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(#bstract)

I.any regionalized variables occuring in Geoiogy may be inter-
preted as realizations (sample functions) of random functions (R.F.)
andlthe powérful tools of R.F. theory may be used for describing
and/or explaining strucfural ﬁroperties of geological phenomena as

well as solving some practical problems. Geostatistics stricto sen-

su- is based ‘on the variogram of a stationary (or, more generally,
intrinsic) R.F. and implies applicatipns in mining estimation. In

the nonfstationary casé, universal xriging procedures give the.best

pOssible estimator of a drift (trend) and may be applied to contour-

ing problemxs.

In this paper is exemined what minimal probabilistic characteris-
tic of a R.F. is really necessary to know in view of solving a given
practical problem (global or local linear estimation), and what mi-
nimal hypothesis is really rquired for a possible estimation of

tnis minimal chg recteristic.



RIFBOM FuJ?TIOhD, -UD “HLIR LPPLICATICHS I” GrOICGY

INTRODUCTION

The probabilisfic theory of Randoﬁ Function (R.F.) is widely
used today in order to describe or to explain some properties of
geological phencmena. The reason why is easy to understand. Con?
ventionzal Geology may explain the main structurai features of a
" given phenomenon, but generally not in a quantitétive way. The
details of this phenomehon, and its local behaviour, remgin impos-

sible to predict with some accuracy, for this phenomenon simulta-
| neously presents a structurcl si@e and a random side. Generally,‘
the random part cannot ‘be considered as a simple‘white noise supér—
imposed to a continuous component - bécanse‘this "noise" is actually
connectea with some structural pr0pert1es of the phenomenon (for
instance, its continuity). Thus,.there is a great need . for a.con-
ceptual tool, able to simultaneoﬁsly také into account both sides
of the phenomencrn, and to make a synthesis of thems. _Ii turns ou%

that the R.F. theory provides us with such a conceptual tool and

with the mathematical techniques which are required for applications.

From en epistemological point of‘view, it is always possible
to consider a given phenomenon as a réalization of a R.F. But
this point of view would'remain purely acaderiic, if we were not able
to estimate at least partly the probability law of this R.F. There-
fore, we must examine the serious problem of stafistical inference

for R,F.



In order to define a R.F. as a prohabilistic object, it is
necessary to know at least its space law (i. e., the simultaneous
“distributions of the random values taken by the R.F. on every finite
point set). To snlve some important problems, the space law is not
even sufficient, but in our context we may negléct these refinements.
As a rule, in geology, the available realization of our R.,P. is uni-
gque, and its numerical values are known only on a finite set of ex-
per;menfal déta. On the other hand, the space law depends on an
infinite number of unknown parameters, and statistical inference
would remain quite impossible if we did not assume some hypotheses
(for instance, the stationarity) in order to reduce the numﬁér of

the parameters we have to estimate.

But such hypotheses (like stationarity) are very strong ones,
and very often they cannot be verified, even approximately. Thus,
it is of ‘a great methodological importence to accurately answer the

two following questions :

1 - Vhat minimal characteristic of a R.P. is really needed in

order to solve a given practical problem ?

2 — VWnat minimal hypothesis must we assume to possibly estimate
this required characteristic ? (for instance, is it really necessary

to assume that our R.F., is a stationary one )

In what follows, I shall only examine some particular cases,
connected with the stationarity hypothesis and the problem of linear

estimation.



1 - STATIOHARY AN *;_?INSIC RANDON FURCTLIOKS

In many applications, (particularly in problems such as lirear
estimation or linear prediction) it is not necessary to kaow all the
space law of a R.P. %(x), but only its moments of order 1 and 2 (if

they do exist), i.e. its expectation E 2Z(x) = m(x) and its covarian-

ce
ctx,y) = B(2(x) 2(y)) - m(x) n(y) (x,y € B")
It is often assumed as a Widely used but fairly strong hypothe-
sig, that the R.P. is wide~sense stationary , il.e., 3

a/ the covariance does exist

b/ the expectation is a constaﬁt, and the covariance depends
only on the difference x~y, but not separauely on each of the points

X and y.

As a nmatter of fact, the ‘¢ assumptions are stronger than it is

really necessary, and we may at first change them into the following :

a'/ (Intrlnolc nypothesis) - The increments 2Z(x+h)- Z( () of

the R.P. Z(x) are wide-sense stationary (but not mecessarily the R.F.

itself).

This last hypothesis implies the existence of a lirear drif+

(which may eventually venish)

o .
E[Z2(x+h)-Z2(x)] =ah = 2 a; h,
i=1

and the existence of an intrinsic variogram :




y(h) = 3 D7[2(x+n) - a(x)]

If the veriogram remains bounded at the infinity, the intrinsic hy-
pothesis implies the wide sense stationarity. In this case, the

following relationship :
y(h) = ¢(0)-C(h)

shoﬁs that variogram and covariance are perfectly equivalent. But,
if the variogram is not bounded, the covariance does not exist at
all, and the wide sense stationarity is no longer valid. It is the
case, for instance, of the widely used de Wijsian variogram y(h) =
= o log ]hl. Although the covariance does not exist, the variogram
enables us to solve in the same way ail the linear estimation pro-

blems we may encounter.

2 — AW EXAXPLE : THE BRCWNIAN LOTIOH

Tet us now examine a simple exam,le of a process satisfying
the intrinsic hypothesis a'/, but not the wide sense stationarity,
and show how misleading may sometimes be the usual procedures of

statistical inference.

Iet us denote by Z(t) a brownian motion on the straight line

- o<t <mw, arealization of which is known on an interval 0 = t < L.

z(%) is a process-with stationary independent increrents, and is well
characterized by its linear variogram y(h) = |h|. Note that - this

variogram not being bounded -~ there exists no stationary covariance.




1

But nevertheless, the usual procedure of statistical inference
will give en estimation of it - which as a matter of fact will be

a pure artefact, -

First, to esiimate the expectation m = E(ﬁ(ti) (which reslly

does not exist), we shall coxpute the experimental mean

L

7 = -% u/rZ(x) dx

O

then, putting

C*(x,y)

il

(2(x)-2) 2(y)-7)

for x,y belonging to [0,L], we shall compute the sum :

I~h

(2-1) C*(I_l_) = -];_1-5 / C*(x+_h, x)dx

o]

and consider its numerical vaiue as an estimator of our (non-exisling)
covariance,
Iet us now compute the expectation of C (h). With the vario-

gram y(h) = |n], as it can easily be shown, ([3]) we get :

2 82
ECC*(x+h), x)) = -§— L+ 2=% é”“) - 2x - 2h

Substituting this result to (2-1), we get :

2
(2-2) ECC(n)):%L--%h+%—%

For the variance (the real value of which is infinite), we get the

*
estirator C (o), the expectation of which



EC (o)) = 3 L

depends only on the length of the interval (0,L) we have chosen.
Clearly, C*(o) and C*(h) are pure artefacts. Evén the slope at the
origin has been altered (% instead of { for the true variogram). The
bias introduced by statistical inference are so strong that we al-
ways (but only apparently) get a confirmation of our (wrong) starting

hypothesis concerning the existence of covariance.

We may add, in this case, that this alarming result would have

been avoided, had we used the unbiased expression
I~-h '
* 1 - 2
y (h) = =) (?(x+h)-Z(x)) dx
o - -

as an estimator of the variogram.

3 -~ THE GLOBAL ESTII:ATION PROBLEY

Iet us assune now that we have to estimate the mean value :

n(V) = % b/Z(X) dx
v .

of the R.F. Z(x) in a givén volume V, ¥nowing only the numerical
vélues Z(xi) (sarple vélues) taken by Z(x) on a finite set of points
X5 regularly distributed in volume V. :To solve this global estima—~
tion prcblem, we may use the sample mean ;

*
m =

n
2 Z(xi)

1
n 7



In this case, the estimation variance [3], [4], is given by :

*

Dz(m(V)~m*) = 12 L/f /ﬁy(x—y)dx dyf—
| B e A

- n2V 5;4‘7(};—::1) + -;:2 %) ZJ‘, y(xi-xj)
This well known formule depends only on the variogrem (and on the ge§~
metry of our sampling). A further examination shOWS'that our estima-
tion'variancé chiefly depernds on the values.taken by y(h) in the
neighbourhood of the origin (for |n| = a, where a denotes the
sample spacing). It is'a very pleasant circumstance, because it
~also turns out that statistical .inference for ‘the veriogram y(h)
itself is, in general, feasonably possible only for fhe first expe—~
rimental points [3]. In other words, we can get a good knowlédge
of our variogram only in the neighbourhood of the origin, but no-
thing else is réally requiréd'in order "to compute the eétimatioﬁ:

variance,

- The ﬁreceding result aﬁparently depends on the intrinsiec hypothe-
sis. Actually, it is possible to get free from this hypothesis, by
just assuming the existence of a (non intrinsic) variogram y(x,y),
which sepafétely depends on points x and y (2nd no longzer oniy on
their difference), provided that for each fixed h the function

y(x,x+h) does not vary too guickly with x. For, by putting

(3-2) | ?(h) = V%HT J/” y(x,x+h)dx
‘ ‘ V(h)

(V(h) denofing the set of points x such that x € V and x+h € V) it

~can be shown that the estimation variarce depends only on the beha~-



- viour of ?(h) in the neighbovrhocd of 0, exactly as in the intrinsic
case ([4]), and azain the estimation of this part of y(h) is reason~-

ably possible.

Thus, we hzve found out a first answer to our basic question.

As far as a global problem is concerned, neither stationary nor in-

¥

trinsic nypotheses are'really necessary. we only have to estinrate

the beginning of the graph of the function y(h) eppearing in (3-2) -
and ,this is generally pocssible, Ve may elso rnotice, from an experi~
rmental point of view, that the mean value y(h) of a non-intrinsic
v(x,y) in a given volume V must be estimated exactly by the same pro-
cedure that an intrinsic y(h) in the same volume V. Thus, in a sense,
(but only'férAthe global problem) it is quite legitimate to treat

a non intrinsic R. F. in the same way ~that an 1ntr1p31c one, provided
that the available data form a regular covering of the volume V we

have to estimate.

4 ~ THE LOCAL BESTI¥ATICN PROBLELL

Iet us now examine the local estimation problem. Knowing the

numer;cal Vqlk’“ taken by the realization of a R,

bz

. Z2(x) on a given
set S of experimental points Xy we ndw have to estimatebthe {true
(unknewmn) value Z(y ) at a given point x, € S, or, more gererally,
the value of a weighted average b/rp(dx) Z(x), with a given measure

p, the support of which does not intersect the set S,

In the wide sense stationary case, this problem can easily be

solved by the techniques of the linear prediction [1], provided that

7,



the expectation m = E(?(x)) is known., If the expectation is not
¥nown, or if the R.P. is intrinsic bui not statiocnary, a slight no-
dificatibn of this technique leads to the kriging procedure, which
is well Ymown in Geostatistics. ([3], [4]) 1In order to epply this
procedure, it is necessary to know fairly well the variogram Y(h).
Actually, the intrinsic hypothesis is not necessary in itself, bui
is only required in order to provide a good statistical inference

for the variogram y(h).

To what extent is it again possible to get frece from any intrin-
sic hypothesis? The answer here is only partly positive ([2], [5]).

Let us denote by Z(x) a non stationary R.F., by :

s

m(x) = B(2(x)

its expectation (which is called the drift), and assume that in some
neighbourhood V of each spaée’point X, the drift is ‘well approximated

by the following expression ::
. K. ,
(4-1) - om(x) = T 2y £p(x) (x e V)

in which the fé(x) are known (g priori‘chosen) functions, for ins-
tance polynomials, and the ap are unknown numerical coefficlents (to
be estimated). Iet us also assume we know the covariance c(x,y), or
the variogram y(x,y) of the residuals Z(x) - m(x). Then, if experi-

mental data are available on a space point set S, universel krigigg”

(U.K.) procedure ‘gives the optimal solution for the three fundamental-

ly different following problems :.

a/ Estimating the drift itself (the well known problem of

"trend surface analysis" will here, perhaps, encounter its happy cnd) -



for instance, in geophysics, estimating a regional aromaly - sote

that in the finite Gaussian case, the U.X. estimator of the drift

is identical to the reximuwm likelihood estimator.

b/ Estimating the real (unknown) value of Z(x) in points
x £ S, with obvious epplications to contouring problems. Note that
for a point x; € 5 on which the experimental Z(xi)is knovm, the U.K.-
estimator is identical to Z(xi) itself : +the U.K. is an exactly fit-

ting interpolation procedure,
P P

¢/ At last, estimating ; moving average on a set S' # S, for

instance, 'in mining problems, estimating the grade of a given panel.
*In egch of these pfoblems; we can easily get the correspondiﬁg

(optimal) estimation varisnce. TFor instance, in contourinrg pfoblems,
tﬁe 1Lep itself is completed by an isovarience map indicating.the
precision with which each péiﬁt is ¥mown. s

The‘main problem which arises in the applications consists i
identifying the real (unknown) variogram of the residusls (the under-
lying variogram). Althéugh fairly advanced, this problem is not en-
tirely solved now. It appears that a sort of "qgasi—stationarity"
condition will be required for.the residuals : for instance,.a con-
dition expressing that the variogram y(x,y) of the residuals mzy be

approximated by the relation :

| Y(x,¥) = & y(x-y)

vhere y(h) is en intrinsic variogram (to be estimated) and w 2 slow-
ly varying factor we can consider as a constant on the neighbourhood
V in which (4-1) remains valid. Thus we arc not entirely unszble to

treat the non-stationury case - and this will be my general conclusnion.
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