly
P(x)) = f(xi) at each sampled point x:;. The fit is a
perfect one. However, it is well known and universally

TaQe®). " (Eq.V)

Px)=Swf®)................ L (Eq. VI)

admitted that such perfection is a fallacy; when in-
creasing the degree for polynomial interpolation, tre-
mendous and meaningless fluctuations are always ap-
pearing between interpolation points and, as -a result,
a pure artefact is obtained. Howeyer, the best estima-
tor for gold content f(x:) at a sampled point x; re-
mains f(x;) itself, its true valué being known. The

. impossibility of obtaining such a‘result in a ‘realistic .

manner appears to represent a failure for interpola-
tion methods. On~ the contrary, punctual kriging
(III) always gives E[f(x))] = f(xi), as can easﬂy ‘
be shown, the corresponding mmlma] estlmatlon va- -
riance being null, ,

Besides, whereas polynomial mterpolatlon was for-

‘merly appearing as a particular movmg-average pro-

cedure, punctual kriging is now appearing as an exact-
ly fitting interpolation procedure.

We could stop this discussion here. However, it may
be useful to scrutinize the conceptual background of
the arguments involved, and to give a nuinerical ex-
ample to illustrate the perceptive illusions on which
is based the common notion of “trend” —-a very an-
thropomorphic term.

Conceptual background

The -content, f(x), of the standard sample taken at
any point x, considered as an immediate manifesta-
tion of a natural phenomenon, constitutes what is
called a regionalized variable — a neutral term, prior
to all probabilistic interpretation — i.e., an ordinary
function f(x). Except in certain specific cagses —
where polynomial interpolation may be very useful —
the spatial variability of such a regionalized variable
is too complex and too erratic to be studied easily by
the usual mathematical functional methods. To rise
above such a multi-form chaos, a first step is accom-
plished by interpreting the regionalized variable as a
realization of a random function F(x). It is well
known that a random function F(x) may be defined
as a random variable with an infinite number of com-
ponents, each of these components corresponding to

“the values taken by F(x) at each point x. Random

function F and regionalized variable f are related in

. the same way as an ordinary random variable Y and

a numerical value y (for instance, y — 98) obtained
as a result of a particular experiment. We. cannot
say that our regionalized variable is a random func-
tion. Such an expression would be as inadequate as
saying, for instance: the number 98 is a random vari-
able. Experimental data are not identical to their con-.
ceptual model. Just as number 98 is obtained as a
result of a single experiment carried out according
to the probability law of Y, we must consider the
values taken by f(x) at all the points x as the result
of a.single trial carried out according to the law of
the random vector F (x), to which belong an infinite

number of components.

This first conceptualizing steb cannot be seriously
objected to. It is admitted explicitly by Krige, and,
more implicitly perhaps, by Whitten. It is not really

- a hypothesis, that may or may not be sipported by

experimental evidence, but only a conceptual back-
ground. Developing mathematical geology without
such a background would be more strenuous.*

*Actually, such a background is convenient for theoreti-
cal purposes, but not strlctly necessary. In (4), the writ-
er has shown that the main geostatistical results may be
deduced without any probablistic interpretation and, a .
fortiori, without any stationary or intrinsie hypothesus
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Real difficulties arise with statistical inference.

We need to determine the spatial law of our random
function; i.e., the set of all repartition laws:
G(f,l fz,. L X, X2,. ) = P[f(x,,) < fy, f(Xz) <fs ... 2] (EqVII)
for all finite sets of points x,, x., ... Knowing actual-
ly such laws, we could solve all possible problems, in-
cluding the determination of the conditional expect-
ed value for panel contents. This is the real theoretical
justification for kriging procedures.

Unfortunately, such a law as (VII) will depend
on more than k parameters, when k points xi, x,,...
X« are involved — it will at least depend on k order-1
moments and k(k+1)/2 order-2 moments, when the
data do not exceed the k numerical values f(x:), f(x:)
...f(xx), and when samples were actually obtained
at points xi, Xs; ...Xx. Hence, statistical inference is
generally impossible, or indeterminate, unless we in-
troduce some additional hypothesis to reduce the num-
ber of parameters involved. Then, however, the en-
suing results will not be any more valid than the
starting hypothesis itself,

Concerning such an hypothesis, we can at first as-
sume that our random function is a stationary one
— i.e., its spatial law is invariant by translation. Be-
cause the phenomenon is, then, in a sense, repeating
itself throughout the whole spatial field, new opportu-
nities arise for statistical inference. The order-1 mo-
ment reduces itself to a constant:

E [fx)] = m
and the covariances:
K(xi —x;) = E[f(xi) f(x;)] — m?
depend only on the vector x; — x; and not on each
of the points x; and x; separately.

We assume implicitly that our random function has
actually an expected value m and a finite variance
K(0). Such an assumption may be questioned. In the
Rand (3), for instance, size-s samples, in a mineralized
area S, have a variance of ¢* = « 1n(S/s), depend-
ing on both the sizes s and S. This variance increases
indefinitely with S, and does not tend toward a finite
limit K(0), as it should do if such an a priori finite
variance did exist.

It is possible to overcome this difficulty by using
the word intrinsic instead of the word stationary, and
using the variogram y(h) instead of the covariance
K(h). Indeed, y(h) is defined by:

¥ ) = § Elf(c+h) — [P

and does exist, even if the a priori variance does not.
Starting from a variogram or from a covariance, we
shall obtain the same kriging equations, and the two
procedures do not appear to be really distinct (4).

For the Rand goldfield, and many other orebodies
and geological phenomena, such an intrinsic or sta-
tionary hypothesis seems very well supported by ex-
perimental evidence. This is indeed the only justifica-
tion for it. As a matter of fact, the stationary charac-
ter needs to be verified locally only. When kriging
100- by 100-ft blocks, it is sufficient to verify that
the variogram is not altering itself in a 500- by 500-ft
or 1000- by 1000-ft area. Such conditions being satis-
fied, kriging is really the best possible estimation
procedure and polynomial interpolation appears only
as an artificial by-product of computer business.

On the other hand, it is possible to introduce another
kind of hypothesis, and it seems that Prof. Whitten
is doing so. Let m(x) be the order-1 moment:

E [f(x)] = m(x)

and let us assume that it is a continuous and regular
function depending on point x, but not a constant;
our random function is no longer stationary. Then,
putting
e(x) = {(x) — m(x)

we again find model (IV), but with a definite inter-
pretation for the trend m(x). This ‘“trend” now ap-
pears as the order-1 moment of a non-stationary ran-
dom function. In order to reduce the number of para-
meters involved by statistical inference, we assume
further that e(x) is a stationary random function,
with a null mean value and without auto-correlation.
Polynomial or other interpolation procedures then ap-
pear to be fully adequate. Such a procedure may be
used, for instance, when f(x) values occur as results
of measurements, with a random error e(x) attached
to a regular phenomenon m(x). However, without
such specific reasons, one could hardly admit that
there was a stationary covariance accompanying a
non-stationary mean, m(x). Such a dichotomic scheme
could find only a limited field of application.

An Example

In order to illustrate the preceding theoretical con-
siderations, a numerical example will now be given.
In a famous book by Feller (2), it has been shown
that a random-walk (for instance, a Wiener-Lévy)
process generates a striking appearance of a system-
atic trend; such a trend, however, is a fallacious one
due only to a cumulative effect of independent ran-
dom components. Following Feller, we show in Fig-
ure 1 a curve obtained by plotting the cumulative
gains of a player in a heads-or-tails game. In other
words, denoting by S. and F. the number of suc-
cesses and failures obtained at trial N°n in a series
of independent trials, and putting:

fn) = S, — F,

we are concerned with a realization of such a random
function, taken from n = 1 to n = 200. Such a sto-
chastic process is characterized by its stationary and
independent increments; it is not a stationary random
function, with a finite K(0) variance, but just an
intrinsic one. There is no covariance K(h), but just
a variogram:

y(h) == %5h
This variogram sums up all that we need to know

about the relatively weak structure of such a pheno-
menon.

First of all, Figure 1 shows a striking appearance
of heterogeneity, with two different populations —
from 1 to 100 and from 101 to 200. The corresponding
histograms are given in Table I.

From a geostatistical point of view, the means m,
= 2.08 and m: = —8.26 are not significantly differ-
ent. With the variogram ¥4h, it can be shown (4)
that:

E (m1 — m2) =0
2
D2 (m1 —mg) = §h
m, and m, being the observed mean values on two

adjacent segments of length h.

With h = 100, we therefore have a variance D?
(mi — m:) = 66.67, and the observed difference of
10.34 is supported by such a value.

Concerning the variances inside a segment length
h, we have demonstrated the theoretical formulae
E(¢®*) = 1/6 h and D*(¢*) = 1/45 h* For h = 100,
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Table I—Histograms for Figure 1

we obtain E (¢?) = 16.67 and D?(¢%) = 222. With
such a value for D?(¢?), the experimental values 6.37

and 15.15 are not in disagreement with the éxpected
value 16.67. For h — 200, we obtain E (¢*) —733.33
and D?(s’) = 888, versus an observed value of 37:49.

Undoubtedly, classical statistical tests of signifi-

cance would conclude that the two populations are dif-
ferent; such a conclusion is not wrong, because the
means, for instance, are really different from 1 to
100 and from 101 to 200. Such a difference, however,
does not mean that a real heterogeneity does exist;
for, having built it ourselves, we know perfectly well
that our phenomenon was generated by the same pro-
cess from 0 to 200, and hence this phenomenon is a
strictly homogeneous one. However, the homogeneous
law we have chosen is precisely such that its ‘realiz-
ations will necessarily offer all evidences of an-ap-
parent heterogeneity.

"In the same way, the systematic decrease occurring
between point 75 and 150 will perhaps be interpreted
as a.real negative trend, although we know that such
a trend means nothing but a cumulative random ef-
fect. In such a case, polynomial interpolation proce-
dures would be very misleading in that they would

Frequencies | Frequencies | Frequencies
from1lto | from 101 to | from1 to

Values 100 200 200
—14 4 4
—13 8 8
—-12 8 8
-11 11 11
-10 16 16
-9 14 14
-8 7 7
-7 2 2
-6 3 3
-5 7 7
-4 7 7
-3 1 3 4
— 2 - 7 2 9
-1 10 3 13
-0 12 2 14
1 15 2 17

2 12 1 13

3 10 10

4 12 12

5 12 12

6 6 6

7 2 2

8 1 1
Total 100 100 200
Mean + 2.08 —8.26 —3.09
Variance 6.37 15.15 37.49

support metaphysical beliefs concerning a real trend
with the aid of fallacious experimental evidence. A
real trend is missing, but — as shown by Feller (2)

— the law we have chosen is necessarily generating
such fallacious random trends for human perception.

. . 7/
Table II—Observed Values for Spacing 10 For simulation purposes, let us assume that we
' know only the values taken at points 0, 10, 20, etc...,
n | f(n) n ‘ f(n) I n fn)] n f(n) _ as shown in Table II. '
0 0 60 0 {110 | — 2] 160 | -8 | We want to estimate true mean values between
%8 2 gg 3 {%8 - g %gg —g points 0 and 10, 10 and 20, and so on. For instance,
30 > 90 o 1110 | 2101 190 T between 10 and 20 the:mean is: |
019 |0 -2 180 | 10 200 ) —10 f 1/10[1%8(10) 4 £(11) 4 ... - £(19) + %£(20)]
= 57T - ‘ ‘
f(n)1
PNNNA Realization of an :Lntrmsic random function with variogram v (h) = — (h)
. - Experimental data obtai_ned for a spaci.ng 10 '
et TS~ and punctual k:r:lgl.ng procedure
~
+20 -
+10 .
praA < 120 130 140 150 160 170 180 190 200 .
0\/’ + 2 = ‘vv\(‘ — + i ‘ ) i n
70 80

- 10

Figure 1.



With a linear variogram y(h) = % h, punctual
kriging is obtained by linear interpolation between
the two nearest known values (see Figure 1), and
kriging over an interval like 10 to 20 is obtained with
E(S) = 14[f(10 + £f(20)] = 5 (versus a true value
of 5.7). Such a procedure, as related to a linear vari-
ogram, may also be based on a markovian property of
the process: once we know f(10) and £(20), all val-
ues f(11), £(12),... taken inside such an interval
appear as independent from all outside values, The
results of such a procedure are shown in Table III.

The experimental variance for the kriging estima-
tor minus the true value is 0.968. The theoretical
value for kriging a segment length h with a vario-
gram %h is 1/12h; i.e.,, for h = 10, the variance is
equal to 0.83.

The reader may then confront such an estimation
variance with one obtained by any other procedures;
for instance, by polynomial interpolation .
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