Fontaine bleau

N-403

NOTE GEOSTATISTIQUE Nº 128

PARAMETRAGE DE CONTOURS OPTIMAUX

G. MATHERON

Février 1975

NOTE GEOSTATISTIQUE Nº 128

PARAMETRAGE DE CONTOURS OPTIMAUX

Table des Matières

0	_	INTRODUCTION.	1
1		LA CLASSE BET LE CONE CONVEXE &.	4
2	-	L'OPTIMISATION DE Q - XV.	10
		Théorème 2	13
		Commentaire :	15
		Positivité de l'opérateur q → Λ	18
3	***	GENERALISATION.	19
		Paramètrage non linéaire	20
4		LE CAS FINI.	22
		a/ Les relations tonnage-teneur	22
		b/ Le cone convexe	25
		$c/$ La fonction Λ	26
		d/ le théorème de projection	29
5		REALISATION PRATIQUE.	30
		5-1 - Théorème de Convergence et Conjecture	3 0
		5-2 - Cas d'un cone l'à base polygonale	34
		5-3 - Conditions de réalisation pratique	37
		5-4 - La méthode du bouclier de David	38
		5-5 - Variation des conditions imposées	41
6		POST SCRIPTUM.	43
7		RECHERCHE D'AUTRES ALGORITHMES.	49
		a/ Algorithme de l'ordre total	49
		b/ Utilisation de cones linéaires	52

NOTE GEOSTATISTIQUE Nº 128

PARAMETRAGE DE CONTOURS OPTIMAUX

O - INTRODUCTION

Cette note est inspirée par le problème, bien classique, de la recherche d'un contour optimal pour une exploitation à ciel ouvert. Il m'a semblé intéressant d'en donner une formulation paramétrique, permettant la construction des relations tommage-teneur. Au lieu de chercher, séparément, pour chaque valeur λ du paramètre, le contour optimal B_{λ} correspondant, on cherche ici à déterminer d'un seul coup une fonction $\Lambda(x)$ telle que, pour chaque λ , le contour optimal B_{λ} soit l'ensemble $\{x:\Lambda(x)\geq\lambda\}$. Cette fonction Λ est, en fait, la projection de la teneur sur un certain cône convexe $\mathcal G$ de fonctions (d'où l'existence et l'unicité de Λ).

Les éléments du problème sont les suivants :

a/ Le gisement réel (dans \mathbb{R}^3) est généralement présenté sous forme discrétisée : il est découpé en blocs parallèlépipèdiques, définis chacun par leur centre $x \in E$, où E est donc un ensemble fini (l'ensemble des centres des blocs).

A chaque $x \in E$ sont affectées deux grandeurs (supposées connues): le volume V(x) du bloc centré en x et la teneur q(x) de ce bloc, de sorte que la quantité de substance utile contenue dans ce bloc est $Q(x) = q(x) \ V(x)$. Pour chaque valeur du paramètre $\lambda \ge 0$, la valeur attribuée au bloc de centre x est $\mu_{\lambda}(x) = Q(x) - \lambda V(x)$.

Dans une formulation un peu plus générale, on supposera que la

valeur du bloc centré en x est $\mu(x; \lambda, \theta...)$ avec une fonction μ donnée dépendant (de manière non nécessairement linéaire) de plusieurs paramètres λ, θ ...

Par exemple, si la fonction de transfert $F_x(t) = \int_0^t f(x,\tau)d\tau$ du bloc x est connue, on prendra :

$$\mu(x; \lambda, \theta) = \int_{\theta}^{\infty} (t-\theta) f(x,t)dt - \lambda V(x)$$
$$= \int_{\theta}^{\infty} [1-F_{x}(t)]dt - \lambda V(x)$$

Ici, (à un facteur près) λ et θ représentent, respectivement, les frais d'extraction et de traitement d'une tonne de minerai.

En fait, il n'y a pas lieu de se restreindre au cas où l'ensemble E est fini. Dans ce qui suit, <u>E sera un ensemble quelconque</u>, fini ou non, <u>muni d'une σ -algèbre \mathcal{Q} </u>. Sur (E,\mathcal{Q}) on se donnera, suivant les cas, diverses <u>mesures bornées</u>:

- Une mesure positive V(dx) représentant le volume.
- Une mesure positive Q(dx) représentant la guantité de substance utile. Nous supposerons généralement que Q est absolument continue relativement à V, autrement dit qu'il existe une fonction $x \to t(x)$ positive appelée teneur telle que Q(dx) = t(x) V(dx).
- Une mesure (non positive en général) μ représentant la valeur et dépendant d'un ou plusieurs paramètres λ , θ ... Par exemple, dans le cas le plus simple :

(0-1)
$$\mu_{\lambda}(dx) = (t(x) - \lambda) V(dx)$$

et dans le cas d'une fonction de transfert :

(0-2)
$$\mu(\lambda,\theta; dx) = \left[\int_{\theta}^{\infty} [1-F_{x}(t)]dt - \lambda\right] V(dx)$$

En général, on supposera (ce qui est le cas pour les deux exemples précédents) que pour tout $A \in \mathcal{C}$ la fonction $\mu(\lambda,\theta;A)$ est continue en (λ,θ) .

b/ Les contours autorisés.

Dans le cas d'une carrière, à chaque $x \in E$ correspond un cone $\Gamma(x)$ de sommet x et l'on s'impose la contrainte suivante : si l'on extrait x, on doit aussi extraire tout $y \in \Gamma(x)$. Il s'agit d'une relation de <u>préordre</u>, car si l'extraction de x entraine celle de y et si l'extraction de y entraine celle de z, alors celle de x entraine celle de z. Autrement dit :

(0-3)
$$y \in \Gamma(x) \Rightarrow \Gamma(y) \subset \Gamma(x) ; x \in \Gamma(x)$$

On interprètera $y \in \Gamma(x)$ par : y = st un majorant de x, ou est au-dessus de x dans le préordre Γ .

Dans les problèmes usuels, où $\Gamma(x)$ est un cone convexe de sommet x, la relation $y \in \Gamma(x)$ est même un ordre (partiel) et pas seulement un préordre (car $y \in \Gamma(x)$ et $x \in \Gamma(y)$ entrainent alors x = y), mais cette particularité ne sera pas utilisée dans ce qui suit, où Γ peut être un préordre quelconque.

Dans ces conditions, un B \subset E correspond à un projet de carrière possible si pour tout $x \in B$ on a $\Gamma(x) \subset B$, autrement dit si B contient les majorants de chacun de ses points.

Si E est fini, il n'y a pas lieu de s'imposer d'autres contraintes.

Dans le cas général, E sera un ensemble fini ou non muni du préordre défini par une application Γ de E dans $\mathscr{P}(E)$ vérifiant (0-3). Il n'est pas nécessaire de supposer $\Gamma(x) \in \mathcal{O}$ pour tout x (bien que cette relation soit vérifiée dans les applications envisageables). Mais il faut alors ne retenir parmi les ensembles B stables par Γ que ceux qui sont mesurables. Autrement dit, la classe $\mathscr{P}(E)$ des ensembles admissibles est caractérisée par :

(0-4)
$$B \in \mathcal{B} \Leftrightarrow B \in \mathcal{O} \subset \mathcal{A}$$
 $B = \bigcup \{\Gamma(x), x \in B\}$

Ceci implique que ϕ et E appartiennent à ${\mathcal B}$.

c/ Le problème.

Etant donnée une mesure (non positive) μ sur (E, α), représentant la "valeur", et posant :

$$\gamma_{\mu} = \sup_{B \in \mathcal{B}} \mu(B)$$

le problème est d'examiner si ce $\sup_{\mu} \gamma_{\mu}$ est atteint sur la classe \mathcal{B} et, dans l'affirmative, de caractériser la classe des $B \in \mathcal{B}$ réalisant ce maximum. Plus généralement, si μ dépend d'un ou plusieurs paramètres $\lambda, \theta \ldots$, il s'agira de trouver une représentation paramétrique commode des ensembles optimaux correspondants.

1 - LA CLASSE B ET LE CONE CONVEXE 9.

Caractérisons la classe \mathcal{B} ainsi définie par les relations (0-3) et (0-4). Le résultat essentiel est le suivant :

La classe B est stable pour la réunion et l'intersection dénombrables. Soit B_i , $i \in I$ une famille dans \mathcal{B} . Si $x \in \bigcap B_i$ (resp. $\bigcup B_i$) on a $\Gamma(x) \subset B_i$ pour tout $i \in I$ (resp. pour un $i \in I$). Donc l'intersection (la réunion) B de cette famille vérifie $\Gamma(B) \subset B$. Si de plus I est dénombrable, on a aussi $B \in \mathcal{A}$, donc $B \in \mathcal{B}$.

Inversement, soit $\mathcal{B}\subset\mathcal{O}$ une classe d'ensembles mesurables stable pour la réunion et l'intersection dénombrables. Cela implique déjà ϕ et E \in \mathcal{B} , de sorte que \mathcal{B} n'est pas vide. Pour tout x \in E, posons :

$$\Gamma(x) = \bigcap \{B : B \in \mathcal{B}, x \in B\}$$

L'application $x \to \Gamma(x)$ vérifie (0-3). Car, si $y \in \Gamma(x)$, tout $B \in \mathcal{B}$ contenant x contient aussi y et :

$$\Gamma(y) = \bigcap \{B \in \mathcal{B} , y \in B\} \subset \bigcap \{B \in \mathcal{B} , x \in B\} = \Gamma(x)$$

D'autre part, pour tout $B \in \mathcal{B}$ en a, d'après la définition, $\Gamma(x) \subset B$, donc $\Gamma(B) \subset B$. Toutefois, la réciproque $(B \in \mathcal{A} \text{ et } \Gamma(B) \subset B \text{ implique } B \in \mathcal{B})$ n'a pas de raison d'être vraie en général. Il faut (et il suffit) pour que cette réciproque soit vraie que \mathcal{B} vérifie de plus : pour toute famille B_i , $i \in I$ non dénombrable dans \mathcal{B} , $\bigcap B_i$ (resp. $\bigcup B_i$) $\in \mathcal{A}$ entraine $\bigcap B_i$ (resp. $\bigcup B_i$) $\in \mathcal{B}$. Ainsi :

Th. 1 - Une famille B ⊂ Ol admet la représentation (O-4) pour un préordre Γ sur E si et seulement si pour toute famille B_i, i € I dénombrable ou non dans B:

Passons maintenant au cône convexe 9.

Etant donnée une famille $\mathcal{B} \subset \mathcal{Q}$ stable pour l'union et l'intersection dénombrables, nous désignerons par \mathcal{F} l'ensemble des fonctions mesurables sur (E,\mathcal{Q}) telles que $\{f \geq \lambda\} \in \mathcal{B}$ pour tout réel λ :

De $\{f > \lambda\} = \bigcup_{n=1}^{\infty} \{f \ge \lambda + \frac{1}{n}\}$ résulte aussitôt que les ensembles $\{f > \lambda\}$ appartiennent aussi à \mathcal{B} .

Notons d'abord que \mathscr{G} contient les constantes positives ou non ; que f, g $\in \mathscr{G}$ \Rightarrow Sup (f,g) et Inf (f,g) $\in \mathscr{G}$, autrement dit que \mathscr{G} est réticulé ; et que \mathscr{G} est stable pour les limites monotones séquentielles \uparrow et \downarrow .

Les combinaisons linéaires finies à coefficients positifs :

$$f = \sum_{k=1}^{n} C_i 1_{B_i}, C_i \ge 0, B_i \in \mathcal{C}$$

d'indicatrices d'ensembles de $\mathcal B$ sont dans $\mathcal F$. En effet, si f est de cette forme, $\{f \geq \lambda\}$ est la réunion des $B_i \cap \cdots \cap B_i$ tels que $C_{i_1} + \cdots + C_{i_p} \geq \lambda$, donc est dans $\mathcal B$.

Inversement, tout $f \in \mathcal{S}$ est limite monotone de telles combinaisons linéaires finies. En effet, \mathcal{S} étant réticulé, f_+ et f_- et f_- dès que $f \in \mathcal{S}$, et il suffit donc d'établir la propriété pour $f \in \mathcal{S}$, $f \ge 0$. Posons

$$\begin{cases} f_n = \sum_{k=0}^{2^{2n}-1} \frac{k}{2^n} & 1_{\frac{k}{2^n} \le f < \frac{k+1}{2^n}} + 2^n & 1_{f \ge 2^n} \\ = \sum_{k=1}^{2^{2n}} \frac{1}{2^n} & 1_{f \ge \frac{k}{2^n}} \end{cases}$$

On a donc $f_n \in \mathcal{B}$, comme combinaison linéaire finie à coefficients ≥ 0 d'indicatrices d'ensembles de \mathcal{B} , et $f_n \uparrow f$. Il en résulte en particulier que \mathcal{F} est un cône convexe. En résumé :

 \mathcal{G} est le cône convexe stable pour les continuités monotones séquentielles \uparrow et \downarrow engendré par les constantes (positives ou non) et les indicatrices des ensembles de \mathcal{G} .

En particulier, \mathcal{G} est <u>dénombrablement réticulé</u> (i.e.: pour toute suite $\{f_n\}$ dans \mathcal{G} , Sup f_n et Inf $f_n \in \mathcal{G}$) et <u>stable pour la convergence ponctuelle</u> ($\{f_n\} \subset \mathcal{G}$ et $\lim f_n(x) = f(x)$ pour tout $x \in E$ entraine $f \in \mathcal{G}$).

Dans la suite, nous munirons (E, \mathcal{O}) d'une mesure $V \ge 0$ et nous désignerons encore par \mathcal{G} la famille des classes de V-équivalences des $f \in \mathcal{G}$. Les propriétés précédentes restent alors vraies au sens V-presque partout.

Inversement, d'ailleurs :

Si \mathcal{G} est un cône convexe de fonctions mesurables, contenant les constantes, réticulé et stable pour les convergences monotones séquentielles \uparrow et \downarrow , il existe une classe $\mathcal{B} \subset \mathcal{A}$ stable pour l'union et l'intersection dénombrables telle que :

$$(1-3) \qquad \text{if } \mathcal{G} \implies \{\text{f} \geq \lambda\} \in \mathcal{G} \qquad \forall \lambda \in \mathbb{R}$$

Pour le voir, on note que pour tout f & & on a :

 $f_{+} = f \lor 0 \in \mathcal{G}$, puis $f_{+} \land a \in \mathcal{G}$ et

 $1_{f>0} = \lim_{\alpha \downarrow 0} 1_{f>0} \in \mathcal{G}$. D'où $1_{f \ge \lambda} \in \mathcal{G}$, $\forall \lambda \in \mathbb{R}$

On prend alors pour ${\cal B}$ la classe des $\{f \geq \lambda\}_{,} f \in {\cal G}$. Pour toute fonction mesurable g, la suite

$$g_n = \sum_{k=1}^{2^{2n}} \frac{1}{2^n} \quad 1_{g \ge \frac{k}{2^n}}$$

vérifie $g_n \uparrow g$, ce qui justifie l'énoncé.

Si la <u>famille B est définie par un préordre Γ comme dans le</u>
Th. 1, <u>le cone convexe G est constitué des fonctions f mesurables croissantes pour le préordre Γ</u>, i.e. vérifiant:

$$(1-4) y \in \Gamma(x) \Rightarrow f(y) \geq f(x)$$

En effet, soit f une fonction mesurable. Posons $B_{\lambda} = \{f \geq \lambda\} \in \mathcal{I}$ pour tout réel λ . Mais $(B_{\lambda} \text{ étant dans } \mathcal{O})$ d'après la définition de \mathcal{G} on a $B_{\lambda} \in \mathcal{B}$ si et seulement si $x \in B_{\lambda}$ et $y \in \Gamma(x) \Rightarrow y \in B_{\lambda}$. Mais ceci veut dire : $f(x) \geq \lambda$ et $y \in \Gamma(x) \Rightarrow f(y) \geq \lambda$. Cette condition est donc vérifiée si et seulement si f est croissante pour Γ .

REMARQUE - A toute fonction f mesurable, nous pouvons associer les familles d'ensembles mesurables:

$$A_{\lambda}^{-} = \{x : f(x) > \lambda\}$$
, $A_{\lambda}^{+} = \{x : f(x) \ge \lambda\}$

(définis éventuellement presque partout seulement si l'on travaille sur des classes de V-équivalence de fonctions), λ parcourant la droite achevée $[-\infty, +\infty]$. Ce sont des familles décroissantes en λ vérifiant $A_{\lambda}^{-} \subset A_{\lambda}^{+}$ et $A_{\lambda}^{+} \subset A_{\lambda}^{-}$, pour $\lambda > \lambda'$. Plus précisément :

Dans ces conditions, en tout x ∈ E, on a

(1-5)
$$f(x) = \sup \{\lambda : x \in A_{\lambda}^{+}\}\$$

En effet, d'après la définition de A_{λ}^{+} , $x \in A_{\lambda}^{+}$ équivaut à $f(x) \geq \lambda$, donc Sup $\{\lambda : x \in A_{\lambda}^{+}\} \leq f(x)$. Mais $x \in A_{f(x)}^{+}$ et par suite Sup $\{\lambda : x \in A_{\lambda}^{+}\} \geq f(x)$, d'où (1-5).

La réciproque est vraie, autrement dit :

Une famille A^+_λ d'ensembles mesurables est associée à une fonction mesurable f par les formules réciproques :

$$A_{\lambda}^{+} = \{x : f(x) \ge \lambda\}$$

$$f(x) = \sup \{\lambda : x \in A_{\lambda}^{+}\}$$

si et seulement si la famille A_{λ}^{+} est décroissante en λ et vérifie la continuité monotone :

$$(1-6) A_{\lambda}^{+} = \bigcap_{\lambda \leq \lambda} A_{\lambda}^{+} (\lambda, \lambda^{!} \in [-\infty, +\infty])$$

En effet, il reste à montrer que si une famille croissante vérifie (1-6) et si f est définie par (1-5), alors $A_{\lambda}^{+} = \{x : f(x) \geq \lambda\}$. Posons $C_{\lambda} = \{x : f(x) \geq \lambda\}$. Si $x \in A_{\lambda}^{+}$, on a $f(x) \geq \lambda$ par définition, donc $x \in C_{\lambda}$ et $A_{\lambda}^{+} \subset C_{\lambda}$. Inversement, si $x \in C_{\lambda}$, on a $f(x) \geq \lambda$. D'après la définition (1-5), cela implique $x \in A_{\lambda}^{+}$, pour tout $\lambda' < \lambda$. Donc $x \in \bigcap_{\lambda' > \lambda} A_{\lambda'}^{+} = A_{\lambda}^{+}$, d'après (1-6), c'est-à-dire $C_{\lambda} \subset A_{\lambda}^{+}$ et $C_{\lambda} = A_{\lambda}^{+}$.

On a un énoncé analogue pour les ensembles :

$$A_{\lambda} = \{x : f(x) > \lambda\}$$

à condition de remplacer (1-6) par :

$$(1-7) A_{\lambda}^{-}, = \bigcup_{\lambda > \lambda}, A_{\lambda}^{-}$$

$$2 - \underline{L'OPTIMISATION DE Q - \lambda V}$$
.

Soit V une mesure > 0 sur E, Q une mesure positive absolument continue par rapport à V et q sa densité, i.e.:

$$Q(dx) = q(x) V(dx)$$

(la mesure V est appelée volume, et la fonction positive q est la teneur). Pour l'instant, nous supposons essentiellement :

(2-1)
$$q \in L^2(E, Q, V)$$

(nous nous affranchirons ultérieurement de cette restriction). Désignons par $\mathcal{G}_2 = \mathcal{G} \cap \mathbf{L}^2$ la restriction de \mathcal{G} à \mathbf{L}^2 . \mathcal{G}_2 est un cone convexe fermé dans \mathbf{L}^2 . En effet, si une suite $\{\mathbf{f}_n\}$ dans \mathcal{G}_2 converge vers f au sens de \mathbf{L}^2 , on sait qu'on peut en extraire une suite partielle $\{\mathbf{f}_{n_k}\}$ convergeant vers f presque partout pour V. Mais \mathcal{G} est stable pour la convergence p.p., donc $\mathbf{f} \in \mathcal{G} \cap \mathbf{L}^2$, et \mathcal{G}_2 est fermé.

Nous pouvons donc appliquer le théorème des projections. Soit $\Lambda \ \underline{ \ \ } \ \underline{ \ \ \ } \ \underline{ \ \ \ } \ \underline{ \ \ \ } \ \underline{ \ \ } \ \underline{ \ \ } \ \underline{ \ \ \ } \ \underline{ \ \ } \ \underline{$

Mais \mathcal{G}_2 est un cone et $\Lambda \in \mathcal{G}_2$. Donc pour tout a ≥ 0 on a a $\Lambda \in \mathcal{G}_2$ et par suite, d'après (2-2)

$$a < \Lambda$$
, $\Lambda - q > \geq < \Lambda$, $\Lambda - q > \forall a \geq 0$

ceci entraine $< \Lambda$, Λ -q > = 0.

Par suite, la projection A de la teneur q est caractérisée comme l'unique élément vérifiant :

En particulier, les constantes réelles (positives ou non) sont dans \mathcal{G}_2 , donc a < 1,q > \leq a < 1, Λ > pour tout a \geq 0 ou \leq 0. Par suite < 1,q > = < 1, Λ > , c'est-à-dire :

(2-3)
$$\int_{E} q(x) V(dx) = \int_{E} \Lambda(x) V(dx)$$

Λ a même valeur moyenne dans E que la teneur q.

Désignons par \mathcal{G}_{Λ} le sous-cône des f $\in \mathcal{G}_2$ tels que l'on ait : $< \Lambda - q$, f > = 0

D'après (2-3) et la seconde relation (2-2), les constantes et Λ sont dans \mathcal{G}_{Λ} . \mathcal{G}_{Λ} est manifestement <u>fermé</u> dans \mathbf{L}^2 . Montrons qu'il est <u>réticulé</u>. En effet, si f et g sont dans \mathcal{G}_{Λ} , on trouve :

(2-4)
$$0 = \langle f+g, \Lambda-q \rangle = \langle f \forall g, \Lambda-q \rangle + \langle f \Lambda g, \Lambda-q \rangle$$

Or, f \forall g et f \land g sont dans \mathcal{G} , puisque \mathcal{G} est réticulé, et par suite d'après (2-2), les deux termes du second membre de (2-4) sont \geq 0. Ils sont donc nédessairement nuls, et f \forall g, f \land g \in \mathcal{G}_{Λ} .

Etant fermé, réticulé et contenant les constantes, \mathcal{G}_{Λ} contient les indicatrices $\mathbf{1}_{\mathbf{f} \geq \lambda}$, $\mathbf{1}_{\mathbf{f} > \lambda}$ pour tout réel λ et tout $\mathbf{f} \in \mathcal{G}_{\Lambda}$.

En particulier, les ensembles

$$B_{\lambda}^{+} = \{x : \Lambda(x) \geq \lambda\}$$

$$\mathbb{B}_{\lambda}^{-} = \{x : \Lambda(x) > \lambda\}$$

sont dans \mathcal{L}_{Λ} , soit pour tout réel λ :

(2-5)
$$\int_{\Lambda \geq \lambda} q(x) V(dx) = \int_{\Lambda \geq \lambda} \Lambda(x) V(dx)$$

Cette relation est équivalente à :

$$\int \varphi(\Lambda) \ q \ V = \int \varphi(\Lambda) \ \Lambda \ V$$

pour toute fonction mesurable ϕ , et exprime (si V a été normée à l'unité, ce que l'on peut toujours supposer) que l'espérance de q conditionnelle en Λ est égale à Λ :

$$E(q | \Lambda) = \Lambda$$

En particulier, (2-5) implique $< \Lambda-q$, $\Lambda > = 0$.

Comme \mathcal{G}_2 est engendré (par combinaisons linéaires positives) à partir des indicatrices $\mathbf{1}_A$, $\mathbf{A} \in \mathcal{B}$, il en résulte que les relations (2-2) sont équivalentes au système suivant :

qui caractérise donc la projection A de la teneur.

Passons maintenant au problème de la recherche des ensembles $B \in \text{B} \quad \text{maximisant la mesure } \mu_{\lambda} = (q-\lambda) \ \text{V} \ \text{pour un } \lambda \ \text{donn\'e. Posons} \ \text{:}$

$$\gamma_{\lambda} = \sup_{B \in \mathcal{B}} \mu_{\lambda}(B)$$

Le résultat essentiel est le suivant :

Th. 2 - Le Sup des $\mu_{\lambda}(B)$, $\underline{B} \in \mathcal{B}$ est atteint par les ensembles

$$B_{\lambda}^{-} = \{ \Lambda > \lambda \} \text{ et } B_{\lambda}^{+} = \{ \Lambda \geq \lambda \}$$

(définis V-p.p.). De plus, on a $B_{\lambda}^- \subset B_{\lambda}^+$ (V-p.p.), et tout autre $B \in \mathcal{B}$ maximisant μ_{λ} (s'il en existe) vérifie :

$$B_{\lambda}^- \subset A \subset B_{\lambda}^+ \quad (V \text{ p.p.})$$

Enfin, la classe \mathcal{B}_{λ} des B $\in \mathcal{B}$ maximisant μ_{λ} (B) est stable pour la réunion et l'intersection dénombrables.

La démonstration repose essentiellement qur les relations (2-6) qui caractérisent Λ . D'après la 3ème de ces relations, pour tout $\Lambda \in \mathcal{P}_{0}$, on a :

(a)
$$\mu_{\lambda}(A) = \int_{A} dV - \lambda \int_{A} dV \leq \int_{A} (\Lambda - \lambda) dV \leq \int_{B_{\lambda}} (\Lambda - \lambda) dV$$

In dernière inégalité (avec $B_{\lambda} = B_{\lambda}^{+}$ ou $B_{\lambda} = B_{\lambda}^{-}$) résulte de ce que $\int_{\Lambda > \lambda} (\Lambda - \lambda) dV = \int_{\Lambda > \lambda} (\Lambda - \lambda) dV$ maximise évidemment $\int_{\Lambda} (\Lambda - \lambda) dV$, $\Lambda \in \mathcal{B}$ (où même ici $\Lambda \in \mathcal{O}$).

D'autre part, la seconde relation (2-6) donne :

(b)
$$\mu_{\lambda}(B_{\lambda}) = \int_{B_{\lambda}} (q-\lambda) dV = \int_{B_{\lambda}} (\Lambda-\lambda) dV$$

Par suite le Sup des $\mu_{\lambda}(A)$, $A \in \mathcal{B}$, soit γ_{λ} vérifie $\gamma_{\lambda} \leq \int\limits_{B_{\lambda}} (\Lambda - \lambda) dV = \mu_{\lambda}(B_{\lambda})$, d'après (a) et d'après (b)

Donc $B_{\lambda} = B_{\lambda}^{+}$ ou B_{λ}^{-} réalise effectivement le Sup.

L'inclusion $B_{\lambda}^{-} \subset B_{\lambda}^{+}$ (V-p.p.) résulte de la définition même de ces ensembles. Soit maintenant $A \in \mathcal{F}$ un autre ensemble optimal (s'il en existe), c'est-à-dire tel que $\mu_{\lambda}(A) = \gamma_{\lambda}$. D'après les inégalités (a), cela entraine $\mu_{\lambda}(A) = \int_{A} (\Lambda - \lambda) dV$, donc $\int_{A} dV = \int_{A} \Lambda dV$, c'est-à-dire < Λ -q, $1_{A} > 0$. Par suite, 1_{A} appartient au sous-cône réticulé $\mathcal{G}_{\Lambda} \subset \mathcal{G}_{2}$ des $f \in \mathcal{G}_{2}$ telles que < Λ -q, f > 0. L'égalité :

$$\int_{\mathbf{C}} \mathbf{q} \ dV = \int_{\mathbf{C}} \Lambda \ dV$$

a donc lieu sur tout C appartenant à l'algèbre engendrée par A, B_{λ}^+ et B_{λ}^- . Donc nous avons :

$$\mu_{\lambda}(A) = \int_{A \cap B_{\lambda}^{-}} (\Lambda - \lambda) + \int_{(A \cap B_{\lambda}^{+}) \cap \beta B_{\lambda}^{-}} (\Lambda - \lambda) + \int_{A \cap \beta} (\Lambda - \lambda)$$

Le second terme est nul, puisque $\Lambda = \lambda$ sur $B_{\lambda}^{+} \cap \beta$ B_{λ}^{-} . Le troisième est ≤ 0 , et = 0 si et seulement si $A \subset B_{\lambda}^{+}$ (V-p.p.), puisque $\Lambda < \lambda$ sur β B_{λ}^{+} . Enfin, le premier terme est \leq à $\int_{B_{\lambda}^{-}} (\Lambda - \lambda) d\lambda$ = γ_{λ} , avec égalité si et seulement si $A \cap B_{\lambda}^{-} = B_{\lambda}^{-}$, c'est-à-dire $B_{\lambda}^{-} \subset A$ (V-p.p.). Donc l'égalité $\mu_{\lambda}(A) = \gamma_{\lambda}$ entraîne bien

$$B_{\lambda}^- \subset A \subset B_{\lambda}^+ \quad (V-p \cdot p \cdot)$$

La classe \mathcal{B}_{λ} des B \in \mathcal{B} tels que $\mu_{\lambda}(B) = \gamma_{\lambda}$ est stable pour les convergences monotones séquentielles \uparrow et \downarrow . Si B et B' sont dans \mathcal{B}_{λ} , on a $\mu_{\lambda}(B \cup B') + \mu_{\lambda}(B \cap B') = \mu_{\lambda}(B) + \mu_{\lambda}(B') = 2 \gamma_{\lambda}$.

Comme $\mu_{\lambda}(B \cup B')$ et $\mu_{\lambda}(B \cap B')$ sont $\leq \gamma_{\lambda}$, il en résulte $\mu_{\lambda}(B \cup B') = \mu_{\lambda}(B \cap B') = \gamma_{\lambda}$, soit $B \cup B'$ et $B \cap B' \in \mathcal{B}_{\lambda} : \mathcal{B}_{\lambda}$ est donc stable pour U et \cap dénombrables.

COROLLAIRE - Pour
$$\lambda > \lambda^{\circ}$$
, on a $B_{\lambda}^{+} \subset B_{\lambda}^{-}$, $(V-p.p.)$.

En effet, si $\lambda > \lambda'$ strictement, $\Lambda(x) \geq \lambda$ entraine $\Lambda(x) > \lambda'$.

Commentaire.

La fonction Λ permet le "paramètrage des réserves", en fonction du "paramètre économique" λ . Pour un λ donné, les ensembles minimisant $\mu_{\lambda}(B)$ sur les "projets possibles" $B \in \mathcal{B}$ sont B_{λ}^{-} , B_{λ}^{+} (et, éventuellement, des ensembles intermédiaires). Pour chaque λ , on posera :

$$V_{\lambda}^{+} = V(B_{\lambda}^{+})$$
; $V_{\lambda}^{-} = V(B_{\lambda}^{-})$

$$Q_{\lambda}^{+} = Q(B_{\lambda}^{+})$$
; $Q_{\lambda}^{-} = Q(B_{\lambda}^{-})$

Ce sont les quantités de minerai et de substance utile associées aux deux projets optimaux B_λ^+ et B_λ^- . Quant à la quantité

$$\gamma_{\lambda} = Q_{\lambda}^{+} - \lambda V_{\lambda}^{+} = Q_{\lambda}^{-} - \lambda V_{\lambda}^{-}$$

elle représente le "bénéfice optimal" associé à λ. Notons les résultats suivants :

 γ_{λ} est continu et décroissant en λ ; Q_{λ}^{+} et V_{λ}^{+} sont décroissants et continus à gauche; Q_{λ}^{-} et V_{λ}^{-} sont décroissants et continus à droite.

En effet, soit $\lambda > \lambda'$. On a:

$$\gamma_{\lambda}$$
, = μ_{λ} , $(B_{\lambda}$, $) \geq \mu_{\lambda}$, $(B_{\lambda}) \geq \mu_{\lambda}(B_{\lambda}) \geq \mu_{\lambda}(B_{\lambda}$, $) \geq \mu_{\lambda}$, $(B_{\lambda}$, $) - \varepsilon$

pour $\lambda - \lambda'$ assez petit (la 1ère et la 3ème inégalité résultent de la maximalité, la 2ème de μ_{λ} , $\geq \mu_{\lambda}$, et la quatrième de la continuité de $\lambda \to \mu_{\lambda}(A) = Q(A) - \lambda$ V(A) uniforme en $A \in \mathcal{O}_{\mathcal{F}}$. Si $\lambda' \uparrow \lambda$, il en résulte $\mu_{\lambda}(B_{\lambda}) \to \mu_{\lambda}(B_{\lambda})$, et de même si $\lambda \downarrow \lambda' \mu_{\lambda}(B_{\lambda}) \to \mu_{\lambda}(B_{\lambda})$: γ_{λ} est bien continu et décroissant. Les propriétés de décroissance et de continuité à gauche de V_{λ}^{+} et Q_{λ}^{+} résultent, par continuité monotone, de la relation (1-6), qui s'écrit :

$$B_{\lambda}^{+} = \bigcap_{\lambda \leq \lambda} B_{\lambda}^{+}$$

De même, les propriétés de V_{λ}^- et Q_{λ}^- proviennent de :

$$B_{\lambda}^{-}$$
, = $\bigcup_{\lambda > \lambda}$, B_{λ}^{-}

Il est intéressant de mettre ce paramètrage en relation avec le problème qui consiste à trouver $A \in \mathcal{B}$ (s'il existe) maximisant Q(A) pour un volume $V(A) \le v$ donné. Le résultat est le suivant :

S'il existe un λ tel que $v = V(B_{\lambda}^{+})$ (resp. $v = V(B_{\lambda}^{-})$) alors B_{λ}^{+} (resp. B_{λ}^{-}) réalise Sup {Q(A), A $\in \mathcal{O}$, V(A) $\leq v$ }. Dans le cas général, $\lambda_{0} = \text{Inf } \{\lambda : V(B_{\lambda}^{-}) \leq v\}$ vérifie $V(B_{\lambda_{0}}^{-}) \leq v \leq V(B_{\lambda_{0}}^{+})$ et pour tout $A \in \mathcal{O}$

$$Q(A) \leq Q_{\lambda_0}^- + \lambda_0(v - V_{\lambda_0}^-) = Q_{\lambda_0}^+ - \lambda_0(V_{\lambda_0}^+ - v)$$

avec égalité si et seulement si A est l'un des ensembles maximisant $Q = \lambda_O^V$.

En effet, si $\mathbf{v} = V(B_{\lambda}^{+})$ (ou $V(B_{\lambda}^{-})$) pour un λ , $Q(B_{\lambda}^{+}) - \lambda \ V(B_{\lambda}^{+}) \ge Q(A) - \lambda \ V(A)$ donne $Q(B_{\lambda}^{+}) \ge Q(A)$ pour tout $A \in \mathcal{B}$ tel que $V(A) \le \mathbf{v} = V(B_{\lambda}^{+})$: $Q(B_{\lambda}^{+})$ réalise donc le maximum de Q(A) à $V(A) \le \mathbf{v}$.

Dans le cas général, posons $\lambda_0 = \inf \{\lambda : V(B_{\overline{\lambda}}) \le v\}$. Comme $V_{\overline{\lambda}}^-$ est continu à droite, il en résulte $V(B_{\overline{\lambda}_0}^-) \le v$. On a aussi $V(B_{\lambda_0}^+) \ge v$, car V_{λ}^+ est continu à gauche : si $V(B_{\lambda_0}^+) < v$, il existe $\lambda < \lambda_0$ tel que $V(B_{\overline{\lambda}}^-) \le V(B_{\lambda}^+) < v$ contrairement à la définition de λ_0 .

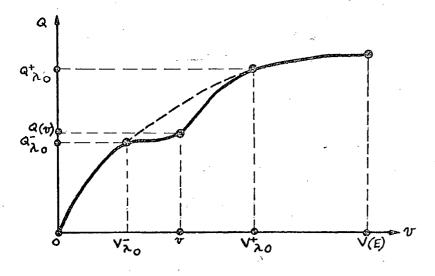
Compte tenu de la maximalité de $B_{\lambda_0}^+$ (par exemple), on trouve ensuite $Q(A) - \lambda_0$ $V(A) \le Q(B_{\lambda_0}^+) - \lambda_0$ $V(B_{\lambda_0}^+)$, donc, pour tout A tel que $V(A) \le v \le V_{\lambda_0}^+$:

$$Q(A) \leq Q_{\lambda_0}^+ + \lambda_0(v - V_{\lambda_0}^+) = Q_{\lambda_0}^- + \lambda_0(v - V_{\lambda_0}^-)$$

avec égalité si et seulement si $Q(A) - \lambda_O(V(A) = Q(B_\lambda^+) - \lambda_O V(B_{\lambda_O}^+)$ = γ_λ , donc si A réalise l'optimum de $Q - \lambda_O V$ (ce qui implique $B_{\lambda_O}^- \subset A \subset B_{\lambda_O}^+$).

<u>Graphiquement</u>, considérons la fonction $v \rightarrow Q(v)$ avec :

$$Q(v) = Sup \{Q(A), A \in \mathcal{B}, V(A) \le v\}$$



C'est une fonction non décroissante.

L'ensemble

$$\{(Q,v), Q \leq Q(v)\}$$

n'est pas convexe, en général, mais son enveloppe convexe est l'inter-

section des demi-plans $\{(Q,v), Q - \lambda v \leq \gamma_{\lambda}\}$ et les points d'appui de chaque demi-plan $\{Q-\lambda_{0}v \leq \gamma_{\lambda_{0}}\}$ sont les deux points $(Q_{\lambda_{0}}^{-}, V_{\lambda_{0}}^{-})$

et $(Q_{\lambda_0}^+, V_{\lambda_0}^+)$, plus, éventuellement, les (Q(A), V(A)) pour les autres $A \in \mathcal{B}$ maximisant $Q - \lambda_0 V$.

EXEMPLE - Si E est la demi-droite positive \mathbb{R}_+ , V la mesure de Iebesque et si \mathcal{B} est formé des intervalles (ouverts ou fermés) (0,x), on a $Q(v) = \int_0^v q(x) dx$, et l'enveloppe convexe de $\{(Q,v), Q \leq Q(v)\}$ permet d'obtenir sans peine les B_λ^- , B_λ^+ et les Q correspondants : il suffit de prendre les points d'appui de la droite d'appui parallèle à $Q - \lambda V = C$ ste. C'est cette enveloppe convexe qui définit l'intégrale $\int_0^X \Lambda(y) dy$. Par dérivation, on en déduit $\Lambda(y)$ elle-même - qui est la meilleure approximation de q par une fonction décroissante.

Positivité de l'opérateur q → Λ.

L'opérateur de projection sur le $\operatorname{\mathfrak{Cone}}$ $\mathcal G$ est $\operatorname{\underline{positif}}$: autrement dit :

$$(1-7) q \leq q' \Rightarrow \Lambda \leq \Lambda'$$

Montrons d'abord que, si $q \leq q'$, on a $B_{\lambda} \subset B_{\lambda}^{+}$ (V-p.p.) pour chaque λ . Posons $C = B_{\lambda} \cap B_{\lambda}^{'} \in \mathcal{F}_{\lambda}$. On a $\mu_{\lambda}(C) \leq \mu_{\lambda}(B_{\lambda}^{-})$, puisque B_{λ}^{-} est optimal, donc $\mu_{\lambda}(B_{\lambda}^{-} \setminus C) \geq \mu_{\lambda}(B_{\lambda}^{-} \setminus C) \geq 0$. Mais $B_{\lambda}^{'+} \cup (B_{\lambda}^{-} \setminus C) \leq B_{\lambda}^{'+} \cup B_{\lambda}^{-} \in \mathcal{F}_{\lambda}^{-}$ et $\mu_{\lambda}(B_{\lambda}^{'+} \cup (B_{\lambda}^{-} \setminus C)) = \mu_{\lambda}(B_{\lambda}^{'+}) + \mu_{\lambda}(B_{\lambda}^{-} \setminus C) \leq 0$. Donc : $\mu_{\lambda}(B_{\lambda}^{'+})$ (par maximalité) donne $\mu_{\lambda}(B_{\lambda}^{-} \setminus C) \leq 0$. Donc :

$$\mu_{\lambda}^{\prime}(B_{\lambda}^{-} \setminus C) = \mu_{\lambda}(B_{\lambda}^{-} \setminus C) = 0$$

et par différence $V(B_{\lambda}^{-} \setminus C) = 0$. Donc

$$B_{\lambda}^- \subset B_{\lambda}^{'+} \quad V-p.p.$$

Cela veut dire:

$$\Lambda > \lambda \Rightarrow \Lambda' \geq \lambda$$

Or, pour tout $x \in E$ et tout $\varepsilon > 0$, on a $x \in B_{\Lambda(x)-\varepsilon}$, $(x) > \Lambda(x) - \varepsilon$, donc $\Lambda'(x) > \Lambda(x) - \varepsilon$. Par suite, en faisant $\varepsilon \downarrow 0$, on a bien $\Lambda' \geq \Lambda$.

3 - GENERALISATION.

Dans le théorème précédent, nous avons supposé $q \in L^2(E, \mathcal{O}, V)$ et nous devons maintenant lever cette restriction.

La première étape consiste à établir l'existence de B \in \mathcal{B} maximisant $\mu(A)$, $A \in \mathcal{B}$ pour une mesure bornée μ quelconque.

Th. 3 - Soit μ une mesure bornée (non positive) sur (E, O) et V une mesure positive quelconque telle que V $\geq |\mu|$. Alors, il existe deux ensembles B et B tels que :

$$\mu(B^+) = \mu(B^-) = \sup_{A \in \mathcal{B}} \mu(A)$$

et B \subset B $^+$ (V. p.p.). De plus, l'ensemble \mathcal{B}_0 des B $\in \mathcal{B}$ maximisant $\mu(A)$, $A \in \mathcal{B}$ est stable pour l'union et l'intersection dénombrables, et tout B $\in \mathcal{B}_0$ vérifie : B \subset B \subset B \subset B \subset C \cap C

En effet, soit $\mu=\mu_+-\mu_-$ la décomposition de Jordan de μ , $|\mu|=\mu_++\mu_-$ et $V\geq |\mu|$ une majorante de $|\mu|$. En posant :

$$Q = 2 \mu_{+} + V - |\mu|$$

on a:

avec une mesure Q positive absolument continue par rapport à V, soit Q = q V. Pour tout $A \in \mathcal{O}l$, il vient :

$$Q(A) = 2 \mu_{+}(A) - |\mu(A)| + V(A) \le \mu_{+}(A) + V(A) \le 2 V(A)$$

Par suite la densité q vérifie $0 \le q \le 2$ et (a fortiori) appartient à $L^2(E, \mathcal{O}(V))$. Il suffit donc d'appliquer le théorème 2 cidessus avec $\lambda = 1$ pour obtenir l'énoncé précédent.

COROLLAIRE - Si μ et μ ' sont deux mesures bornées telles que $\mu - \mu \ge 0$,

B' et B' le plus petit et le plus grand B $\in \mathcal{B}$ majorant μ (B) et μ '(B) respectivement, on a B \supset B' (μ '- μ p.p.) et B' \supset B' (μ '- μ p.p.).

(même démonstration qu'au paragraphe 2).

Passons maintenant au paramètrage non linéaire.

Soit μ_{λ} , $\lambda \geq 0$ une famille de mesures bornées (non positives) décroissante en λ :

$$\lambda \geq \lambda^{\dagger} \Rightarrow \mu_{\lambda} \leq \mu_{\lambda}$$

Quitte à remplacer μ_{λ} , par $\lim_{\lambda \uparrow \lambda} \mu_{\lambda}$, nous pouvons supposer μ_{λ} continue à gauche, soit :

$$\lambda \uparrow \lambda_{o} \Rightarrow \mu_{\lambda}(A) \downarrow \mu_{\lambda_{o}}(A) \quad \forall A \in \alpha$$

Enfin, nous supposons que les μ_λ sont absolument continues par rapport à une même mesure V \geq 0, soit :

$$\mu_{\lambda} = \rho_{\lambda} V$$

où ρ_{λ} est une famille de fonctions, décroissante et continue à gauche en λ .

D'après ce qui précède, pour chaque λ il existe un (V-p.p.) plus grand et un plus petit B \in \mathcal{B} , soit \mathcal{B}_{λ}^+ et \mathcal{B}_{λ}^- , réalisant

$$\gamma_{\lambda} = \sup_{B \in \mathcal{B}} \mu_{\lambda}(B)$$

Pour $\lambda_0 > \lambda$ et $(\lambda - \lambda_0)$ assez petit, on a :

$$\mu_{\lambda_{o}}(B_{\lambda}) + \varepsilon \ge \mu_{\lambda}(B_{\lambda}) \ge \mu_{\lambda}(B_{\lambda_{o}}) \ge \mu_{\lambda_{o}}(B_{\lambda_{o}}) \ge \mu_{\lambda_{o}}(B_{\lambda})$$

On en déduit que γ_{λ} est continu à gauche

$$\lambda \uparrow \lambda_0 \Rightarrow \gamma_{\lambda} \downarrow \gamma_{\lambda_0}$$

et aussi $\mu_{\lambda_0}(B_{\lambda}) \rightarrow \mu_{\lambda_0}(B_{\lambda_0}) = \gamma_{\lambda_0}$ pour $\lambda \uparrow \lambda_0$. Par conséquent : $\mu_{\lambda_0}(\bigcap_{\lambda>\lambda_0} B_{\lambda}) = \gamma_{\lambda_0}$, ce qui entraine : $\bigcap_{\lambda<\lambda_0} B_{\lambda}^+ \subset B_{\lambda_0}^+$. Mais $\lambda < \lambda_0$ entraine aussi $B_{\lambda}^+ \supset B_{\lambda_0}^+$ (V-p.p.) d'après Th. 3, Corollaire. Par suite (V-p.p.):

$$B_{\lambda_0}^+ = \bigcap_{\lambda < \lambda_0} B_{\lambda}^+$$

La famille B_{λ}^{+} étant continue à gauche, la fonction Λ définie par :

$$\Lambda(x) = \sup \{\lambda : x \in B_{\lambda}^{+}\}$$

vérifie:

$$B_{\lambda}^{+} = \{x : \Lambda(x) \geq \lambda\}$$

Définissons alors la mesure μ_{Λ} et sa densité ρ_{Λ} par :

$$\mu_{\Lambda} = \rho_{\Lambda} V ; \rho_{\Lambda}(x) = \rho_{\Lambda(x)}(x)$$

Alors : A est l'unique fonction du cône g vérifiant :

(3-1)
$$\begin{cases} \forall \lambda & : \int_{\Lambda \geq \lambda} \mu_{\Lambda} = 0 \\ \forall \Lambda \in \mathcal{J}_{\partial} : \int_{\Lambda} \mu_{\Lambda} \leq 0 \end{cases}$$

La démonstration est à peu près la même que pour le paramètrage $Q - \lambda V$ du paragraphe 2.

Sous cette forme générale, qui ne fait plus appel au théorème des projections ni à l'espace L², on voit que le paramètrage des réserves est toujours possible.

Nous allons maintenant procéder à un examen plus détaillé du cas fini.

4 - LE CAS FINI.

Le cas fini est le plus important pour les applications : il est d'ailleurs beaucoup plus simple, car $\mathcal B$ est une famille finie, de sorte que l'on sait d'avance que Sup $\{\mu(B): B\in \mathcal B\}$ est atteint, sans qu'il y ait lieu d'établir de théorème d'existence. Nous allons donc donner un exposé indépendant de ce qui précède, valable pour E fini, et, dans le paragraphe suivant, examiner les conditions de la mise en oeuvre pratique.

E est un ensemble fini. A chaque $x \in E$ est affecté un poids $(\underline{volume})\ V(\{x\}) > 0$ et une $\underline{quantite}\ Q(\{x\}) = q(x)\ V(\{x\})$, où q(x) est la $\underline{teneur}\ en\ x\ (q \ge 0)$. Enfin, on se donne une famille $\mathcal B$ de $\underline{domaines}\ autorisés$, stable pour $\bigcup\ et\ \bigcap$, ainsi que $\underline{le}\ préordre\ correspondant\ défini\ par$:

$$\Gamma(x) = \bigcap \{B : B \in \mathcal{B}, x \in B\}$$

a/ - Les relations tonnage/teneur.

(Ici, la famille ${\mathcal B}$ peut être quelconque : nous n'utilisons

lá stabilité pour \bigcup et \cap et le préordre (4-1) qu'à partir du sous-paragraphe b/). Pour tout $v \ge 0$, posons :

$$(4-2) Q(v) = Sup \{Q_B, B \in \mathcal{J}_B, V_B \le v\}$$

Ceci définit une fonction Q sur \mathbb{R}_+ , non décroissante (mais non nécessairement concave, ni continue).

D'autre part, pour chaque $\lambda \geq 0$, posons :

$$\dot{\gamma}(\lambda) = \sup \{Q_B - \lambda V_B, B \in \mathcal{B}\}$$

Comme E est fini, il existe un, ou plusieurs, B_{λ} tels que $Q(B_{\lambda}) - \lambda \ V(B_{\lambda}) = \gamma(\lambda)$ (en général, il n'y a pas de relations simples entre les B_{λ} si $\mathcal B$ n'est pas stable pour \bigcup et \bigcap). Pour tout $B \in \mathcal B$, on a évidemment :

$$Q(B) - \lambda V(B) \le \gamma(\lambda)$$
 $Y B \in \mathcal{B}$, $Y \lambda \le 0$

avec égalité pour $B = B_{\lambda}$. D'après (4-2), ceci entraîne pour tout $v \ge 0$

$$Q(v) - \lambda v \le \gamma(\lambda)$$

avec égalité seulement si $v=V(B_\lambda)$ pour un $B_\lambda\in\mathcal{P}_\lambda$ réalisant le maximum $\gamma(\lambda)$.

En effet, soit $B_0 \in \mathcal{B}$ un des éléments tels que $V(B_0) \le v$ et $Q(v) = Q(B_0)$. On a donc :

$$Q(v) - \lambda(v) \le Q(B_0) - \lambda V(B_0) \le \gamma(\lambda)$$

c'est-à-dire (4-3). L'égalité n'est réalisée que si $B_0 \in \mathcal{B}_{\lambda}$ et $v = V(B_0)$.

Posant maintenant:

(4-4)
$$\hat{\mathbb{Q}}(\mathbf{v}) = \sup \{q : \forall \lambda \geq 0, q - \lambda \mathbf{v} \leq \gamma(\lambda)\}$$

nous obtenons l'enveloppe concave de Q(v) (i.e. sa plus petite majorante concave) (donc continue) telle que $\widehat{Q}(v) \ge Q(v)$ et $\widehat{Q}(v) = Q(v)$ si et seulement si $v = V(B_{\lambda})$ pour un $\lambda \ge 0$ et un $B_{\lambda} \in \mathcal{B}_{\lambda}$: les points $(V(B_{\lambda}), Q(B_{\lambda}))$ sont <u>les points d'appui</u> des droites d'appui de l'enveloppe concave.

On peut alors paramétrer les réserves en λ . Pourcchaque $\lambda \geq 0$, il y a deux points d'appui extrêmes $(V_{\lambda}^-, Q_{\lambda}^-)$ et $(V_{\lambda}^+, Q_{\lambda}^+)$ (i.e. $V_{\lambda}^- \leq V_{\lambda} \leq V_{\lambda}^+$ pour tout autre point d'appui $V_{\lambda}^-, Q_{\lambda}^-$) associé à deux ensembles B_{λ}^- et $B_{\lambda}^+ \in \mathcal{J}_{\lambda}^-$.

Par définition :

$$\gamma_{\lambda} = Q_{\lambda}^{-} - \lambda V_{\lambda}^{-} = Q_{\lambda}^{+} - \lambda V_{\lambda}^{+}$$

Pour ε assez petit :

$$\lambda = \lambda_{o} - \epsilon \Rightarrow Q_{\lambda}^{-} = Q_{\lambda_{o}}^{+} \text{ et } V_{\lambda}^{-} = V_{\lambda_{o}}^{+}$$

$$\lambda = \lambda_{o} + \epsilon \Rightarrow Q_{\lambda}^{+} = Q_{\lambda_{o}}^{-} \text{ et } V_{\lambda}^{+} = V_{\lambda_{o}}^{-}$$

Cela résulte tout simplement de ce que les points d'appui sont en nombre fini et signifie que les applications :

 $\lambda \to V_{\lambda}^+$, $\lambda \to Q_{\lambda}^+$ sont <u>décroissantes et continues à gauche</u>.

 $\lambda \to V_{\overline{\lambda}}$, $\lambda \to Q_{\overline{\lambda}}$ sont <u>décroissantes et continues à droite</u>.

 $\lambda \rightarrow \gamma_{\lambda}$ est <u>décroissante et continue</u>.

(la continuité de γ_{λ} résulte immédiatement de (a), compte tenu des semi-continuités déjà établies ; la décroissance est évidente, puisque γ_{λ} = Sup $\{Q_{B} - \lambda \ V_{B} \ ; \ B \in \mathcal{B} \}$).

b/ - Le Cône S.

Nous supposons maintenant B stable pour U et Λ, et utilisons le préordre Γ associé.

Nous dirons qu'une fonction f est dans $\mathcal S$ si et seulement si elle est <u>croissante pour le préordre Γ </u>. Il en résulte que $\mathcal S$ est un <u>cône convexe</u>, <u>stable pour Sup et Inf</u>, <u>contient les constantes</u> (positives ou non) et les <u>indicatrices</u> $\mathbf 1_B$, $\mathbf B \in \mathcal B$.

Si f est Γ -croissante, on a $1_{f \geq \lambda} \in \mathcal{G}$. En effet, si $x \in \{f \geq \lambda\}$, i.e. $f(x) \geq \lambda$, on a $f(y) \geq f(x) \geq \lambda$, donc $y \in \{f \geq \lambda\}$ pour tout $y \in \Gamma(x)$. Inversement, si $\{g \geq \lambda\} \in \mathcal{G}$ pour tout λ , g est Γ -croissante : $x \in \{g \geq g(x)\} \in \mathcal{G}$ donne $\Gamma(x) \subset \{g \geq g(x)\}$, donc $g(y) \geq g(x)$ pour tout $y \in \Gamma(x)$. Par suite :

On a f \in S si et seulement si $\{f \geq \lambda\}$ \in B pour tout réel λ . Voici une autre caractérisation :

En effet, soit $f \in \mathcal{G}$. Quitte à remplacer f par f - Inf f (ce qui est loisible, puisque les constantes sont dans f), on peut supposer $f \ge 0$. On pose alors :

$$f_n = \sum_{k=0}^{\infty} \frac{k}{2^n} \left(1_{f \ge \frac{k}{2^n}} - 1_{f \ge \frac{k+1}{2^n}} \right) = \sum_{k=0}^{\infty} \frac{1}{2^n} 1_{f \ge \frac{k}{2^n}}$$

 $f_n \text{ est une combinaison linéaire à coefficients } 0 \text{ d'indicatrices } 1_B \text{ , } B \in \mathcal{B} \text{ (puisque } \{f \geq \lambda\} \in \mathcal{G} \text{) et } f_n \uparrow f \text{ , donc } f \text{ est } du \text{ même type. Inversement, toute } f \text{ de la forme } C + \sum C_i \mid_{B_i} \text{ , } C_i \geq 0, B_i \in \mathcal{B} \text{ est } \Gamma\text{-croissante, donc est dans } \mathcal{G} \text{ .}$

c/ - Ia fonction $\Lambda \in \mathcal{G}$.

Pour chaque \(\lambda\), on posera pour abréger :

$$\begin{cases} \mu_{\lambda} = (q - \lambda)V \\ \gamma_{\lambda} = \sup \{\mu_{\lambda}(B), B \in \mathcal{B}\} \end{cases}$$

Ce Sup est atteint (puisque \mathcal{B} est fini). Désignons par \mathcal{B}_{λ} la classe (non vide) des $B \in \mathcal{B}$ tels que $\mu_{\lambda}(B) = \gamma_{\lambda}$. \mathcal{B}_{λ} est stable pour U et \cap .

En effet, si B et B' sont dans \mathcal{B}_{λ} , on trouve :

$$\mu_{\lambda}(B \cup B') + \mu_{\lambda}(B \cap B') = \mu_{\lambda}(B) + \mu_{\lambda}(B') = 2 \gamma_{\lambda}$$

et (par maximalité) $\mu_{\lambda}(B \cup B')$ et $\mu_{\lambda}(B \cap B')$ sont $\leq \gamma_{\lambda}$. On a donc $\mu_{\lambda}(B \cup B') = \mu_{\lambda}(B \cap B') = \gamma_{\lambda}$, c'est-à-dire $B \cup B'$ et $B \cap B' \in \mathcal{F}_{\lambda}$.

En particulier, \mathcal{B}_{λ} contient un plus petit et un plus grand éléments :

$$B_{\lambda}^{-} = \cap \mathcal{G}_{\lambda}$$
; $B_{\lambda}^{+} = \cup \mathcal{G}_{\lambda}$

et $B_{\lambda}^- \subset B \subset B_{\lambda}^+$ pour tout $B \in \mathcal{B}_{\lambda}$.

Si $\lambda > \lambda'$, on a $B_{\lambda}^+ \subset B_{\lambda}^-$. Plus généralement :

Soient μ et μ ' deux mesures sur E avec μ ' $\geq \mu$, B⁺ le plus grand des B $\in \mathcal{B}$ maximisant μ (B) et B' le plus petit des B $\in \mathcal{B}$ maximisant μ '(B). On a B⁺ \subset B' (μ ' - μ p.p.).

En effet, $C = B \cap B' \in \mathcal{B}$, donc $\mu(C) \le \mu(B)$, soit $\mu(B \setminus C) \ge 0$ et donc aussi $\mu'(B \setminus C) \ge 0$. Mais alors $\mu'(B \cup B') = \mu'(B') + \mu'(B \setminus C) \ge \gamma(\mu')$, donc $\mu'(B \setminus C) = \mu(B \setminus C) = 0$, et $B \subset B'$ au sens $(\mu' - \mu) - p \cdot p \cdot p \cdot C$

In famille B_{λ}^+ est continue à gauche, et la famille $B_{\overline{\lambda}}^-$ continue à droite :

$$(4-1) B_{\lambda_0}^+ = \bigcap_{\lambda < \lambda_0} B_{\lambda} ; B_{\lambda_0}^- = \bigcup_{\lambda > \lambda_0} B_{\lambda}$$

En effet, si λ < λ_o , on a $B_{\lambda_o}^+$ \subset B_{λ} d'après ce qui précède. Inversement, $\gamma(\lambda)$ est continue en λ de sorte que

$$\gamma(\lambda) = \mu_{\lambda}(B_{\lambda}) \ge \mu_{\lambda_{0}}(B_{\lambda}) \ge \mu_{\lambda_{0}}(B_{\lambda_{0}}^{+}) = \gamma(\lambda_{0})$$

entraine
$$\lim_{\lambda \uparrow \lambda_o} \mu_{\lambda_o}(B_{\lambda}) = \mu_{\lambda_o}(\bigcap_{\lambda < \lambda_o} B_{\lambda}) = \gamma(\lambda_o).$$

Donc $\bigcap_{\lambda<\lambda_0} B_{\lambda} \in \mathcal{B}_{\lambda_0}$ et par suite $\bigcap_{\lambda<\lambda_0} B_{\lambda} \subset B_{\lambda_0}^+$. Mais $B_{\lambda} \supset B_{\lambda_0}^+$ pour tout $\lambda<\lambda_0$, d'où l'égalité. Même démonstration pour la continuité à droite de $B_{\lambda_0}^-$.

Définissons alors A par :

$$(4-2) \Lambda(x) = \operatorname{Sup} \{\lambda : x \in B_{\lambda}^{+}\}\$$

Alors, $\Lambda \in \mathcal{S}$ et:

$$(4-3) B_{\lambda}^{+} = \{\Lambda \geq \lambda\} ; B_{\lambda}^{-} = \{\Lambda > \lambda\}$$

En effet, d'après la continuité à gauche :

$$\Lambda(x) \geq \lambda_0 \Leftrightarrow \forall \epsilon > 0, x \in B_{\lambda_0 - \epsilon}^+ \Leftrightarrow x \in \bigcap_{\lambda < \lambda_0} B_{\lambda}^+ = B_{\lambda_0}^+$$

et ceci entraine $\Lambda \in \mathcal{G}$.

Soient $\lambda_0 \le \lambda_1 < \dots$ la suite (finie) des points de discontinuité ($B_{\lambda_i}^- \subset B_{\lambda_i}^+$ strictement).

Pour $\lambda_i < \lambda < \lambda_{i+1}$, on a

$$B_{\lambda}^{+} = B_{\lambda}^{-} = B_{\lambda_{i+1}}^{-} = B_{\lambda_{i+1}}^{+}$$

Les ensembles :

$$\delta B_{i} = B_{\lambda_{i}}^{+} \setminus B_{\lambda_{i}}^{-} = B_{\lambda_{i}, j \in A}^{+} B_{\lambda_{i+1}}^{+}$$

forment une partition finie de E et l'on a :

$$(4-4) \qquad \Lambda = \sum_{i} \lambda_{i} \left(1_{B_{\lambda_{i}}^{+}} - 1_{B_{\lambda_{i}}^{-}} \right) = \sum_{i} \left(\lambda_{i} - \lambda_{i-1} \right) 1_{B_{\lambda_{i}}^{+}}$$

Or, pour tout λ , $\gamma(\lambda) = \mu_{\lambda}(B_{\lambda}^{+}) = \mu_{\lambda}(B_{\lambda}^{-})$. Cela entraine, pour chaque $i : \mu_{\lambda_{i}}(\delta B_{i}) = 0$. Comme $\Lambda(x) = \lambda_{i}$ sur δB_{i} , on en déduit :

$$\int_{\delta} q = \lambda_{i} V(\delta B_{i}) = \int_{\delta} \Lambda(x) V(dx)$$

Puis, les δ B, formant une partition de E:

$$\int_{B_{\lambda}^{+}} q(x) V(dx) = \sum_{i} \int_{\delta B_{i} \cap B_{\lambda}^{+}} qV = \sum_{i} \int_{\delta B_{i} \cap B_{\lambda}^{+}} \Lambda V = \int_{B_{\lambda}^{+}} \Lambda$$

soit pour tout λ réel :

$$\int_{\Lambda \geq \lambda} q = \int_{\Lambda \geq \lambda} \Lambda \qquad (\forall \lambda \geq 0)$$

Si $A \in \mathcal{P}$, on a pour chaque i:

$$\int_{A \cap \delta^{B_{i}}} q \leq \int_{A \cap \delta^{B_{i}}} \Lambda = \lambda_{i} V(A \cap \delta B_{i})$$

En effet, $B_{i}^{+} \cap A \in \mathcal{F}$ et $B_{i}^{-} \cup (B_{i}^{+} \cap A) = B_{i}^{-} \cup (\delta B_{i} \cap A) \in \mathcal{B}$. Par suite :

$$\mu_{\lambda_{\mathbf{i}}}(B_{\mathbf{i}}^{-} \cup (B_{\mathbf{i}}^{+} \cap A)) = \gamma(\lambda_{\mathbf{i}}) + \mu_{\lambda_{\mathbf{i}}}(A \cap \delta B_{\mathbf{i}}) \leq \gamma(\lambda_{\mathbf{i}})$$

c'est-à-dire $\mu_{\lambda_{\dot{1}}}(A \cap \delta B_{\dot{1}}) \le 0$, ou $Q(A \cap \delta B_{\dot{1}}) \le \lambda_{\dot{1}} V(A \cap \delta B_{\dot{1}})$

Par sommation en i, on en tire :

$$(4-6) \qquad \forall A \in \mathcal{B} : \int_{A} q \leq \int_{A} \Lambda$$

<u>les deux relations</u> (4-5) et (4-6) caractérisent $\Lambda \in \mathcal{S}$.

En effet, soit Λ une fonction de $\mathcal G$ vérifiant ces relations. Posons

$$B_{\lambda}^{+} = \{\Lambda \geq \lambda\}$$
; $B_{\lambda}^{-} = \{\Lambda > \lambda\}$

D'après (4-6), pour tout $A \in \mathcal{B}$, on trouve :

$$\int_{A} (q-\lambda) V \leq \int_{A} (\Lambda-\lambda) V \leq \int_{B_{\lambda}} (\Lambda-\lambda) V$$

avec $B_{\lambda} = B_{\lambda}^{+}$ ou B_{λ}^{-} : la seconde inégalité vient de ce que B_{λ} réalise manifestement le Sup de $\int_{B} (\Lambda - \lambda) V$, $B \in \mathcal{B}$, B_{λ}^{-} et B_{λ}^{+} étant le plus petit et le plus grand élément réalisant ce Sup. On a donc $\gamma(\lambda) \leq \int_{B_{\lambda}} (\Lambda - \lambda) V$. D'après (4-6) cela signifie $\gamma(\lambda) \leq \int_{B_{\lambda}} (q - \lambda) V$ et donc:

$$\int_{B_{\lambda}} (q-\lambda)V = \gamma(\lambda)$$

Si $A \subset B_{\lambda}^{-}$ strictement, on trouve ensuite :

$$\int_{A} (q-\lambda)V \leq \int_{A} (\Lambda-\lambda)V < \int_{B_{\lambda}^{-}} (\Lambda-\lambda) = \gamma(\lambda)$$

puisque $\int_{B_{\lambda}} (\Lambda - \lambda)$ est > 0 strictement. Donc B_{λ} est le plus petit $B \in \mathcal{B}$ réalisant $\gamma(\lambda)$. On vérifie de même que B_{λ}^+ est le plus grand $B \in \mathcal{B}$ réalisant $\gamma(\lambda)$.

d/ - Le Théorème de Projection.

La relation (4-5) équivaut à :

$$< q f > = < \Lambda f >$$

pour toute $f \in \sigma(\Lambda)$ et entraine, en particulier :

$$< q - \Lambda_0 \Lambda > = 0$$

De son côté, (4-6) équivaut à :

La réciproque est vraie :

THEOREME - Λ est la projection de q sur le cône \mathcal{G} dans $L^2(E, \underline{\mathcal{A}}, \underline{V})$, c'est-à-dire l'unique élément $\Lambda \in \mathcal{G}$ vérifiant :

(4-7)
$$\begin{cases} \forall f \in \mathcal{S} : < q - \Lambda, f > \leq 0 \\ < q - \Lambda, \Lambda > = 0 \end{cases}$$

Il est immédiat que ces relations caractérisent la projection $\eta_{\mathcal{A}}$ de q sur \mathcal{S} . On vient de voir que Λ les vérifient : donc $\Lambda = \eta_{\mathcal{A}}$. Comme $\eta_{\mathcal{A}}$ est caractérisé par (4-7), on voit qu'inversement (4-7) entraine (4-5) et (4-6).

5 - REALISATION PRATIQUE.

5-1 - Un théorème de Convergence et une Conjecture.

Commençons par exposer une méthode d'itération qui jouera un rôle capital. Soient q une fonction quelconque sur E (supposé $\underline{\text{fini}}$) et X_0 ; X_1 , X_2 ,... X_p \in \mathcal{G} p+1 fonctions Γ -croissantes sur E. On désignera par $\mathcal{G}(X_1,\ldots X_p)$ ou \mathcal{G}_p \subset \mathcal{G} le cône convexe stable pour Sup et Inf engendré par $X_1,\ldots X_p$: on a $Y\in\mathcal{G}_p$ si et seulement si $Y=f(X_1,\ldots X_p)$ pour une fonction f de p variables croissantes au sens:

$$x_{i} \ge x_{i}', i = 1,...p \Rightarrow f(x_{1},...x_{p}) \ge f(x_{1}',...x_{p}')$$

On se propose d'approcher $\Lambda_{\mathcal{G}_p} = \Pi_{\mathcal{G}_p} q$ par une méthode d'itération : On pose :

$$Y_1 = \pi S(X_0, X_1)^{q}$$

$$Y_2 = \pi \mathcal{S}(Y_1, X_2) q$$

et par récurrence pour 1 ≤ r ≤ p, k entier ≥ 0 :

$$Y_{kp+r} = \pi_{\mathcal{S}(Y_{kp+r-1}, X_r)} q$$

 $(X_o \text{ sert donc une seule fois, à titre de lère approximation ; au contraire <math>X_1, \dots X_p$ sont indéfiniment réutilisés). On a donc :

$$(5-1') Y_n = \eta_{(Y_{n-1}, X_i)} q$$

où i = n modulo p. On remarque que la mise en oeuvre de cette méthode suppose que l'on soit capable de trouver $\Pi_{\mathcal{S}(YX)}$ q, c'est-àdire la meilleure approximation de q par une fonction croissante de (YX).

Si l'on pose Y' = \prod q , Y' est caractérisée comme l'unique élément de $\mathcal{J}(Y,X)$ vérifiant :

On note aussi que l'on peut remplacer q par $E(q \mid Y \mid X)$, considérée comme fonction $\overline{q}(X,Y)$ des deux variables X et Y: c'est donc un problème qui se pose dans l'espace \mathbb{R}^2 .

Comme $Y_n = \Pi \mathcal{G}(Y_{n-1}, X_i)^q$ est une meilleure approximation de q que Y_{n-1} , on a

$$\|q - Y_n\| \le \|q - Y_{n-1}\|$$

<u>Ia suite</u> $\|q-Y_n\|$ <u>est décroissante</u>. D'après (5-2), $q-Y_n$ est orthogonale à Y_n , donc :

$$\|\mathbf{q}\|^2 = \|\mathbf{q} - \mathbf{Y}_{\mathbf{n}}\|^2 + \|\mathbf{Y}_{\mathbf{n}}\|^2$$

In suite $\|Y_n\|$ est croissante et admet une limite s $\|q\|$. On a un résultat plus fort :

LEMME -
$$\|Y_n - Y_{n-1}\|^2 \le \|Y_n\|^2 - \|Y_{n-1}\|^2$$

En particulier, $\|Y_n\| \ge \|Y_{n-1}\|$ avec égalité si et seulement si $Y_n = Y_{n-1}$.

En effet, Y_n est de la forme $Y_n = f(Y_{n-1}, X_i)$ où f est croissante (au sens $(x,y) \ge (x',y')$ si $x \ge x'$ et $y \ge y'$). Si $g(Y_n, Y_{n-1})$ est une fonction croissante en (Y_n, Y_{n-1}) , la fonction substituée $g[f(Y_{n-1}, X_i), Y_{n-1}]$ est encore croissante en (Y_{n-1}, X_i) comme on le vérifie immédiatement. On a donc :

$$\mathcal{G}(\mathbf{Y}_{n}, \mathbf{Y}_{n-1}) \subset \mathcal{G}(\mathbf{Y}_{n-1}, \mathbf{X}_{1})$$

Comme $Y_n = \prod_{g \in Y_{n-1}, X_i} q$ est dans $g(Y_n, Y_{n-1})$, Y_n est également la projection de q sur ce sous-cône :

$$Y_n = \prod_{\leq p} (Y_n, Y_{n-1})$$

D'après (5-2), cela entraine pour $Y_{n-1} \in \mathcal{G}(Y_n, Y_{n-1})$:

$$< q, Y_{n-1} > \le < Y_n, Y_{n-1} >$$

Mais < q, $Y_{n-1} > = ||Y_{n-1}||^2$, d'après (5-2), puisque Y_{n-1} est la projection de q sur le cône correspondant. Donc :

$$\|Y_{n-1}\|^2 \le \langle Y_n, Y_{n-1} \rangle$$

Par suite:

Th. 5-1 - La suite $\{Y_n\}$ converge vers une limite Y_0 , et cette limite est atteinte au bout d'un nombre fini d'itérations $(Y_n = Y_0)$ pour $n \ge N$

Remarquons d'abord que chaque Y_n est égal à $\Pi_{\mathcal{S}(Y_n)}$ q , c'est- $\mathfrak{S}(Y_n)$ à-dire à la projection de q sur le cône \mathfrak{S}_n engendré par les indicatrices des $\{Y_n \geq \lambda\}$. Soit \mathfrak{B}_n la famille des ensembles $\{Y_n \geq \lambda\}$. C'est une sous-famille de \mathfrak{B} totalement ordonnée par l'inclusion. Comme \mathfrak{B} est fini, il n'existe qu'un nombre fini N de telles sous-familles, et par suite la suite $\{Y_n\}$ comprend au plus N termes distincts.

Le reste suit facilement : on considère la suite partielle $n \to Y_{np}$. Il existe alors deux entiers $n_0 < n_1 \le N$ tels que $Y_{n_0p} = Y_{n_1p}$. Comme la suite $\|Y_n\|$ est croissante, on a $\|Y_{n_0p}\| = \|Y_{n_0p+1}\| = \cdots = \|Y_{n_1p}\|$, donc aussi (d'après le lemme) $Y_{n_0p+k} = Y_{n_0p}$, $k = 1, 2, \dots (n_1-n_0)p$. Enfin, d'après le procédé de construction par récurrence, $Y_{n_0p} = Y_{n_1p}$ entraîne $Y_{n_1p+r} = Y_{n_0p+r}$ pour tout $r \ge 0$.

Par suite on a bien $Y_n = Y_{n_0p}$ dès que $n \ge n_0p$ (comme $n_0 < n_1 \le N$, on a $n_0 \le (N-1)$).

Conjecture - Cette limite Y o ne dépend pas de l'approximation

initiale, et
$$Y_0 = \Pi_{\mathcal{S}(X_1,...X_p)}$$

Je ne suis pas à même de démontrer cette conjecture. Un énoncé équivalent est :

Il existe un et un seul $Y_0 \in \mathcal{G}$ (à savoir la projection de q sur $\mathcal{G}(X_1,...X_p)$ tel que :

$$Y_0 = \pi_{\mathcal{S}(X_1, Y_0)} = \dots = \pi_{\mathcal{S}(X_p, Y_0)}$$

Remarquons que si cette conjecture se révélait fausse, la limite Y_{o} constituerait néanmoins une très bonne approximation de la vraie projection, et le procédé conserverait toute sa valeur pratique.

5-2 - Cas où Г est un cône convexe à base polygonale.

Dans les applications, $\Gamma(x)$ est un cône convexe de sommet x dans \mathbb{R}^3 (plus précisément la restriction d'un tel cône au sous-ensemble fini $E \subset \mathbb{R}^3$). Il existe donc une famille ϕ_i , $i \in I$ de formes linéaires sur \mathbb{R}^3 telles que :

$$y \in \Gamma(x) \Rightarrow \phi_i(y) \ge \phi_i(x)$$
, $i \in I$

Quitte à modifier légèrement Γ , nous supposerons <u>I fini</u>, ce qui revient à approximer la base du cône Γ par un <u>polygone</u>. Soit p le nombre de ces formes : le préordre Γ est défini par p formes linéaires :

$$(5-3) y \in \Gamma(x) \Leftrightarrow \varphi_1(y) \geq \varphi_1(x), \dots, \varphi_p(y) \geq \varphi_p(x)$$

Th. 5-2 - Le préordre Γ étant défini par (5-3), une fonction F

sur E est Γ-croissante si et seulement si il existe une

fonction f croissante sur R^p au sens :

$$\xi_{i} \geq \xi_{i}^{'}$$
, $i = 1, 2, \dots p \Rightarrow f(\xi_{1}, \dots, \xi_{p}) \geq f(\xi_{1}^{'}, \dots, \xi_{p}^{'})$

telle que en tout x € E:

$$F(x) = f(\phi_1(x), ..., \phi_p(x))$$

Il est immédiat que tout F de la forme indiquée est Γ -croissante. Si p est ≤ 3 , la réciproque est immédiate. Si p est ≥ 3 , on peut supposer qu'il existe 3 formes linéairement indépendantes, par exemple φ_1 , φ_2 et φ_3 (si ce n'est pas le cas, on se ramène sans peine à un problème analogue dans \mathbb{R}^2 ou \mathbb{R}^1), de sorte que tout $\mathbf{x} \in \mathbb{R}^3$ est biunivoquement défini par ses trois premières coordonnées en "axes φ ", soient :

$$\xi_1 = \phi_1(x)$$
, $\xi_2 = \phi_2(x)$, $\xi_3 = \phi_3(x)$

L'application de E dans \mathbb{R}^p , associant à $x \in E$ le point ξ de coordonnées :

$$\xi_i = \varphi_i(x)$$
 $i = 1, 2, \ldots p$

est donc injective. Désignons par E' l'image de E dans \mathbb{R}^p par cette application, et munissons \mathbb{R}^p de l'ordre F' défini par :

$$\xi \in \Gamma'(\xi') \Leftrightarrow \xi_i \geq \xi_i', i = 1,2,...p$$

Soit F une fonction Γ -croissante sur E. Nous devons montrer qu'il existe \overline{f} Γ '-croissante sur \mathbb{R}^p telle que :

(a)
$$F(x) = \overline{f}(\varphi_1(x), ... \varphi_p(x))$$

Définissons d'abord f sur E' en posant :

$$f(\xi) = F(x)$$
 $(\xi = (\varphi_1(x), ..., \varphi_p(x)), x \in E$

ce qui est possible, puisque $x \to \xi$ est une bijection de E sur E'. Ensuite, en tout $\xi \in \mathbb{R}^p$, posons :

$$\overline{f}(\xi) = \text{Inf } \{f(\xi'), \xi' \in \Gamma'(\xi) \cap E'\}$$

(ceci implique $\overline{f}(\xi) = -\infty$ si $\Gamma'(\xi) \cap E' = \emptyset$, ou simplement $\overline{f}(\xi) = 0$ si on se limite - ce qui est loisible - aux fonctions ≥ 0). Cette fonction \overline{f} prolonge f sur \mathbb{R}^p , (donc vérifie (a). En effet, si $\xi \in E'$ et $\xi' \in \Gamma'(\xi) \cap E'$, on a $f(\xi) \leq f(\xi')$. Car, si x et x' sont les points de E tels que $f(\xi) = F(x)$ et $f(\xi') = F(x')$, on a (par définition de Γ') x' $\in \Gamma(x)$, donc $F(x') \geq F(x)$, puisque F est Γ -croissante. Par suite $\overline{f}(\xi) = f(\xi)$ sur E'.

Il reste à vérifier que \overline{f} est Γ' -croissante, ce qui est immédiat : si $\xi \in \Gamma'(\xi_0)$, on a $\Gamma(\xi) \subset \Gamma'(\xi_0)$, donc, d'après la définition de \overline{f} , $\overline{f}(\xi) \geq \overline{f}(\xi_0)$.

On notera que la fonction \overline{f} que nous avons utilisée ici est la plus petite fonction sur \mathbb{R}^p vérifiant les conditions voulues.

REMARQUE - D'après ce théorème, le cône $\mathscr S$ est identique à la famille des Y = $f(\phi_1,\ldots\phi_p)$ où f est une fonction croissante sur $\mathbb R^p$. Si, dans l'énoncé du théorème 5-1, on prend $X_1=\phi_1,\ldots X_p=\phi_p$, la projection de q sur $\mathscr S(X_1,\ldots X_p)$ est donc identique à $\Lambda=\Pi$ q - et (si la conjecture est vraie) - peut être obtenue par un nombre fini d'itérations.

5-3 - Conditions de réalisation pratique.

Le principe de base consiste à définir les "gros blocs"en axes φ et non en les coordonnées initiales. Cela revient tout simplement à discrétiser les fonctions φ_i . L'avantage énorme de ce procédé est de supprimer le problème de l'affinage d'un contour défini au niveau des gros blocs. Car les contours obtenus à l'aide des gros blocs définis en axes φ sont automatiquement dans \mathcal{B} , et n'ont donc pas besoin d'être affinés.

L'espace E utilisé est donc constitué <u>des centres des petits</u>
<u>blocs</u>, en nombre généralement énorme (200 000 par exemple). Tout
va reposer sur la possibilité de résoudre économiquement le :

Problème - Si X et Y sont deux fonctions Γ -croissantes sur E, trouver une bonne approximation de π q .

C'est un problème à <u>deux dimensions</u>, donc soluble par la méthode de programmation dynamique.

On désignera par $\overline{V}(dX, dY)$ et $\overline{Q}(dX, dY)$ les images des mesures V et Q = qV par $x \to (X,Y)$. On a d'ailleurs simplement $\overline{Q} = \overline{q}$ \overline{V} avec $\overline{Q}(X,Y)$: E(q|X,Y).

Le problème (plan) est de projeter \overline{q} sur le cône $\mathscr{G}(X,Y)$ des fonctions croissantes de 2 variables dans $L^2(\mathbb{R}^2,\overline{V})$. En fait, X et Y sont discrétisées. Si elles prennent n et n' valeurs distinctes, \overline{V} est concentrée surnun $E' \subset \mathbb{R}^2$ comportant au plus n n' points (en général moins), soit 100 points si n=n'=10. L'algorithme de programmation dynamique doit marcher rapidement. Si l'on veut discrétiser la projection $\Lambda_0=\Pi_{\overline{V}(X,Y)}$ \overline{q} , on se donnera a priori

des nombres $0<\lambda_1<\ldots<\lambda_n<\infty$. Pour chaque i, on désignera par B_i l'élément de G maximisant $(\overline{q}-\lambda_i)\overline{V}$, et sur δ $B_i=B_i B_{i+1}$, on posera

$$\lambda_{i}' = \frac{\int_{\delta B_{i}} \overline{q} \overline{V}}{\int_{\delta B_{i}} \overline{V}} = E(\overline{q} | \delta B_{i})$$

La solution discrétisée cherchée est :

$$\Lambda_{o} = \sum \lambda'_{i} 1_{\delta B_{i}}$$

c'est-à-dire $\Lambda_0(x) = \lambda_i'$ pour $x \in \delta B_i$.

Dans cette méthode, c'est le calcul de $\overline{V}(dX, dY)$ et de $\overline{q}(X,Y)$ qui risque de prendre le plus de temps, car il nécessite le balayage de tout E (200 000 points). La méthode d'itération directe suivante serait donc prohibitive :

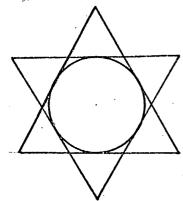
Chaque $\mathbf{x} \in \mathbf{E}$ ayant été informé par $\mathbf{X}_{0}(\mathbf{x})$ (approximation initiale), $\mathbf{X}_{\mathbf{i}}(\mathbf{x}) = \mathbf{\phi}_{\mathbf{i}}(\mathbf{x})$ et $\mathbf{Y}_{\mathbf{k}}(\mathbf{x})$, $\mathbf{k} = 1, 2, \ldots n$, former $\overline{\mathbf{V}}_{\mathbf{n}}(\mathbf{d} \ \mathbf{Y}_{\mathbf{n}}, \mathbf{d} \ \mathbf{X}_{\mathbf{i}})$ et $\mathbf{E}(\mathbf{q} | \mathbf{Y}_{\mathbf{n}}, \ \mathbf{X}_{\mathbf{i}}) = \overline{\mathbf{q}}(\mathbf{Y}_{\mathbf{n}}, \mathbf{X}_{\mathbf{i}})$. Projeter $\overline{\mathbf{q}}$ sur $\mathbf{f}(\mathbf{Y}_{\mathbf{n}}, \ \mathbf{X}_{\mathbf{i}})$, d'où $\overline{\mathbf{Y}}_{\mathbf{n+1}}(\mathbf{Y}_{\mathbf{n}}, \ \mathbf{X}_{\mathbf{i}})$. Substituer pour chaque \mathbf{x} , $\mathbf{Y}_{\mathbf{n+1}}(\mathbf{x}) = \overline{\mathbf{Y}}_{\mathbf{n+1}}(\mathbf{Y}_{\mathbf{n}}(\mathbf{x}), \mathbf{X}_{\mathbf{i}}(\mathbf{x}))$.

Car elle implique un nombre excessif de balayage de E. D'où la méthode d'approximation suivante :

5-4 - Méthode du Bouclier de David.

On retiendra 6 formes linéaires $\varphi_1, \ldots \varphi_6$ pour définir (à peu près) Γ . Si le vrai cône Γ est de révolution, on lui substituera un cône dont la base est un hexagone régulier : cet hexagone est l'intersection de deux triangles équilatéraux symétriques

associés : le premier à (ϕ_1, ϕ_2, ϕ_3) et le second à (ϕ_4, ϕ_5, ϕ_6) .



Principe de la méthode : Approximer (séparément) Π q par Λ_1 et Π $\mathcal{G}(\phi_1,\phi_2,\phi_3)$ par Λ_2 . Puis approximer Π $\mathcal{G}(\Lambda_1,\Lambda_2)$ q par Λ_3 et $\mathcal{G}(\Lambda_1,\Lambda_2)$ et $\mathcal{G}(\Lambda_1,\Lambda_2)$ q par Λ_3 et $\mathcal{G}(\Lambda_1,\Lambda_2)$ et

Sous réserve de vérification, on peut espérer que $\Lambda_{\mathfrak{Z}}$ sera une bonne approximation de Λ :

la méthode ne nécessiterait donc que 4 balayages de E entier.

En effet, pour calculer Λ_1 on peut travailler entièrement en coordonnées (ϕ_1,ϕ_2,ϕ_3) discrétisées.

Par exemple, on retiendra 10 valeurs distinctes pour chaque $\phi_{\textbf{i}}\,,$ en posant :

 $\overline{\phi}_{i}(x) = k \operatorname{si} \phi_{i}(x)$ appartient à l'intervalle (t_{k}, t_{k+1}) , k = 0, 1,..10, $t_{0} = -\infty$, $t_{11} = +\infty$ et en choisissant les classes (t_{k}, t_{k+1}) de manière à ce qu'elles contiennent chacune à peu près le même nombre de points.

En coordonnées discrétisées $(\overline{\varphi}_1,\overline{\varphi}_2,\overline{\varphi}_3)$, E' contient au plus 1000 points (en pratique sans doute 2 ou 300). Chacun des $\xi \in E'$ (c'est-à-dire chaque gros bloc en axes φ) sera informé une fois pour toutes par : son poids $\overline{V}(\xi) = \sum V(x)$ où x décrit le "gros $x \in \xi$ bloc" ξ et sa teneur :

$$\overline{q}(\xi) = \frac{1}{\overline{V}(\xi)} \sum_{x \in \xi} q(x) V(x)$$

Ceci nécessite un seul parcours de E entier.

On choisira une approximation initiale sur E': par exemple

$$x_0 = \pi_{S(\overline{\varphi}_2, \overline{\varphi}_3)} \overline{q}$$

D'autres X_0 sont réalisables : voici un procédé pour obtenir une approximation initiale peut-être meilleure : on remarque que la fonction \overline{q} sur E' peut s'écrire :

$$\overline{q} = \sum_{\xi \in E'} \overline{q}(\xi) 1_{\{\xi\}}$$

Il n'est pas exact que la projection d'une somme soit la somme des projections. Mais cette somme constitue probablement une bonne approximation initiale, soit :

$$X_o = \sum_{\xi \in E'} \overline{q}(\xi) \prod_{(\phi_1, \phi_2, \phi_3)} 1_{\{\xi\}}$$

avec:

$$\Pi 1_{\{\xi\}} (\xi_0) = \frac{1_{\Gamma^{\bullet}(\xi)}(\xi_0)}{\overline{V}(\Gamma(\xi))} \int_{\Gamma^{\bullet}(\xi)} \overline{q}(\xi^{\bullet}) \overline{V}(d\xi^{\bullet})$$

sous forme explicite :

$$X_{o}(\xi) = \sum_{\xi' \in E' \cap \Gamma''(\xi)} \frac{1}{\overline{V}(\Gamma'(\xi'))} \sum_{\eta \in \Gamma'(\xi')} \overline{q}(\eta) \overline{V}(\eta)$$

où Γ " désigne l'ordre inverse (ξ ' $\in \Gamma$ "(ξ) si $\xi \in \Gamma$ '(ξ ')).

On calcule ensuite les \mathbf{Y}_n par des itérations

$$Y_n = \prod_{(Y_{n-1}, \overline{\varphi}_i)} \overline{q}$$

ne nécessitant le balayage que de E' (1000 points) et non de E (200 000) - donc réalisables. Ceci conduira à Λ_1 . Λ_2 se construit de la même manière à partir de ϕ_4 , ϕ_5 , ϕ_6 : ceci nécessite un second parcours de E. Chaque point x de E doit ensuite être informé des valeurs $\Lambda_1(x)$ et $\Lambda_2(x)$ (3ème parcours). Pendant ce même 3ème parcours, on informe la plan (discrétisé) des (Λ_1, Λ_2) . On calcule

alors Λ_3 , et il reste à informer $x \in E$ par $\Lambda_3(x) = \Lambda_3[\Lambda_1(x) \Lambda_2(x)]$ (4ème parcours de E).

Raffinement - Ayant obtenu Λ_3 discrétisée (par exemple) en 10 valeurs $\lambda_1, \ldots \lambda_{10}$, on peut souhaiter améliorer l'approximation entre deux valeurs λ_i et λ_j en cadrant la zone pratiquement intéressante des valeurs de λ .

Cela est possible en éliminant les points x où $\Lambda_3(x) \geq \lambda_j$ et ceux où $\Lambda_3(x) < \lambda_i$ (i.e. en remplaçant V par $1_{\lambda_i \leq \Lambda_3 < \lambda_j}$ V = V'. On recommence les mêmes opérations sur ce nouvel ensemble $E_o \subset E$. Ceci aboutit à une nouvelle fonction $\Lambda_4(x)$ sur E_o vérifiant (en principe) $\lambda_i \leq \Lambda_4 < \lambda_j$ et permettant de resserrer l'approximation dans cette fourchette.

5-5 - <u>Variation des conditions imposées</u>.

a/- On peut souhaiter faire varier l'angle de talus à respecter, c'est-à-dire le cône Γ . On commencera par l'angle le plus faible, i.e. le plus grand cône Γ_0 correspondant à l'ordre le plus sévère, avec la solution Λ_0 . Si $\Gamma_1 \subset \Gamma_0$, Λ_0 est encore Γ_1 -croissante. De plus, si le cône Γ_1 est peu différent du cône Γ_0 , Λ_0 est relativement proche de Λ_1 . Autrement dit, dans le calcul de la solution Λ_1 associé à Γ_1 , Λ_0 constituera une excellente approximation initiale X_0 (ce qui réduira le nombre des itérations).

b/ - Cas de la double coupure.

Ici, λ représente toujours <u>la teneur limite à l'ex-</u>
<u>traction</u> (i.e. le prix de l'extraction de l'unité de volume), mais
il intervient un deuxième paramètre θ, <u>teneur limite au traitement</u>

(i.e. : prix du traitement de l'unité de volume).

Si $F_x(dt)$ est la fonction de transfert en $x \in E$ et si x est extrait, on récupère le volume $\left[1-F_x(\theta)\right]$ $V(\{x\})$ à la teneur $\int_{\theta}^{\infty} t F_x(dt)$, la valeur par unité de volume extrait est :

$$q_{\theta}(x) = \int_{\theta}^{\infty} (t-\theta) F_{x}(dt) = \int_{\theta}^{\infty} [1-F_{x}(t)]dt$$

Il s'agit donc d'optimiser $\int_{B} (q_{\theta}(x)-\lambda) V(dx)$, autrement dit on doit appliquer la même méthode avec q_{θ} au lieu de q. Si Λ_{θ} est (une approximation de) $\Pi_{\mathcal{G}}q_{\theta}$ et si θ ' est voisin de θ , ici encore Λ_{θ} constituera une bonne approximation initiale X_{0} de Λ_{θ} , ce qui diminuera le nombre des itérations.

Noter que si $\theta_1, \theta_2, \dots \theta_k$ sont les k valeurs de θ auxquelles on a décidé de s'intéresser, lors du passage aux coordonnées φ il conviendra d'informer chaque $\xi \in E'$ de toutes les valeurs $q_{\theta_1}(\xi)$, $i=1,\dots$ k à la fois, de manière à réduire le nombre des parcours de E.

c/- On peut aussi traiter par la même méthode le cas d'un paramétrage non linéaire. Si μ_λ ne dépend pas linéairement de λ , les contours optimaux sont encore les :

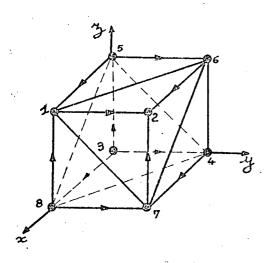
$$B_{\lambda} = \{ \Lambda \geq \lambda \}$$

où $\Lambda \in \mathcal{S}$ est caractérisé par les relations (3-1). En passant en axes φ , les résultats précédents subsistent. Les approximations Λ_1 et Λ_2 en axe φ se construisent par itérations (la méthode de programmation dynamique s'applique sans changement dans \mathbb{R}^2), et de même Λ_3 s'obtient (par programmation dynamique, a partir de Λ_1 et Λ_2 .

6 - POST SCRIPTUM.

La conjecture relative à la méthode d'itération est <u>fausse</u> en réalité. Voici un contre-exemple très simple.

 ${\mathcal B}$ va être la famille stable pour ${\sf U}$ et ${\sf \cap}$ engendrée par trois ensembles seulement. Ceci conduit à un graphe à 8 points disposés au sommet du cube de base de ${\sf R}^3$ avec les coordonnées



$$x = 1_{B_1}$$
 $y = 1_{B_2}$ $z = 1_{B_3}$

avec un ordre Γ défini par l'octant positif

$$(x,y,z) \in \Gamma(x',y',z')$$
 si
 $x \ge x'$, $y \ge y'$, $z \ge z'$

Je prends V = 1 sur chacun des huit points, et q comme indiqué sur la Figure 1.

On trouve facilement Λ (Figure 2).

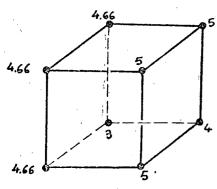


Fig. 2 : Λ

Pour appliquer la méthode d'itération, partons, par exemple, de

$$X_0 = \Pi_{xy} q$$

 $\overline{q}(x,y) = E(q|xy)$ est donné Fig. 3

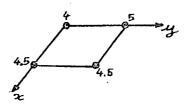
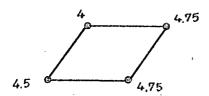
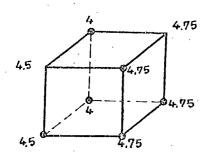


Fig. 3: $\overline{q}(x,y)$

De sorte que $X_0 = \Pi_{xy}$ q est (dans le plan des xy) :



et, à trois dimensions (Fig. 4). Nous devons ensuite passer à



$$X_0 = \Pi_{xy} q$$

$$Y_1 = \Pi(X_0, z)^q$$

Pour cela, nous allons nous placer en axes (X_0,z) . Cela donne la figure 5, où chaque point est informé des deux nombres : le premier est $\overline{q} = E(q | X_0, z)$ le second est $\overline{V} = V(X_0, z)$

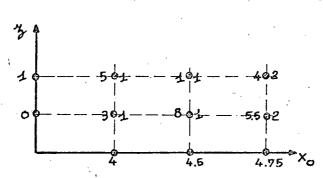


Figure 5 (\overline{q} et \overline{V} en axes X_0, z)

On en déduit $\Pi_{(X_0,z)}^q = Y_1$ en axes (X_0,z) :

3.1

4,6.1 4,75.2

et en axes (x,y,z) (Fig. 6)

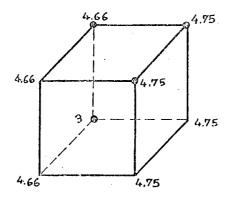


Fig. 6:
$$Y_1 = \pi_{(X_0,z)} q = Y_0$$

Il est ensuite facile de vérifier $\Pi_{(Y_1x)} = Y_1$ et $\Pi_{(Y_1y)} = Y_1$. L'itération est bloquée, et on n'a pas $Y_0 = \Lambda$ comme on le voit en comparant les figures 2 et 6.

Si, au lieu de $X_0 = \Pi$ q , nous étions partis de $X_0 = \Pi$ q ou de $X_0'' = \Pi$ q , nous serions arrivés à la même limite Y_0 , comme on peut le vérifier facilement.

Il ressort de cela:

1º/ que la conjecture est fausse

 $2^{\circ}/qu'$ il n'est probablement pas bon de partir de l'approximation initiale X_{0} obtenue en projetant q sur l'un des trois plans de coordonnées.

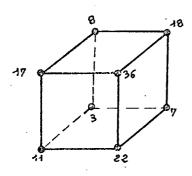
Il est sans doute préférable de prendre pour X_0 une fonction a priori davantage liée à q. Voici deux procédés possibles : On peut prendre pour $X_0(\xi)$ la somme des minorants de $\xi \in \mathbb{R}^3$ dans l'ordre Γ , soit, en désignant par Γ ' le cône opposé $(\xi' \in \Gamma'(\xi) \Leftrightarrow \xi \in \Gamma(\xi'))$

$$X_{o}(\xi) = \int_{\Gamma^{i}(\xi)} q(\xi^{i}) V(d\xi^{i})$$

On peut encore prendre $X_0(\xi)$ égal à <u>la somme changée de signe</u> des majorants de ξ dans l'ordre Γ

$$X_{o}^{\dagger}(\xi) = -\int_{\Gamma(\xi)} q(\xi^{\dagger}) V(d\xi^{\dagger})$$

Ici, cela donne (Fig. 7 et 8)



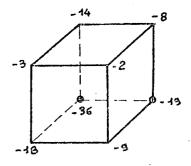


Fig. 8 : X

Il se trouve (mais ce n'est évidemment pas une circonstance générale) qu'ici X_o est une remarquable approximation initiale : on vérifie facilement, en effet, que :

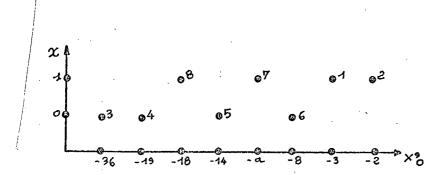
$$\eta_{X_{O}} q = \Lambda$$

A plus forte raison $\Pi(X_0,x)^q = \Pi(X_0,y)^q = \Pi(X_0,z)^q = \Lambda$ de sorte que l'on trouve $Y_1 = \Lambda$ dès la première itération.

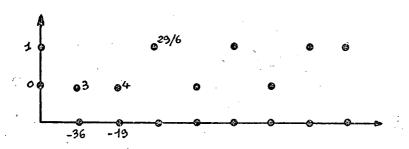
 X_{o} conduit également à la solution exacte Λ , quoiqu'un peu moins vite. Si l'on projette en premier lieu q sur le plan des (y, X_{o}) , on trouve du premier coup $\Pi_{(y, X_{o})} = \Lambda$. Mais il n'en est pas de même si l'on commence par le plan des (z, X_{o}) ou des (x, X_{o}) . Si l'on part de (z, X_{o}) on obtient le trajet le plus long : en premier lieu,

$$Y_1 = \Pi_{(z,X_0)} q = X_0'$$

la première itération ne change pas X_0 . Calculons ensuite $Y_2 = \prod_{i=1}^{n} q_i$. En axe (x, X_0) , chaque point a le volume 1, et $\overline{q}(x, X_0)$ est :



de sorte qu'en axe (x, X_0) , Y_2 est :



(les points non marqués correspondent tous à $Y_2 = 29/6 = 4,88$). En axe (x,y,z) cela donne :

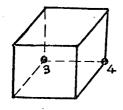
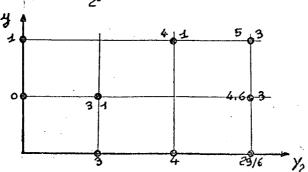


Fig. 9:
$$Y_2 = \prod_{x \in X_0} q$$

 $(Y_2 = \frac{29}{6})$ sur les points non marqués).

Passons à $Y_3 = \Pi_{Y_2y} q$. En axes (Y_2,y) , on obtient:



(le premier chiffre est \overline{q} , le second \overline{V}) et Y_3 est identiquement $Y_3 = E(q|Y_2,y) = \Lambda$.

En conclusion

Au lieu de prendre pour X_{o} la projection sur l'un des plans de coordonnées, je suggère la procédure suivante :

 \sim prendre la somme des Γ -minorants et la somme changée de signe des Γ -majorants de chaque point ξ :

$$X_{o}^{\prime}(\xi) = \int_{\Gamma^{\prime}(\xi)} q(\xi^{\prime}) \ V(d\xi^{\prime})$$

$$X_{o}^{\prime\prime}(\xi) = -\int_{\Gamma(\xi)} q(\xi^{\prime}) \ V(d\xi^{\prime})$$

et partir de l'approximation initiale :

$$X_{o} = \Pi(X_{o}, X_{o}) q$$

~ D'où Y₁ = Π q , Y₂ = Π q etc... jusqu'à un Y_n = Y_o suffisamment stabilisé (le critère est le ralentissement de la croissance de $\|Y_n\|$.

A titre de vérification, former

$$Z' = \Pi(X_0, Y_0)^{q}$$
; $Z'' = \Pi(X_0, Y_0)^{q}$

et
$$Z = \prod_{(X_0, Y_0)} q$$
.

Si l'un de ces trois éléments a une norme (significativement) plus forte que $\|Y_0\|$, faire une nouvelle itération en partant de cet élément (s'il y an a plusieurs, partir de celui dont la norme est la plus forte).

Une autre procédure possible consisterait à incorporer X_{o} à la séquence servant à faire l'itération :

$$Y_1 = \prod_{X_0} q$$
, $Y_2 = \prod_{Y_1 y} q$, $Y_3 = \prod_{Y_2 z} q$

puis $Y_4 = \Pi$ q (au lieu de Π q) et ainsi de suite. C'est $Y_3 X_0$ $Y_3 X_3$ l'expérience qui permettra de juger laquelle de ces deux procédures est la meilleure (on peut aussi les combiner de diverses manières).

7 - RECHERCHE D'AUTRES ALGORITHMES.

Voici quelques autres possibilités, qui permettrant peut-être d'améliorer la procédure.

a/ - Algorithme de l'ordre total.

On se place soit dans \mathbb{R}^2 (coordonnées (x,y)) soit dans \mathbb{R}^3 (coordonnées (x,y,z)) avec un ordre Γ défini par le quadrant ou l'octant positif.

On fait choix d'un ordre total, noté \geqslant , compatible avec Γ (i.e. : $(x,y) \in \Gamma(x',y') \Rightarrow (x,y) \geqslant (x',y')$. Par exemple, dans \mathbb{R}^2 :

$$(x,y) \geqslant (x',y') \Leftrightarrow x > x', \text{ ou } x = x' \text{ et } y \ge y'$$

Soit $\xi_1,\ \xi_2...\xi_N$ les points de E ordonnés par \geqslant . On amorce la récurrence en posant :

$$f_1(\xi_1) = q(\xi_1)$$

 $f_1(\xi_n) = 0$, $n > 1$

Au stade n, on a une fonction f_n vérifiant

$$f_n(\xi_{n+1}) = ... = f_n(\xi_N) = 0$$

b/
$$f_n$$
 est Γ -croissante

c/ pour tout
$$\lambda > 0$$
 tel que $\{f_n(\xi) = \lambda\} \neq \emptyset$, on a:

$$\int_{f_n = \lambda} q(\xi) \ V(d\xi) = \int_{f_n = \lambda} f_n(\xi) \ V(d\xi) = \lambda \ V(\{f_n = \lambda\})$$

Construction de f_{n+1}:

Soit $q_{n+1}=(\xi_{n+1})$. On compare ξ_{n+1} à ses deux majorants immédiats : l'un est ξ_n , l'autre un certain ξ_i (l'indice i>n dépend du cas de figure : mais, si $\xi_{n+1}=(x,y)$, alors $\xi_i=(x,y+1)$).

Si
$$q_{n+1} \le Inf (f_n(\xi_n), f_n(\xi_i), \text{ on pose :}$$

$$f_{n+1}(\xi_j) = f_n(\xi_j) \qquad j = 1, 2, \dots n$$

$$f_{n+1}(\xi_{n+1}) = q_{n+1}$$

$$f_{n+1}(\xi_{n+2}) = \dots = f_{n+1}(\xi_N) = 0$$

Si $q_{n+1} > Inf (f_n(\xi_n), f_n(\xi_i)) = \lambda_0$, désignons par C_0 la classe Γ -connexe engendrée dans $\{f_n = \lambda_0\}$ par le (ou les) majorants immédiats $\xi_0(=\xi_i \text{ ou } \xi_n)$ de ξ_{n+1} tels que $f_n(\xi_0) = \lambda_0$.

Si, pour chaque $\xi \in E$ de coordonnées (x,y) on désigne par S_{ξ} l'ensemble constitué par $\xi = (x,y)$, ses deux majorants immédiats (x+1, y) et(x, y+1) et ses deux minorants immédiats (x-1, y) et (x, y-1), $C_0' \subset \{f_n = \lambda_0\}$ est donc la classe stable pour S_{ξ} engendrée par ξ_0 dans $\{f_n = \lambda_0\}$.

On pose $C_0 = \{\xi_{n+1}\} \cup C_0'$ et :

$$\lambda_{1} = \frac{Q(C_{o})}{V(C_{o})} = \frac{q_{n+1} + \int_{C_{o}} f_{n}(\xi) V(d\xi)}{\int_{C_{o}} V(d\xi)}$$

On compare ensuite λ_1 à l'inf. de \mathbf{f}_n sur l'ensemble des majorants immédiats de \mathbf{C}_o : soit, en posant

$$s_{(x,y)} = \{(x+1, y), (x, y+1)\}$$

$$\lambda_1' = \inf \{f_n(\xi'), \xi' \in \bigcup_{\xi \in C_o} s_{\xi}\}$$

et on désigne par C_1 la classe Γ -connexe engendrée dans $\{f_n = \lambda_1^{\prime}\}$ par les $\xi^{\prime} \in \bigcup \{s_{\xi}$, $\xi \in C_0\}$.

 $Si \lambda_1 \leq \lambda_1'$, on posera :;

$$f_{n+1}(\xi) = \lambda_1 \qquad \xi \in C_0$$

$$f_{n+1}(\xi) = f_n(\xi)$$
 $\xi \notin C_0$

Si $\lambda_1 > \lambda_1'$; on prendra

$$\lambda_2 = \frac{Q(C_0 \cup C_1)}{V(C_0 \cup C_1)} = \frac{\lambda_1 V(C_0) + \lambda_1^{\prime} V(C_1)}{V(C_0) + V(C_1)}$$

On formera ensuite λ_2 et la classe C_2 - Γ -connexe, etc...

Cette procédure n'est pas infaillible, en ce sens qu'elle ne conduit pas tout-à-fait à $\Pi(x,y)$ q, mais à une fonction f qui en diffèrera en général fort peu.

On peut alors améliorer les choses en formant de manière analogue f' en utilisant l'autre ordre total :

$$(x,y) \gg (x',y') \Leftrightarrow$$
ou $y = y'$ et $x \ge x'$

Si f = f', on doit avoir une excellente approximation de Λ si $f \neq f'$: on peut passer en axes (f;f') et appliquer une seconde fois la procédure approchée ci-dessus. Cela donnera deux nouvelles approximations g et g', etc...

Dans \mathbb{R}^3 , la même procédure est en principe applicable (mais plus lourde, du fait que chaque ξ a maintenant 3 majorants immédiats). Comme il y a cette fois trois ordres totaux, on aboutit à 3 approximations f, f', f", puis, en passant en axes (f, f', f") trois nouvelles approximations (g, g', g") etc...

REMARQUE: Utilisée dans \mathbb{R}^2 , cette procédure permet de calculer les itérations:

$$Y_1 = \Pi_{(x,X_0)}^q$$
, $Y_2 = \Pi_{(y,Y_1)}^q$, $Y_3 = \Pi_{(z,Y_2)}^q$,...

jusqu'à un Y_n stabilisé $(Y_n \ \# \ Y_o)$. Elle ne supprime pas la nécessité de recourir à cette itération.

Au contraire, si on l'utilise dans \mathbb{R}^3 , on obtient, au prix d'une procédure plus lourde, mais en une seule fois une approximation de $\Pi_{(x,y,z)}^{q}$

b/ - Utilisation de Cônes linéaires.

On a désigné par $\mathcal{G}(X_1,\dots X_p)$ le cône convexe constitué des fonctions $f(X_1,\dots X_p)$ où f est une fonction croissante de chacun de ses arguments.

On peut aussi considérer le sous-cône beaucoup plus simple constitué des combinaisons linéaires à coefficients positifs des

fonctions 1, -1 et $X_1, ... X_p$. Nous désignerons par $\mathcal{L}(X_1, ... X_p)$ ce cône linéaire positif :

$$f \in \mathcal{G}(X_1, \dots X_p) \Leftrightarrow f = C + \sum \lambda_i X_i \qquad (\lambda_i \ge 0)$$

(C est une constante positive ou non).

Si p n'est pas très élevé, on peut former rapidement la projection de q sur le cône linéaire, soit

$$f_1 = \pi_{\mathcal{L}(X_1, \dots, X_p)}^{q}$$

La procédure est la suivante (il en existe peut-être de meilleures) :

Former les α_i minimisant $\|\mathbf{q} - \overline{\mathbf{q}} - \sum_{i=1}^{p} \alpha_i (\mathbf{X}_i - \overline{\mathbf{X}}_i)\|^2$ $(\overline{\mathbf{f}} = \frac{1}{V(E)} \int_{E} \mathbf{f}(\xi) \ V(d\xi))$

Si les α_i sont tous ≥ 0 , $\alpha_i = \lambda_i$ et

$$f_1 = \prod_{\alpha} q = \overline{q} + \sum \alpha_i (X_i - \overline{X}_i)$$

Si les α_i ne sont pas tous nuls, résoudre les p-systèmes obtenus en supprimant soit X_1 , soit X_2 etc... Si l'un ou plusieurs donnent des α_i tous ≥ 0 , le meilleur d'entre eux est f_1 . Si aucun des systèmes ne donne des α_i tous positifs, résoudre les p(p-1)/2 systèmes obtenus en enlevant deux fonctions X_i , etc... Pour p de l'ordre de 4 ou 5 ceci doit être très rapide.

On améliore ensuite f_1 en projetant q sur $\mathcal{G}(f_1)$, problème à une seule dimension tout à fait simple : sur $\{f_1=\lambda\}$, on pose $g_1=\int\limits_{\{f_1=\lambda\}}q$. Cette fonction

$$g_1 = \pi_{g'(f_1)}^q$$

peut servir d'approximation initiale $X_0 = g_1$ a une procédure d'itération du type ci-dessus.

On peut aussi penser à des itérations du type :

$$f_2 = \Pi_{\mathcal{L}(X_1, \dots, X_p, g_1)} q$$

$$g_2 = \Pi_{\mathcal{L}(f_2)} q$$

(mais il n'est pas sur que l'on obtienne des améliorations notables).

Ceci pourrait être essayé à deux dimensions (comme substitut éventuel à la programmation dynamique). On partirait de 4 fonctions : les 2 coordonnées x et y et les deux fonctions

$$X_{o}^{"} = \int_{\Gamma'(\xi)} q(\xi') \ V(d\xi')$$

$$X_{o}^{"} = -\int_{\Gamma(\xi)} q(\xi') \ V(d\xi')$$

D'où

$$f_1 = \prod_{\mathcal{L}(x,y,X_0',X_0')} q$$

$$g_1 = \prod_{\mathcal{L}(f_1)} q$$

etc...