Reprinted from
Economic Geology
Vol. 58, 1963, pp. 1246-1266

PRINCIPLES OF GEOSTATISTICS
G. MATHERON

ABSTRACT

Knowledge of ore grades and ore reserves as well as error estima-
tion of these values, is fundamental for mining engineers and mining
geologists. Until now no appropriate scientific approach to those esti-
mation problems has existed: geostatistics, the principles of which are
summarized in this paper, constitutes a new science leading to such an
approach. The author criticizes classical statistical methods still in use,
and shows some of the main results given by geostatistics. Any ore
deposit evaluation as well as proper decision of starting mining operations
should be preceded by a geostatistical investigation which may avoid
economic failures.

RESUME

Pour tout mineur et géologue minier, la connaissance des teneurs
et du tonnage et I'appréciation des erreurs sur ces grandeurs est fonda-
mentale. Or, jusqu'a présent, il n’existait pas d’approche scientifique
correcte de ces problemes.

La géostatistique, dont les principes sont résumeés dans cet article,
est la nouvelle science qui permet cette approche. L’auteur indique les
méthodes statistiques antérieures et encore courantes et donne quel-
quesuns des résultats principaux de la géostatistique.

Toute évaluation de gisement et toute décision de mise en ex-
ploitation devrait étre précédée d’'une étude géostatistique permettant
de limiter le risque d’une déconvenue ultérieure.

INTRODUCTION AND SHORT HISTORICAL STATEMENT

GEOSTATISTICS, in their most general acceptation, are concerned with the
study of the distribution in space of useful values for mining engineers and
geologists, such as grade, thickness, or accumulation, including a most
important practical application to the problems arising in ore-deposit
evaluation.

Historically geostatistics are as old as mining itself. As soon as mining
men concerned themselves with foreseeing results of future works and, in
particular as soon as they started to pick and to analyze samples, and com-
pute mean grade values, weighted by corresponding thicknesses and in-
fluence-zones, one may consider that geostatistics were born. *In so far as
they take into account the space characteristics of mineralization, these
traditional methods still keep all their merit. Far from disproving them,
modern developments of the theory have adopted them as their starting
point and have brought them up to a higher level of scientific expression.

However, assuming they could provide a correct evaluation of mean
values, the traditional methods failed to express in any way an important
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character of mineralizations, which is their variability or their dispersion.
Some scores of years ago, classical probability calculus techniques began to
be used in order to take into account this characteristic. If an unskillful
application of those techniques has sometimes led to absurdities, it remains
certain that, on the whole, results have been profitable. Ina way this is a
paradox, for classical statistical methods, in so far as they are not concerned
with the spatial aspect of the studied distributions, actually cannot be
applied. As a matter of fact, the South-African school, which has recorded
the most remarkable results with Krige, Sichel, used to say, and believed
that they were applying classical statistics. But the methods they were
developing differed more and more from classical statistics, and adjusted
themselves spontaneously to their object.

The second decisive change appeared when the insufficiency of classical
probability calculus was clearly understood as well as the necessity of re-
introducing the spatial characters of the distributions. It consisted in
realizing on a higher level the synthesis between traditional and statistical
methods. Hence, geostatistics started elaborating their own methods and
their own mathematical formalism, which is nothing else than an abstract
formulation and a systematization of secular mining experience. This
formalism has inherited from its statistical origin a language in which one
still speaks of variance and covariance, including however in those notions
2 new content. This similarity in vocabulary must not deceive. At the
end of a protracted evolution, the geostatistical theory had to admit that
it was facing, instead of random occurrences, natural phenomena distributed
in space. And, therefore, its methods are approximately these of mathe-
matical physics and more specially those of harmonic analysis.

INSUFFICIENCY OF CLASSICAL STATISTICAL CONCEPTS

To be brief, we shall limit ourselves, in what follows, to the distribution
of ore-grades in a deposit. The results that will be obtained will however
have a general range and will be applicable to any character owned by a
spatial distribution. Inan usual statistical approach, the grades of samples
picked in a deposit are classified on a histogram. Such a procedure does not
take into account the location of samples in the deposit. But it is not
enough to know the frequency of a given ore-grade in a deposit. It is also
necessary to know in what way the different grades follow each other on the
field, and specially what is the size and the position of economic orebodies.
At the starting point of the theory we have to face one fact: the inability
of common statistics to take into account the spatial aspect of the phe-
nomenon, which is precisely its most important feature.

More precisely, the aim of the classical probability calculus is the study
of aleatory variables. The mere example of the heads or tails game shows
clearly what is going on. Let us record -1 each time the coin falls on tails
and —1 in the opposite case. Before throwing the coin, there is no way of
forecasting whether +1 or — 1 will be recorded ; we only know that there is
one chance out of two for one or the other of these two opportunities. An
aleatory variable has classically two essential properties: 1) The possibility,
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theorically at least, of repeating indefinitely the test that assigns to the
variable a numerical value; we can for example, throw the coin as often as
we want. 2) The independence of each test from the previous and the next
ones; if all the 100 first attempts have given tails, there remains however
one chance out of two for the 101st attempt to give heads.

It appears clearly that a given ore-grade within a deposit cannot have
those two properties. The content of a block of ore is first of all unique.
This block is mined only once and there is no possibility of repeating the
test indefinitely. When the grade of a sample is concerned, which may be
a groove sample of a given size for example, the result is exactly the same,
because the grade of a groove located in a point with coordinates (x, y) is
unique and well determined. However it is possible to pick a second sample
close to the first, then a third one, etc. . . . which shows an apparent possi-
bility of repeating the test. Actually, it is not exactly the same test but
a slightly different one. But even assuming this possibility of repetition,
the second property will surely not be respected. Two neighboring samples
are certainly not independent. They tend, in average, to be both high-grade
if they originate from a high-grade block of ore, and vice-versa. This
tendency, more or less stressed, expresses the degree of more or less strong
continuity in the variation of grades within the mineralized space.

The misunderstanding of this fact and the rough transposition of classical
statistics has sometimes led to surprising misjudgments. Around the fifties,
in mining exploration, it was advised to draw lots to locate each drilling
(i.e., tolocate them exactly anywhere). Miners of course went on still using
traditional regular grid pattern sampling, and geostatistics could later prove
they were right.  Or else again, it was urged that the accuracy of ore evalua-
tion of a deposit depended only on the number of samples (and not on their
location) and varied as the square root of this number. This unskillful
transposition of the theory of errors led to absurdities. For example, if a
given deposit is explored by drilling, it would suffice to cut the cores in 5 mm
pieces instead of 50 cm pieces to obtain 100 times more samples, and there-
fore 10 times higher accuracy. This, of course, is wrong. The multiplicity
of samples thus obtained is a fallacy, and does nothing more than repeat
indefinitely the same information, without vielding anything else. Geo-
statistics actually show that accuracy is the same with pieces of 5 mm and
50 cms, as every miner understands instinctively.

NOTION OF REGIONALIZED VARIABLE

Thus a grade cannot in any way be assimilated to an aleatory variable,
We speak of regionalized variables precisely in order to stress the spatial
aspect of the phenomena. A regionalized variable is, sensu stricto, an actual
function, taking a definite value in each point of space.

In general such a function has properties too complex to be studied easily
through common methods of mathematical analysis. From the point of
view of physics or geology, a given number of qualitative characteristics are
linked to the notion of regionalized variable.
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a) In the first place, a regionalized variable is localized. Its variations
oceur in the mineralized space (volume of the deposit or of the strata), which
is called geometrical field of the regionalization. Moreover such a variable
is in general defined on a geometrical support (holder). In the case of an
ore-grade, this support is nothing but the volume of the sample, with its
geometrical shape, its size and orientation. If, in the same deposit, the
geometrical support is changed, a new regionalized variable is obtained,
which shows analogies with the first one, but does not coincide with it.

For instance, samples of 10 Kg corresponding to drill cores are not dis-
tributed in the same way as samples of 10 tons corresponding to blasts.
Often the case of a punctual support will be considered. A punctual grade,
for example, will take value 0 or value 41 according to whether its support
will fall into a barren or mineralized grain.

b) Secondly, the variable may show a more or less steady continuity in its
spatial variation, which may be expressed through a more or less important
deviation between the grades of the two neighboring samples mentioned
above. Some variables with a geometrical character (thickness or dip of a
geological formation) are endowed with the strict continuity of mathema-
ticians. Fairly often (for grades or accumulations) only a more lax con-
tinuity will exist or, in other words, a continuity “in average.” In some
circumstances, even this “in average” continuity will not be confirmed, and
then we shall speak of a nugget effect.

¢) Lastly the variable may show different kinds of anisotropies. There
may exist a preferential direction along which grades do not vary signifi-
cantly, while they vary rapidly along a cross-direction. Those phenomena
are well known under the names of runs, or zonalities.

To those general characters, common to any regionalized variable, spe-
cific features can be superimposed. Ior example, in the case of a sedimen-
tary deposit, a stratification ¢ffect, will be noted. Large-scale stratification
provides individualizable and separately minable strata. Inside each strata
it may appear by the existence of beds following one another vertically, and
separated by discontinuity surfaces. The grade, almost constant or barely
varying inside a given bed, will vary abruptly from one bed to another;
however common and familiar this phenomenon appears to be, it is still
fundamental, and a theoretical formulation of the problem that would not
take it into account would miss the point. It will happen as well that to
those vertical discontinuities, stressed by jointing, will be added lateral
discontinuities, owing to the lenticular endings of beds. This bed-relaying
phenomenon, when it does exist, shows up at each stratigraphic level a
partitioning of the sedimentation area into micro-basins with almost autono-
mous evolution, and may appear during operation through grade-limit effect.

In the same way in stockwerk types of deposits, high-grade veinlets or
granules individualized in a more or less impregnated mass will be observed.
This stockwerk effect, just as the stratification and bed relaying effects, ex-
presses the appearance of a discontinuity net-work within a homogeneous
geometrical field. On a very different scale, that of granularity, the nugget
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effect appears as a phenomenon of the same nature, the net-work of discon-
tinuities being here that one separating barren from mineralized grains.

Those different specific aspects of spatial distribution of regionalized
variables—far apart from classical probability calculus—must compulsorily
be taken into account by geostatistics. This is made possible owing to a
simple mathematical tool: the variogram.

THE VARIOGRAM

The variogram is a curve representing the degree of continuity of mineral-
ization. Experimentally, one plots a distance d in abcissa and, in ordinate,
the mean value of the square of the difference between the grades of samples
picked at a distance d one from the other. Theoretically, let f(M) be the
value taken in a point M of the geometrical field V by a regionalized variable
defined on a given geometrical support o (in general support v will be small
and the limit may be considered as punctual). The semi-variogram v (h), or
law of dispersion, is defined, for a vectorial argument %, by the expression :

V) = 55 / f fv LA+ ) — FODTV. W

In general, the variogram is an increasing function of distance h, since,
in average, the farther both samples are one from the other, the more their
grades are different. It gives a precise content to the traditional concept of
the influence zone of a sample. The more or less rapid increase of the vario-
gram represents, indeed, the more or less rapid deterioration of the influence
of a given sample over more and more remote zones of the deposit. The
qualitative characteristics of regionalization are very well expressed through
the variogram:

a) The greater or lesser regularity of mineralization is represented by the
more or less regular behavior of ~v(k), near the origin. It is possible to
distinguish roughly four types (Fig. 1). In the first type the variogram has

RAd

Continue type Linear type Nugget effect Random type
Fic. 1.

a parabolic trend at the origin, and represents a regionalized variable with
high continuity, such as a bed-thickness.

The second type, or linear type, is characterized by an oblique tangent
at the origin, and represents a variable which has an “in average” continuity.
This type is the most common for grades in metalliferous deposits.

The third type reveals a discontinuity at the origin and corresponds to a
variable presenting not even an “in average’ continuity, buta nugget effect.
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The fourth type is a%limit case corresponding to the classical notion of
random variable. Between type I (continuous functional) and type 4
(purely random) appears a range of intermediates, the study of which is the
proper object of geostatistics.

b) The variogram is not the same along different directions of the space.
Function v (k) defined in (1) does not only depend upon the length, but also
upon the direction of vector /. Preferential trends, runs, and shoots are
revealed through the study of the distortion of variogram when this direc-
tion is altered. Geological interpretation of such anisotropies is often
instructive.

¢) Structural characters are also reflected in the variogram. For in-
stance, the bed-relaying phenomenon appears in the experimental curve as
a level stretch of the variogram beyond a distance, i.e., a range equal to the
mean diameter of the autonomous micro-basins of sedimentation. And the

Y(h)

HI1G. 2.

fact that these ranges are not the same along different directions makes it
possible to determine the directions of elongation, and the average shape of
the micro-basins.

This tool, the variogram, does not represent the totality nor the local
details of the mineralizing phenomenon, but it expresses in a synthetic form
their essential characters. The harmonic analysis of a vibratory phenome-
non assigns for each harmonic a phase and an amplitude. The local outline
of the phenomenon depends mostly upon phases, but energy depends only
upon the square of amplitudes. The spectral curve giving the squares of
the amplitudes does not describe the whole phenomenon but gives an account
of the essential, i.e., the energetic characteristics. The variogram (or more
precisely its Fourier’s transformed curve) plays exactly the part of such a
spectral curve.

In the following paragraphs, a few of the possible applications of vario-
grams will be run over. It is obviously out of the question to give here a
systematic study. I will merely mention some examples and several charac-
teristic formulae. For more details I kindly ask the reader to refer to my
«“Treatise of Applied Geostatistics.” !

1 Editions Technip, Paris, Tome I (1962)—Tome II (Le Krigeage) (in press). Tome III
(I'effet de pépite et les phénomeénes de transition) to be published.
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ABSOLUTE DISPERSION (OR INTRINSIC) LAW

The semi-variogram defined in (1) is bound to the geometrical field V
of the regionalized variable. If, instead of the total field V, only a portion
V' of it would have been considered, a function v’ (k) possibly different from
v(h) would have been obtained. However, we have the intuitive notion
that in a geologically homogeneous geometrical field there might be some-
thing intrinsic, independent from location, in the characteristics representing
the variabilities of regionalized variable.

Formulated in an accurate way, that intuition leads to the hypothesis of
an absolute dispersion or intrinsic law expressed through the equation:

¥ (k) = v (h)

which means that the variogram is independent from the portion V' of the
deposit V selected for its calculation. It may be said at once, that this
hypothesis is not really essential to the development of the theory and it is
possible to eliminate it because of some mathematical complications.?

Nevertheless it makes the statement of the theory much easier, and for
that reason it will be followed here. A slow deviation of the variogram in
space is generally ascertained through experience and if this drift does not
take too much importance, the results yielded by the hypothesis of an abso-
lute dispersion law provide an excellent approximation of reality (on the
condition that v (%) actually employed has been calculated from the actual
portions of the considered deposit).

When this hypothesis is verified, the semivariogram v () itself acquires
an intrinsic significance. It is often designated under the name of intrinsic
(or absolute) dispersion law or, more shortly, intrinsic function of regionalized
variable.

VARIANCES AND COVARIANCES

Let us consider in the first place, a regionalized variable (which will be
called grade in order to simplify) defined in a field 17, on a punctual support
and submitted to an intrinsic dispersion law v (k). Let f(M) be the value
taken by the grade in a point M of the field V. Instead of the punctual
grade f(M) we usually are concerned with the grade y(M) of a sample v,
of a given size, shape and orientation, picked at point (M).* This new
variable is deducted from the previous one through an integration performed
within the volume v centered in M.

1
y(M) = ;/f(M—i— h)dv. (2)
To this variable will be bound a parameter measuring its dispersion
inside V, called variance, as in classical probability calculus. The mean

2 Loc: cit., Tome ITIL.
3 This means that the center of gravity of v is located at point M.
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value of the punctual variable inside V being m,

1
m = T/ f(M)AV
|

the variance of y (M) inside V is defined as the average value within 7 of the
square of the expression [y(M) — m], let:

o7 = ]i/ [y(M) — m]dv. (3)
v

It will be noted that this notion has, at the outset, a geometrical and
not a probabilistic meaning. It will not deter us from calculating these
variances, in the applications, from experimental data with common sta-
tistical methods. Should they be taken according to their spatial order, as
in integral (3), or previously rearranged in histograms, the same expressions
(y — m) are appearing, with the same weights in both the calculation pro-
cedures. But, on a conceptual ground, definition (3) has a physical content
that the statistical motion has not. From expression (1) of the variogram,
of (2), and the definition (3) of the variance, one may deduce, reversing the
order of the integrations.

1 {
o —/ dV/ +(R)aV — :/dv/ ¥ (R)dv. (4)
142 v Vv 07 Jo v

Each one of these sextuple integrals has a very clear meaning: it repre-
sents the average value of the v (k) inside V (or ) when both the extremities
of vector h sweep, each one for its own account, the volume V(or )

If we write:
il
F(V) = / dV/ v(h)dV,
V2 )y v

i.e., F(V) = average value of v (k) inside V.
One gets:

ot = F(V) — F(@).” (5)

Thus knowledge of the variogram of punctual grades allows the “a priori”
calculation of the variance of any sample v within any portion V of a deposit.
It will be noted that this variance does not depend only upon the sizes of
volumes v and V, but also upon their shapes and orientation.

Physical meaning of relation (4) is highly instructive. The variance of
a macroscopic sample v, considered as the juxtaposition of a great number
of microsamples dv, does not depend in any way on the number of those
micro-samples nor on their variances, but only on the average value of
intrinsic function v (k) inside the geometrical volume ».  Classical statistics,
considering these micro-samples as independent, should lead to a variance
in terms of 1/0. There does not actually exist any deposit in which 10 ton
blasts would have a variance a thousand times lower than that of 10 kg
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cores. Formula (4) shows why. The grades of micro-samples are not inde-
pendent at all. They are inserted into a spatial correlation lattice, the
nature of which is bound to the more or less steady continuity of mineraliza-
tion, and which is expressed precisely through the intrinsic dispersion law
v(h). The grades of the micro-samples are much less different, on the aver-
age, than classical statistics would indicate, and in consequence 10 ton blasts
have a much higher variance than the thousandth of the variance of 10
kg cores.

The expression of the variance in form (5) shows a law of additivity.
If we consider panel V' and samples » within a field V and if o2(V', V),
o%(2,V) and o*(v,V’) designate the variances of 1/ inside V, of v inside V
and v inside V’, we get:

o2(,V) = o2(v, V') + o2(V',V).

This formula is known as Krige's Formula. It has been established by
D. G. Krige in the case when the grades are distributed according to a
(statistical) lognormal law. Its validity is actually not linked to a special
statistical distribution law, but only to the existence of an intrinsic dis-
persion law.

Besides the variance, geostatistics introduce the notion of covariance.
If y(M) and z(M + h) are the grades of two samples v and v’ centered in
two points M and M + h, covariance (inside V) of y and z is the function
of % defined by:

Ty = %—2/ [y(M) — m][(z(M + k) — m]dv.
v

It can be expressed through the variogram with a relation similar to (4):

0 = F(V) — ;j%,/vdv/;'y(k)dv’. (6)

The second integral represents the average value of v(k), when both ex-
tremities of vector k sweep, respectively, volume v and volume 7/, at a
distance % one from the other.

Let us consider, as a particular case, the isotropic de Wijs's ¢ scheme.
It is defined by an intrinsic isotropic function of the form:

v(r) = 3alnr (7)

in which » = |k| represents the modulus of the vectorial argument kb, or
otherwise the distance between the two points M and M + h. When
symbol In represents the natural logarithm, parameter a is called absolute
dispersion. It characterizes indeed the dispersion of grades independently
from the shape and the volume of the samples and of the deposit. In the

4 The starting point of development of the present theory is the original De Wijs's reasoning

which is a remarkable example of transition from classical statistics to geostatistics. Reference
to ‘“‘Traite de Geostatistique Appliquee,”” where bibliographical references will be found.
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particular case where the volume of the samples is geometrically similar to
the volume V of the deposit, formulae (4) and (7) give:

9 l/_v \
g —alnv (8)

This formula, which is the Wijs's formula, does express a principle of
similitude. It ceases to be appliable generally as soon as the deposit is not
geometrically similar to the samples. It is however possible to associate to
any geometrical volume v its linear equivalent d devined by relation:

3 1 '
Ind — S =2 ﬁ dv/v In rdv'. 9)

Formula (4) entails that sample » has the same variance in any deposit
as the linear sample of length d. If D and d are the linear equivalents of
the deposit and of the samples respectively, the variance may be set into
the form:

2 = 3aln R

The linear equivalents have been calculated and tabulated for a certain
amount of geometrical figures, and, in addition, we have at our disposal some
simple approximation formulae. For example for a rectangle with sides a
and b we have:

d=a-tb
For a parallelogram, with sides a, b, and surface S

d = Ngd 0 1= 25,

For a triangle with sides a, b, ¢, and Surface .S:

2 2 2
J = ‘i_tf;_Jri 42
: 75
For a trapezium with basis = —ZL’
L —
b = —5

Median: m
Surface: S

dz\/Lf+1'2+mﬁ—3 — + 25
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For a rectangular parallelepiped with sides @ > b > ¢,

d=a-+0b+

[NSRINN

For an oblique parallelepiped with edges 71, 7, 73, faces .Sy, Sy, Sz and
volume 1/, we put up:

{R‘: = r? + ¥ -+ g
S = SRR S S S

and we obtain the following approximate equivalent:

. V2R
d=AR+25+ —

This notion of linear equivalent allows an easy comparison between
samplings of different natures, at least in the case, common in metalliferous
deposits, where the law of dispersion has the form (7).

ESTIMATION VARIANCE AND EXTENSION VARIANCE

One of the most practical problems geostatistics are supposed to resolve
is the size of the possible error in the evaluation of a deposit. The general
characteristics of regionalized variables indicate that this error does not only
depend upon the amount of picked samples, but first of all upon their shapes,
their sizes and their respective locations, in other words, on the whole, upon
the geometry of achieved mining workings. These indications get a precise
meaning through the geostatistical notion of the estimation variance. Let
us suppose that, in order to estimate the real unknown grade z of a deposit
or of a panel 7, we know the grade x of a given net-work of mining workings
Muw. The estimation error (z — x) has a simple, well determined value,
although unknown, for a given panel V as for the net-work Mw located
preferentially. In order to make out of this error a regionalized variable,
geostatistics consider the panel or the deposit to be estimated as a panel
extracted from a very large fictive deposit K. This deposit is supposed to
be ruled by the intrinsic dispersion law v (k) defined by the experimental
variogram controlled in mining works Mw. We shall see that the shape and
the sizes assigned to K do not actually intervene. Let us imagine that panel
V which is being estimated travels across the large deposit K, drawing with
its attached mining works, the error (z — x) then appears as a regionalized
variable with an average value equal to zero and a variance:

g = 0'22 + Uzz - 202;- (10)

This variance called estimation variance is calculated after variances .7,
o2 and covariance o, of the variables z and x inside the field K, which are
themselves given by formulae of type (4) or (6). Field K interferes in the
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expression of ¢.%; o;* and oz; by the simple constant /(K) which is eliminated
in equation (10), so that the estimation variance ¢ is independent from the
choice of K, and is calculated after the formula:

2 r 7/
gt = W‘/I’dIC/I” v (h)dl
il 3 1
— ,‘,/‘ dl// v(h)dV' — ——,/ (lv/ v(h)dv'. (11)
12 v Vv I ) e Vv

In (11) V is the volume of the deposit being estimated and V' that of
mining works Mw. The estimation variance ¢ is calculated after integra-
tion of the intrinsic function v (k) inside the geometrical volumes of the
deposit and of the samples. In the same way, as the variogram could give
to the concept of the influence zone of a sample a precise content, one may
say that the estimation variance (11) can give a precise meaning to the
“influence” of mining works over the whole deposit.

In practical calculations, formula (11) should be difficult to use. Mining
works usually frame a discontinuous net-work in which the samples them-
selves may be picked discontinuously (for instance, groove samples cut off
according to a regular grid pattern in the drifts on a vein developed at
different levels). Volume V' interfering in (11) is the discontinuous volume
set up by the lattice of samples actually cut off and analyzed. An influence
sone is traditionally assigned to each individual sample, in the center of
which it is located and supposed to represent the grade. The error usually
performed in extending the grade of such an individual sample to its influence
zone can be represented by a type (11) variance, where 7 is the volume of
influence zone and V' that of the sample.

Such a variance is called elementary extension variance and can be calcu-
Jated for a given v (k) in terms of geometrical parameters of the sample and
its influence-zone. On condition of certain approximation hypothesis, it is
possible to prove that an estimation variance of type (11) can be calculated
by composing the elementary extension variances.

In practice, two cases are to be distinguished essentially. The elemen-
tary samples network, for an isotropic function v (%) may be isotropic® or not.
Let us mention, as an easy example of isotropic network, the square grid
pattern drilling. The errors made for an isotropic network by extending to
each influence zone the grade of its central sample may be considered as
independent (in other words having a geostatistical covariance equal to
zero). In this case estimation variance s obtained by dividing the extension
variance oz’ of each sample within its influence zone by the number N of these
influence zones.

1
2= =g 7
T noL (12)

5 More generally, for any given function v (h), the lattice may or not be adjusted to the ani-
sotropy of function v (k). For questions concerning the different types of anisotropy, one should
refer to the Treatise of Applied Geoslalistics.
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If, on the contrary the network is not isotropic, we are led to rearrange
the samples along lines or planes of maximum density, and to compose
extension variances of different natures. For example let us suppose a
vein-type deposit developed by drifts and channel sampled. In the first
place, we have to consider the extension variance g2 of a channel within
the length of a drift from which it has been cut off. If N is the total number
of channels, one can see that the estimation variance (1/N)og,® represents
the error obtained by extending the grade deduced from channel samples
over the mining works themselves. We consider afterwards the extension
variance og,? of the grade (supposed to be perfectly well known) of a drift
inside its influence zone. The influence zone is here the panel composed
by joining both the half-levels located above and below the drift. If » is
the number of developed levels, the estimation variance (1/n)og,’ represents
the error obtained by extending the average grade supposed to be perfectly
well known of the mining works to the whole deposit. The resulting estima-
tion variance becomes:

1

2 D) 1 2
g = ’:7\}0'1;'1" —‘I— ; TRy - <13)

Tt is usually necessary to add an additional variance to this expression,
representing the sampling and analyses errors. The second term in such an
expression is usually broadly predominating. The greater part of the error
proceeds from the extension of data from the mining works to the deposit.
In particular, it would be no use to increase indefinitely the number N of
samples without carrying out supplementary mining works. In fact, the
estimation variance coincides very soon with the (1/n)og,? limit below which
it cannot decrease.

Tables and graphs giving the numerical values of elementary extension
variances have been established ¢ for a given number of intrinsic functions
(especially for type (7) of de Wijs's function). They allow a fast computa-
tion of estimation variances assigned to different drilling and underground
exploration schemes.

We offer for example a vein deposit conformable to a type (7) isotropic
de Wijs's scheme and developed by drifts. Let us also assume that drifts
have been sufficiently well sampled as to reduce the first term of equation
(13) to zero.

Let % be the raise between two consecutive levels (measured inside the
plane of the vein). The extension variance of a drift of length / within an
influence panel /i is proved to be:

% ™
o — 0%
2

I
l
This formula is valid only if % is small compared to /, but it may be used

until & = I. When & > I, it must be replaced by a different formula. Let

6 Trealise of Applied Geostatistics, Vol. I, for the de Wijs's functions. Vol. III for the case
of a nugget effect.
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us assume that lengths /,, s+ - -/, are all superior to . The estimation
variance is obtained by weighting the extension variance of each drift within
its influence panel by the square of the surface of this panel:

N /120'L1:+/220'E22+ ™ li = ls £ 5
g° = = P
(Ui Lt 28 (= e )2
The explored mineralized surface being S = h(ly 4+ Iy - -+ + 1,) and the

total developed length being L = I, 4+ [, + - - [,, we obtain the following
remarkable formula:

[13

q
[l

oy

Sl

Once the estimation variance has been calculated, one has still to in-
terpret it for practical uses under the form of conventional error spread.
This aim is reached by allocating to this variance a probabilistic meaning.
By implicit reference to a gaussian model, we shall take it that the actual
average grade of the deposit is included within a 959 probability in the
range 7 == 20, m being the estimated grade. In other cases, particularly if
20 is not small towards m, we shall take the spread m exp (Z2¢/m), by
reference to a lognormal model.

These implicit references to probabilistic models are mainly arbitrary.
Actually, the notion itself of statistical distribution of an estimation error
is doubtlessly meaningless. The only thing which has an objective physical
meaning is the variance. This is why we speak about conventional spreads.
Their practical interest resides in the fact that they draw a more intuitive
picture of the possible errors than variances themselves.

KRIGING

A second application of major importance is provided by a geostatistical
procedure called “kriging.” It consists in estimating the grade of a panel by
computing the weighted average of available samples, some being located
inside others outside the panel. The grads of these samples being i,
Xo, -+ X, We attempt to evaluate the unknown grade z of the panel with
a linear estimator z* of the form:

=D

The suitable weights @; assigned to each sample are determined by two
conditions. The first one expresses that z* and z must have the same aver-
age value within the whole large field 7 and is written as:

Z(Li=1.

The second condition expresses that the a; have such values that estima-
tion variance of z by z* in other words the kriging variance, should take the
smallest possible value.
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This is formulated with a linear equation system related to a;, the coeffi-
cients of which are expressed with the help of the variances and covariances
of the samples and of the panel. It is thus possible to tabulate, for each
intrinsic function, the coefficients and the kriging variance in terms of geo-
metrical parameters, appropriately for different configurations. Numerous
drilling and underground work configurations have thus been tabulated in

C, B G

[o] < O o
A
0
B,° °B,
[e] (o] o
Cy By C,
0,7
0,6
0,5
A
0,4 -
0,3
4

T,

0,2 <

7 g
0,14

0 T T T T T T T 1 T T T T T T T | i
0,1 1 10
F1a. 3.

the case of an isotropic scheme of de Wijs. For information we show an ex-
ample in Figure 3. The studied configuration is useful for the appraisal of
a deposit explored by drilling, or for open cast selective mining. It consists,
in the case of a square grid pattern drilling, in the kriging of the influence
blocks of a drilling A with help of the grade of this central drilling A, and
those of the 8 nearest drillings rearranged into two “‘aureolae’”’ B1B,B3;B, and
C,CyC3Cy. Let u be the grade of 4, » and w the average grades of drillings
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B and C, the estimator to be used is:
= (1 —=\N—pu+ I+ uw.

In Figure 3, is plotted in abscissa the ratio %/a between the width % of
the formation and the size @ of the mesh of the drilling grid and the numerical
values of A and u are read on the curves as well as these of the expression
(1/3a)or®.  The multiplication of this last expression by three times the
value of absolute dispersion, 3«, yields the kriging variance.

Theoretically it is advantageous to “krige’ each panel by all the samples
located in the deposit, inside and outside this panel. In addition to the
great complexity of computation which grows very fast, it appears in nu-
merical examples that it is usually unnecessary to take into account remote
samples. In general the one or two proximate aureolae of external samples
are enough to remove practically the whole effect of remaining external
samples. This is, in particular, the case of the configuration studied in
Figure 3 where both aureole B and C form an almost perfect screen towards
all other external drillings.

One can even notice that for high values of the %/a ratio, the weight u of
the second aureole becomes slight, so that the aureole made out of the four B
drillings constitutes a screen by itself alone. This screen effect is a general
phenomenon and plays an important part in the kriging theory.

From a practical point of view, the advantage of kriging is double. First
of all, as a result of the definition itself of this procedure, it leads to achieve
the best possible estimation for a given panel, that is to say the estimation
with minimal variance. It can pay most appreciable services by improving,
for example, the monthly output forecast for different mine-sections, and
especially in the case where the mine operator is compelled to supply ores
with characteristics as constant as possible.

However appreciable they are, the improvements of accuracy provided
by the kriging would not always justify the amount of calculations it re-
quires. In most cases, the major interest of the procedure does not come
for the reduction of estimation variances but from its being able to eliminate
the cause of systematical error. A deposit seldom happens indeed to be
payable in the whole. Only some panels chosen as payable according to
the grades of the samples cut off within them, are considered as payable.
D. G. Krige " has proved that the results based only on inside samples in-
evitably led to over-estimating rich panels and underestimating poor ones.
The geostatistical notion of kriging allows to expound this phenomenon
easily and to rectify its effects. The selected panel being a rich one, the
aureola of outside samples has, in general, a lower grade than that of inside
samples. Yet its influence on the panel to be estimated, is not negligible,
since it is allocated a weight different from zero by the kriging. Not to
take in account this external aureole inevitably introduce therefore a cause
of systematical error by over-estimation which can be eliminated by kriging.

7?D. G. Krige's original reasoning constitutes a second example of an implicit passage from
classical statistics to geostatistics. It is essentially based on the fact that the variance of a panel

is always lower than that of its inside sampling. For references, see ‘‘Treatise of Applied
Statistics.”
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THE NUGGET EFFECT

In the presence of a strong nugget effect the general rules outlined in
the above paragraphs may suffer some apparent objections. The nugget
effect has been defined in Figure 1 by a variogram characterized by a discon-
tinuity at the origin, and corresponding to a regionalized variable that does
not have the “in average” continuity. Its nature may be purely granulo-
metrical, as in gold or diamond deposits, or, more generally, it may reveal
the existence of discontinuous micro-structures. The presence of veinlets
or microfractures with high-grade fillings in a stockwerk may promote such
an effect. In gold deposits, the grades of two very close or even adjoining
samples may be different if, by chance, one of them contains a large nugget.
The smaller the samples, the more important this effect is, and it may reach
a considerable magnitude for samples of several liters in volume. A transla-
tion of some millimeters only of the geometrical support of a sample is enough
for it to contain or not a large nugget able to modify its grade in a proportion
of 1 to 10 or 1 to 100. The possibility for a marginal nugget to be embodied,
or not, inside a sample appears as an entirely random event. Actually,
however, the behavior of the grade can be considered as random locally only.
If it were not so, the panels of several thousand tons, on which marginal
nuggets have no more detectable effect, would present almost constant
grades (their variance being then a million times lower than that of samples
of several kilograms). It is well known that actually, even in gold deposits,
there are rich panels and poor panels. But this random effect may locally
be so strong that it entirely hides the underlaying regionalization. The
frequency of some expressions such as “erratic,” “monstrous,” or “mammoth
grades” etc. . . . alluding to an hypothetical anomalous behavior of miner-
alization in the literature devoted to these deposits is striking. Certainly
the classical statisticians were right when they noted that there was no
actual anomaly, and that those monster grades, actually existing in the
deposit, appeared from time to time in the sampling, with frequency deter-
mined by random laws. Historically, a clear distinction between the
notions of regionalized and aleatory variables was doubtlessly hampered for
a long while by the fascination aroused by this nugget effect. It appears,
from the geostatistical point of view, that in fact, the ingenious terminology
was not wrong while suggesting the existence of some anomaly; but the
aberrant fact is not the presence of some “anomalously’” high grades, but
rather the locally aleatory behavior of all the grades, high or low, as well as
in the deterioration of the spatial correlations grid. Those mammoth grades
of the ingenious terminology are not aberrant by themselves, but the fact
that they are not assorted with influence zones is so. And, on the other
hand, classical statisticians were right stressing the fact that the apparitions
of these aberrant grades are ruled by random laws. But they failed to note
that the phenomenon can be considered as aleatory locally only.

Without trying to make a systematical statement,® let us show briefly
how geostatistics allow us to represent a nugget effect. Let us examine the

8 See Trealise of Applied Geostalistics, Vol. IT1.
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~v (r) semi-variogram representing the third type of Figure 1. We shall stick
here to the case where v (r) is an isotropic function (in other words depending
only upon the » modulus of the & vectorial argument). The C discontinuity,
or jump, noticed at the origin on the v (r) of a variable with punctual support,
is called nugget constant. I (r) being Heaviside's function, thus defined:

H(r) =1 r>0
H(r) =0 r=20
the semi-variogram may be divided into 2 components:
y(r) = CH(r) + 71(r). (15)

The first component CII(r) represents the pure nugget effect. The second
one ~i(r), continuous at the origin, represents the underlaying regionaliza-
tion. All the variances and the covariances that have to be introduced,
may then be calculated as if the variable x (M) with punctual support was
the sum:

% = % € (16)

of a theoretical regionalized variable xo following the v (r) dispersion law
continuous at the origin, and of an aleatory e variable with a zero average
and C variance.

Fic. 4.

The x, and the e are independent, and the e assigned to two distinct points
even very close, are independent as well. If we limit our study to the varia-
tion of the punctual grade x in the proximity .of a given point, or, in other
words, we consider only the small values of the distance r, y1(r) will vary so
slightly that it might be taken for a constant equal to C. The locally de-
tectable variations are to be assigned almost solely to e. That is what we
mean when we say that the regionalized variable behaves locally as an alea-
tory variable. But, on a larger scale, i.e., for higher values of 7, the increase
of the continuous component yi(r) can no longer be neglected and the
regionalization of xo becomes perceptibly apparent.

As a matter of fact, the Heaviside function does not represent with entire
satisfaction the random aspect of the behavior of a punctual variable. Un-
less we suppose the constant C to be infinite, the term CH (r) will lose all
influence over the variance of a sample of a size different from zero. It is
automatically eliminated in formula (4). It means that the mean value of
the e independent aleatory variables, located in infinite number inside an
unpunctual support, has compulsorily a zero variance.
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The notion of a random variable e with a punctual support has actually
no physical meaning. The actual physical phenomenon will never involve
a true discontinuity at the origin but a narrow transition zone in the prox-
imity of » = 0. H(r) must be replaced by the transition function 7'(r, a)
defined by:

[re,e) =L # r<a
a
T(r,a) =1 if x> a:

The @ constant, or range, gives the scale of the transition zone, that is to say
the size of the nuggets. In the case of homogranular nuggets of same
volume = it is shown that:

The intrinsic function v () of a punctual grade is decomposed in the

following way:
v(r) = CT(r, a) + v.(7).

C is still the nugget constant, and v.(r) the continuous component.

The punctual grade x can be given by a sum similar to (16) in which e is
a regionalized variable admitting CT'(r, a) as its intrinsic function. Now
the e are only independent for distances superior to the range @. For smaller
distances they are bound by a linear variogram. The nugget effect will
therefore reflect itself on samples of size v different from zero. If vis large
in regard to the grain size @® the transition zone will be diluted in the inte-
gration volume v, and the nugget effect will yield an additional variance of
the type @*/v. Indeed, let op* (nugget variance) be the share of CT(r, a)
for the variance of sample v. According to (4) we have to compute integrals

of the type:
@
;/// dm/// 1 (r, a)dvs.

If all sizes of v are supposed to be large in regard to a, each point inside v
brings to the sextuple integral the following part:

e [ i
Cll— tmai) =l */ Arridr = C <v i a-") ;
@ 0 3

This is valid only for points located at a distance superior to (a) from the
boundary of #; but, when v is large, the boundary points only interfere with
superior order terms. With such an approximation, the sextuple integral
is equal to C(1 — (v/3) (a*/v)).

As the integral inside V is computed in the same way, we finally have

ad P
ap2=cg[;—7,] (17
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Practically a*/V is negligible and the nugget variance is in terms of a*/v,
i.e., in an inverse ratio to the number of grains contained inside the sample.
Any time a nugget effect does exist, i.e., anytime a regionalized variable
shows a locally aleatory behavior, an additional variance is assigned to macro-
scopic samples, called nugget variance, inversely proportional to their size.
The variance of those samples appears as the sum:
ot = op’ + oy’
of the nugget variance and of the theoretical variance o¢* calculated with the
continuous component v;(r) of the intrinsic function.

When v is increasing, the theoretical variance is decreasing much slower
than the nugget variance. In the presence of a very strong nugget effect
,2 may happen to be widely predominating for samples of several kilograms.
The underlying regionalization is almost completely hidden at the scale of
these samples. If we limit the variation of the volume o in the interval of
a few liters up to tens of liters, the experimentally observable variations of
the variance will be those of the nugget variance effect only, and we may
take the risk to conclude that the variance varies in inverse ratio of the
volume.

Whereas if we consider samples of several tens of tons, the term ¢,?
decreases and disappears, and the theoretical variance o> becomes prominent.
The effect of the underlying regionalization appears again and the variance
is steadily decreasing as o is increasing, but much slower than 1/v.

We have somewhat insisted upon the nugget effect in order to show,
through a crucial example, how geostatistical concepts allow us to rediscover
the local results that are fluently obtained from common statistical reasoning
(nugget variance inversely proportional to volume) but inserting them in the
general prospect of an underlying regionalization. As for the practical use
of this theory, let us succcinctly mention the two following points:

In the presence of a nugget effect, the extension and the estimation
variances are both increased by a term C(wx/3) (a®/v) inversely proportional
to the total volume of available samples and, therefore, in particular to the
number 7 of those samples. In this regard, the additional estimation vari-
ance due to the nugget effect behaves itself as the sampling and analyses
variances, and may be rearranged with them.

As for the kriging, the nugget effect results in partly removing all the
screens. Practically, we are led to use the special forms of kriging called
“aleatory kriging”” which are not different from those proposed formerly by
D. G. Krige himself, in connection with the gold deposit of the Rand, in
which the nugget effect is probably very strong.

SEARCH FOR OPTIMUM IN MINING EXPLORATION

Geostatistics are able, through estimation variances, to provide an accu-
rate measurement of the information yielded, by a given amount of under-
ground workings on a deposit. Generally, these workings are expensive,
and their cost must be weighed against the economic value of the provided
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information. Thus appears the possibility to determine the optimum
amount of credits to be allocated for the exploration of a deposit, and par-
ticularly the possibility to choose the suitable moment for stopping the
exploration, as well as for taking a positive or negative decision towards
starting the exploitation of the deposit. These methods, permit one to
solve, at least partly, one of the main problems raised by mining exploration,
will be published in another connection, and cannot be treated here. Let us
only, as a conclusion, stress the fact that they appear as the natural extension
of geostatistics. The possibility of their adjustment was bound to the pre-
liminary elucidation and to the thorough scientific study of the different
ideas which have been summarized in this paper.

BUREAU DE RECHERCHES GEOLOGIQUE ET MINIERES,
Parts, FRANCE,
June 10, 1963



