RANDOM CLOSED SETS

Ву

G. MATHERON

E is a locally compact and separable (ICS) space, and \mathcal{F} , \mathcal{G} respectively the families of the closed, open and compact subsets in E. For any $B \subset E$, $\mathcal{F}_B = \{F, F \in \mathcal{F}, F \cap B \neq \emptyset\}$ is the family of the closed sets hitting B, and \mathcal{F}^B the complementary family. Then the topology on \mathcal{F} generated by the \mathcal{F}_G , $G \in \mathcal{G}$ and \mathcal{F}^K , $K \in \mathcal{K}$ is compact and separable. The corresponding borelian tribe σ_f is generated either by the \mathcal{F}_K , $K \in \mathcal{K}$ or by the \mathcal{F}_G , $G \in \mathcal{G}$. A random closed set (RACS) is defined by a probability P on σ_f . The subspace $\mathcal{F}' \subset \mathcal{F}$ of the non empty closed sets is LCS, but non compact (except if E is compact) and we may define σ -finite measures on \mathcal{F}' .

If ψ is a function on $\mathcal K$, there exists a probability P on (resp. a positive σ -finite measure θ on $\mathcal H^*$) such that $P(\mathcal F_K)=\psi(K)$ ($\theta(\mathcal F_K)=\psi(K)$), $K\in\mathcal K$ if and only if ψ is an alternating Choquet capacity such that $0\leq\psi\leq 1$ (resp. $0\leq\psi<\infty$) (Choquet Theorem). Various classes of RACS are considered and characterized by simple properties of the functionals $\psi.$

- A RACS A without fixed points is <u>infinitely divisible</u> for the union (is an IDRACS) if and only if it is the union of a Poisson process σ -finite on \mathcal{F} , or if and only if $P(\mathcal{F}^K) = \exp(-\psi(K))$ for a finite Choquet capacity ψ . In the euclidean space $E = \mathbb{R}^N$, a RACS A is stable if for any n > 0, the union $A_1 \cup \ldots \cup A_n$ of n independent RACS equivalent to A is equivalent to an homothetics of A. A stable RACS is an IDRACS. Then A is <u>stable</u> for the union if and only if the capacity ψ is homogeneous.
- ψ is <u>C-additive</u> if $\psi(K) + \psi(K') = \psi(K \cup K') + \psi(K \cap K')$ for any K, K' \in C(K) (i.e. compact and convex) such that K \cup K' \in C(K). Then, a capacity ψ is C-additive if and only if the corresponding σ-finite measure θ is concentrated on the space C(F') of the non-empty convex closed sets.

- A RACS is <u>semi-markovian</u> if A \cap K and A \cap K' are independent conditionnally if A \in F^C for any K, K', C \in SG such that K and K' are separated by C. Then an IDRACS A is semi-markovian (is a SMIDRACS) if and only if it is the union of a Poisson process concentrated on C(F'), i.e. if and only if ψ is C-additive.
- Simple examples of SMIDRACS are: the boolean schemes (union of a Poisson process on C(K')), and the Poisson flats (union of Poisson processes on the linear manifolds).
- More generally, any stationary SMIDRACS is the union of a σ -finite Poisson process concentrated on the convex cylinders with compact bases. The general form of the associated capacities ψ (i.e. of the C-additive capacities invariant under translations) is:

$$\psi(K) = E[\lambda_{N}(A_{o} \oplus K)] + \sum_{k=1}^{N} \int_{\mathcal{S}_{k}} F_{k}(dS) E[\lambda_{N-k}(A_{S} \oplus \Pi_{S} + K)]$$

where λ_{N-k} is the Lebesgue measure on \mathbb{R}^{N-k} , A_0 is a RACS a.s. compact and convex, $\mathcal{G}_k \subset C(\mathcal{F}^*)$ is the set of the k-dimensional subspaces of \mathbb{R}^N , F_k a positive measure on \mathcal{G}_k , $\Pi_{S^\perp} K$ is the projection of K on the subspace S^\perp orthogonal to $S \in \mathcal{G}_k$, and, for F_k almost every $S \in \mathcal{G}_k$, A_S is a RACS a.s. convex and compact in S. In particular, a RACS is a Poisson flats if and only if it is stable, stationary and semi-markovian.