Is Transport in Porous Media Always Diffusiv
A Counterexample
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For the special case of a stratified porous medium with flow parallel to the bedding it is shown that the
transport of solute cannot, in general, be represented by the usual convection-diffusion equation, even for
large time. The necessary conditions for the appearance of a Fickian diffusive process are discussed and
compared with previous work done by Gelhar et al. (1979) and Marle et al. (1967). It is shown, however,
that when the flow is not exactly parallel to the stratification, diffusive behavior is much more likely to
appear. The need for further work on the mechanism of transport in porous media is then emphasized.

INTRODUCTION

The transport of solutes in porous media has generally been
considered a Fickian diffusive process, i.e., a mechanism gov-
erned by the conventional convection-diffusion equation
[Scheideger, 1954; Bear and Bachmat, 1967; Fried, 1972].

div(Dgrad C—UQC) = w%g—

where

D dispersion tensor;

C concentration of the solution;

U Darcy’s velocity vector;

@ kinematic porosity (sometimes called effective porosity).

The dispersion tensor D is generally considered to have its first
principal direction parallel to the direction of the velocity U,
while the other two are orthogonal to this velocity. Dispersion,
sometimes called hydrodynamic dispersion, is supposed to
represent simultaneously both the molecular diffusion and the
effect of the fluctuations of the true microscopic velocity
around the average Darcy’s velocity.

In the past, several attempts have been made to relate, theo-
retically at least, the magnitude of the coefficients of the dis-
persion tensor to a description of the heterogeneities of the
permeability in the porous medium. We will refer here to the
work of Marle and Simandoux [1966] and Marle et al. [1967]
(hereinafter designated as Marle) and Gelhar et al [1979]
(hereinafter designated as Gelhar). Both authors have studied
the transport in horizontal stratified media with horizontal
flow and have concluded that this type of heterogeneity of the
permeability (or, rather, of the velocity) leads asymptotically
(i.e., at large distances or for large time) to a Fickian behavior,
whose coefficients can be determined from the properties of
the studied medium.

In this note we will present an unpublished result obtained
by G. Matheron in 1975, which shows that for this particular
type of heterogeneity, at least, one can sometimes obtain a
non-Fickian type of transport, even asymptotically, i.e., which
never conforms to the usual convection-diffusion equation.
We will then give the conditions, which must be satisfied in
order for this equation to be valid asymptotically, considering
flow not only parallel to the stratification but also at an angle
to it. We will then study the manner in which the asymptotic
behavior is reached.
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STATEMENT OF THE PROBLEM

Consider a two-dimensional flow field in a stratified me-
dium (see Figure 1). Let us start with the following assump-
tions: The direction of the velocity is always parallel to the
bedding and constant for a given layer. This velocity is not
modified by the presence of the solute (tracer assumption).
However, the velocity is a function of the elevation z of the
layer. We will use the microscopic seepage velocity u = U/w
(w is kinematic porosity and U is Darcy’s velocity) and assume
that u(z), the component of u along the x axis, is a random
function representing a weakly stationary stochastic process.
As u has only one component along the x axis, we will drop
the vector notation.

In the work of Gelhar the assumptions are similar, and in
addition, the random velocity u(z) is taken to be generated by
a random permeability field K(z), a constant hydraulic gradi-
ent J, and a constant kinematic porosity w.

In the work of Marle the flow geometry is the same, but
K(z) instead of being random is treated as a given function of
the elevation z. The deterministic approach used by Marle can
be viewed as a special case of the more general probabilistic
approach: the stratified medium studied by Marle is one reali-
zation of the random function K(z), which he assumes to be
perfectly known. In the stochastic approach it is considered,
on the contrary, that only statistical properties of the given
stratified medium can be estimated (mean, variance, covari-
ance .. .) and that these can best be utilized in considering the
unknown real medium as a realization of a stochastic process,
which is assumed to be weakly stationary and ergodic. For
further discussion of the stochastic approach, refer to Math-
eron [1967], Freeze {1975], Bakr et al. [1978), Gutjahr et al.
[1978], Delhomme [1979], and Neuman [1979]. Marle further
assumes that the porosity w varies with the elevation z.

Whereas Marle assumes that the medium is finite in the ver-
tical direction only (z € [z,, z,]), with no-flow boundary condi-
tions for both water and solute, we will assume here, with Gel-
har, that the medium is infinite both in x and z. This
assumption holds even in a real porous medium as long as the
tracer has not reached the boundaries.

Solute transport is assumed to be controlled by convection
and dispersion with the following properties:

1. Convective transport has the local seepage velocity u(z)
at each elevation z of the medium.

2. Dispersive transport has a constant dispersion tensor: the
dispersion coefficients D, and D; in the longitudinal x and
transversal z directions are assumed to be constant, i.e., inde-

901

e g T



MATHERON AND DE MARSILY:

X

Fig. 1. Stratified medium and coordinate system.

pendent of the velocity. This transport can be viewed either as
pure molecular diffusion with anisotropic (if desirable) diffu-
sion coefficients or, preferably, as local hydrodynamic dis-
persion, defined on the same scale as the local velocity u,
which is already an average velocity over a certain volume of
porous medium. In that case, D, and D, should be regarded
as the arithmetic averages of the dispersion coefficients of
each stratum, since they would probably depend on the local
velocity u. Our developments would then be approximate.

The fluctuations of the velocity u(z), which is a random
function of z, will then generate a differential transport at
each elevation, creating what has sometimes been called
‘macrodispersivity.’

We will ask the following question: Is this macrodispersi-
vity always a Fickian process? That is, can it be represented
by the convection-diffusion equation?

CONVENTIONAL MODEL USED
TO QUANTIFY TRANSPORT

With these assumptions the transport equation at the local
scale can be written exactly as follows:

*C aC _ aC

#C
rEaal Ol v Q)

DLEX—Z—-*- D,

To check if this total transport equation gives rise to a global
convection-diffusion equation, when the aquifer is considered
as a whole, Marle computes a mean concentration by averag-
ing C over the vertical z € {z,, z,] and tries to relate this aver-
age concentration C, to the depth-averaged velocity U, and
the depth-averaged dispersion coefficient D,. In other words,
if the aquifer is taken as a single unit defined by its average
properties, will transport also be diffusive in the average?

His answer is ‘yes,” bui only for the asymptotic dis-
placement, i.e., when t — oo and the displacement has oc-
curred over large distances. Marle relates the global asymp-
totic longitudinal dispersion coefficient D,(c0) to the
fluctuation of the velocity (or permeability) and to the value
of the local dispersion coefficients D, and D,. He assumes, for
that matter, that D,, D, and the kinematic porosity « are also
deterministic functions of the elevation z. Using the methods
of moments, he finds

DA(OO) = [/12 DL(z) W(Z) dz// zzw(z) dz]
zz_?f(_z_)_— 2
* U D(2)w(2) dz/ / . w(2) dz}

#2) = / “o(s) [u(s) — ] ds

where
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u(z) = o(2) J

is the local pore velocity, J is the constant hydraulic gradient
in the x direction, K(z) is the permeability, and

7 = I: / zzw(z) u(z) dz / / zzw(z) dz}

is a weighted average of the velocity. This expression shows
that in the long term the global longitudinal dispersion coeffi-
cient is the sum of an average of the local longitudinal dis-
persion coefficient plus a term representing the fluctuation of
the local velocity with respect to its mean divided by the local
transverse dispersion coefficient.

If we assume that D,, D,{-\and w are independent of z, as we
will do later, the above expression reduces to

D (o) =D, +{/‘=z[/z[u(s) — 4] ds:l dz/DT(zz—z,)}

In his analysis, Gelhar assumes that « is constant but that,
simultaneously, D,(z), DAz), and K(z) are stationary random
processes, while the longitudinal dispersivity is linked to the
intrinsic permeability & by the assumption that the dis-
persivity a, (D, = a, u) is proportional to Jk. With these as-
sumptions, (1) becomes a stochastic partial differential equa-
tion (i.e., with stochastic parameters). Gelhar shows that the
average transport process is no longer diffusive at small time,
non-Fickian terms being added to the global equation. Here,
the average is no longer a depth average over a finite medium
but an ensemble average over all the possible realizations of
the medium. The two are equivalent for a given aquifer if the
solute has invaded a large portion of the aquifer in the z direc-
tion in order to reach ergodicity. For large time (or large dis-
placement distance along x), using spectral analysis and a
first-order expansion of the stochastic partial differential
equation, he obtains, with our notation,

w? = Skx(r)
b, /_m o

D,(c0)= D, +

D, mean longitudinal dispersion coefficient, E{D,_};

D, mean transversal dispersion coefficient, E(D);

4 mean velocity u, E(u);

K mean of the hydraulic conductivity of the medium,

E(K);

spectrum (or ‘power density spectrum’) of the per-

meability K, defined by the inverse Fourier transform

of the covariance function of K, equal to (1/27)

J_=e ™ Cov [K(z + 5), K(2)] ds;

r integration variable, called ‘the wave number’ of the
spectral representation.

The covariance, with the assumption of stationarity, is de-
fined by

Cov [K(z + 5), K(2)] = E[K(z + 5) - K(2)] — {EIK(D)}}?

It is a function of the lag s only, not of z. Gelhar first recog-
nizes that for D, to be finite the spectrum S4(r) must ap-
proach zero near the origin so that {_..” (S (r)/r?) dr will be
finite. This seems to be the first recognition in the literature of
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the fact that any arbitrary statistical distribution of per-
meability does ‘not automatically give rise to diffusive trans-
port. Gelhar further shows that in order for a higher-order
term in his equation to be finite, a second constraint must be
imposed on the spectrum Sxx(r), namely, that [_..> (Sxx(r)/
r*) dr be finite. He then suggests one form of the spectrum sat-
isfying this constraint:

80,2 Pr*

Skilr) = Ia(s + PPy 2

which is the spectrum of the following covariance:

S5s, 18
31 3P

Cov [K(z + 5), K(2)] = GKZ(I - e s=0

where o,” is the variance of the permeability and / is a param-
eter called the length scale of the medium.
With such a covariance for the permeability he obtains

72 2
D)= D+ T )
As in Marle’s analysis, the asymptotical dispersion coeffi-
cient in (3) is the sum of the mean local longitudinal coeffi-
cient and a term related to the variance of the permeability di-
vided by the mean local transverse dispersion coefficient.
Gelhar also develops an expression for the dispersion coeffi-
cient at small and intermediate values of time, which is a very
important achievement. This point will be discussed later.

RANDOM MOTION MODEL

G. Matheron (unpublished results, 1975) uses another rep-
resentation of transport to solve the same problem: he follows
the movement through the porous medium of a tracer particle

_ located at point (xo, z,) at time 7 = 0 and a point (X, Z,) at

some later time ¢. Using the assumptions stated earlier (i.e.,
horizontal flow, horizontal velocity u(z) being a weakly sta-
tionary random function, and constant dispersion coeffi-
cients), we can write

X=x,+&+ / w(Z,) dr
° 4)
Zl = z() + .{l

where £ and {, represent the total dispersion process defined
by a Brownian motion, i.e, Gaussian stochastic process of zero
mean having a variance proportional to time:

052 = ZDL t
0{2 = ZDTt

It has been shown [Kolmogorov, 1931] that this representation
of transport is equivalent to the convection-diffusion equation
(1) when the dispersion coefficients D, and D are constant.
The expectation of the concentration C at location (x,, z,) and
time ¢, is equal to the probability density of the particle at (x,,
zZy, 1),

This approach should not be confused with the classical
‘random walk’ model developed in diffusion theory [Sposito et
al., 1979]. In the latter model the scale is that of a molecule,
and the movement is due to molecular collisions giving rise to
true Brownian motion. In our case the scale is much larger be-
cause the seepage velocity # is a macroscopic quantity repre-
senting an average over many pores. In our model, Brownian

motion represents hydrodynamic dispersion, not only molecu-
lar diffusion, as in the classical model.

The “particle’ that we will follow has no actual physical ex-
istence but is a mathematical concept. We only claim that the
dispersion equation (1) and the system of equations (4) are
mathematically strictly equivalent: solving (4) is the same as
solving (1) except that the mathematical analysis is simpler.

In (4), X, and Z, are stochastic processes; solving (1) is
therefore equivalent to finding the probability density func-
tions of X, and Z,. We will focus on the determination of the
first two moments of X,. If transport in the stratified medium
is to be Fickian, then the variance of X, should be propor-
tional to time:

ox*=2D,t 5)

The determination of 6,* is given in Appendix 1. We find
that L
ox>=2D,;t + I(H 6)
where

. ‘ 1 +e
I(t)=2/; (l—'l’) 2(7TDT'T)V2 ./im

Cov (s) being the covariance function of the random velocity

u(z).
If we take the Laplace transform of f, we obtain (see Ap-
pendix 2)

€742 Cov (s) ds dr

; 2
Al = — 172
0] 27D, Yi(p/Dyp)' " )

where p is the Laplace variable,

Y(@p) = / we"” Cov (s) ds .

is the Laplace transform of the covariance function of the ve-
locity u, and A denotes the Laplace transform. From these ex-
pressions one can show that an arbitrary covariance function
of the velocity will not produce a Fickian transport, i.e., that /
will not necessarily always be linearly proportional to time.
For instance, if we choose a Gaussian covariance function,

such as
s 2
)

where [ is the length scale, m is a dimensionless constant, and
o, is the velocity variance, then we obtain

Y L NS 32 1[I} I

=720, ;[31312(’?-*- 2D7-t) _@—?(;) - nTD—Tt}
Clearly, I (or 6?) is a function of /2 and not of f; the trans-
port is therefore non-Fickian for all time values.

This result is puzzling because a Gaussian covariance func-
tion for the velocity (or for the permeability, if we assume a
linear relationship between permeability and velocity, ie., a
constant gradient) seems a priori very acceptable. We can pur-
sue the analysis further and, with our assumptions, give neces-
sary and sufficient conditions for the transport to be Fickian
either asymptotically or for all time values.

2
Cov [s] = 0,2 exp ( - ﬂz—

Asymptotic Fickian Transport

Asymptotic Fickian behavior means that for t — oo we ex-
pect I(f) — At, where A is a constant. But this is equivalent to
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Fig. 2. Covariance function with a hole effect.

saying that in the Laplace transform domain we expect

| A(D) - A4D)

Al ~ A/p?

asp—0

®

asp— 0

Returning now to (7), we see that if Y(0) is not equal to zero
(e.g. Y(0) = a), then A(f) — (2a//D)(1/p*?) for p — 0,
which means that [ becomes proportional to £*/? for large
the asymptotic transport process is non-Fickian.

However, the condition Y(0) = 0 is not sufficient. Equation
(7) shows indeed that Y(p) must behave linearly in p near the
origin for (8) to hold; if

Y(p)— Bp
B being a constant, then
A(D —> 2B/Dp?
Ity (2B/Dpt for

for p—0

{—> oo

Recalling that
Y(0) = / Cov (s) ds
0

these two conditions can be expressed as follows:

1. The integral of the covariance function of the velocity
(or the permeability) must be zero.

2. The Laplace transform of this covariance function must
behave linearly in p in the vicinity of the origin within the
Laplace transform domain.

These assumptions are quite strong. In particular, condi-
tion 1 states that the covariance function must become nega-
tive, a behavior sometimes called the ‘hole effect’ in geostatis-
tics, in which a positive correlation at small distances is
followed by a negative correlation at larger distances, as
shown in Figure 2.

Let us return for a moment to the work of Gelhar and
Marle quoted earlier. Gelhar uses the following covariance for
the permeability:

Ss
=g.2{1 - ==
Covi (s) = oy (1 37 +

_!.._S_z_ —s/l
3 F)"

which exhibits the above hole effect.

If we assume the velocity to be proportional to the per-
meability with a constant gradient J and constant kinematic
porosity w, then the covariance of the velocity is simply multi-
plied by J*/w?, or @*/K?, with & = E(u) and K = E(K). If we
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compute the Laplace transform of the covariance of this ve-
locity, we find

_ 08 p@Bpl+ 1)
Y(”)"_“ & 3lp + /I ©

This expression satisfies our two conditions:
Condition 1

Y0)=0
Condition 2

2
-2 Ok P

Y(p) ~ {u F?)F as p—0 (10)

Furthermore, if we combine (9), (7), and (6), we find the fol-
lowing asymptotic expré§sion for the longitudinal macrodis-
persion coeflicient:

72 2 72
D) =D, + 5% 1 an
which is exactly the same as the one given by Gelhar in (3).
This shows that the asymptotic transport process is governed
only by the fluctuations of the velocity along the vertical and
not by variations of the local dispersivity, which Gelhar con-
siders in his first-order approximation.

It can also be shown (see Appendix 3) that our condition 2,
which requires the Laplace transform of the velocity covari-
ance function to behave linearly in p near the origin, is equiv-
alent to the first condition obtained by Gelhar, i.e, that the in-
tegral [_.,*(Sxx(r)/r*) dr of the power density spectrum of
the velocity (or permeability) be finite. Furthermore, one can
also show that these two conditions are satisfied if and only if
the velocity (or permeability) is the derivative of a stationary
random function, which is a very strong requirement.

" Concerning Marle’s result, it can also be shown that his as-
sumption of a finite medium in the z direction, with no-flow
boundaries, is equivalent to an assumption of an infinite peri-
odic medium, the sequence of permeabilities of the medium
being repeated by symmetry on each side of the boundaries.
The covariance of the permeability (or velocity) is then peri-
odic; one can then show that conditions 1 and 2, given earlier
for the existence of asymptotic Fickian behavior, are satisfied.

Fickian Transport at All Times

If we want the transport process to remain Fickian for all
values of time, integral [ in (6) should always be a linear func-
tion of time #:

I= 4t
A being a constant. In the Laplace transform domain this im-
plies
Ay = 4/p?

Given (7), this means that

Y(p) = Bp

where B is another constant. Returning to the original do-
main, we find that

Cov [u] = B%S(s)
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The covariance of the velocity should be proportional to the
first derivative of a Dirac function §, thus showing no spatial
correlation. But this is impossible, since the derivative of a Di-
rac function is not acceptable as a covariance function. With
our assumption, the dispersion equation will never correctly
represent the transport process for all times.

WHAT HAPPENS IF THE VELOCITY IS NOT PARALLEL TO
THE STRATIFICATION?

‘We will now assume that the seepage velocity has two com-
ponents: (1) a random horizontal component u = (z), which is a
stationary stochastic process as before and (2) a constant verti-
cal component v. In other words, the direction of flow is no
longer parallel to the stratification. It is easy to show that such
a situation is very likely to occur in nature, the case of zero
velocity being only the exception.

Consider, for instance, an infinite section of layered porous
medium, each side forming an angle with the vertical direc-
tion as shown in Figure 3. If different head values A, and A,
are applied as boundary conditions on each side of the infinite
section, flow will take place with velocity components in both
the x and z directions. As x and z are the principal directions
of the permeability tensor in the stratified medium, we can
write Darcy’s law as

ah
UX = —Kx(z)a

oh
.= "Kz(z)a—z‘

where U, and U, represent the component of the velocity par-
allel and perpendicular, respectively, to the stratification. As
dh/dx is constant, U, is constant inside a given stratum but
varies with z. On the other hand, conservation of mass implies
that U, must be constant for all strata. This means that oh/dz
varies from stratum to stratum. Such a medium has therefore
a constant vertical velocity component v and a random hori-
zontal one u(z). The local gradient inside the medium varies
in both direction and magnitude as a function of z.

If we can assume, as before, that the local dispersion coeffi-
cients are constant, the convection-diffusion equation be-
comes
FC ¥C ac aC aC

Y - u(z) ol v;z——f Tl (12)

b2 X

|
|
'><

Fig. 3. Section of layered porous medium with sloping sides,

Note that in (12) we still assume that x and z are the principal
directions of the dispersion tensor with principal coefficients
equal to D, and D,. The true longitudinal and transverse di-
rections and coefficients are different because the seepage ve-
locity vector u = (u, v) is no longer parallel to either x or z.
Therefore (12) is strictly correct only if D; and Dy are equal to
each other; otherwise, our result will be only approximate.
The equivalent random motion model now becomes

X, =x,+§ +/ w(Z,) dr
[¢]

(13)
Z,=zo+ 4+ vt

We can, as before, compute the variance of the position of the
particle. From Appendix 4 we find

o X:2‘1¢= 2Dt + I()

where
in= Zf'(t - 7)/ +mg,(s — v1)Cov (s) ds dr (14a)

Cov (s) is the covariance function of the horizontal velocity
u(z), and

- X ) (14b)

4D,r

1
87()’) - 2('HD1-T)V2 exp

is the Gaussian distribution function. Taking again the La-
place transform of I(t) (see Appendix 4), we find

. 1 @D+ vV¥/4)'* —v/2
A(I) - PZ(PDT+ v2/4)l/2 [}'{ DT )
} 1s)

Y((pDT+ V:/4)' 2+ v/2
+ ,
. D,
where Y(p) is the Laplace transform of the covariance of hori-
zontal velocity u.
Asymptotic behavior for large 1 will be obtained for p — 0:

At~ v+ v[2)
vp?! Dy

i) ~ %! Y0) + y( DL)
[

t
T

Transport will then be Fickian under the single very reason-
able assumption that

Y(0) = / ooCov (s)ds

is finite. The asymptotic macrodispersion._coefficient parallel
to the stratification is then given by
} (16)

It is important to recognize that D (o) is not the longitudi-
nal macrodispersion coefficient because the latter is defined in
the direction of the velocity vector u not parallel to the strati-
fication. Thus D ,(c0) must be viewed merely as a directional
dispersion coefficient defined in the direction parallel to the
strata.

In the absence of local dispersion (D, = D, = 0) it is easy to

14

Do) = Dy + 3| YO+ Y( p

T



906

MATHERON AND DE MARSILY: SOLUTE TRANSPORT IN GROUNDWATER

o8 GAUSSIAN =

0.6} .

0.4 .

N

ozt N\ \i\ WEXPONENTIAL ]
; Sem—— s

0. I oooomoa b ' A,

0.5 . 10 .5 2.0

-024 ; 4

WITH"HOLE EFFECT"

Fig. 4.

Covariance functions of the velocity u as a function of the lag s/! (with hole effect (194), exponential (20a), Gaus-

sian (21a)).

show that the asymptotic behavior is still Fickian, and that
(see Appendix 4)

D, ()= %Y(O) = %/(: +°°Cov (s) ds

We can then compare the directional macrodispersion coeffi-
cients D, and D, ;

D,(w)= D, () + D, + %r( . )

Dy
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Fig. 5. Asymptotic dispersion coefficient as a function of the verti-
cal component of velocity, where D, is the covariance with hole effect,
D, is the exponential covariance, D,° is the exponential covariance
with no local dispersion, D, is the Gaussian covariance, and D,° is the
Gaussian covariance with no local dispersion.

As Y(0) > Y (v/D;), we can write

D,(0)+ D, = Dy(0)=2D,(c0)+ D, v Dy

)

D (o) is of the order of D, (o0). This result is very inter-
esting, since it shows that the transverse local dispersion coef-
ficient is not a very important factor in determining the value
of the asymptotic directional macrodispersion coefficient par-
allel to the strata, contrary to the results we have obtained ear-
lier in the one-dimensional case, where flow was strictly paral-
lel to the stratification.

EXAMPLE

Let us return for a moment to the covariance function (2)
proposed by Gelhar and used in the previous case. Its Laplace

_ transform has been computed in (9). Using this expression in

(15), we find, asymptotically,

D ()= D, +

@ o’ P []+3VI/DT} (18)

3 R2Dy| (1 +v/D,)°

For v = 0 this expression is identical to (11). The influence of v
is to decrease the value of D,(o0), as the function (1 + 3x)/(1
+ x)* decreases continuously with x for x > 0.

In order to get an impression of the influence of v we will
compare this result with values given by Gelhar and compute
the dispersivity:

D) =D, o P [ 1+3Uapy

A(e0) = i K 3ar| (1+ (a)p)

where p = v/d is the ratio of the vertical/horizontal velocity
and a; is the transverse dispersivity (a= D./i), although our
development assumes D constant. We will use the same nu-
merical values suggested by Gelhar:

o ’/K? =025 I=15m ar=lcm
which gives
I A(0), m
0 18.75
1/1000 17.81
1/100 6.56
1/10 0.21
1/1 2.441073
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This shows not only that the existence of a vertical velocity
component makes asymptotic Fickian behavior in the direc-
tion of the layering much more likely but also that the value
of the asymptotic directional macrodispersion coefficient is
greatly reduced as compared to the case where v = 0, even if v
is quite small (e.g., E(u)/v = 1/100).

This strong dependence of 4(o0) on the flow regime sug-
gests that it will generally be impossible to characterize a me-
dium by constant macrodispersivities because the latter will
vary with the velocity field.

The asymptotic directional macrodispersion coefficient also
depends on the covariance function used to describe the ve-
locity (or permeability) of the stratified medium. We will com-
pare three covariance functions of the velocity and give
D (o0) as a function of the dimensionless parameter 8 = vl/
2D;

Function 1
2
o]y _3s 18
Cov(s)=u Kz(l 31+3[2)e (194)
already discussed with the hole effect, giving
2P 1+68
= '2———01( —] ——
Dy(0) =D, + &+ 307[(1 T 2/3)3J (19b)
Function 2
Cov(s)=w o—'(ze"'"" n (20a)
K

(simple exponential, / being the length scale and n a dimen-
sionless constant) giving

P 311 1]
, - 720K -
Di(eo)y=Dr+ #gmsy X 5p [_n+2[3+n‘} (208)
Function 3
2 2 2
= 2% _ms
Cov(s)=4a I exp( 3 [2) (2la)

(Gaussian, already discussed), giving

: p

” — 'Z_OK —
Da() =Dt & prspy,
y 3(,”/2)1/2

B [1 + exp (28%/m?) erfc(ﬁ'%” (21b)

The three covariances, normalized by #? (0,2/K?), have been
plotted in Figure 4. The resulting dispersion coefficients have
been plotted in Figure 5, where (D (o0) — D,)/D,.,is taken as
a function of B = vi/2D, and

The latter is the asymptotic dispersion coefficient for the first
covariance function (with hole effect) in the case of horizontal
flow. From now on, D, will be used as a reference for com-
parison of all results.

In the exponential and Gaussian covariances we have cho-
_sen the constants n and m, so that for all three covariance
functions one gets

Cov(s) _

1
W = ‘e— for S/I =(,31703

0,(1-D

Wel

iO E N T T T 1 —
EXPONENTIAL LA

COVARIANCE
(s [——

o/
COVARIANCE
GAUSSIAN WITH "HOLE EFFECT"
Rl

10°1- COVARIANCE B

16°4

Fig. 6. Equivalent dispersion coefficient as a function of time (flow
strictly parallel to stratification).

as suggested by Gelhar. This gives n = 3.154 and m = 4.461.
Figure 5 also shows the value of the asymptotic dispersion
coefficient D, (oo) for the theoretical case where D, = D, = 0:

For covariance (19a) (with hole effect)
DA“(OO) =0
For covariance (20a) (exponential)

2 ] 3

=-20L_._= N
D,()=4 oy D..¢ onB

For covariance (21a) (Gaussian)

ZT_ I/Z— . 3(,”./2)1/2
2 - ref 2mﬁ

2
D, (00) = 2L

K2 mv

Although the three covariance functions show (Figure 4) a
similar behavior at small values of s// (s// < 0.5), the corre-
sponding asymptotic directional dispersion coefficient may be
very different, especially for the covariance with the hole ef-
fect, whereas the exponential and Gaussian covariance func-
tions give very similar results. As the accurate determination
of the true covariance function of the permeability of a lay-
ered aquifer will always be difficult, especially for large s/,
this makes the a priori prediction of asymptotic macrodisper-
sion a very difficult problem. Note also that D,(o0) is very
close to D, (o0), showing that the local transverse dispersion
D does not have a very important effect on the macroscale as
far as dispersion parallel to the strata is concerned.

VARIATION OF THE EQUIVALENT LONGITUDINAL
MACRODISPERSION COEFFICIENT WITH TIME OR SPACE:
THE SCALE EFFECT

So far, we have considered only the value of the asymptotic
directional macrodispersion coefficient. Our analysis gives,
however, the variance of the position of a solute particle (for a
pulse injection of tracer at 7 = 0) as a function of time for all ©:
expression (6) for zero vertical velocity, or (14) for nonzero
vertical velocity. These expressions psedict Fickian behavior,
if any, only as ¢ — oo,
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Suppose we erroneously assumed that the dispersion equa-
tion was valid, then we could define, for any given time #;, an
‘equivalent directional macrodispersion coefficient’ as

D (1) = 6, (t)/21,

This coefficient would, of course, be a function of the time 1,
(or of the distance traveled, x, = E@u)t)). It would be the best
directional coefficient to introduce into a dispersion equation
as an attempt to represent at time ¢, the layered medium as an
‘equivalent homogeneous medium’ defined by an ‘equivalent
dispersion coefficient’ parallel to the stratification and related
to an average seepage velocity:

22

?C aC ac _aC

A 3
92 Wox " Vaz  at (23)

2

D)5+ D,
Note that D, (t;) is the constant coefficient that should be used
in (23) during the entire interval ¢ € [0, #] in order to best re-
produce the observation at time ¢, of the solute concentration
in space (injected as a pulse at time ¢ =0). Fora different time
t, D(1;) would have the same definition. In other words,
D, (t,) is not a time-dependent coefficient in (23) but rather an
equivalent constant coefficient capable of interpreting, with

the aid of (23), the observation made at time ¢, in space.
Now when a real tracer experiment is performed in the
field, this is what is usually done. If the tracer is injected as a
pulse, the results will be interpreted at a first observation well
in terms of a first dispersion coefficient D,. At a second obser-
vation well, at a greater distance and greater time, another
dispersion coefficient D, will usually be determined. In (23),
D, and D, will be constant for ¢ € {0, £,] and {0, 1], respec-
tively, ¢, and 1, being the time at which the observations in the
two wells are made (assuming that the observations are made
in each well within small time intervals surrounding ¢, and £,).
Usually, D, > D,. This fact has been reported very often in

. the literature [e.g., Fried, 1975] and is known as the ‘scale ef-

fect.’
It is also possible to define a time-dependent dispersion co-
efficient by

= L4,
b= 24’

(Gelhar). This coefficient would then vary with time in (23).
We will not use this approach here,

Note also that any of those time-dependent dispersion coef-
ficients will only make the second moment of the concentra-
tion predicted by (23) match the true one; since the process is
not Fickian, higher-order moments will not be correct, i.e., the
shape of the tracer plume will not be correctly represented by
(23). See Gelhar’s approach.

D (1) WITHOUT A VERTICAL VELOCITY COMPONENT

Expressions (6) and (22) make it possible to determine di-
rectly D,(#), given an expression for the covariance function.
To get a closed-form solution, one can either perform the two
integrations in (6) or, alternatively, determine the inverse
Laplace transform of (7). We have used both methods (see
Appendix 5); although the integrations are quite lengthy, they
present no major difficulties. This was done for the three co-
variance functions (194), (20a), and (21a) used previously and
expressed as a function of the dimensionless time
T = Dy/1*>. We obtain
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For the covariance with hole effect (194a)

2 2
D) =D, + %%

B grgp L+ e’(1 — erf (\/1))(4r — 4+ 3/7)

— A Jr/m+6/Jrr—3/7]  (24)

For the exponential covariance (20a)

2 2
D/(ry= D, + ﬁz%g"j [d/r/na —3/n* + 6/ Jur
T

—3/n*r + ;%;e”z’erfc (nJ7] (25

For the Gaussian covariance (21a)

Pl 1 3
D,"(1)= L S AL eoyiz L2
(1) =D+ K*3D, m“T(l + 2m'r) mr m{l

(26)

We know that only the first covariance will produce a finite
D (¥) for  — oo, since the other two covariances do not satisfy
the necessary requirements that have been established earlier.
An expression similar to the one given in (24) has also been
obtained by Gelhar, using a different approach.

In Figure 6 we have plotted (D (1) — D)/ D, versus 7 for
the three covariance functions. For 7 < I, the three curves are
almost identical. For 7 > 1, the curves for the exponential and
Gaussian covariances, which are unbounded, depart from that
of the covariance with the hole effect, which tends towards
unity. This means that in the field, if the flow is strictly paral-
lel to the stratification, it will be very difficult to predict D ,(¢)
for large times from measurement made at small times. Until
the asymptote is reached, one cannot say whether it actually
exists unless the true covariance is completely specified.

D ,(t) WHEN THERE IS A VERTICAL
VELOCITY COMPONENT

Expressions (14) and (22) lead directly to D(5). However,
only the first two covariance functions lead to a closed-form
solution, whereas the integration for the Gaussian covariance
must be performed numerically (see Appendix 5). The results
are obtained in terms of two dimensionless parameters
+ = Dy/F and B = vi/2D, used previously. We obtain

For the covariance with the hole effect (19a)

2
D) = D, + @S L 1{ I

k3D, 27 @B~ V| JuB

“(2B— D)/T(4rpQB* =3B+ 1)

-4 - 128+ 1)

+ erfc (B/T)(r(128> — 88 + 1) + 48> — 88— 3)
+ e @8 exfe (1 — /DETB — 1)

2B -1 =212 - D2 - B~2)

—4p* + 88 + 3)} + 2N

@B i 1)4"}
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where ¢ is the same as the bracketed expression in (27) but
with 8 — —8.

For the exponential covariance (20q)

Lok P 3e 7 |1 1
D(ry=D, +i K23Dr{[4,82\/—q;(—"__2'3—n)
+3erf(ﬂﬁ){l_ 1L 1 3-n _B+n
48 \n 2—n T2B2(2B8—-n? 2Bn
3(1 1 1[ 38-n B+n
+@(I+2ﬁ—n_ T2BCE - 2w
3 (n—28)r
+ merfc ((n - ﬁ)\/;)} v} 28)

where ¢’ is the same as the bracketed expression in (28) but
with 8 — —8.

For the Gaussian covariance (21a)

2 2 T
- 20k I° _x
D (7)=D,+i 1'<23DT./0 {3(1 T)

2m?B*x?

.CXP(_2m2x+1

/ 2m® + 1)'/2} x (29

These results are plotted in Figures 74, 8a, and 9a in terms of
(D (1) — D.)/ D versus r and the parameter 8. The same re-
sults are plotted on Figures 7b, 85, and 94 in terms of the ratio
(D7) — D.)/(D o) — D,). For a given {8 this ratio should
tend towards unity as 7 — oo, Another dimensionless time
group can also be used ' = (v/I)t, as v = 2f7.

In Figures 7q and 7b the covariance (19a) with hole effect
generates a curious behavior for D ,(7): when B is small, D (1)
grows toward its asymptotic value monotonically, asin the ab-
sence of vertical velocity (for 8 = 0, the results are identical).
For 8 = 1, however, D ,(7) first increases beyond the value of
D (oo) and then decreases with time towards D (o). In other
words, the directional macrodispersion coefficient is larger at
early times than its asymptotic value. This is clearly due to the
negative correlation of the velocities caused by the hole effect.
When a highly permeable layer is surrounded by low-per-
meability material, the dispersion will initially be large and
then decrease, as the solute invades the aquifer in the trans-
verse direction, until ergodicity is reached. To our knowledge,
such an effect in a field experiment has never been reported in
the literature. One can therefore argue that such a covariance
function is not very likely to appear in nature and that if the
velocity is strictly parallel to the layers, Fickian behavior will
generally not hold.

In Figures 8a and 8b (exponential covariance) the growth of
D (1) = D ,(o0) is monotonous in the range of the dimension-
less time 7 > 1073, for 8 > 107'; however, for small B, D (1)
decreases at early times and then increases toward D ,(c0).
This can be related to the positive correlation structure of the
velocity at small distances. One should also note that when 8
= 107, the dimensionless time at which D ,(o0) is reached can
be very large (10* and more), meaning that in a tracer experi-
ment the asymptotic value of D,(c0) will often not be ob-
tained during the performance of the test.

In Figurés 94 and 9b (Gaussian covariance) the growth of
D (1) = D (o) is seen to be always monotonous.
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Practical Example

Suppose that a field experiment is planned to measure the
dispersion coefficient in a layered system: Can these results be
used to estimate the travel distance beyond which asymptotic
Fickian behavior will be reached?

Two parameters are difficult to estimate from the usual data
available on aquifers: (1) the type of covariance function to be
used and (2) the length scale [ of this covariance. According to
unpublished results obtained by J. R. MacMillan (personal
communication, 1979) from the analysis of data from wells
(core permeability or electric resistivity) in a sandstone-type
material, an exponential covariance seems reasonable with /
in the range of a few meters. We will base our assumption on
these results, taking / = 1 m.

In addition to parameters 1 and 2 above, one also needs es-
timates of D; and D,. If only molecular diffusion is consid-
ered, Dy ~ 107° m?/s. If{ocal transverse dispersion is consid-
ered, laboratory data on cores indicate a dispersivity ar in the
range of 1 cm. D, can then be computed from the average
horizontal velocity by D, = a E(u). We will also test a value
of 10 cm. For D, we will assume D, = a, E(u) with o, = 1 m.
Concerning permeability, we will assume that E(K,) = 1073
m/s, E(K,) = 107 m/s, 0,*/K* = 1, with a kinematic porosity
w of 10%.

For the flow we will consider two cases, (1) experiment with
the natural velocity of the water, assuming a horizontal gradi-
ent J of 0.5%, and a vertical gradient I of 0.1% and (2) arti-
ficial increase (e.g., by pumping or injection) of the horizontal
and/or vertical velocity by a factor of 10 with respect to the
natural situation.

Case A, natural flow conditions. The following figures can
be easily computed from the above data:

= E(u)= Jwﬁ=5x 107° m/s
V= I, _ 107 m/s
o, =1lm

thus D, = e, =75 X 107° m?/s,

ar=00lm

thus D, = a6 =5 X 1077 m?/s,

o)
i
[\*]
SIE
s
!

1 o

T==5%10""¢

~

where ¢ is in seconds.

Using Figures 5 and 8b, we can determine the macrodisper-
sion coefficient in the horizontal direction as a function of
time (or distance of travel). We give the apparent macrodis-
persivities a, = D ,(7)/u in Table 1.

Clearly, it will be very difficult to perform an experiment
long enough to reach (within 95%) the asymptotic dispersivity
(600 m and 140 days), and measurements made at much
shorter distances drastically underestimate the asymptotic
value. It appears that only natural tracers could be used to es-
timate a (o).
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Fig. Ta. Equivalent dispersion coefficient as a function of time and

vertical component of velocity (covariance with hole effect).

Case B, artificial flow conditions. We will test the influence
of an artificial increase of the velocity in the aquifer (e.g., by
pumping or injection). Would it then be easier to obtain the
asymptotic macrodispersivity with the same field experiment?
To explore the various possibilities, we will assume (1) that
both u and v are simultaneously increased by a factor of 10,
and as the local «, and a, are assumed constant, the local D,
and D, will also be increased by a factor of 10, (2) that w, D,
and D; are increased by a factor of 10, while v remains con-
stant, and (3) that «, D,, and D, remain constant while v is in-
creased by a factor of 10. We obtain the results shown in
Table 2.

It appears that increasing the horizontal velocity does not
alleviate the difficulty. The experiment becomes feasible only
if the vertical velocity is increased while the horizontal one re-
mains constant. Aside from the difficulty in obtaining this sit-
uation in the field, the measured dispersivity (2.8 m) would
not be representative of the true asymptotic dispersivity of the
aquifer under natural flow conditions.

If we want to test the value of the transverse local dis-
persivity ap, €.g., ar = 0.1 m instead of 0.01 m, we find for nat-
ural flow conditions (%, v, and D, as in case A) the same re-
sults as for case B (assumption 2): 900 days and 39 km. Since
the a, = 0.01 m that we had chosen initially is already small,
there is not much hope that this parameter may solve the
problem.

Existence of Dispersivity

It is usual to assume that the coefficient of dispersion is a
linear function of the velocity and to define the dispersivity a
as D = oju| (longitudinal or transverse). Does this relationship
still hold for the directional macrodispersion coefficient?
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Expressions (19b), (20b), and (215) for the asymptotic val-
ues give the following (the problem to consider is whether D,
and v are linearly proportional to ):

1. When # varies and v and D are proportional to # (i.e.,
constant direction of velocity), D,(o0) is proportional to 4.

2. When # varies and v and D are constant, D (o) is pro-
portional to #*.

3. When i varies, v is constant, and D is proportional to
i, D(c0) has no simple relation with 4.

Now for the time-dependent directional macrodispersion
D ,(o0), expressions (24) (25), and (26) (case without vertical
velocity) show that D (1) = 4, if D = au. However, as 7 =
Dt/P, D (¢) is not proportional to 4. However, if instead of ¢
we consider the average distance of displacement X = #t, then
D (%) is proportional to #. In the case where the vertical ve-
locity is not zero, (27), (28), and (29) show that the same resuit
holds as long as both D, a';gd v are proportional to 4.

CONCLUSION

We have examined the conditions for the appearance of
Fickian macrodispersion parallel to the layering of an un-
bounded stratified medium. It was possible to show that when
the flow is strictly parallel to the stratification, Fickian behav-
ior will, in general, not occur and that the usual convection-
diffusion equation should not be used. This stems from the
fact that the group of pure convection (i.e., no local dis-
persion, D, = D, = 0) does not cause mixing in this case. This
conclusion may be particularly relevant for flow in certain
types of fractured rocks, where parallel fractures may allow
the propagation of dissolved species without considerable lat-
eral mixing if the general flow direction is parallel to the frac-
tures. If transverse local dispersion takes place (i.e., D # 0),
Fickian behavior could eventually be reached asymptotically

DalT)-Dp
|03 0al00) -0,

10?

163 } 1 : T
10° 16% 16' ! 10 DT|o2
v
B35, =!
Fig. 7b. Same as Figure 7a but with equivalent dispersion coeffi-
cient as a ratio to its asymptotic value.
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Fig. 8a. Equivalent dispersion coefficient as a function of time and

vertical component of velocity (exponential covariance).

for large time or large displacement of the dissolved species.
This, however, would only happen under the unrealistic re-
quirement that the covariance function of the velocity (or of
the permeability) exhibits a hole effect, so that its integral is
zero and has a Laplace transform behaving linearly in the
Laplace variable near the origin. For most reasonable covari-
ance functions the behavior will not be Fickian, even asymp-
totically.

However, if the flow is not strictly parallel to the strati-
fication (i.e., a perpendicular low component, however small,
is added), then the group of pure convection causes mixing,
and Fickian behavior will take place asymptotically under the
very reasonable assumption that the integral of the covariance
of the parallel velocity component (or permeability) is finite.
It was possible to show that the asymptotic directional macro-
dispersion coefficient, parallel to the layering, D,(o0) de-
pends more on the lateral mixing generated by the vertical ve-
locity component than on the local transverse dispersion
coefficient:

D, () + Dy = Dy(0) = 2D, () + Dy,

where D, (o0) is the hypothetical asymptotical directional
macrodispersion coefficient without local dispersion (D, = Dy
= 0). Furthermore, the magnitude of D, (cc) depends strongly
on the magnitude of the perpendicular component of the ve-
locity v, as

DA,,=1/ Cov (5) ds
Vio

where Cov (s) is the covariance function of the parallel com-
ponent of the velocity. This makes D,(c) depend very
strongly on v.

The way in which this asymptotic dispersion coefficient is

reached with time (or distance of travel) depends mainly on
(1) the type of covariance function assumed, (2) the value of
the transverse local dispersion coefficient Dy, and (3) the mag-
nitude of the vertical velocity v.

Simple computations show that in a typical alluvial deposit
the experimental determination of the asymptotic dispersion
coefficient by tracer test may be meaningless unless the verti-
cal gradient of head in the aquifer is significant (e.g., 1%) or
the travel distance is very large (e.g., several hundreds of me-
ters, which means that environmental tracers should be used).
These results assume that the aquifer is of infinite thickness;
however, they may be too restrictive if the aquifer is very thin.
Further development is needed to include this effect of aquifer
thickness in the analysis.

If D, and v are well known, it is conceivable that a local
tracer test in the field can be used to estimate the covariance
function of the permeaE{iﬁty (or rather, the parameters of such
functions, assuming a given type, e.g., exponential). This may
indeed be an indirect method of estimating covariances. Once
this step is made, the asymptotic behavior could be predicted
from nonasymptotic, local measurements. However, this idea
remains highly questionable, since it assumes perfect second-
order stationarity of the medium over large distances.

Indeed, even if an asymptotic Fickian behavior can be ob-
tained as a result of the above mentioned mechanisms, it may
not be applicable to real life situations: the time (or length of
displacement) needed to obtain asymptotic behavior may be
too large and may allow the tracer to encounter other aquifer
heterogeneities (macrostructures, in the terminology of Cherry
et al. [1979]), which can be viewed as a nonstationarity of the
medium.

The proper method of modeling the movement of dissolved
species in a layered aquifer remains therefore unsolved. As
long as asymptotic behavior is not reached, the usual con-
vection-diffusion equation does not hold. Making the dis-
persion coefficient D a function of time is only an artifact,
valid approximately for a point source with a pulse injection

Du(T)-B B \
10 Ba(00)-D 20y
T T T T
¢ |p=1000
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T=l—z'
Fig. 8. Same as Figure 8a but with equivalent dispersion coeffi-

cient as a ratio to its asymptotic value.
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Fig. 9a. Equivalent dispersion coefficient as a function of time and
vertical component of velocity (Gaussian covariance).

in time and giving only an approximate picture of the concen-
tration at a given time  but not for all time between zero and
{. A new simulation with another constant D is necessary for
any new prediction at a different time, which makes the prob-
lem intractable. In any case, distributed sources would be very
difficult to represent this way.

The present study of macrodispersion also provides an an-
swer to the question why the usual convection-diffusion
model predicts upstream migration of a solute from its injec-
tion point, when large dispersivities are used [Simpson, 1978;
de Marsily, 1978]. Our study explains that this is due to the in-
applicability of the dispersion equation for early time, espe-
cially if a single dispersion coefficient is used at all times.

A better mathematical formulation of the transport process
in porous and fractured media, valid for all time, seems neces-
sary. In the meantime a possible way is to include many more
details in the description of the aquifer when modeling dis-
persion. Instead of assuming the existence of an equivalent
homogenous medium, defined by an average permeability,
one should try to represent in three dimensions the position
and properties of each of the layers of the medium that can be
identified [e.g., Dieulin, 1979]. This description can be seen as
deterministic or even as stochastic (generated by stochastic
sedimentation models). In each of these layers the appearance
of asymptotic behavior will be faster (effect of the thickness),
and thus the dispersion equation will be valid much earlier.
Measurements of the dispersive property of the medium
should be made on the same scale. Macrodispersion will then
result from assembling these layers.

Although our results only apply to strictly layered media, it
seems reasonable to extend these conclusions to many other
media which are approximately stratified, such as lenticular
alluvial deposits.

MATHERON AND DE MARSILY: SOLUTE TRANSPORT IN GROUNDWATER

APPENDIX 1: DETERMINATION OF THE VARIANCE
OF THE COORDINATE OF THE PARTICLE
{N THE RANDOM MOTION MODEL

We will assume for the sake of simplicity that at £ =0, xo =
2o = 0. From (4) we have

X, =&+ /‘ w(Z,)dr

ZI = {l
Then

EX] = EIE] + E[ f ' WZ) d'r]

As £, is a Brownian motion with zero mean, we have

EIX) =, f ' Elw(Z,)} dr

EX] = / " Elu() dr

u(z) and Z, are independent
E[X)] = tE[y]
We then have
ox? = Var (X)) = E[(X, — tE[u])?] = E[X] — A(Elu))®

=E[

= E[¢{ 1+ E { / ’ w(Z)dr / , u(Z.) d~r’~]

g+ / oA d” — (Bl
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Fig. 9b. Same as Figure 9a but with equivalent dispersion coeffi-
cient as a ratio to its asymptotic value.
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TABLE 1. Apparent Macrodispersivities for Natural Flow

Conditions
Time of Average Apparent
Observation, Distance Macrodispersivity
days of Travel, m a,, m
co oo 26.5
(asymptotic)
140* 600 25.2
14 60 10.6
1.4 6 2.1

*In order to get 95% of asymptotic dispersivity.

+2E [g, A ’ u(Z,) dr} — (Elul)®

= Var (§) + / ’ / I Elw(Z )w(Z,)] drdr’ ~ *(Eu])*

as & and [y u(Z,) dr are independent (as the Brownian mo-
tions £, {, representing constant local dispersion coefficients
D, and Dy, are not functions of the velocity u). Then

0x?=2Dyt + / | f (B WU(Z)Z)) ~ (EdY) dr'dr

This expression is symmetric with respect to 7 and 7. We can
then write

6.2 =2D,t +2 / | / {EWZu(Z,) - (L)) drdr

The expected value E is taken over all possible values of the
random variables w«(z), Z,, and Z,. Letting p(u, Z,, Z,) be the
joint probability distribution function of these three variables,
we can write the expectation of any function F as

+oo +o00 oo
E[F] =/ / / pu,Z,Z)Fu, Z,,Z)ydudZ. dzZ,
—oco —oo 0

However, as v and Z_ or Z, are independent and as Z, and Z..
represent the same Brownian motion process with 7" = 1, we
can write

pu, Z,, Z.) = p(u) X f(Z,) X p(Z.|Z,)

Thus the first integral over u of the expectation for Z, and Z..
kept constant, is

L= f " pw) [Z)u(Z,) ~ (El))?] du

= / " PZYu(Z.) du — (ETu])?

which is by definition the covariance function of the velocity
u, taken at the lag distance Z. — Z; I, = Cov (Z,. — Z,). We

can now express the probability density function (pdf) of the
Brownian motions Z, and Z_|Z,. The first is normal with zero
mean and variance 2D;r. The second is also normal with
mean Z, and variance 2D {7’ — 7).

2

1
2AmDm) 72 P (_ 4Dy

pZ)=

 (Z.-Z)
2aDr — )2 P|T aDAr — 1)

pZAZ,)=

We can then compute the second integral over Z,, for a given
Z .

1
T 2a@DAr — )?

T x| — Zr=Z)
. VT ap =9
We define the variable s = Z,, — Z_ (as the velocity u is as-

sumed stationary) and get

~ 1 /*w g
= D — )2 ) TP\ ADT - 1)

Then the third integral over Z, reduces to 1, since ILisnota

function of Z_:
+oco Z 2 N .
L / exp (— —'—) Ldz. =1,

I

COV (Z‘r' - Z'r) dZ-r’

I Cov (s) ds

L= by ). 4D,7

The integral I,, which is a function of (' — 7), must be in-
tegrated twice over time. We change a variable, integrate by
part, and change a variable again:

f4=/ / L (7' = 7)dr' dr
o T 4

i4=// L(y) dy dr with p=+—71
0 o

[r T ‘/;I_T L) dyJO, - A' T (% {[) N L(y) dy} dr

=0+/l‘riz(l—’r)d’f=/!(t—T)jz(T)dT

I,

with 7=¢—17
As 0,2 = 2Dt + 2I,, we finally obtain

! 1
219 ey
6, =2D,1+2 /0 -7 2aDyr) "

T e
[ . exp (— m Cov (s) dsdr

TABLE 2. Apparent Macrodispersivities for Artificial Flow Conditions

Assumption 1* Assumption 2} Assumption 3%
Asymptotic dispersivity, m 26.5 37 2.8
Time of observation needed to obtain
95% of asymptotic dispersivity, days 14 900 9
Average travel distance, m 600 39 x 10° 40

_ *Where 10u = 5 X 107* m/s, 10v = 107> m/s, 10D, = 5 X 10~% m?/s, and 10 Dy = 5 X 10~° m?/s.
v tWhere 10y =5 X 107* m/s, v = 10~¢ m/s, 10D, = 5 X 10™* m?/s, and 10D, = 5 X 107% m?/s.
FWhere u = 5 X 107° m/s, 10v = 10~° m/s, D, = 5 X 1075 m?/s, and Dy =5 X 10~° m?/s.
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APPENDIX 2: DETERMINATION OF THE LAPLACE
TRANSFORM OF THE INTEGRAL [

oo

! 1
f=2/:) (t—T)Z——('n'DT'r 1/2/_

The Laplace transform of I(¢) is defined by

e~ /4P Coy (s) ds dr

Al = / ey

The integral I(f) is the convolution product of the two func-

tions
F()= 2—Jf7)—:
()= / - M Cov (s) ds
. NN

since the integral from —oo to +oo is twice the integral from
zero to co (symmetric function). In the transform domain the
convolution reduces to a simple product; A(l) = A(F,) A(Fy)

2 1
N
To determine the transform of F,, we use the following theo-
rem [Carslaw and Jaeger, 1963}, If

AIK(t, 9] = o) e AD(D)] = Y(p)
then

AMF) =

for p>0

Al: f T K@ 9 6) ds} = 6(p) YIW()]

Here we have

’ (/4D D)
K, 5)= —ﬂf_ y(s) = Cov (s)
Let us denote Y(p) = A(Cov (5)) = [,™ e Cov (s) ds
=S/ DP
A[K(, 5)] = 5
that is,
o(p)=1/Jp  Wp)=@/Dp"”

Then

,/—

We finally obtain

1
A(Fy) = —=Y[(p/Dn)""?]
vp

: _ 2 ”
A = A(F)) A(F) = 77 JD: Y [(p/Dr)'"]

Y(p) being the Laplace transform of the covariance function
of the velocity u.

APPENDIX 3: EQUIVALENCE OF THE CONDITIONS
ON THE LAPLACE OR FOURIER TRANSFORM
OF THE COVARIANCE OF THE VELOCITY

Our condition is that the integral I(¢) in (6) behaves linearly
in ¢ for large ¢, i.e.,

MATHERON AND DE MARSILY: SOLUTE TRANSPORT IN GROUNDWATER

£(t—t)——>A for {— oo

From (6), if we define

f(n= 1 / e~ Cov (s) ds

—oo

then
I' ¢
$=z[) (1 - ;)fm dr

as f(r) = 0, we can then write

/;'/2 f(ndr= —I'(Tt)-s?/)lf(f)d'r

For t — o0, our conditipn requires that [, f(7) dr < oo and
then the constant A4 is given by

A=2/°°f('r)d*r

However, we can show that f(7) can be expressed as a func-
tion of the density power spectrum of the velocity, which is
defined by

oo

l o irs
S..(r) = 7m /: _ e~ Cov (s) ds
which is equivalent to

Cov (s) = / e S,.(r) dr

We can then rewrite (1) in terms of S,,.(r) instead of Cov (s)

i o0 R +oo
f('r) = W/: e MD"'”/ e SW(I“) dr ds
———l——/+mS(r/+we s — | dsd
2Dy |, SudD [ explirs = gp o dsdr

= / Sudr) €27 —

had T

) /’*‘” exp | s—=2iDr\3  ds ar
—co 24D;1 2 D;r
when changing the variable of integration from s to

s — 2iDrr
2Dyt

one obtains the error function. Then

fn= / - S.udr) €2 dr

=

We then have

/lf(’f) 61'7'-'—'/.‘“>° S,,u(r)/le”’”’l dr dr

— L e uu(r) e p—Dpir?
-—-DT/:M 2 (1—e Ydr

*a»
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For t — oo we find

—_— uu(r)
/ f('r)d'r—-DT T dr

that is to say that the limit 4 of I(f)/t for t — oo is

am [T,

or for the asymptotic dispersion coefficient,

1 Sulr)
D,=D, + o
which is exactly the result obtained by Gethar if the velocity is
taken to be proportional to the permeability with a constant
gradient J, i.e., the power spectrum of the velocity is that of
the permeability multiplied by #2/K2

The condition imposed by Gelhar that this integral be finite
is thus strictly equivalent to our condition on the Laplace
transform of the covariance of the velocity.

APPENDIX 4: VARIANCE OF THE PARTICLE COORDINATE,
RANDOM MOTION MODEL WITH TwOo COMPONENTS
ON THE VELOCITY

Let us assume that in (12), x, = Z, = 0. Then

X =&+ /' w(Z,)dr

Z, =%+ vt
‘We now have
ElZ)=
0,° = 2Dqt
The Brownian motion process Z, no longer has a zero mean
but rather a mean vz with the same variance 2D . The com-
putation of the variance of X, is identical to Appendix 1, ex-

cept for the introduction of the mean vt in the pdf of Z,. One
obtains

1
1
oy?=2D;t+2 f— 1) ————
* L /o( ™ 2(wDym)'2

+oo 7 ( —
[ e
In the case where D, = D, = 0 one immediately obtains

= / / Cov(Z,— Z]drdr
0 0

By symmetry, changing of variable as in Appendix 1, and sub-
stitution of Z, by vt one finds

)’ ] Cov (s) dsdr

2 vt
oy’ = 7 f (vt — 5) Cov (5) ds
o
fort— oo

Oxoo® —> 21 X % / Cov (s) ds
o

The computation of the Laplace transform of the integral, in
the general case, is very similar to that presented in Appendix
2. Following the same method, we obtain

= /; ' F\(t — 1) Fy(1) dr

with
Fi()=2—
() =
vDy
o e—-(thD,) . evs/2D7-. e—(sl/«u),:)
Fy(t) =
20 f W Cov (s) ds

We have again ;
A(I) = A(Fy) A(F)
2

A(F l‘) = )
P

We can write F,(f) as

_ oo g52/4Dy Gvs/2Dy
Fy(f) = e=0™/4P [ /  f Cov(s)ds
0

W
/eo (/D) g~ (v5/2D)

+ e Cov (5) ds
S © J

Let F5(f) be the sum of the two integrals in brackets:
Fy(1) = 427 Fi(r)

Multiplication by e* is a translation from p to p — a in the
Laplace domain:

A(F)(p) = A(F;)

L
™ 2D,

We will use the same theorem as in Appendix 2 to compute the
Laplace transform of each integral. With the same notations
we have

—(s2/4D ) e—s(p/DTW’
K(t, s) = —— AlK] = ————
Nt r
— +(vs/2Dp)
Hs)=4e Covis)  AQ)=4Yp* -

where we note again

Y(p) = A(Cov (s5)) = / - e ™ Cov (s) ds

then
o ABT A

and, finally,

MD = 5, -:-v2/4)'/2 { Y( et VZI/)?W - V/z)

Y((pDT + 112/4)"2 +v/2 U
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APPENDIX 5: DETERMINATION OF THE EQUIVALENT
DISPERSION COEFFICIENT AS A FUNCTION OF TIME

Without Vertical Component
of the Velocity

From (5) and (7) we have

1.
D(ry=D,+ > I

Laplace transform of [

Ad 2 _y| |2 W]
Al
Covariance (19) (with the hole effect).

_ 0 pGplt )
Y@) =& g5 35 + /Iy

This value of Y was substituted in A(]), and the inverse Lap-
lace transform computed. One obtains expressions such as

4 C
pp((@ + D)"Y P +b"?

the /p can be eliminated by the relations [Carslaw and Jae-
ger, 1963]

1 had 1 .2
A_l - — us/4t d
(_JE x( «/17)) A T () du

or

AT = / ) T

and then expressions in (1/p")x(p) are integrated by

Y LSRN U e
A (p,.x(l’)) /;/; /(; x(Ao) dAq *++ dh,y

the computation is straightforward.
Covariance {20) (exponential).
2
Ok 1

= g2 —= —e
Yp) =4 K p+n/l

again the inverse Laplace transform was used after sub-
stitution; the relation (1/+/p) C(+/p) was used to eliminate Jp.
Then a simple expression as [1 /(@'(p + b))] was obtained and
integrated.

Covariance (21) (Gaussian).

. UKZ l T /2 IZPZ Ip
Y = — ] — — ——
) =u ia m(z) exp |5 3 erfc o
after substitution, the inverse Laplace transform was com-
puted using the relation [Erdélyi et al., 1954, p. 267}

A (Jl—;e"” erfc(\/c-lp_)) = 71_; Jita

followed by two integrations in time.

With a Vertical Component
of the Velocity

Covariance (19) (with the hole effect). Given the expression
for A(l) in (15) and that for Y(p) in (9), it is possible to write
it, after substitution and rearranging, as

A

T uu—x? | @y

Jo? ‘:uz +Cu+d
w—yy

u2+C’u+d’}

where

u=./p+ /4Dy

x=v/4D,
C= Dy v
P VD~
12 v Dy

with C’, &, and )’ changing v in (—v).

The translation p + #?/4D7'is a multiplication by exp —(*/
4D 1) in the time domain; furthermore, J/p can be eliminated
by the transformation (1/p)%(+/p). Then, we can write that
#p) = PoAl(p* + ap + b)/(P* — x)’(p — )] plus similar ex-
pression, v — (—v). This is a rational function of polynomials
in p, (O(p)/P(p)), with P(p) = (p — a/Yy™ - (p = a,)"™ Q(p) is
a polynomial of degree inferior to my + -+ +m, = 1, where
a; # a, and i # k. The inverse Laplace transform of such func-
tions is [Erdélyi et al., 1954}

L)

-1 f_ . S o o PR\ -l pakt
A (Q) Z X -
with
47 9x)
bl x) = x| Pu(x) E
_ P(x)
Pk('x) - (X . ak)m,\

The inverse Laplace transform of A(l) can be determined
from these relations without major difficulty.

Covariance (20) {exponential). Use exactly the same proce-
dure.

Covariance (21) (Gaussian). Could not easily obtain an in-
verse Laplace transform; D,(7) was computed directly from
(15) by a simple integration over s, while the integration over
7 in (29) was done numerically.

NOTATIONS

constant.

asymptotic longitudinal macro-dispersivity.
B constant.

C concentration.

covariance function of random function F.
d diffusion coefficient in porous media.

D dispersion tensor.

D,(r) equivalent longitudinal macrodispersion coefficient
of a homogeneous medium.
D,(7) equivalent longitudinal macrodispersion coefficient
of a homogeneous medium for pure convection (D,
= D, = 0).
D,, D, local longitudinal and transversal dispersion coeffi-
cient.
D... reference for dispersion coefficient, equal to (o]
KA(P/3dy).

.

-3

-




MATHERON AND DE MARSILY: SOLUTE TRANSPORT IN GROUNDWATER 917

erf (x) error function, equal to (2//7) [o*e *dx.
erfc (x) complementary error function, equal to 1 — erf (x).
E( ) expected value.
F any function.
g.(u) Gaussian distribution function.
hydraulic head.
integral.
hydraulic gradient in the porous medium.
intrinsic permeability of the porous medium.
hydranlic conductivity of the porous medium.
E(K).
length scale of the porous medium, in covariance
functions.
constant, Gaussian covariance of K; in example, m
= 4461.
n constant, exponential covariance of K; in example,
n=3.154.
p Laplace variable.
p(Z) probability distribution function of Z.
p(Z}Z") conditional probability distribution function of Z,
given Z’.
r wave number, in spectrum Sy (r).
s lag, in covariance Cov(s).
Sk«lr) spectrum of permeability K.
time.
local microscopic velocity vector.
idem, horizontal component along x.
expected value of u, equal to E(u).
Darcy’s velocity vector.
Darcy’s velocity vector., horizontal component
along x.
v vertical component of u, along 2.
Var(F) variance of random function F.
x horizontal axis.
X, horizontal component of the position of the particle
at time /.
Y(p) Laplace transform of the covariance function of
the velocity u.
z vertical axis.
Z, ordinate of particle at time 1.
o, ar local longitudinal and transversal dispersivity.
B dimensionless parameter, equal to vi/2D,.
& Dirac function.
At time step.
A(F) Laplace transform of function F.
i ratio vertical/horizontal velocity, equal to v/a.
« kinematic porosity (or effective).
Fz
r

Nh'kk‘&\}'

3

CC e -

variance of random function F.
dimensionless time, equal to (D;/I%)t, or integration
variable.

¢, Brownian motion along x axis.

¢, Brownian motion along z axis.

Y summation sign.
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