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The aim of this paper is to demonstrate that two
methods of interpolation (kriging and spline funetions)
are equivalent. They are equivalent in the sense that
any fitted curve obtained using the spline functions can
be identified with a fit obtained using kriging and vice
versa. Although the first of these two problems (finding
the kriging system which is equivalent to a given spline
function) is relatively easy to solve, the second is more
difficult. To make it easier to follow the proof, the
problem will first be presented using the index notation
traditionally used in geostatisties; and then the proof
will be repeated in the more abstract algebraic termin-
ology used in the theory of spline functions.

DEFINITION OF THE SPLINE PROBLEM

Suppose that we have two Hilbert

: spaces (F and F') and a continuous
@IIIDI‘IV @ linear transformation A which maps
F onto F'. {(In practice, F and F'

are two spaces of functions.)

L - Suppose we also have a continuous
linear transformation L which maps F
into RP. In practice, L is a family

- of N linear functionals Ly(a =1, 2,
i

2
@ .e+s p) which are continuous in F.
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The usual problem of fitting a spiine function can be consid-
ered in the following terms:

» find

a ion fEF which minimizes [|Af]||? under the con-
ditions: rQA

funct

f) = ﬁﬂ (the ﬁa are given numbers).
Let N denote the kernel of A and N

that

L that of L. If we suppose

z:z_.uo (1)
then the problem has a unique solution. We now show that this is
identical to the interpolation function obtained from a suitably
chosen kriging system.

To simplify the proof, we shall develop a second norm IR
which is equivalent in F to the original one. Let N be the sub-
space of F which is orthogonal to the kernel N of A. The restric-
tion from A to N* then is a continuous one-to-one mapping from Nt
onto F', From the general theory of Hilbert spaces, we know that
the inverse mapping (from F' onto N*) also is continuous, so we
are concerned with a homeomorphism.

Consequently, if we define a new norm || ||1 for F as follows:

2
el

2 4 2
Im el 2+ lan

where f is any function in F, and where mz and ﬁZF are the mappings
which project F into N and NY under the original norm.
This new norm does not change the topology of F. In particutlar,
the mappings A and L are yet continuous, and the subspaces N and N+
{and also their projections) remain unchanged.

With this new metric, F' can be identified with N+, and simil-
arly, the mapping A and the projections mapping aZp.

Because we shall only use the new metric |[f|[; from now on,
we can drop the subscript 1. So, the new metric now will be de-
noted by || f]|.

On the other hand, each of the continuous linear functionals
L. can be identified with the (uniquely determined) function

o
r@mm such that:

L) =<L f> VFfEF (2)

Let S denote the subspace of F of dimension p < », generated
by these functions L € F.
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More generally, we associate a continuous linear functional
(that is, an element L_ of F) with each point x belonging to a

space E. We now x suppose that the rx span F: in practice,
F is a space of functions on E and the rx. x€EE are defined by:
f(x) =<L, f> feF (3)

X

In this situation, the Ly are the forms rxg associated with the
experimental points xy. Note that the metric on F must be
strong enough so that the convergence of f,~f in F implies the
pointwise convergence f _{x)-f(x) for all x€E. So it must be

stronger than that of " a space L2 on E.

After these changes, the problem can be expressed in the fol-
lowing terms:

. find f€F which minimizes || f|| under the condition
mm f = f. at the data points Nt ~ (which comes back to

S L, » f>=f, at the data points).

THE EQUATIONS FOR THE SPLINE INTERPOLATION PROBLEM

qsmxmﬂ:md zr Omﬂ:msmvnmsm,ruArQVmmucmnn:mmcvmnmnmmp
of F which is orthogonal to the space S spanned by the

Ly€ F. The condition N :zr = 0 can then be written as:
NnsS =0 (4)

Thus, for all f € N, the relation mm f =0 implies that f = 0. In
other words, the restriction from mm to N Is one-to-one mapping
from N into S. Because the dimension of S is finite, it is
therefore greater than or equal to that of the kernel N:

Dim N < Dim §

Let Amnv,vm a basis for the kernel N {f = 1
and let Ly be the given basis of S, For all x,

) =<, &>

2,...,k £ dim 8)
t

H
it is clear that

and in particular

The condition (4) can be written in analytical terms as:

. ﬁn =0 (o= 1,2,...,k) =>C, =0 (47)

c
o

2
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(in effect, N N S* is made up of functions of the form n& m&. which
satisfy this-condition). We recognize the usual condition
seen in the theory of kriging (the linear independence of the basic
functions f% on the set of experimental points).

Let us now try to solve the original problem (i.e. to find
the function f which minimizes || T ZFﬁ: subject to the condition

that <L , f>=f at the data points). This func-
tion f i% such that az» is orthogonal to all g € F such that
< g, Ly >=0. Let BO8 denote the Inverse matrix of <L, Lg

For all g€ F, the element

0.8
g-<g rm > B L,

is orthogonal to S. Because mZk f is orthogonal to this element,
we see that

AHHZ._.._uu@V"WQmA.._HZP._nn_IQ.VA@rmV Qmm

and hence:

of .
My f=8" <My, f,L, >L

N o B

Thus T, f must be of the form b* L,» with the coefficients b

N+ . .
satisfying

o 2 o
br <L, f >=0 ~(5)

(because T, f is orthogonal to N ). The function f which is the
sum of mZP f and an element of N, is of the form:

_ L
f=b"L, +Cf

In addition to equation (5), the coefficients b and C, must
satisfy

<f,L >= ﬁg

From this, we obtain the following system of equations:

_ .0 2
f=05 rg +Cy f

b% £ = 0 (6)
a
<f,L,>= ﬁQ
where ﬁw =<l >,
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4:m<mdcm0mﬁ:mﬁ::oﬁmo:mnn:ouomnﬁmxmmmmﬁAxvnAﬁrv.
So we have: X

o £
f(x) = b < Ly by > * nn 7 (x)

2
b f, =0 (7
)

When we look at these equations more closely, we see that
they are just the universal kriging equations. In fact, if we put

o(x,y) =< L r< > (x,y)€E (7%)

o(x,y) is a covariance, and there is a random function Z(x) in the
space E which satisfies

< Nx N< > = g(x,y)

Let Z*(x) denote the universal kriging of Z{(x) in terms of the
variables Z = NAva in the presence of a drift m(x) = ay 2 (x).
The . kriging equations which give the estimated
{i.e. interpolated) value z*(x) are

b* o .+ Co ﬁ&Axv

z* AXV AX

o R
b~ f =0 (8)

% =
z Axpv z,

This system is equivalent to (but not identical with) the usual
one. It characterizes the kriging from the point of view of inter-
polation (Matheron, 1970).

Thus for z, = f_, this system is clearly identical to (7).

o
In the same manner that (7') suffices to determine z*,
(7) characterizes f, and so we have:

zé = f

im.rm<m thus shown that any spline function is equivalent to
a function obtained by kriging. We now go on to show the converse.

THE CONVERSE

Let Nx. xEE be a random function. Let H be the space gener-

ated by Z,. let olx,y)= < Nx.N< >. We now consider the
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problem of kriging Z_ in the presence of the drift terms a, mnﬂxv.

s X =
given the values of NQ = Xye

To express this problem m:&n:m form of a spline interpotlation,
we have to determine etements Y € H such that:

o0 =<tz > () (9)

A problem arises at this point, because these elements <&
need not exist in our initial space H (for example, if Z{x) is
stationary, the functions of the form x = A<.Nxv are bounded be-
cause _A<.Nxv_m__<“_x__Nx__u Constant).

We need to know whether, for a given function f, there exists
a Y¢EE such that for all x€E

f{x) = < Ye Z(x) >

The necessary and sufficient condition for this is that there
exists a B < « such that:

(z A ﬁAxmva <B I A, yu qAxm,va (10)

by )
for all finite linear combinations.

We are going to modify our original random functions Z(x)
and also the space H, so that this condition is satisfied. We
know that the results of the kriging will be the same if we re-
place Z(x) by Z(x) = Z(x) + By fL(x) where B, are any arbitrary
random variables. For example, we can take the wp to
be linearly independent and orthogonal to the Z(x). The
covariance of the new random functions Z(x) is then

o~ - L s
O.Axu/\v = QAXu/\V + _A\@m f f

X Y
where K =< B, ,B_ > is a strictly positive definite matrix. It
. s 2°7s
is clear that
G Az Gl Szt Al ads, oS
. i . i . e s X, X.
i S 1 1,] l J
1 i) 2 s
< m..m. AA xpm mx. ﬁx.
1,) | J

where a is the smallest eigenvalue of xbm. Consequently, the con-
dition (10) is satisfied for F{x,y).
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So, for the rest of the proof, we can assume that (10) is
satisfied, and, for simplicity, we shall write Z(x), o(x,y) instead
of Z(x) and d(x,y).

Let <pm H be the elements satisfying (3). We now are going to
construct a Hilbert space F (of functions) which is isomorphic to
H and which contains the functions f%,

To do this, we associate the function m< defined by
m<ﬁxv =< Y,Z({x) >

with each Y € H, and we define
ey =11l (11)

It is clear that the space built in this manner has the desired
attributes (that is, condition (10) is satisfied). Once the re-
sults obtained earlier are applied in this space, it becomes evi-
dent that the spline interpolation in F is equivalent to the inter-
polation given by kriging in H. The L _&F are the functions de-
fined by o

]

it
Q

L (x)

< Z >
0, Qva

ox

or, more generally

]
"

rxA<v <Z2,1,>=0

Y xy

NOTE -~ If N = 0 (that is, if the mapping A: F?F' in the original
problem is bijective and continuous (that is bicontinuous}), we
evidently come back to the situation of simple kriging. Thus, the
element f minimizing =m.__N under the condition <f,L >= f is
mﬂmam:n_< the element of S satisfying this o @no:amﬁmo:w
that Is

= g*B
, F=™r L

In particular, for all x6EE:

_ paB
f(x) = B mg < rm rx >

-

which is ov<m0cm_<aﬂ:m equation for a simple kriging considered as
an interpolation.
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ALGEBRAIC POINT OF VIEW

nmwmnmnwm wrm spaces H and F are isomorphic, it does not matter
whether we work with the functions f or with the random variables
in H. The isomorphism

®: H+>F

is defined as follows:

eixv < <.Nx >  (YEE, x€E)

Iyl

For example, let us work in H. N is the space generated by
the <&w S is the space generated by the NQ. We put

(12)
e

"l

v S NN

]

0
(13)
N

it

(T2} =
<o ns mm N

So <o is the space of admissible linear combinations A Zy,
(that is, those satisfying A% f2 = 0). As N* is the projection
in S of the space N generated o by the <&. it Is the space
generated by the optimal estimators Ag of the drift. Writing S
as the direct sum

S =V, @ N (14)

simply shows that any A% 24€S is the sum of two orthogonal terms:

a drift term A% Ag ﬁ%. which belongs to N*, and a residual
VQANQ|>bm%VE:mn: vm_o:mmﬁo<o.

Similarly for S, we introduce the space S' defined as the
direct sum of two orthogonal subspaces N and <o"

S! u<o@ N (14")

.wmnmcmm.<o #s the same in both expressions, the duality between
kriging and spline interpolation is obvious once we interchange
N and N*, and S and S'.

The Operators A and A*

Let R be the restriction of the projection mapping =m of the
space S to the space S' =V, @ N. Its adjoint R* is clearly
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the restriction of the projection mapping mm_ of S!' to the space
s =V, @ N*. We now show that the operators have in-

verses. Because the proofs are the same for R and R*, we
need only demonstrate one of the two, R. Any YE S' is the sum of
an element belonging to <o and to one from N:

<u m<o <+ mz <

The first term is invariant under the mapping R. Because m< Y al-
ready belongs to $ 0

The second term:

R ﬂz Y = :m mz Y

belongs to mm N = N*; it therefore is orthogonal to the first.

Consequently™ R Y = 0 implies that m< Y = 0 and :mmz Y. The first
i

relation Am< Y = 0) indicates that 0 YEN, be-
cause Y is 0 in §' = <o @ N. The second then can be rewritten
as mm Y = 0. But under our hypothesis that NS = 0, the

fact that YEN and that nm Y = 0 implies that Y = 0. Hence
R is injective. Moreover, as we~ have seen, the image space is the

direct sum of <o and N:

wm.ummm_u<o@mmzu<o@z*

Then R S!' = § and so R is surjective.

Thus, R is bijective. Let >m be its inverse: similarly, R#*
is bijective and has an inverse, the dual of >w which we shall
denote by >o.

We are now going to see that >o is the operator associated
with krigingand that >m is the operator associated with
spline interpolation.

Characterization of A and A*

A. maps S' onto S. So, for all Z'€S', A  Z' = Z is the only

0 element of S having Z' as its 0 projection in S'.
Simitlarly, for all Z€S, >mNuN_ is the only element of S' such that
. Z' = Z. p

S

We extend >o and >m.o<m1 the whole of H by putting
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Thus (see Fig. 1):

for all Z€H, AZ is the only element of S having the same pro-
jection in

S' as Z, and

* Z is the only element of S' having the same projection in
S as Z.

(Note that A = Tl. A, @I}, has T, A% . = Ax @I, as its adjoint,
which is just the S0 0 08 operator
that we have termed A%).

Under these conditions, for all Z€H, AZ is the kriged estimate
of Z (using the sample points Zy and in the presence of a drift be-
longing to ®(N), where ® is the isomorphism H =+ F).

In fact, let Z* be the kriged estimate of Z; that is the
unique element of S which minimizes || Z =~ Z* | under the con-
straints:

Z* € S
<Z-2%Y>=0 YEN

This element Z* is characterized by the additional condition:
Z - Z* must belong to the space orthogonal to S NI N = <o. After
taking the condition < Z - 2%, Y > =0 for all Y E N into

account, we see that Z* is characterized by the following two con-
ditions:

Z% € S
<Z-17%,Y>=0 YYENRV =5

Now it is clear that A Z satisfies these conditions. For a
start, we know that A Z € S by construction. Now if Y € S', we
determine that

< Mg, (Z =A2), Y > =<2~ AZ,Y>

But, from the definition of A, mm_ AZ = ﬁm_ Z. And so we
have that

<Z-MAZ,Y>=0
We now consider the dual problem. We shall show that A* is
the operator associated with the spline interpolation. To be able

to work in H, we consider the isomorphism F > H, To find the
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/

Vo
Figure 1. Characterization of A and A*.

spline interpolator, we have to determine the Y € H which minimizes
__HHZp Y|| and satisfies the conditions

< =
Y NQ > ﬁQ
Let <m be an arbitrary element satisfying these conditions:
for example the element with the minimal norm:
= g8
) <* = B mQ NQ
oB . . _
(8 B is the inverse of the matrix Iy, ).

B

The unknown element Y must have the same projection in S as
Y¢ does. Mys Y must be orthogonal to S*, and therefore belong to
to SN Nt =V, Thus Y €V, BN=5' It is

therefore the unique element 0 in S' having the
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same projection in S as <mw that is, it must be A* <ﬁ.

In other words, the function f* € F which interpolates between
the fy = < <m » Zy > and has the minimum norm, is therefore the
image of this element under the isomorphism o,

that Is
fx = o(A* <ﬁv

The value of f* in x is f&(x) = < f* eANxV >. So after taking
account of our isomorphism

fx(x) = < A* Ye o 2, > (15)
But A* is the dual of A. So we also have that
L — 1
*(x) = < Yo, AZ_> (15*)

Note that AZ is an element of S, of the form A% (x) Z,. We
therefore see X that f%(x) = A%(x) < YeZ, > = A0(x) fo*

ESTIMATING THE DRIFT

For all ZEH, mz Z represents the drift of this element and
A Iy Z the optimal estimator of this drift. We therefore put

Dx = A I (16)

N

From the characterization of the kriging ovmqmnwﬂ A, D* ZEN*
is the only element of S having the same projection in S' as the
element nz Z. Because zz Z is already in N&= §' =N ® <o, we see
that:

D* Z is the only element of N* having a projection in N equal
to ﬁz Z.

What is the relationship between the operators A and D*? For
a start, we note the following two relations:

m u>m uATivn :d
<o <o S

The first relation is a simple consequence of the fact that

V. is invariant under A. More precisely, we can write:

0

A= >mm_ = A Aﬁ<o + ﬂzv = m<o + A mz
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umnm:mm S' is the direct sum of <o and N. From (16), it follows
that

A=T, + D% (18)

At the same time, the operator D* coincides with N
{In effect, if Z € S, My Z is equal to the projection of the
element I, .Z on N, hence the result that D*Z = mz»Nv. We
therefore have that

. Within s,

N T = T

(1 - D¥) Mg = (1 - I
0

3

which is just the second relation (17). When this result is sub~
stituted into (18), we obtain:

A+ (1 - D¥) Tg + D* (19)

Here we recognize the well~known additivity theorem.
What does the adjoint of D*, that is, the operator
D = I A* (16')
represent?

It is easy to see, by duality, that D Z is the unique element
of N with a projection on N* equal to ﬁz*N.

If we repeat the preceding argument replacing N and § by N#
and S', we see that:

A% =T, +0D {t - n) Mg, + D (19)

0

Two terms, D <m and m< <ﬁ (i-D) am_ <,n occur in the expres-
sion A* ,Quuﬁ.,v‘ﬂ for 0 the spline inter-
polator. The first of these is the component of
Ye, in N (i.e. the term Cy f2 in the formula (5)). The second is
o _ the component of Y. "in V, (that is, the term b% Ly with b%®
fa = 0 in the second formula).

COKRIGING AND SMOOTHING SPLINES

We have seen that spline interpolation is equivalent to krig-
ing. We now shall go on using a similar line of reasoning to show

. that smoothing spline functions are equivalent to a particular
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.

type of cokriging (filtering with error). However, the converse is
not true this time.

The problem of fitting spline functions is as follows: wusing
the same notation as before, we have a self-adjoint operator T
which is strictly positive on S (i.e. for all f € H, the relation
<f, TOgF > =0 implies that Il.f = 0). Given (f (i.e. the fy =
< f Ly>), we wish to determine the function
f%€F which minimizes:

zHﬁzpm*zw + < fx- f, TH(F - f) > (20)

This element f therefore must satisfy the relation

My, f%+# T £+ =T I f (21)

But (20) implies that mZp f*x € S, and hence that I, f*€ S N

Nt = <o. Consequently, f*E <D @ N=S'. For fxe S',
we already have that aZF f*x = m< * = mZF g f*. So
this relation (21) is therefore 0
equivalent to
fx € §!
Am<o +T) mm =T mw f (22)
The latter of these two relations uniquely determines mm f*
because T and even more so m< + T is strictly positive on S.
0

In addition, any f* in S' is determined uniquely If its pro-
jection mm f* in S is known. !n effect, we have f* = A% :m f*.
Therefore, the relations (22) and also
(21) have a unique solution when Il¢ f is given.

The simplest way to show that the system (22) is equivalent
to cokriging is to use index notation.

if f is an element of F, T f will be of the form:

= 1%
TH f=T" <flL,>Lg

where the matrix AQm is strictly positive. Analytically, the sys-
tem can be written as follows:

The first condition: f* € S' = Vo f§ N is equivalent to
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_ona 2
fro=b¥ L, +Cy f
L -
b f2 =0
As I, is identical toIl, on S', we see that II,, f* = p% L
{from N* “the condition V0 on b* f%). So N o

the second equation (22) can be written as”

B 8

nrqgmArﬁv
B o

B8 af Y L
bY Lo+ L, TW <L, ,b r< +Cp £ >

In other words, we have

B Y 0B o 2 aB
b + b' T" < rg r< >+ n& T ﬂQ T ﬁQ
Ifweputo, =<1 L >, and if we let S
the matrix oY oy T, the condition
2
B8 -
b Amgm + qgmv + n@ ﬁg = f

denote the inverse to
then becomes

aB

o

A1l in all, the function f is given by the system:

fr=p* L+,
o 2
b* £ = 0o
o
B L _
b Amgm + qgmv +C, fo=f, (23)

Now this system characterizes a particular sort of cokriging con-
sidered as an interpolation.

Let Y(x) be a random function and let o, be its covariance.
Suppose that we have 4

where the €, are lerrors' which are orthogonal to the random func-
tion and which satisfy

E Amgv =0 ,<g,,

B oBR
We now consider the cokriging of Y(x) from the data Z . The

cokriging estimator is Y*(x) = A%(x) Z, where the o
weighting factors A%(x) are given by the system
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o _ 2
A (x) Amgm + ngv = Ogy + tpﬁxv mm

me& u ﬁw Awrv
o

By solving this system explicitly and comparing the solution
with (23), we can show that Y*(x) is necessarily equal to f*(x)
(after replacing Z, by ﬁQV. However, it is simpler to put €_ =0
for x # xy and to note that for all x X
except the experimental points xg, the cokriging estimate
Y*(x) of Y(x) is identical to Z*(x), where Z*(x) is obtained by
kriging the Z,. By using the characterization of Z*(x) considered
as an m:ﬂm1n04mﬁ01. we then obtain the following system:

2
% = pO
Y*(x) = b Ox * Co 7 (x)
o & _
b mg =0
o I
b AQO + Qva + n& mQ = NQ (25)

It is clear that Zy = fy, the solution f* of (23) satisfies
fi(x) = < fx L > = y*(x)

which establishes the correspondence between cokriging and smooth-
ing spline functions.

We note that one advantage of cokriging is that the matrix
mam represents the matrix of error covariance and in no way is
arbritrary. In contrast to this, the choice of the matrix
qgm used in mmnwm:m the spline curves is arbitrary. In most sit-
uations, T®® is taken to be a diagonal matrix, and so we seek
to minimize

2 - 2
AFl2 + 2w, (Fx - f)

From this, we get the impression that the W, must be taken in-
versely proportional to the error variances:

,ZQ. - C -
e,

But C remains completely arbitrary. In contrast to this, the
choice of the covariance tnatrix is in no way arbitrary. In the

situation where the €, are orthogonal, it is

Sug = 1 goll * 840
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and any arbitrariness disappears.
"'SOME CONCLUDING REMARKS

From a purely formal point of view, we have demonstrated the
equivalence between kriging and spline interpolation. However, in
practice, the links between the two are not nearly so apparent.

On one hand, the space H associated with a given space F is always a
a space of random variables generated by a random function Z_ and
having a covariance o(x,y) = < L_,L, > with reasonable X
properties. Looking at the v problem from the opposite
direction, the metric belonging to the space of functions F asso-
ciated with a given random function Z_ generally is difficult to
handle. In any situation, one thing is certain: if we limit
our consideration to spline functions associated with metrics de-
fined by differential operators, these correspond to a limited

class of random functions. Only in rare situations can the metric
associated with a given random function be defined in terms of
differential operators. So in practice, kriging provides an in-
terpolation method which is more general and more powerful than
spline interpolation. Moreover, the normally used spline functions
are just particular situations of kriging interpolators. ;

X

As an example, we shall consider a space F of functi
which has a differential operator A having the required
of positive definiteness. For the purposes of the demon
we shall limit ourselves to the situation where A is an
Laplacian operator: S :

The space F cannot be the space L% (because A wou
continuous), nor can it be a subspace of L2 equipped w
er norm of the type

Iel + | afl}®

because in this situation, the mapping of F into L2 would not be
subjective.

The technique here is to go from the domain U> of the opera-
tor A considered as an operator on L2 (A is closed but
not continuous). We note that the kernel of A into L2 is 0 (it s
obvious from the Fourier transformation that the equation AP F=0
has no solutions in L2), consequently || A f|]| is a norm on Dj.

For F we take the Hilbert completion of U> provided with the
:o«a»: A f]|. This makes F isomorphic to the closure of A D,
in L<.
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We then can identify the elements f € F with (equivalence
classes of) functions which are not, in general, in L2, If A=A,
we take the functions whose increments of order 2 are in L%, and
for which A f exists in the sense of L%, (A f occurs as the limit
in L%, of sequences f = f#*) , where the A_ are measures filtering

N n
the polynomials of degree € 1). For
A = AP, F is constituted of functions f such that f* A& L? for all
A€ >N -1 (filtering the polynomials of degree < 2p-1) and such
P that AP exists as the limit of a sequence mwyz y: €

io12
>~v|d. in L°,

n n

For the norm || A f]| , these equivalence classes of functions
form a space F isomorphic to L?. Once A f = AP f is given, it is
possible to reconstitute f* A for all )\ € >N -12 S© that the func-
tion f is in fact defined up to a P polynomial np
f2(x) of order < 2p-1. As usual in the theory of IRK-k (Matherdn,
1973), this indeterminancy is not particularly important, provided
that we replace the functionals L_ by the linear combinations

3y

L o= L, with 2 € >N -1 X (that is, ryAvv = 0 for poly-
X5 P nomials of degree S 2p-1). We
then can use of Fourier transformation to prove the continuity of
these functionals. Hence we can associate some well-defined ry €
F with the functionals. The argument given next follows the

same reasoning as previously. We choose the A_ € >N -1° The ele~
ment f € F which minimizes j> fl|2 subject ¢ P=1 to the
constraints mayev = ﬁQ at the sample points also can be determined
by kriging in the isomorphic space generated by an IRF-

(2p-1) z: >Nv|_ + H such that

Izl = Al Goen,

By definition, the element L, € F must satisfy
<SALL,Af>= Aldx) f(x) fe€F

The Fourier transform wry of >ry then can be determined from
that of A by

AL, = (-1)P (A)
(4 mn_:_NVu
where w is the transform of A. The transform mwy exists in L2 be-
cause of the condition A € >~vud. The generalized

covariance K(h) of the (2p~1) - IRF Z{x) satisfies the
following relation
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A(dx) K(x-y) A(dy) = A>r»vm dx

for all A € >Nv|“.

m<:wm:mﬂ:mmnonﬁwm_ammmC1mAacv\ﬁr mm_c~nvmv mmmOnmmﬁma
with K, this can be written as X

()2 x(du) = ()2 du (A€ A

)
(4 M2 |u]2)%P (4 I |u|2)2p 2p-1

Because the measure ¥ has no atom at the origin, we therefore
have x(du) = du, that is:

A%P Kk(h) = &

For n = 2k+1 (i.e. spaces of odd dimension), K(h) then is
[h|4P™N (up to a multiplicative factor).

For n = 2k, logarithmic terms of the form _:_rvns log |h|
arise. For example, using the norm [ [A f|2 dx, we find that

K(h) ~|h|? in R!

~|h]% log |h| inR%

~ |h]

These results also can be deduced dir
obtained by Duchon (1976). The criteria he
situation of splines minimizing [ |A £l 2 dx |
shown easily to be equivalent to the chara
using K(h) = |h|® or |h|? log |h| respectively
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