NOTE GEOSTATISTIQUE nº 100

L'Intégrale de RIEMANN - MINKOWSKI

Soit $A(\lambda)$ une famille <u>continue</u> à 1 paramètre de compacts non vides de \mathbb{R}^n . Je me propose de construire l'intégrale de Riemann-Minkowski $\int_a^b A(\lambda) \ d\lambda$, $\mathcal{K}(\mathbb{R}^n)$ étant muni de l'addition

de Minkowski et de la topologie myope. Par changement de paramètre, on se ramène à la construction de l'ensemble compact :

$$I = \int_{0}^{1} A(\lambda) d\lambda \in \mathcal{K}_{0}(\mathbb{R}^{n})$$

Posons d'abord un lemme :

Lemme 1 - Pour tout $A \in \mathcal{K}_0$ (\mathbb{R}^n), la suite $\frac{1}{n}$ $A^{\oplus n}$ converge vers l'enveloppe convexe C(A) de A.

Les $\frac{1}{n}$ A^{\empthsigmannown*} étant contenus dans le compact fixe C(A), il suffit de vérifier la convergence dans $\mathcal{F}(\mathbb{R}^n)$. On a évidemment $\lim_{\longrightarrow} \frac{1}{n}$ A^{\empthsigmannown*} \subset C(A), et il suffit de montrer C(A) \supset $\lim_{\longrightarrow} \frac{1}{n}$ A^{\empthsigmannown*}. Soit $x \in C(A)$, et

$$x = \sum_{i=1}^{r} \lambda_{i} x_{i}, \quad \sum \lambda_{i} = 1, \quad \lambda_{i} \geq 0, \quad x_{i} \in A$$

une représentation de cet élément. Pour tout $n \ge r$, on peut trouver des entiers N(n, i), avec :

$$\sum_{i=1}^{r} N(n, i) = n, \lim_{n} \frac{N(n, i)}{n} = \lambda_{i}$$

En posant $x_n = \sum_i \frac{N(n,i)}{n} x_i$, on a $x_n \in \frac{1}{n} A^{\oplus n}$, et la suite x_n converge vers x, d'où $\underline{\lim} \ \frac{1}{n} A^{\oplus n} \supset C(A)$.

$$I - \underline{Construction \ du \ compact} \ I = \int_{0}^{1} A(\lambda) \ d\lambda$$

Soit $A(\lambda)$ une famille continue à 1 paramètre dans $\mathcal{K}_{O}(\mathbb{R}^n)$. L'image de [0,1] par l'application $\lambda \to A(\lambda)$ est compacte dans $\mathcal{K}_{O}(\mathbb{R}^n)$, de sorte que pour $\lambda \in [0,1]$, les $\underline{A(\lambda)}$ sont contenus dans compact fixe $\underline{K}_{O} \in \mathcal{K}_{O}(\mathbb{R}^n)$. De plus, la famille $A(\lambda)$ est uniformément continue sur le compact [0,1], de sorte qu'à tout $\epsilon > 0$ on peut associer un $\eta(\epsilon)$ avec

(1)
$$|\lambda - \lambda'| \leq \eta(\epsilon)$$
, λ , $\lambda' \in [0,1] \Rightarrow d(A(\lambda), A(\lambda')) \leq \epsilon$ d désignant la distance de Hausdorff dans $\mathcal{K}_{\Omega}(\mathbb{R}^n)$.

Soit s une <u>subidivision</u> $x_0 = 0 \le x_1 \le \dots \le x_n = 1$ de l'intervalle [0,1] et $|s| = \sup\{|x_i - x_{i-1}|, i = 1, 2...n\}$ son module. A tout choix $\mathbf{z} = (\xi_1, \xi_2, \dots \xi_n)$ de points $\xi_i \in [x_{i-1}, x_i]$, associons le compact :

(2)
$$I_{s}(\boldsymbol{z}) = \bigoplus_{i=1}^{n} (x_{i} - x_{i-1}) A(\xi_{i})$$

et désignons par ${\bf J}_{_{\rm S}}$ la famille des ${\bf I}_{_{\rm S}}(\xi)$ pour tous les choix possibles des $\xi_{_{\dot{1}}}.$

a/
$$J_s$$
 est compacte dans l'espace L.C.D. $\mathcal{L}_o(\mathbb{R}^n)$

Comme les $I_s(z)$ sont contenus dans le compact fixe $C(K_0)$, il suffit de montrer que J_s est fermé dans K_0 . Soit donc :

$$\mathbf{\Xi}_{k} = (\xi_{1}(k), \xi_{2}(k), \dots \xi_{n}(k))$$

une suite de choix possible du vecteur \mathbf{z} tels que les $\mathbf{B}_k = \mathbf{I}_s(\mathbf{z}_k)$ convergent vers un compact \mathbf{B} . Comme chacun des $\xi_i(\mathbf{k})$ appartient à

un intervalle compact, on peut trouver une suite partielle k_j telle que les \equiv_{k_j} convergent vers un vecteur $\equiv_o = (\xi_1^o, \, \xi_2^o, \cdots \, \xi_n^o)$ constituant encore un choix possible de \equiv . La continuité de \oplus montre ensuite que les B_{k_j} convergent vers $I_s(\equiv_o)$. On a donc $B = I_s(\equiv_o) \in J_s$ et J_s est bien fermée dans \mathcal{K}_o .

b/ Pour $|s| \le \eta(\epsilon)$, le diamètre de J_s est $\le \epsilon$

Si $|s| \le \eta(\varepsilon)$, pour deux choix \equiv_1 et \equiv_2 du vecteur \equiv_3 les relations (1) entraînent pour chaque i

$$A(\xi_{i}^{1}) \subset A(\xi_{i}^{2}) \oplus B_{\varepsilon}, A(\xi_{i}^{2}) \subset A(\xi_{i}^{1}) \oplus B_{\varepsilon}$$

d'où l'on tire, par exemple:

$$I_{s}(\Xi_{1}) = \bigoplus_{i=1}^{n} (x_{i} - x_{i-1}) A(\xi_{i}^{1}) \subset \bigoplus_{i=1}^{n} (x_{i} - x_{i-1}) (A(\xi_{i}^{2}) \oplus B_{\varepsilon})$$

$$= B_{\varepsilon} \oplus (\bigoplus_{i=1}^{n} (x_{i} - x_{i-1}) A(\xi_{i}^{2})) = I_{s}(\Xi_{2}) \oplus B_{\varepsilon}$$

et la relation réciproque, d'où résulte bien :

$$d(I_s(\Xi_1), I_s(\Xi_2)) \le \varepsilon$$

Considérons maintenant l'ensemble S des subdivisions de [0,1], qui est filtrant pour la relation \vdash ($s_1 \vdash s_2$ si s_1 est plus fine que s_2).

c/ Montrons que la famille filtrante J_{S} , s \in S converge dans $\mathcal{K}(\mathcal{K}_{O})$

Pour tout $s \in S$, et tout choix possible de \equiv , on a $I_s(\equiv) \subset C(K_0)$, donc $J_s \subset V^{(C(K_0))^C}$, et la famille J_s , $s \in S$ est

donc contenue dans le compact fixe $v^{(C(K_0))^C}$ de l'espace $\mathcal{K}(\mathcal{K}_0)$. Il suffit donc de montrer que cette famille vérifie le critère de Cauchy pour la distance de Hausdorff δ dans $\mathcal{K}(\mathcal{K}_0)$.

Soient s et s' \in S deux subdivisions de [0,1] avec s \vdash s', \equiv et \equiv deux choix possibles des vecteurs \equiv associés à s et s'. Pour $|s'| \leq \eta(\epsilon)$ (donc a fortiori aussi $|s| \leq \eta(\epsilon)$), on vérifie comme en b:

$$\mathbf{I}_{\mathbf{S}}(\Xi) \subset \mathbf{I}_{\mathbf{S}'}(\Xi') \oplus \mathbf{B}_{\mathbf{E}}, \ \mathbf{I}_{\mathbf{S}'}(\Xi') \subset \mathbf{I}_{\mathbf{S}}(\Xi) \oplus \mathbf{B}_{\mathbf{E}}$$

donc, dans K_0 :

$$d(I_s(\Xi), I_s,(\Xi')) \le \varepsilon$$

et par suite aussi, dans \mathcal{K} (\mathcal{K}_{0}) :

$$\delta(J_{s}, J_{s}) \leq \varepsilon$$

Soient alors s $_0 \in S$ avec $|s_0| \le \epsilon$, et s et s' deux subdivisions quelconques plus fines que s $_0$. On a :

$$\delta(J_{s}, J_{s'}) \leq \delta(J_{s_{0}}, J_{s}) + \delta(J_{s_{0}}, J_{s'}) \leq 2\varepsilon$$

et la famille filtrante J_s , $s \in S$ vérifie bien le critère de Cauchy. Comme elle est contenue dans un compact fixe de \mathcal{K} (\mathcal{K}_o), elle converge donc vers une limite $J \in \mathcal{K}(\mathcal{K}_o)$.

d/ Cette limite $J \in \mathcal{K}(\mathcal{K}_0)$ est constituée d'un <u>unique élément</u> $I \in \mathcal{K}_0$, que nous noterons :

$$I = \int_{0}^{1} (A(\lambda)) d\lambda$$

Celà résulte aussitôt de b/, puisque le diamètre est une fonction continue pour la topologie myope : le diamètre de J est nul, et on a donc $J=\{I\}$ pour un $I\in\mathcal{K}_{O}$.

e/ A toute subdivision s \in S associons (de manière quelconque) un choix \equiv_s du vecteur \equiv associé. Alors, la famille filtrante $I_s(\equiv_s)$, $s \in$ S converge vers I dans \mathcal{K}_o .

En effet, cette famille est contenue dans le compact fixe $C(K_0)$ donc admet une valeur d'adhérence J dans \mathcal{K}_0 . Mais $I_s(\Xi_s) \in J_s$, et la famille filtrante J_s , s \in S converge vers $J=\{I\}$ dans $\mathcal{K}(\mathcal{K}_0)$. On a donc nécessairement $J\in J$, c'est-à-dire J=I. Par suite, la famille $I_s(\Xi_s)$ converge elle-même vers I.

II - Convexité de l'intégrale R.M.

Ainsi est achevée la construction de l'intégrale de RIEMANN-MINKOWSKI. D'après e/, on peut en particulier écrire :

(3)
$$I = \int_{0}^{1} A(\lambda) d\lambda = \lim_{n \to \infty} \frac{n}{m+1} A(\frac{k}{n})$$

Plus généralement, l'intégrale sur un intervalle [a,b] s'obtient sous la forme :

$$\int_{0}^{1} A(\lambda) d\lambda = \lim_{|s| \to 0} \oplus (x_{i} - x_{i-1}) A(\xi_{i})$$

pour des subdivisions a = $x_0 \le x_1 \le \dots \le x_n$ = b de module|s|, et des choix quelconques des $\xi_i \in (x_i - x_{i-1})$. En particulier, on a la relation d'additivité :

$$\int_{a}^{b} A(\lambda) d\lambda \oplus \int_{b}^{c} A(\lambda) d\lambda = \int_{0}^{c} A(\lambda) d\lambda \qquad (a \le b \le c)$$

De même, si $A(\lambda)$ et $B(\lambda)$ sont deux familles continues, on vérifie sans peine :

(4)
$$\int_{a}^{b} A(\lambda) \oplus B(\lambda) d\lambda = \int_{a}^{b} A(\lambda) d\lambda \oplus \int_{a}^{b} B(\lambda) d\lambda$$

Théorème. L'intégrale de Riemann-Minkowski prend ses valeurs dans $C(\mathcal{K}_0)$. Plus précisément, pour toute famille $A(\lambda)$ continue dans \mathcal{K}_0 , on a:

$$\int_{a}^{b} A(\lambda) d\lambda = \int_{a}^{b} C(A(\lambda)) d\lambda \in C(\mathcal{K}_{0}) \qquad (a \leq b) .$$

Posons d'abord un lemme.

Lemme 2. Si $A(\lambda) = A \in \mathcal{K}_0$ est indépendant de λ , on a :

$$\int_{a}^{b} A(\lambda) d\lambda = (b-a) C(A) \qquad (a \le b)$$

En particulier, pour une famille $B(\lambda)$ continue dans X_0 et $A \in X_0$, on a:

(5)
$$\int_{a}^{b} A \oplus B(\lambda) d\lambda = (b-a) C(A) \oplus \int_{a}^{b} B(\lambda) d\lambda$$

Le premier énoncé est une conséquence immédiate du Lemme 1 e de la relation (3). La relation (5) résulte ensuite de la relation (4).

Soit maintenant $A(\lambda)$ une famille continue dans K_0 , et $C(A(\lambda))$ la famille (continue) constituée des enveloppes connexes des $A(\lambda)$. Il faut montrer que l'intégrale I vérifie :

$$I = \int_{0}^{1} A(\lambda) d\lambda = \int_{0}^{1} C(A(\lambda)) d\lambda$$

(il en résultera aussitôt I \in C(\mathcal{K}_0), puisque C(\mathcal{K}_0) est fermé dans \mathcal{K}_0). Posons, pour n entier > 0, et o < k \leq n :

$$J_{k}(n) = \int_{\frac{k-1}{n}}^{k/n} A(\lambda) d\lambda$$

d'où résulte :

$$I = \bigoplus_{k=1}^{n} J_k(n)$$

Soit $\epsilon > 0$, et $\eta(\epsilon)$ le module de continuité uniforme figurant en (1). Pour n vérifiant : $\frac{1}{n} \geq \eta(\epsilon)$, on a :

$$\lambda \in \left[\frac{k-1}{n}, \frac{k}{n}\right] \Rightarrow A(\lambda) \subset A(\frac{k}{n}) \oplus B_{\epsilon}, A(\frac{k}{n}) \subset A(\lambda) \oplus B_{\epsilon}$$

On vérifie sans peine que l'intégrale de Riemann est croissante pour c. On a donc, pour $\lambda \in [\frac{k-1}{n}, \frac{k}{n}]$, compte tenu du lemme 2 :

$$\begin{cases} J_{k}(n) \subset \frac{1}{n} C(A(\frac{k}{n})) \oplus \frac{1}{n} B_{\epsilon} = \frac{1}{n} (B_{\epsilon} \oplus C(A(\frac{k}{n}))) \\ \frac{1}{n} C(A(\frac{k}{n})) \subset \frac{1}{n} B_{\epsilon} \oplus J_{k}(n) \end{cases}$$

Prenons la somme de Minkowski de ces relations. Il vient:

 $(B_{\epsilon}: boule fermée de centre 0 et de rayon <math>\epsilon)$.

Pour n tendant vers l'infini, on en déduit, d'après (3) :

$$\begin{cases} I \subset B_{\varepsilon} \oplus \int_{0}^{1} C(A(\lambda)) d\lambda \\ \int_{0}^{1} C(A(\lambda)) d\lambda \subset B_{\varepsilon} \oplus I \end{cases}$$

Il suffit alors de faire tendre ϵ vers 0 pour obtenir :

$$I = \int_0^1 C(A(\lambda)) d\lambda$$

Le théorème est démontré.

<u>Proposition 1.</u> Une famille à un paramètre de compacts convexes $A(\lambda) \in C(K_0)$ est continue si et seulement si les images r_{λ} des $A(\lambda)$ dans le cône convexe vérifient :

a/ Sup Sup
$$r_{\lambda}(\omega) < \infty$$
 pour tout intervalle fini $[a,b]$ $\lambda \in [a,b]$ $\omega \in S_n$

b/ Pour chaque $\omega \in S_n$, l'application $\lambda \to r_{\lambda}(\omega)$ est continue.

L'intégrale I = $\int_a^b A(\lambda) \ d\lambda$ admet alors dans R l'image r_I définie par :

(6)
$$r_{I}(\omega) = \int_{a}^{b} r_{\lambda}(\omega) d\lambda$$

La condition a/ est nécessaire, car la famille continue $A(\lambda)$, $\lambda \in [a,b]$ est compacte dans $C(\mathcal{K}_0)$, donc contenue dans un compact fixe. La nécessité de b est évidente. Inversement, si a/ et b/ sont vérifiées, soit λ_n une suite convergeant vers λ_0 . De a/ résulte que les $A(\lambda_n)$ sont contenus dans un compact fixe. Soit alors A une valeur d'adhérence dans \mathcal{K}_0 de la suite $A(\lambda_n)$, et r_A son image dans \mathcal{R} . De b/ résulte $r_A = r_{\lambda_0}$, donc

 $A = A(\lambda_0)$ et la suite $A(\lambda_n)$ converge elle-même vers $A(\lambda_0)$.

Il est alors immédiat que l'image dans ${\bf R}$ de l'intégrale I est donnée par (6).

Remarque 1. Plus généralement, si μ est une mesure à support compact sur la droite réelle, on peut associer à toute famille continue $A(\lambda) \in C(K_{\mathring{O}})$ l'intégrale :

$$I = \int A(\lambda) \ \mu(d\lambda) \ \in C(K_0)$$

définie par son image dans R:

$$r_{I}(\omega) = \int r_{\lambda}(\omega) \mu(d\lambda)$$

(il suffit de prendre une suite de mesure μ_n à supports finis convergeant étroitement vers μ pour s'assurer que r_I est bien dans (R).

Remarque 2. L'intérêt de l'intégrale de Riemann-Minkowski est lié au problème suivant, qui se pose lors de la définition des granulométries : caractériser les familles $B(\lambda)$ à un paramètre $\lambda \geq 0$ dans \mathcal{K}_0 telles que $\lambda \geq \mu$ entraine que $B(\lambda)$ est ouvert selon $B(\mu)$

(7)
$$B(\lambda) = (B(\lambda) \ominus B(\mu) \oplus B(\mu)$$

c'est-à-dire $B(\lambda)$ croissante pour \Rightarrow (A \Rightarrow B si $A_B = A$)

Si $A(\lambda)$ est une famille continue dans ${\mathcal K}_0,$ et $C\in {\mathcal K}_0$ un compact quelconque, la famille :

(8)
$$B(\lambda) = C \oplus \int_{0}^{\lambda} A(\lambda) d\lambda \qquad (\lambda \ge 0)$$

vérifie, pour $\lambda \geq \mu$:

(8')
$$B(\lambda) = B(\mu) \oplus \int_{\mu}^{\lambda} A(\lambda) d\lambda$$

donc, vérifie la condition (7). $B(\lambda)$ n'est pas forcément convexe (à cause de la constante arbitraire $C \in C(\mathcal{S}_{C})$).

Mais cette constante C ne jouant pas un rôle essentiel on peut prendre C = $\{0\}$, et la famille $B(\lambda)$ est alors dans $C(K_0)$. Elle est évidemment continue en λ , d'après la proposition ci-dessus. Elle est même <u>dérivable</u> en λ , comme on le déduit de (6).

En sens inverse, on peut se poser la question suivante : à quelle condition une famille $B(\lambda)$ croissante pour \succcurlyeq dans \mathcal{K}_0 est-elle de la forme (8), et, en particulier, est-elle convexe à une constante près $C \in \mathcal{K}_0$?.

Si B(λ) est de la forme (8), pour $\lambda \geq \mu$, on a, d'après (8) et le théorème :

$$\mathbb{B}_{\lambda} \Theta \overset{\mathbf{Y}}{\mathbb{B}}_{\mu} = \int_{\mu}^{\lambda} \mathbb{C}(\mathbb{A}(\lambda)) d\lambda \in \mathbb{C}(\mathfrak{K}_{0})$$

Il en résulte, d'après ce qui précède, que les <u>dérivées</u> à droite et à gauche :

$$\frac{d^{+}}{d\lambda} B(\lambda) = \lim_{\epsilon \to +0} \frac{1}{\epsilon} (B_{\lambda+\epsilon} \odot B_{\lambda})$$

$$\frac{d^{-}}{d\lambda} B(\lambda) = \lim_{\epsilon \to +0} \frac{1}{\epsilon} (B_{\lambda} \odot B_{\lambda-\epsilon})$$

existent et coı̈ncident. Nous désignerons par $\frac{d}{d\lambda}$ B $_{\lambda}$ leur valeur commune, ici égale à C(A(λ)):

$$\frac{\mathrm{d}}{\mathrm{d}\lambda} \, \, \mathrm{B}_{\lambda} \, = \, \mathrm{C}(\mathrm{A}(\lambda)) \, \in \, \mathrm{C}(\mathcal{S}_{\mathrm{O}})$$

Cette dérivée est de plus continue en λ .

Ces conditions sont évidemment nécessaires pour qu'une famille $B(\lambda)$ possèdant la propriété (7) soit de la forme (8). Il reste à voir qu'elles sont suffisantes : celà découlera immédiatement de la proposition 2 ci-dessous.

III - Mesure sur R à valeur dans C(Ko)

Considérons d'abord les applications positivement linéaires de $\mathcal{C}^+_{\mathcal{K}}$ (R) dans $C_o(\mathcal{K}_o)$ (espace des ovoïdes contenant l'origine) identifié à \mathbf{R} . A toute fonction positive à support compact $\mathbf{f} \in \mathcal{C}^+_{\mathcal{K}}$ (R) est ainsi associé une fonction $\mathbf{r}(\mathbf{f}) \in \mathbf{R}$, et, pour tout ω sur la sphère unité S, le nombre $\mathbf{r}_{\omega}(\mathbf{f})$. A ω fixé, la fonctionnelle $\mathbf{r}_{\omega}(\mathbf{f})$ est positivement linéaire et continue. Il existe donc une mesure positive sur \mathbf{R} , soit $\mathbf{r}_{\omega}(\mathrm{d}\lambda)$ avec :

$$(9) r_{\omega}(f) = \int r_{\omega}(d\lambda) f(\lambda)$$

et cette mesure possède la propriété : $(\omega \to r_{\omega}(f)) \in \mathbb{R}$, \forall $f \in \mathcal{C}^+_{\mathcal{K}}(\mathbb{R})$. En désignant par A(f) l'ovoïde associé à cette application $\omega \to r_{\omega}(f)$, on peut écrire (9) sous la forme :

$$(9') \qquad A(f) = \int A(d\lambda) f(\lambda)$$

et définir ainsi une mesure $A(d\lambda)$ à valeur dans $C_O(\mathcal{K}_O)$: on note que toute application positivement linéaire de $\mathcal{C}_{\mathcal{K}}^+$ (R) dans $C_O(\mathcal{K}_O)$ est nécessairement de cette forme.

Soit maintenant $f \to A(f)$ une application positivement linéaire de $\mathcal{C}_{\mathfrak{K}}^+$ (R) dans $C(\mathfrak{K}_0)$: l'ovoïde A(f) ne contient plus nécessairement l'origine. Parmi les translatés de A(f) qui contiennent l'origine, soit $A_0(f)$ celui dont l'image dans R minimise la norme dans $L^2(S)$. On vérifie sans peine que l'application $A \to A_0$ est continue dans $C(\mathfrak{K}_0)$. Ainsi A(f) est de la forme :

$$A(f) = A_{O}(f) \oplus \{h(f)\}$$

avec $A_o(f) = \int A_o(d\lambda) f(\lambda)$ pour une mesure $A_o(d\lambda)$ à valeurs dans $C_o(K_o)$. Le point h(f) représente la translation $A_o(f) \to A(f)$. On vérifie sans peine que h(f) est une fonction positivement linéaire et continue de f: il existe donc une mesure (vectorielle) $h = (h_1, \dots h_n)$ à valeurs dans \mathbb{R}^n , telle que : $h(f) = \int h(d\lambda) f(\lambda)$.

Finalement, la forme générale de la fonctionnelle A(f) est :

(9")
$$A(f) = \int A_0(d\lambda) f(\lambda) \oplus \{ \int h(d\lambda) f(\lambda) \}$$

ce que l'on peut écrire symboliquement :

$$A(f) = \int A(d\lambda) \ f(\lambda) \ , \quad A(d\lambda) = A_0(d\lambda) \oplus \{h(d\lambda)\}$$

Passons maintenant à la caractérisation des familles $B(\lambda)$ vérifiant la propriété (7).

Proposition 2. Soit $B(\lambda)$, $\lambda \ge 0$ une famille à un paramètre dans $C(\mathcal{K}_0)$. $B(\lambda)$ est ouvert selon $B(\mu)$ pour tous λ,μ vérifiant $\lambda \ge \mu \ge 0$ si et seulement si on a $B(\lambda) = B(0) \oplus \int_{0}^{+\lambda} A(dx)$ à une translation près pour une mesure A(dx) à valeurs dans $C_0(\mathcal{K}_0)$.

Il est clair, tout d'abord, que la propriété de l'énoncé est invariante par translation. On peut donc supposer $0 \in B(\lambda)$. L'additivité de l'intégrale montre qu'une famille de la forme :

(10)
$$B(\lambda) = B(0) \oplus \int_{+0}^{+\lambda} A(dx)$$

vérifie la propriété. Inversement, soit $B(\lambda)$ une famille vérifiant cette propriété dans $C_0(\mathcal{H}_0)$, et $r(\lambda)$ l'image dans R de $B(\lambda)$.

Pour $\lambda \geq \mu$, $r(\lambda) - r(\mu)$ est dans $\mathcal R$, donc, en particulier $r(\lambda) \geq r(\mu)$. Pour tout $\omega \in S$, la fonction numérique $r(\lambda, \omega)$ est non décroissante, et il existe une mesure $r_{\omega}(\mathrm{d}\lambda)$ telle que :

(10')
$$r(\lambda, \omega) = r(0, \omega) + \int_{+0}^{+\lambda} r_{\omega}(d\lambda)$$

De plus, pour tout intervalle I, la fonction $\omega \to r_\omega(I)$ est dans \Re . On en déduit que pour $f \in \mathcal{C}_{\mathcal{K}}^+(\mathbb{R})$, la fonction $\omega \to r_\omega(f)$ est encore dans \Re , de sorte que $r_\omega(d\lambda)$ est l'image d'une mesure $A(d\lambda)$ à valeurs dans $C_o(\mathcal{H}_o)$ d'où résulte la représentation (10).

Corollaire 1 - Pour qu'une famille $B(\lambda)$ possédant dans $C_0(\frac{1}{N})$ la propriété ci-dessus soit à une constante près l'intégrale de Riemann-Minkowski d'une famille $A(\lambda)$ continue, il faut et il suffit qu'elle admette en tout λ une dérivée continue, nécessairement égale à $A(\lambda)$.

Corollaire 2 - Dans \mathcal{K}_{0} , tout demi-groupe B_{λ} à un paramètre $\lambda \geq 0$, tel que $0 \in B_{\lambda}$ pour tout λ est constitué des homothétiques λ B pour un $B \in C_{0}(\underline{\mathcal{K}}_{0})$.

En effet, d'après le théorème sur les compacts indéfiniment divisibles, les B_λ sont convexes. On a donc $B_\lambda\in C_0(\mathcal{S}_0')$.

L'image r_{λ} de B_{λ} dans \Re vérifie $r_{\lambda+\mu}=r_{\lambda}+r_{\mu}$: s'agissant de fonction \geq 0, r_{λ} est nécessairement de la forme $r_{\lambda}=\lambda$ r pour un $r\in \Re$.

Remarque: On note qu'il n'est pas nécessaire de supposer la continuité du demi-groupe ; ou, si l'on préfère, que tout demi-groupe dans $C_O(\mathcal{K}_O)$ est continu. Mais le résultat ne s'étend pas à $C(\mathcal{K}_O)$. On sait, en effet, qu'il existe des fonctions $h(\lambda): \mathbb{R}_+ \to \mathbb{R}^n$ (non mesurables) vérifiant $h(\lambda + \mu) = h(\lambda) + h(\mu)$ sans être de la forme λ h pour un $h \in \mathbb{R}^n$: pour $B \in C(\mathcal{K}_O)$, la famille:

(11)
$$B(\lambda) = \lambda B \oplus \{h(\lambda)\}\$$

Corollaire 3 - Tout demi-groupe non continu dans $C(\mathcal{K}_0)$ est de la forme (11). Autrement dit, tout demi-groupe dans $C(\mathcal{K}_0)$ est de la forme λ B, B \in $C(\mathcal{K})$ à une translation près.

En effet, soit B_{λ} un tel demi-groupe, et, parmi les translatés de B_{λ} qui contiennent 0, soit C_{λ} l'élément dont l'image dans \Re minimise la norme dans $L^2(S)$. On a $C_{\lambda} = B_{\lambda} \oplus \{h'_{\lambda}\}$, d'où

$$\mathbf{C}_{\lambda+\mu} \ = \ \mathbf{B}_{\lambda+\mu} \ \oplus \ \{\mathbf{h}^{\, \prime}_{\, \lambda+\mu}\} \ = \ \mathbf{C}_{\lambda} \ \oplus \ \mathbf{C}_{\mu} \ \oplus \ \{\mathbf{h}^{\, \prime}_{\lambda+\mu} - \mathbf{h}^{\, \prime}_{\lambda} \ - \ \mathbf{h}^{\, \prime}_{\mu}\}$$

Mais les éléments de norme minimale dans \Re forment un cône convexe dans $L^2(S)$, de sorte que $C_\lambda \oplus C_\mu$ est lui-même de norme minimale. On a donc $C_{\lambda+\mu} = C_\lambda \oplus C_\mu$ et h' $_{\lambda+\mu} = h'_{\lambda} + h'_{\mu}$. Comme C_λ est dans $C_o(\mathcal{H}_o)$, le corollaire 2 donne $C_\lambda = \lambda$ C pour un $C \in C_o(\mathcal{H}_o)$ et, avec $h_\lambda = -h'_\lambda$, d'où :

$$B_{\lambda} = \lambda \ C \oplus \{h_{\lambda}\}$$

avec une translation h_{λ} vérifiant $h(\lambda + \mu) = h(\lambda) + h(\mu)$

Nous avons ainsi caractérisé les familles $B(\lambda)$ vérifiant (7) dans $C(K_0)$.

Nous allons voir, maintenant, que toute famille $B(\lambda)$ dans \mathcal{N}_0 vérifiant cette propriété admet une enveloppe convexe $C(B(\lambda))$ vérifiant encore (7).

Lemme 3 - Pour A, $B \in \mathcal{K}_{O}$, on a $C(A \ominus B) \subset C(A) \ominus C(B)$. Si A est ouvert selon B $(A_B = A)$, on a:

(12)
$$C(A \ominus B) = C(A) \ominus C(B), A_B = (C(A) \ominus C(B)) \oplus C(B)$$

En effet, $(A \ominus B) \oplus B \subset A$ donne $C(A \ominus B) \oplus C(B) \subset C(A)$, puis $C(A \ominus B) \subset C(A) \ominus C(B)$. Ces inclusions deviennent des égalités si $A_B = A$.

Proposition 3 - Si une famille à un paramètre B_{λ} dans \mathcal{K}_{0} est croissante pour le préordre \Rightarrow (A \Rightarrow B si A_{B} = B), les enveloppes convexes $C(B_{\lambda})$ constituent une famille croissante pour \Rightarrow , et admettent à une translation près une représentation de la forme :

$$C(B_{\lambda}) = C_{0} \oplus \int_{+0}^{+\lambda} A(dx) \qquad (\lambda \ge 0)$$

pour une mesure A à valeur dans $C_o(\mathcal{K}_o)$.

En effet, d'après le lemme, $(B_{\lambda} \ominus B_{\mu}) \oplus B_{\mu} = B_{\lambda}$ entraine

$$\left(C(B_{\lambda}) \ominus C(B_{\mu}) \right) \oplus C(B_{\mu}) = C(B_{\lambda})$$

et il suffit d'appliquer la proposition 2.

Corollaire - Si une famille B_{λ} croissante pour $\not >$ dans $\not < C$ o vérifiant $C \in B_{\lambda}$ admet en tout $C \ge C$ une dérivée à droite égale à $\{O\}$, elle se réduit à un compact C indépendant de C.

La propriété est vraie dans $C_o(\mathcal{K}_o)$, d'après la proposition 2, corollaire 1. Dans \mathcal{K}_o , d'après le lemme 3, on a pour $\lambda \geq \mu$:

$$\mathbf{B}_{\lambda} \, \Theta \, \, \overset{\mathsf{v}}{\mathbf{B}}_{\mu} \, \subset \, \mathbf{C}(\mathbf{B}_{\lambda}) \, \, \Theta \, \, \mathbf{C}(\overset{\mathsf{v}}{\mathbf{B}}_{\mu})$$

Mais(le passage à l'enveloppe convexe étant continu) $C(B_{\lambda})$ admet la dérivée à droite $C\{0\} = \{0\}$, d'où $C(B_{\lambda}) = C^{\text{ste}}$ d'après la proposition 3, et $C(B_{\lambda}) \ominus C(B_{\mu}) = \{0\}$. On a donc $B_{\lambda} \ominus B_{\mu} = \{0\}$, et s

$$\mathbf{B}_{\lambda} = (\mathbf{B}_{\lambda} \ominus \mathbf{B}_{\mu}) \oplus \mathbf{B}_{\mu} = \mathbf{B}_{\mu} = \mathbf{B}_{0}$$

Il resterait à étendre la proposition 2 et son corollaire 1 à l'space \mathcal{H}_0 lui-même. Si une famille B_λ dans \mathcal{H}_0 admet une dérivée continue $A(\lambda)$, on vérifie assez facilement l'inclusion $B_\lambda \subset B_0 \oplus \int_0^\lambda A(\lambda) \ d\lambda$. Pour montrer que l'on a l'égalité, il faudrait établir que les $\frac{B_\lambda + h}{h} \stackrel{\bigcirc b}{\longrightarrow} \lambda$ convergent uniformément vers $A(\lambda)$ sur tout intervalle borné. Si cette propriété est vraie, toute famille B_λ à dérivée continue sera l'intégrale R.M. de sa dérivée, et sera donc convexe à un compact constant près. Je laisserai provisoirement cette question de côté.

IV - L'intégrale de Stieltjes - Minkowski

Pour montrer qu'il existe dans \mathcal{K}_o des familles B_λ croissantes ne se laissant pas ramener à des familles convexes, nous allons en construire effectivement à partir d'une

intégrale S.M.

Soit $A(\lambda)$ une famille continue à 1 paramètre et $F(\lambda)$ une fonction non décroissante de λ . En remplaçant les x_i-x_{i-1} , qui figurent dans la construction de l'intégrale de Riemann, par les $F(x_i)-F(x_{i-1})$, on s'aperçoit sans peine que les raisonnements faits ci-dessus restent valables, et l'on obtient ainsi l'intégrale de Stieltjes-Minkowski :

(12)
$$\int_{a}^{b} A(\lambda) dF(\lambda) = \lim_{|s| \to 0} \oplus (F(x_{i}) - F(x_{i-1})) A(\xi_{i})$$

Mais le lemme 2 ne subsiste plus, en général, et le Théorème n'est plus valable : l'intégrale de Stieltjes-Minkowski ne prend plus ses valeurs dans $C(\mathcal{S}_{O})$.

La famille
$$B(\lambda) = \int_{+0}^{+\lambda} A(\lambda) dF(\lambda)$$
 est croissante pour \succcurlyeq

$$B(\lambda) = B(\mu) \oplus \int_{+\mu}^{+\lambda} A(x) dF(x) \qquad (\lambda \ge \mu)$$

(c'est-à-dire B(λ) ouvert selon B(μ)), et <u>les B(λ) cette fois ne sont plus nécessairement convexes</u>.

Par l'intermédiaire de l'intégrale de Stieltjes, on peut associer à toute famille $A(\lambda)$ continue à support compact (c'est-àdire $A(\lambda) = \{0\}$ dès que λ n'appartient pas à un intervalle [a,b] donné) son intégrale selon une mesure positive μ donnée : on

prendra
$$F(x) = \int_{a}^{x} \mu(dy)$$
 pour $x \ge a$, et on posera :

(12')
$$\int A(\lambda) \mu(d\lambda) = \int_{-a}^{+b} A(\lambda) F(d\lambda)$$

Mais des anomalies vont apparaître. Par exemple, si une suite μ_n de mesures converge vaguement vers une mesure μ , les intégrales $\int A(\lambda)\mu_n(d\lambda)$ ne convergeront pas obligatoirement vers $\int A(\lambda)\ \mu(d\lambda)$.

Pour le voir, supposons que les μ_n soient des régularisées de leur limite vague μ_n et admettent des densités $f_n(\lambda)$ continues. On montre alors :

$$I_n = \int A(\lambda) \mu_n(d\lambda) = \int f_n(\lambda) A(\lambda) d\lambda$$

(la seconde intégrale étant prise au sens de Riemann). Comme la famille $f_n(\lambda)$ $A(\lambda)$ est continue, le théorème montre que I_n est convexe :

$$I_n = \int f_n(\lambda) C(A(\lambda)) d\lambda \in C(K_0)$$

L'image de I dans \Re est alors l'intégrale de l'image r_{λ} de $C(A(\lambda))$:

$$r_{I_n}(\omega) = \int f_n(\lambda) r_{\lambda}(\omega) d\lambda$$

et la convergence vague de $f_n(\lambda)$ d λ vers μ montre que I_n admet une limite J d'image :

$$r_{J}(\omega) = \int r_{\lambda}(\omega) \, \mu(d\lambda) \in \mathbb{R}$$

Autrement dit:

$$J = \int C(A(\lambda)) \mu(d\lambda) \in C(K_0)$$

La continuité de l'application $A \rightarrow C(A)$ permet ensuite de vérifier :

$$J = C \left(\int A(\lambda) \ \mu(d\lambda) \right)$$

Il suit de là que c'est sur $C(\mathcal{N}_0)$, plutôt que sur \mathcal{N}_0 lui-même, que la théorie générale de l'intégration conduira à des résultats intéressants.

Par contre, la <u>fonctionnelle positivement linéaire définie</u> par :

(13)
$$I(A) = \int A(\lambda) \ \mu(d\lambda)$$

est continue dans le sens précis suivant : Si une suite $A_n(\lambda)$ de familles continues à 1 paramètre vérifie les deux conditions suivantes :

- les $A_n(\lambda)$ ont leurs supports dans un intervalle fixe [a,b], c'est-à-dire $A_n(\lambda)$ = {0} pour tout n dès que $\lambda \not\in$ [a,b]
- les $A_n(\lambda)$ convergent vers A dans \mathcal{K}_0 uniformément en λ alors, on a $I(A_n) \to I(A)$ dans \mathcal{K}_0 , comme on le vérifie sans difficulté à partir des définitions (12) et (12').

On voit ici se poser deux problèmes relatifs à K_0 :

1/ - Comment caractériser la topologie (plus forte que la topologie vague) la moins fine sur l'espace \mathcal{H}^+ des mesures positives sur la droite réelle telle que l'application :

$$\mu \rightarrow \int A(\lambda) \ \mu(d\lambda)$$

de M dans \mathcal{K}_0 soit continue pour toute famille $A(\lambda) \in \mathcal{K}_0$ continue à support compact ?

2/ - L'ensemble des fonctionnelles I(A) positivement linéaires (au sens de Minkowski et continues dans le sens ci-dessus coïncide-t-il avec l'ensemble des fonctionnelles de la forme (10) ?

Nous n'étudierons pas ici ces questions. Ayant établi l'existence effective des familles B_{λ} croissantes non convexes dans \mathcal{K}_{0} , montrons que l'on peut associer à chacune d'elle une mesure à valeur dans \mathcal{K}_{0} . A toute fonction positive continue à support compact dans \mathcal{R} , soit $f \in \mathcal{C}^{+}_{\mathcal{K}}(\mathcal{R})$, associons l'intégrale S.M.:

(14)
$$I(f) = \int f(x) dB(x) = \lim_{|s| \to 0} f(\xi_i) (B_{x_i} \Theta B_{x_{i-1}})$$

dont on établit l'existence en reprenant les raisonnements utilisés pour construire l'intégrale R.M. On montre également sans difficulté que l'intégrale I(f) est une <u>fonctionnelle positivement linéaire et continue</u> sur $\mathcal{C}_{\mathcal{K}}^+$ (R) (si les f_n convergent uniformément vers f en conservant leurs supports dans un compact fixe, on a $I(f_n) \to I(f)$ dans \mathcal{K}_0).

On note de plus I(o) = {0}, d'où résulte aussitôt que I(f) est croissante pour l'inclusion \subset (f \geq g \Rightarrow I(f) \supset I(g). Si l'on désigne par B_{λ}^{+} la régularisée à droite $(B_{\lambda}^{+} = \lim_{\lambda \to +0} B_{\lambda})$ la famille B_{λ}^{+} se représente comme intégrale de cette mesure B:

$$B_{\lambda}^{+} = B_{0} \oplus \int_{+0}^{+\lambda} dB(x)$$

Inversement, on peut se demander si toute fonctionnelle positivement linéaire, continue et croissante pour c appliquant

 $\mathcal{C}_{\mathfrak{K}}^{+}(\mathbb{R})$ dans \mathcal{K}_{0} admet une représentation de la forme (14) pour une famille B_{λ} croissante pour $\boldsymbol{\zeta}$. S'il en est ainsi, nous aurons identifié ces fonctionnelles avec les <u>mesures dB à valeur dans \mathcal{K}_{0} , et, en particulier, caractérisé complètement les familles B_{λ} (ou plutôt leurs régularisées B_{λ}^{+}). Ceci va nous conduire à construire la théorie de l'intégrale à valeur dans \mathcal{K}_{0} .</u>