CENTRE de MORPHOLOGIE MATHÉMATIQUE FONTAINEBLEAU S

MESURES ET CAPACITES

Sur un espace E localement compact dénombrable (en abrégé LCD), on construit l'espace compact \mathcal{G} (E) des ouverts de E, muni de sa topologie compacte dénombrable \mathcal{W} , puis l'espace compact $\mathcal{G}_{\mathfrak{g}}(\mathcal{G})$ des fonctions d'ouverts T(G) semi-continues inférieurement (s.c.i.) pour la topologie de \mathcal{G}

Proposition 1 Dans $\Phi_{g}(\mathcal{G})$, les fonctions croissantes constituent un espace compact Φ_{gc}

En effet, soit T_n une suite de fonction convergeant vers T dans $\overline{\mathbb{Q}}_q$ et vérifiant $T_n(G) \leqslant T_n(G')$ si $G \subset G'$.

Soient G et G' deux ouverts de E avec $G \subset G'$. On peut trouver (critère l' de convergence) une suite $G'_h \to G'$ avec $T_n(G'_h) \to T(g')$. La continuité de l'intersection dans U_g donne $G'_n \cap G \to G$, et le critére 2' de convergence montre alors, les T_n étant croissants :

$$T(G) \leq \underline{\lim} T(G', \bigcap G) \leq \underline{\lim} T_n(G',) = T(G')$$

Topologie de $\overline{\mathbb{T}}_{\mathfrak{C}}$ Les ouverts de type W , dans $\overline{\mathbb{T}}_{\mathfrak{F}_{\mathfrak{C}}}$, sont de la forme $\mathbb{T}_{\mathfrak{C}}$ Inf $\mathbb{T}_{\mathfrak{C}}$ $\mathbb{T}_{\mathfrak{C}}$ Comme $\mathbb{T}_{\mathfrak{C}}$ est croissante, posant pour tout compact $\mathbb{K}_{\mathfrak{C}}$ $\mathbb{T}_{\mathfrak{C}}$ $\mathbb{T}_{\mathfrak{C}}$

les ouverts de ce premier type sont de la forme { T(K) < a } , K compact.

De même, les ouverts du type W_{K} sont de la forme $\left\{\begin{array}{c} \text{Inf } T(G) > b \right\}$ c'est à dire $\left\{\begin{array}{c} T(G') > b \right\}$, G'ouvert.

D'où les <u>critères de convergence</u>: $T_n \rightarrow T$ si et seulement si on a à la fois :

1 - T(G) & lim T,(G) pour tout ouvert G

2 - T(K) > Tim T_n(K) pour tout compact K

Ces critères 1 et 2 sont équivalents respectivement aux critères 1' et 2' suivants :

1' -
$$\forall G \in \mathcal{G}$$
, $\exists G_n \in \mathcal{G}$, $G_n \rightarrow G$, $T_n(G_n) \rightarrow T(G)$
2' - $G_{n_g} \in \mathcal{G}$, $G_{n_g} \rightarrow G \Rightarrow T(G) \leq \underline{\lim} T_{n_g}(G_{n_g})$ ______

Lemme 1 Si T_n converge vers T dans Φ_{3c} , pour tout ouvert G on peut trouver une suite G, vérifiant :

$$G_n \subset G$$
, $G_n \to G$ et $T_n(G_n) \to T(G)$

En effet, d'après l', on peut trouver une suite $G'_n \to G$ avec $T_n(G'_n) \to T(G)$. Posons $G_n = G \cap G'_n$. Les G_n convergent vers G (continuité de \bigcap). D'après 2' et la croissance des T_n on a :

$$T(G) \leq \lim_{n \to \infty} T_n(G_n) \leq \lim_{n \to \infty} T_n(G_n) \leq \lim_{n \to \infty} T_n(G_n) = T(G)$$
. Donc $T_n(G_n) \longrightarrow T(G)$.

Lemme 2. Dans \mathcal{G} (E), soient deux suites convergentes $G_n \to G$ et $G'_n \to G'$ telles que $G_n = G$ et $G'_n = G'$. On a:

$$G_n \cap G'_n \rightarrow G \cap G'$$
 et $G_n \cup G'_n \rightarrow G \cup G'$

La première convergence résulte de la continuité de \bigcap . Montrons la deuxième. Si K = GUG', K compact, on peut trouver deux compacts $K_1 = G$ et $K'_1 = G'$ avec $K = K_1UK'_1$ (résultat classique). Pour n assez grand, on a $K_2 = G_n$ et $K'_1 = G'_1$, d'où $K = G_nUG'_n$, et le critère 2 de convergence. Si $G_n = GUG'_n$ ouvert non contenu dans GUG'_n , il n'est pas non plus contenu dans $G_nUG'_n = GUG'_n$. Le critère l est donc automatiquement vérifié, et la convergence annoncée en résulte.

Proposition 2.Le sous-espace χ (E) $\subset \Phi_{\mathfrak{g}}(\mathcal{G})$ des fonctions $T \in \Phi_{\mathfrak{g}}(\mathcal{G})$ croissantes et fortement sous-additives est compact.

Soit T, une suite convergeant vers T dans Φ_{gc} , avec pour G,G' $\in \mathcal{G}$:

$$T_n(G \cup G^*) + T_n(G \cap G^*) \le T_n(G) + T_n(G^*)$$

Le critère l'et les lemmes 1 et 2 montrent que l'on peut trouver deux suites G_n et G_n' vérifiant :

D'après le critère 2', on en déduit :

$$T(GUG') \leq \lim_{n \to \infty} T_n(G_nUG'_n)$$

 $T(GQG') \leq \lim_{n \to \infty} T_n(G_nG'_n)$

$$T(G \cup G') + T(G \cap G') \leq \lim_{n \to \infty} T_n(G_n \cup G'_n) + \lim_{n \to \infty} T_n(G_n \cap G'_n)$$

$$\lim_{n \to \infty} \left[T_n(G_n \cup G'_n) + T_n(G_n \cap G'_n) \right] = T(G) + T(G')$$

Proposition 3. X (E) est un espace de capacités de Choquet.

Soit T $\in \chi$ (E). T se prolonge sur \mathcal{F} (E) selon la formule :

$$\begin{array}{rcl} \text{(1)} & & \text{Inf} & \text{T(G)} \\ & & \text{G} \supset A \end{array}$$

a/ On vérifie que $A_n \uparrow A$ entraine $T(A_n) \uparrow T(A)$. (Démonstration, par e xemple, dans Brelot, Eléments de la théorie classique du potentiel, C.D.U., p. 64 : cette démonstration utilise la sous-addivité)

b/ Pour un compact K, T(K) possède la propriété de <u>continuité à droite</u>: $\forall \mathcal{E} > 0$, $\exists G \in \mathcal{G}$, G > K: $k \in K' \subset G \Rightarrow T(K') \leq T(K) + \mathcal{E}$ Celà résulte de la seule définition (1). On peut, en effet, trouver $G \supset K$ avec $T(G) \leq T(K) + \mathcal{E}$, et par suite $T(K') \leq T(K) + \mathcal{E}$ pour $K' \subset G$

c/ Si on pose $T_*(G) = \sup_{K \in G} T(K)$, on a $T_*(G) = T(G)$. C'est ici qu'intervient la semi-continuité inférieure de T(G). On a d'abord $T_*(G) \geq T(G)$, d'après la définition de T(K). Mais, T étant s.c.i., on peut trouver $K \subset G$ tel que $G' \supset K$ entraine $T(G') \gg T(G) - \mathcal{E}$, donc aussi $T_*(G) \gg T(K) \gg T(G) - \mathcal{E}$ et finalement $T_*(G) = T(G)$.

d/ Il est équivalent de procéder en sens inverse : partir d'une fonction T(K) croissante, fortement sous-additive et continue à droite, définir $T(G) = \sup_{K \in G} T(K)$ (cette définition entraine à elle seule que T(G) est sci) et vérifier $T(K) = \inf_{K \in G} T(G)$ (c'est ici qu'intervient la continuité à droite de T(K))

e/ La continuité à droite de T(K) entraine ensuite $T(K_n) \downarrow T(K)$ pour $K_n \downarrow K$ (l'inverse n'étant pas vrai).

f/ Le théorème des capacités donne ensuite $T(A) = \sup_{K \subset A} T(K)$ pour tout A appartenant à la classe de Souslin engendrée par les compacts, en particulier, E étant LCD, pour tout A appartenant à la G-algèbre de Borel $G(\mathcal{F})$ sur E .

<u>Proposition 4.</u> Le sous-espace $\mathcal{M}(E)$ des $\mathcal{M} \in X$ vérifiant $\mathcal{M}(\phi) = 0$ et $\mathcal{M}(G \cup G') = \mathcal{M}(G) + \mathcal{M}(G')$ pour $G \cap G' = \phi$ est compact dans $\mathcal{M}(E)$.

En effet, soit $\mu_n \to \mu$ dans χ avec $\mu_n \in \mathcal{M}$. De $\mu_n(\phi) = 0$, le critère 2' déduit $\mu(\phi) \leq 0$. Mais on peut trouver $G_n \to \phi$ avec $\mu_n(G_n) \to \mu(\phi)$, donc $\mu(\phi) > 0$ et $\mu(\phi) = 0$.

Si $G \cap G' = \emptyset$, soit $S_n \to G \cup G'$ avec $\mathcal{H}_n(S_n) \to \mathcal{H}(G \cup G')$. On a $S_n \cap G \to G$ et $S_n \cap G' \to G'$. Le critère 2' donne alors :

$$\mu(G) \leq \lim_{n \to \infty} \mu_n(S_n \eta G)$$

$$\mu(G') \leq \lim_{n \to \infty} \mu_n(S_n \eta G')$$

$$\mu(G) + \mu(G') \leq \lim_{n \to \infty} \mu_n[S_n \eta(G U G')] \leq \lim_{n \to \infty} \mu_n(S_n) = \mu(G U G')$$

L'inégalité inverse résulte de la sous-additivité, et permet de conclure.

La proposition 3 permet d'identifier $\mathcal{M}(E)$ avec l'espace des <u>mesures</u> positives définies sur $\mathcal{E}(\mathcal{F})$ et vérifiant :

1-
$$\mu(\phi) = 0$$

2- $\mu(\chi) = 0$
3- $\mu(\kappa) = \lim_{n \to \infty} \mu(A_n)$ pour des $A_n \in \mathcal{F}(\mathcal{F})$ disjoints pour tout compact K

La topologie induite sur \mathfrak{M} (E) par celle de $\mathfrak{D}_{\mathfrak{z}}$ n'est autre que la topologie vague. C'est une topologie compacte.

Proposition 5. Φ_{ℓ} (E) seidentifie à un sous-espace compact de χ (E)

A toute fonction scs est associée la fonctionnelle $X(G) = \sup_{x \in G} f(x)$ vérifiant :

(1)
$$X(\bigcup_{i \in \mathbf{F}} G_i) = \sum_{i \in \mathbf{F}} X(G_i)$$

et inversement, toute fonction X(G) vérifiant (1) est la fonctionnelle assacciée à la fonction scs f(x) = Inf X(G) (cf. Note 74) $G \ni x$

La topologie de $\mathfrak{D}_{\mathfrak{F}}$ est engendrée par les $\{X(G)>b\}$ et les $\{X(K)< a\}$ La relation (1) entraine que X est croissante et sous-additive. Il suffit donc de montrer que X est sci sur $\mathcal{U}(\mathcal{E})$

Soit donc $G = \bigcup_{n=1}^{\infty} B_n$ avec $B_n \subset B_n \subset B_{n+1}$ ouverts relativement compacts. De (1) résulte qu'il existe un B_n avec $X(G) \leq X(B_n) + \mathcal{E}$. Par suite, tout $G' \supset \overline{B}_n$ vérifie $X(G) \leq X(G') + \mathcal{E}$, et X est sci.