Fontainebleau/CGNM

N-759

SURPOTENTES (et)

G. MATHERON

<u>Mai 1982</u>

SURPOTENTES ET SOUS-POTENTES

G. MATHERON

Table des Matières

10 -	LE TREILLIS P · DES APPLICATIONS CROISSANTES	1
	Th. 10-1	3
	Th. 10-2	3
	Th. 10-3	4
	Th. 10-4	5
11 -	LES ENVELOPPES SOUS-POTENTES, SURPOTENTES, c U et c	7
	Th. 11-1	8
	Th. 11-2	10
12 -	CARACTERISATION DE CES ENVEIOPPES	12
,	Th. 12-1	13
	Critère 12	14
	Th. 12-2	15
13 -	STABILITE DU DOMAINE D'INVARIANCE	16
	Th. 13-1	17
	Th. 13-2	19
	-	23
	Th. 13-4	24
		•

SURPOTENTES ET SOUSPOTENTES

Par

G. MATHERON

Mai 1982

Ce texte constitue la suite de la Note intitulée "Les applications idempotentes". C'est pourquoi le premier paragraphe porte le n° 10 (la Note précédente comportait neuf paragraphes). Les notations restent les mêmes, ainsi que la numérotation des formules ou des théorèmes : la référence au Théorème 4-3 se rapporte au Théorème 4 de paragraphe 3 de la Note précédente, tandis que le Théorème 10-1 concerne la présente.

10 - LE TREILLIS 9º DES APPLICATIONS CROISSANTES.

Nous désignerons par \mathcal{P}' l'ensemble des applications <u>croissantes</u> (non nécessairement idempotentes) définies sur le treillis \mathcal{P} . Muni de l'ordre :

$$f \subset g$$
 si $f(A) \subset g(A)$ $\forall A \in \mathcal{P}$

 \mathcal{S} ' est un treillis complet : toute famille f_i dans \mathcal{S} ' admet un Sup, noté $\bigcup f_i$, et un Inf, noté $\bigcap f_i$, défini par :

$$(\bigcup f_i)(A) = \bigcup (f_i(A))$$
 $(A \in \mathcal{P})$

 \mathcal{P} est aussi muni d'une opération appelée <u>composition</u> et notée o, définie par :

$$(f \circ g)(A) = f[g(A)]$$
 $(A \in \mathcal{P})$

Mais, le plus souvent, nous écrirons f g au lieu de f o g.

Le Sup \bigcup et l'Inf \bigcap sont <u>distributifs à gauche</u> pour cette loi de composition, mais <u>non à droite</u>:

(10-1)
$$\begin{cases} (\bigcup f_{i}) \circ g = \bigcup (f_{i} g) \\ (\bigcap f_{i}) \circ g = \bigcap (f_{i} g) \end{cases}$$

Mais on a seulement:

$$\begin{cases}
g \circ (\bigcup f_i) \supset \bigcup g f_i \\
g \circ (\bigcap f_i) \subset \bigcap g f_i
\end{cases}$$

Cette dissymétrie caractérise une structure algénrique très particulière. Nous pourrions, à partir de là, développer la théorie purement algébrique d'un treillis complet muni de ces axiomes. Mais il en résulterait certaines longueurs, et je préfère raisonner dans le cas où \mathscr{P}^{\bullet} est effectivement l'espace des applications croissantes sur un premier treillis complet \mathscr{P}^{\bullet} .

L'application $f \to f$ f de \mathcal{F} ' dans lui-même sera appelée <u>auto-composition</u>. Ies éléments invariants pour l'auto-composition sont évidemment les <u>idempotentes</u>. Nous introduirons quatre autres opérations :

- Surcomposition à gauche : $f \rightarrow (I \cup f)$ o $f = f \cup f$ f

- Sous-composition à gauche : $f \rightarrow (I \cap f)$ o $f = f \cap f$ f

- Surcomposition à droite : $f \rightarrow f \circ (I \cup f)$

- Sous-composition à droite : $f \rightarrow f \circ (I \cap f)$

(I est l'application identique).

Comme (I \bigcup f) o f = f \bigcup f f, d'après (10-1), on a (I \bigcup f)f = f si et seulement si f f \subset f. Ainsi:

Une application $f \in \mathcal{P}$ est <u>sous-potente</u> si et seulement si elle est invariante pour la surcomposition à gauche. De même, f

est <u>surpotente</u> si et seulement si elle est <u>invariante pour la</u> sous-composition à gauche.

Par définition, on dira que $f \in \mathcal{P}^{\bullet}$ est \bigcup -propre (ou est une application $c.\bigcup$) si f est invariante pour la surcomposition à droite. De même, $f \in \mathcal{P}^{\bullet}$ sera dite \bigcap -propre (ou $c.\bigcap$) si elle est invariante pour la sous-composition à droite.

En résumé:

$$\begin{cases} f \text{ sous potente} & \Leftrightarrow & f = (I \cup f) \text{ o } f \\ f \text{ c } \cup & \Leftrightarrow & f = f \text{ o } (I \cup f) \\ f \text{ surpotente} & \Leftrightarrow & f = (I \cap f) \text{ o } f \\ f \text{ c } \cap & \Leftrightarrow & f = f \text{ o } (I \cap f) \end{cases}$$

Du fait de la dissymétrie entre les relations (10-1) et (10-2), nous trouvons le résultat suivant :

THEOREME 10-1 - Toute application c U est sous-potente, et toute

application c O est surpotente. Mais les énoncés réciproques
ne sont pas vrais.

En effet, si f est c [], par exemple, on a d'après (10-2):

$$f = f \circ (I \cup f) \supset f \cup f f \supset f f$$

et donc f est sous-potente. Mais il existe évidemment des souspotentes qui ne sont pas U-propres.

THEOREME 10-2 - La classe des sous-potentes (respectivement surpotentes) est stable pour (resp. pour U), pour l'auto-composition, et pour les surcompositions ainsi que les sous-compositions à droite et à gauche.

En effet, si les f_i sont sous-potentes, par exemple, on trouve :

$$(\cap f_i) \circ (\cap f_i) = \bigcap_i (f_i \circ \cap f_j) \subset \bigcap_i f_i f_i \subset \cap f_i$$

De même, pour f sous-potente, f f c f entraine f f o f f c f f, et l'auto-composée f f est sous-potente. Comme

$$(I \cup f) \circ f = f$$
, $(I \cap f) \circ f = f f$

les sous et sur-composées à gauche sont encore sous-potentes. De même :

$$f \circ (I \cup f) \circ f \circ (I \cup f) = f \circ ((I \cup f) \circ f) \circ (I \cup f) =$$

$$= f \circ f \circ (I \cup f) \subset f \circ (I \cup f)$$

$$f \circ (I \cap f) \circ f \circ (I \cap f) = f \circ ((I \cap f) \circ f) \circ (I \cap f) =$$

$$= f \circ f \circ ((I \cap f) \subset f \circ ((I \cap f))$$

Les c \cup et les c \cap ont des propriétés moins bonnes, sauf si le treillis $\mathcal P$ est modulaire.

THEOREME 10-3 - La classe des c U (resp. c n) est stable pour n (resp. pour U), pour l'auto-composition, et pour la sur et la sous-composition à gauche et pour la surcomposition (resp. la sous-composition) à droite, mais non en général pour la sous-composition (resp. sur-composition) à droite.

Toutefois, si le treillis \mathscr{P} est modulaire, la classe des c \cup et celle des c \cap sont stables pour les deux surcompositions et les deux sous-compositions.

La première partie de l'énoncé est triviale. La seconde ne fait que ré-énoncer le <u>lemme 4-1</u>: la démonstration de ce lemme ne fait nulle part intervenir l'idempotence, mais seulement la croissance de ϕ . De même, elle n'utilise pas réellement la distributivité du treillis \mathcal{P} :

$$a \cap (b \cup c) = (a \cap b) \cup (a \cap c)$$

mais seulement la propriété un peu plus faible (ou modularité) :

$$a \supset b \Rightarrow a \cap (b \cup c) = b \cup (a \cap c)$$

Naturellement, une application croissante f est idempotente si et seulement si elle est à la fois surpotente et sous-potente. D'après le théorème 10-1, une application à la fois c U et c n est donc idempotente, c'est à-dire à la fois c.i.U et c.i.n (nous écrirons pour abréger c.i.U n), et réciproquement. En fait, la classe stable pour U (resp. pour n) engendrée par les idempotentes coïncide avec la classe des surpotentes (resp. des sous-potentes). De même, la classe stable pour U (resp. pour n) engendrée par les c.i.U n coïncide avec la classe des c n (resp. des c U).

Plus précisément, on a le résultat suivant, qui évoque la génération des fonctions convexes ou concaves à partir des fonctions affines :

THEOREME 10-4 - Toute surpotente est l'union de ses minorantes idempotentes. Toute sous-potente est l'intersection de ses majorantes idempotentes. Toute c n est l'union de ses minorantes c.i. U n . Toute c u est l'intersection de ses majorantes c.i. U n .

En effet, soit par exemple f surpotente. Pour tout A \in $\mathcal P$, considérons l'application ψ_A définie en posant pour chaque A' \in $\mathcal P$:

$$\phi_{A}(A^{\bullet}) = \begin{cases} f(A) & \text{si } A^{\bullet} \supset A \text{ ou si } A^{\bullet} \supset f(A) \\ \phi & \text{sinon} \end{cases}$$

 ψ_A est idempotente (immédiat) et minore f. En effet, si $A'\supset A$, on a bien $\psi_A(A')=f(A)\subset f(A')$. Si $A'\supset f(A)$, la surpotence de f donne :

$$\psi_{\Delta}(A^{\dagger}) = f(A) \subset f(f(A)) \subset f(A^{\dagger})$$

D'où $\psi_A \subset f$. Comme de plus $\psi_A(A) = f(A)$, on en conclut :

$$\mathbf{f} = \bigcup_{\mathbf{A} \in \mathfrak{P}} \psi_{\mathbf{A}}$$

Donc f est bien l'union de ses minorantes idempotentes.

Si maintenant f est $c \cap$, on a par définition :

$$f(A) = f(A \cap f(A))$$

Nous poserons cette fois:

$$\phi_{A}(A') = \begin{cases} f(A) & \text{si } A' \supset A \cap f(A) \\ \phi & \text{sinon} \end{cases}$$

 ψ_A minore f : en effet, si A' \supset A \cap f(A), on a :

$$\phi_{A}(A^{\bullet}) = f(A) = f[A \cap f(A)] \subset f(A^{\bullet})$$

 ϕ_A est c.i. $\bigcup \cap$: si $A' \not\preceq A \cap f(A)$, on a $\phi_A(A') = \emptyset$ et donc

$$\psi_{\mathbf{A}}(\mathbf{A}^{\bullet} \cap \psi_{\mathbf{A}}(\mathbf{A}^{\bullet})) = \phi = \psi_{\mathbf{A}}(\mathbf{A}^{\bullet})$$

$$\psi_{\mathbf{A}}(\mathbf{A}^{\bullet} \cup \psi_{\mathbf{A}}(\mathbf{A}^{\bullet})) = \psi_{\mathbf{A}}(\mathbf{A}^{\bullet})$$

et, si A' \supset A \cap f(A), on a $\psi_A(A')$ = f(A) et

$$\psi_{A}(A' \cap \psi_{A}(A')) = \psi_{A}(A' \cap f(A)) = f(A)$$

$$\psi_{A}(A^{\bullet} \cup \psi_{A}(A^{\bullet})) = \psi_{A}(A^{\bullet} \cup f(A)) = f(A)$$

Donc, ψ_A est c.i. $\bigcup \cap$.

Comme enfin $\psi_A(A) = f(A)$, on trouve bien :

$$f = \bigcup_{A \in \mathcal{P}} \psi_A$$

et f est l'union de ses minorantes c.i.u A.

11 - LES ENVELOPPES SOUS-POTENTES, SURPOTENTES, c ∪ et c ∩.

A la classe des sous-potentes, stable pour \cap , est associée une fermeture F, ou <u>fermeture sous-potente</u>, sur \mathcal{I}' : pour toute $f \in \mathcal{I}'$, F f est la plus petite majorante sous-potente de f. D'après le théorème 10-4, F f est aussi l'intersection des majorantes idempotentes de f.

De même, à la classe des surpotentes, stable pour \bigcup , est associée <u>l'cuverture surpotente</u> G : pour toute $f \in \mathcal{P}^{\bullet}$, G f est la plus grande minorante surpotente de f, ou encore la réunion des minorantes idempotentes de f.

A la classe des c \cup , stable pour \cap , nous associons de même la fermeture c \cup F \cup : pour toute f $\in \mathcal{P}^1$, F \cup f est la plus petite majorante c \cup de f, ou encore l'intersection de ses majorantes c.i. \cup \cap .

Enfin, la classe des c \cap , stable pour \cup , engendre l'ouverture G: G if est la plus grande minorante c \cap de f, ou la réunion de ses minorantes c.i. \cup \cap .

Ces quatre enveloppes se laissent caractériser comme au début du paragraphe 5. Considérons par exemple le cas de la <u>fermeture</u> $\underline{sous-potente}$:

Pour toute f croissante, F f est la plus petite sous-potente majorant f, ou, si l'on veut, l'intersection de la classe \mathscr{C} (stable pour \cap) des majorantes sous-potentes de f ; il s'agit en somme d'une caractérisation "per descensum" à partir du plus grand élément de \mathscr{P} ! (qui est l'application constante e : e(A) = E \forall A $\in \mathscr{P}$, où E est le plus grand élément de \mathscr{P}).

On peut aussi caractériser F f "per ascensum" à partir de f. Désignons, en effet, par $\mathscr C$ ' la classe stable pour \bigcup et l'autocomposition engendrée par f (noter que $\mathscr C$ ' est également stable pour la surcomposition à gauche, puisque (I \bigcup f') o f' = f' \bigcup f'f'). Comme la classe $\mathscr C$ " des minorantes de F f est elle-même une classe

stable pour \bigcup et pour l'auto-composition (car g \subset F f entraine g g \subset F f o F f \subset F f, F f étant sous-potente), et contient f, on a $\mathscr{L}' \subset \mathscr{L}''$. Soit alors $f_0 = \bigcup \{f', f' \in \mathscr{L}'\}$ le plus grand élément de \mathscr{L}' . Il appartient à \mathscr{L}' (classe stable pour \bigcup), donc aussi à \mathscr{L}'' , soit $f_0 \subset$ F f. Comme \mathscr{L}' est stable pour l'auto-composition, $f_0 \in \mathscr{L}'$, et par suite $f_0 f_0 \subset f_0$, puisque f_0 est le plus grand élément de \mathscr{L}' . Donc f_0 est sous-potente. Cela implique $f_0 \supset$ F f (puisque $f_0 \supset$ f). Comme l'inclusion inverse est vraie, on conclut $f_0 =$ F f.

Dans le cas particulier où f est <u>surpotente</u>, on peut remplacer \mathscr{C} " par la classe \mathscr{C} " des minorantes surpotentes de F f : elle est encore stable pour \bigcup et l'auto-composition (Th. 10-2 et souspotence de F f) et contient f : donc $\mathscr{C}' \subset \mathscr{C}$ " : ce qui veut dire que la classe \mathscr{C}' stable pour \bigcup et l'autocomposition engendrée par la surpotente f <u>ne contient que des surpotentes</u> : En particulier, son plus grand élément f_o est encore surpotent. Comme f_o = F f est aussi souspotente, F f est ici en fait <u>idempotente</u>. En particulier, pour f croissante quelconque, G f est surpotente, et donc F G f est idempotente. De même G F f est idempotente.

THEOREME 11-1 - Pour toute application croissante f, la fermeture sous-potente F f est le plus grand élément de la classe stable pour U et l'auto-composition engendrée par f. De même, l'ouverture surpotente G f est le plus petit élément de la classe stable pour n et l'auto-composition engendrée par f. De plus, si f est surpotente, F f est idempotente. Si f est sous-potente, G f est idempotente.

Ainsi, F G f et G F f étant idempotentes, ces enveloppes vérifient:

$$GFG=FG$$
; $FGF=GF$

D'après le critère 7, ces applications F G, G F, etc.., idempotentes sur \mathcal{P} ', admettent le même domaine d'invariance $\mathcal{B} \subset \mathcal{P}$ ', à savoir l'ensemble des idempotentes sur \mathcal{P} . D'autre part, la classe des surpotentes coïncide avec \mathcal{B} (classe stable pour U engendrée par \mathcal{B}) et celle des sous-potentes avec $\widehat{\mathcal{B}}$. Nous

reportant au Théorème 3 et au scholie 1, nous voyons que la classe \mathcal{B} des idempotentes sur \mathcal{F} , munie de l'ordre induit par \subset , est complètement réticulée (ce que nous savions déjà). Mais de plus, puisque $F = \widetilde{I}_{\mathcal{B}}$ et $G = \overline{I}_{\mathcal{B}}$, nous voyons aussi que F G est le plus petit élément de $\widetilde{J}d(\mathcal{B})$, et G F son plus grand élément.

Ainsi, si l'on pose la question : existe-t-il des opérateurs H sur \mathcal{P}^{\bullet} transformant toute application croissante f en une idempotente H f en vérifiant la condition

$$H \psi = \psi$$
 si ψ est idempotente

(ce qui implique H H f = H f, i.e. l'idempotence de H), la réponse est : oui, il en existe, par exemple G F et F G, et de plus on a nécessairement

De plus, d'après le Théorème 5-3, la famille constituée de ces opérateurs H (c'est-à-dire $\exists d(\mathfrak{F})$) est complètement réticulée. Pour toute famille H_i il existe un Sup et un Inf donnés par :

$$v H_{i} = H \circ \bigcup H_{i}$$

$$\wedge H_{i} = H \circ \bigcap H_{i}$$
(H $\in \mathcal{J}d(\mathcal{J})$)

Examinons maintenant le cas de la fermeture c \cup , soit \mathbb{F}_{\cup} . Per descensum, \mathbb{F}_{\cup} f (pour f croissante quelconque) est l'intersection de la classe \mathscr{C} (stable pour \cap) des majorantes c \cup de f. Voyons la caractérisation per ascensum : ici, la classe \mathscr{C} ' sera la classe stable pour \cup et pour la surcomposition à droite engendrée par f (i.e. : $\mathbb{f}' \in \mathscr{C}' \Rightarrow \mathbb{f}'$ o($\mathbb{I} \cup \mathbb{f}'$) $\in \mathscr{C}'$). Comme \mathbb{F}_{\cup} f est \cup -propre et majore f, la classe \mathscr{C} " de ses minorantes est stable pour \cup et pour la surcomposition à droite, et contient f : donc $\mathscr{C}' \subset \mathscr{C}$ ". Ainsi, en désignant par \mathbb{f}_{\circ} le plus grand élément de \mathscr{C}' , on a $\mathbb{f}_{\circ} \subset \mathbb{F}_{\cup}$ f. Mais \mathscr{C}' est stable pour la surcomposition à droite. Donc \mathbb{f}_{\circ} o ($\mathbb{I} \cup \mathbb{f}_{\circ}$) $\in \mathscr{C}'$. Cela implique \mathbb{f}_{\circ} o($\mathbb{I} \cup \mathbb{f}_{\circ}$) \subset \mathbb{f}_{\circ} , puisque \mathbb{f}_{\circ} est le plus grand élément de \mathscr{C}' . Par suite

 $f_0 = f_0 \circ (I \cup f_0)$: $f_0 = f_0 \circ I$ est $f_0 = f_0 \circ I$ for each $f_0 = f_0 \circ I$ of $f_0 = f_0 \circ I$ of

Dans le cas où f est c \cap , il n'est pas vrai en général que \mathbb{F}_{\cup} f soit c.i. \cup \cap , sauf toutefois si le treillis \mathscr{P} est modulaire. Supposons donc $\underline{\mathscr{P}}$ modulaire. Dans ce cas, on peut remplacer \mathscr{E} "par la classe \mathscr{E} " des minorantes c \cap de \mathbb{F}_{\cup} f. D'après le Théorème 10-3, \mathscr{E} " est stable pour la surcomposition à droite, et pour la réunion. Comme \mathscr{E} " contient f, elle contient \mathscr{E} . Donc \mathbb{F}_{O} = \mathbb{F}_{O} f est encore c \cap ; il est par suite c.i. \cup \cap .

THEOREME 11-2 - Pour toute application f croissante, la fermeture c U, soit F f est le plus grand élément de la classe stable pour U et la surcomposition à droite engendrée par f. De même, l'ouverture c n, G f est le plus petit élément de la classe stable pour n et la sous-composition à droite engendrée par f.

Si de plus <u>le treillis \mathcal{F} est modulaire</u>, \mathbb{F} f est c.i. $\cup \cap$ dès que f est c \cap , et \mathbb{G} f est c.i. $\cup \cap$ dès que f est c \cup .

COROLLAIRE 1 - Supposons ℬ modulaire. Alors, pour toute c ∩

(resp. c ∪) f ∈ ℬ la classe stable pour ∪ (resp. ∩) et

la surcomposition (resp. sous-composition) à droite engendrée

par f ne contient que des c ∩ (resp. des c ∪).

Dans le même ordre d'idée, si f est c \cap (donc surpotente), son enveloppe sous-potente F f est c.i. \cap : elle est idempotente (puisque f est surpotente, Th. 11-1). D'autre part, F f o(I \cap F f) est encore sous-potente (Th. 10-2) et majore f o(I \cap f) = f. On a donc F f o(I \cap F f) \supset F f, et par suite l'égalité: F f est c \cap :

COROLLAIRE 2 - Si f est c ∩, son enveloppe sous-potente F f est c.i.∩. De même, si f est c ∪, son enveloppe surpotente G f est c.i.∪.

(Noter que ce corollaire 2 ne suppose pas la modularité du treillis \mathcal{O}).

D'après le Théorème, et sous l'hypothèse de <u>modularité</u> de \mathcal{T} , on aura :

$$^{G} \cap ^{F} \cup ^{G} \cap ^{=F} \cup ^{G} \cap ^{F} \cup ^{=G} \cap ^{F} \cup ^{=G} \cap ^{F} \cup ^{=G} \cap ^{F} \cup ^{=G} \cap ^{F} \cup ^{G} \cap ^{F} \cup ^{F} \cap ^{F} \cup ^{F} \cap ^{F} \cup ^{F} \cap ^{F} \cap ^{F} \cup ^{F} \cap ^{$$

Désignant cette fois par Bc J' l'ensemble des c.i.U n, on voit que B est le domaine d'invariance des diverses idempotentes F G etc... sur J'. Compte tenu du Théorème 10-4 ci-dessus, on a d'ailleurs ici encore :

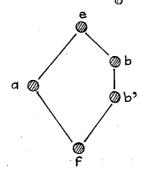
$$\mathbb{F}_{\bigcup} = \mathbb{I}_{\mathcal{B}}$$
 ; $\mathbb{G}_{\bigcap} = \mathbb{I}_{\mathcal{B}}$

Donc GG F et F G sont respectivement le plus grand et le plus petit élément de $\operatorname{Jd}(\mathcal{B})$. Tout opérateur H sur $\operatorname{\mathcal{F}}$ transformant les f de $\operatorname{\mathcal{F}}$ en c.i.U \cap H f, et tel que H ϕ = ϕ dès que ϕ est c.i.U \cap est donc nécessairement compris entre $\operatorname{\mathcal{G}}$ \cap et F \circ \circ :

Si f est, par exemple, c \cap , il n'y a plus, en fait, qu'un seul résultat possible : à savoir H f = F f. En effet, f = G f, et, puisque $G = \mathbb{Z}_{\mathcal{B}}$, H G = H $\mathbb{Z} = \mathbb{T}$ $\mathbb{Z} = \mathbb{F}$ $G \cap \mathbb{S}$ (Scholie 1 du Théorème 3), de sorte que :

$$H f = F_{\bigcup} f$$
 $\forall H \in Jd(J3)$ pour $f c \cap$
 $H f = G_{\bigcap} f$ $\forall H \in Jd(J3)$ pour $f c \cup$

REMARQUE - Dans l'énoncé du Théorème 11-2, <u>la condition de modula-rité ne peut pas être affaiblie</u>. Considérons, en effet, le treillis \mathcal{F}_n à cinq éléments : e (élément maximum), f (plus



petit élément), $b \supset b'$ et a non comparable à b et à b'. Prenons $\mathcal{B} = \{b, b'\}$. Tout élément de $Jd(\mathcal{B})$ transforme e, b, b' et f comme suit :

$$\begin{array}{ccc} e & \rightarrow & b \\ b & \rightarrow & b \\ b^{\dagger} & \rightarrow & b^{\dagger} \end{array}$$

Il n'y a donc que deux éléments ψ et ψ ' dans $\mathcal{J}d(\mathcal{B})$, caractérisés par

$$\psi(a) = b ; \psi(a) = b$$

 ϕ est c.i. \cup , mais,non c.i. \cap ; ϕ ' est c.i. \cap , mais non c.i. \cup . Ainsi ϕ ' est la p.g.m. c.i. \cap de ϕ , et ϕ la p.p.M c.i. \cup de ϕ ': ce qui contredit le lemme 4-1 et le Théorème 4-3, aussi bien que le Théorème 11-2. De même, ϕ o(I \cap ϕ) = ϕ ' n'est pas c.i. \cup , et ϕ ' o(I \cup ϕ ') = ϕ n'est pas c.i. \cap : de sorte que les classes des c \cup et des c \cap ne sont pas stables pour la surcomposition à droite ou sous-composition à droite.

Or, on montre en algèbre qu'un treillis $\mathcal P$ est non modulaire si et seulement si il contient un sous-treillis isomorphe à $\mathcal P_0$.

(N.B.: par sous-treillis de \mathcal{P} , les algébristes entendent une partie de \mathcal{P} stable pour \bigcup et \cap finis).

Il suffit alors de considérer la classe $Jd(\mathfrak{B})$ sur $\mathfrak{F}\supset \mathfrak{F}_0$ avec $\mathfrak{B}=\{\mathfrak{b},\ \mathfrak{b}'\}$ pour voir que la classe des c \cup ne peut pas être stable pour la sous-composition à droite (il suffit de considérer les restrictions à \mathfrak{F}_0). Ainsi la modularité du treillis \mathfrak{F} est nécessaire et suffisante pour cette stabilité.

12 - CARACTERISATION DE CES ENVELOPPES

Pour aller plus loin, nous aurons besoin d'associer à toute f croissante ses <u>domaines d'invariance</u>, <u>d'extensivité</u> et <u>d'antiextensivité</u>. Les définitions sont les mêmes que pour les idempotentes :

$$\hat{\mathcal{B}}_{\mathbf{f}} = \{ \mathbf{f} \subset \mathbf{I} \} \quad ; \quad \check{\mathcal{B}}_{\mathbf{f}} = \{ \mathbf{f} \supset \mathbf{I} \}$$

$$\hat{\mathcal{B}}_{\mathbf{f}} = \check{\mathcal{B}}_{\mathbf{f}} \cap \hat{\mathcal{A}}_{\mathbf{f}} = \{ \mathbf{f} = \mathbf{I} \}$$

(noter cependant que l'on n'a plus, en général, $f = I_{\mathcal{B}_f}$ sur $\hat{\mathcal{B}}_f$

comme dans le cas des idempotentes. Cette égalité subsiste, toutefois, comme nous le verrons, si f est surpotente).

On vérifie sans peine que le domaine <u>d'anti-extensivité</u> $\hat{\mathcal{B}}_{\mathbf{f}}$ <u>est stable pour \cap </u>, et de même $\check{\mathcal{B}}_{\mathbf{f}}$ stable pour \cup . Il est donc naturel d'introduire la fermeture $\hat{\mathbf{f}}$ associée à $\hat{\mathcal{B}}_{\mathbf{f}}$, et de même l'ouverture $\hat{\mathbf{f}}$ associée à $\check{\mathcal{B}}_{\mathbf{f}}$.

En fait, f est la plus petite fermeture majorant f, et f la plus grande ouverture minorant f.

Notons que toute application <u>extensive</u> g (i.e. $g \supset I$) est <u>surpotente</u> (car $g \supset I$ entraine $g g \supset g$), et de même toute application <u>anti-extensive</u> est <u>sous-potente</u>. Donc, si $g \supset I$, F g est idempotente (Th. 11-1) et constitue par suite la plus petite fermeture majorant g. Ainsi, pour f croissante quelconque, <u>la plus petite fermeture majorant f sera</u> $F(I \cup f)$, et <u>la plus grande ouverture minorant f sera</u> $G(I \cap f)$. Nous devons donc établir les égalités :

$$\hat{\mathbf{f}} = \mathbf{F}(\mathbf{I} \cup \mathbf{f})$$
; $\check{\mathbf{f}} = \mathbf{G}(\mathbf{I} \cup \mathbf{f})$

Or, soit ϕ une fermeture quelconque. Si $\phi\supset f$, on a $f\subset I=\phi$ sur \mathcal{B}_{ϕ} , c'est-à-dire $\mathcal{B}_{\phi}\subset\hat{\mathcal{B}}_{f}$, d'après la définition même du domaine d'anti-extensivité. Mais inversement, $\mathcal{B}_{\phi}\subset\hat{\mathcal{B}}_{f}$ signifie $f\subset I$ sur \mathcal{B}_{ϕ} , et cela entraine que f est majorée par le plus grand prolongement sur \mathcal{F} de l'identité sur \mathcal{B}_{ϕ} , soit $f\subset \phi$. Ainsi $\phi\supset f$ équivaut à $\mathcal{B}_{\phi}\subset\hat{\mathcal{B}}_{f}$, c'est-à-dire à $\phi\supset \hat{f}$. On a donc bien $\hat{f}=F(I\cup f)$. Enonçons :

THEOREME 12-1 - Pour f croissante quelconque, la fermeture f associée au domaine d'anti-extensivité $\hat{\mathcal{S}}_f$ est la plus petite fermeture majorant f. De même, la plus grande ouverture minorant
f coincide avec l'ouverture f associée à $\tilde{\mathcal{S}}_f$. Soit :

$$\hat{f} = F(I \cup f)$$
; $\hat{f} = G(I \cup f)$

Nous allons en déduire un critère important :

Critère 12 - Soit f croissante quelconque. Alors :

```
f est sous-potente si et seulement si f = \hat{f} f f est c \bigcup " f = f f f est surpotente " f = \hat{f} f f est c \bigcap " f = f f
```

En effet, pour que f soit sous-potente, il faut et il suffit que l'on ait $f[f(A)] \subset f(A)$, c'est-à-dire $f(A) \in \hat{\mathcal{B}}_f$ pour tout $A \in \mathcal{P}$, soit encore $Im(f) \subset \hat{\mathcal{B}}_f$: mais cela équivaut à $f = \hat{f}$ f.

Comme \hat{f} est $\supset f$, \hat{f} f est d'ailleurs toujours sous-potente (car \hat{f} f \hat{f} f $\subset \hat{f}$ f \hat{f} f = \hat{f} f). De même, \hat{f} étant c.i. \bigcup et majorant f \hat{f} , on a toujours

$$ff \in ff \circ (I \cup ff) = ff \circ (I \cup f) = ff$$

et l'égalité : f \hat{f} est donc toujours c \bigcup , et f \hat{f} = f entraine que f est c \bigcup .

Inversement, si f est c U, on trouve:

$$(I \cup f) \circ (I \cup f) = I \cup f \cup f \circ (I \cup f) = I \cup f$$

Ainsi, I \cup f étant idempotente, extensive et croissante, est une fermeture. C'est donc la plus petite fermeture majorant f, soit, d'après le Théorème 12-1, \hat{f} = I \cup f. Il en résulte :

$$f \hat{f} = f \circ (I \cup f) = f$$

puisque f est c U, ce qui achève la démonstration.

COROLLAIRE - Soit f croissante. Alors :

```
f est sous-potente si et seulement si elle est de la forme f = \phi \, g f est c \bigcup " " f = g \, \phi f est surpotente " " f = \gamma \, g f est c \bigcap " " f = \gamma \, g pour une application croissante g quelconque et une fermeture \phi \supset g ou une ouverture \gamma \subset g.
```

Ces conditions sont nécessaires, d'après le critère. Inversement, si $\phi \supset g$, on a aussi $\phi \phi = \phi \supset \phi$ g, donc

$$\varphi g \varphi g \subset \varphi \varphi g = \varphi g$$

et φ g est sous-potente. De même, les inégalités

$$g \varphi \subset g \varphi \circ (I \bigcup g \varphi) \subset g \varphi \circ (I \bigcup \varphi) = g \varphi$$

montrent que g φ est c \bigcup .

On en déduit :

THEOREME 12-2 - Pour toute f croissante, la fermeture sous-potente, la fermeture c U, l'ouverture surpotente et l'ouverture c n sont données par :

$$F f = \hat{f} f ; \qquad F_{\bigcup} f = f \hat{f}$$

$$G f = \hat{f} f ; \qquad G_{\bigcap} f = f \hat{f}$$

Démontrons, par exemple, la première de ces relations. Si $g \in \mathcal{F}$ ' est sous-potente, on a $g = \hat{g}$ g d'après le critère 12. Si de plus $g \supset f$, on a aussi $\hat{g} \supset \hat{f}$ (puisque \hat{g} majore f, et que \hat{f} est la plus petite fermeture majorant f), donc $g = \hat{g}$ $g \supset \hat{f}$ $f \supset f$: \hat{f} f, qui est sous-potente, (corollaire du critère) est donc la plus petite majorante sous-potente de f.

Comme $F \subset F$ et $G \supset G$, ce théorème implique que l'on a toujours les inégalités :

qui ne font rien d'autre que porter à la limite les inégalités triviales :

$$f \circ (I \cap f) \subset (I \cap f) \circ f \subset f \subset (I \cup f) \circ f \subset f \circ (I \cup f)$$

En particulier:

COROLLAIRE - $f \in \mathcal{F}^{\bullet}$ est idempotente si et seulement si f = f f.

Elle est c.i. \cap si et seulement si f = f f, c.i. \cap si et seulement si f = f f.

seulement si f = f f et c.i. \cap si et seulement si f = f f.

13 - STABILITE DU DOMAINE D'INVARIANCE

Je me propose, dans ce paragraphe, de montrer qu'une application croissante quelconque f a le même domaine d'invariance $\mathcal{B}_{\mathbf{f}}$ que les quatre enveloppes ff, ff, ff et ff. Montrons d'abord que $\mathcal{B}_{\mathbf{f}}$ n'est jamais vide.

Posons d'abord un lemme.

IEMME 13-1 - Les domaines d'extensivité et d'anti-extensivité sont | stables pour f :

$$f(\hat{\mathcal{B}}_f) \subset \hat{\mathcal{B}}_f$$
; $f(\hat{\mathcal{B}}_f) \subset \hat{\mathcal{B}}_f$

En effet, soit $B \in \hat{\mathcal{B}}_f$, c'est-à-dire f(B) \subset B. Comme f est croissante, il en résulte f[f(B)] \subset f(B), c'est-à-dire f(B) $\in \hat{\mathcal{B}}_f$.

D'autre part, $\hat{\mathcal{B}}_f$ n'est pas vide (il contient au moins le plus grand élément E de \mathcal{F}) et il est stable pour \cap . On a donc encore $B_o \in \hat{\mathcal{B}}_f$ en posant $B_o = \cap \hat{\mathcal{B}}_f$. D'après le lemme, il en résulte $f(B_o) \in \hat{\mathcal{B}}_f$. Mais $f(B_o) \subset B_o$ (puisque $B_o \in \hat{\mathcal{B}}_f$). Comme B_o est le plus petit élément de $\hat{\mathcal{B}}_f$, il en résulte $f(B_o) = B_o$, soit $B_o \in \mathcal{R}_f$. Comme $\mathcal{B}_f \subset \hat{\mathcal{B}}_f$, on voit même que B_o est le plus petit élément de \mathcal{B}_f . Ainsi :

<u>Ie domaine d'invariance</u> <u>Af</u> n'est pas vide. Il contient toujours au moins un plus petit et un plus grand élément, à savoir les éléments (éventuellement confondus):

En fait, quand nous aurons montré que f admet le même domaine d'invariance que ses enveloppes, il apparaîtra que \mathfrak{F}_{f} est le domaine d'invariance commun à f, F f, G f, etc.., mais aussi à G F f etc.. Or G F f est une <u>idempotente</u> (Th. 11-1). Par suite, d'après le Théorème 3, il en résultera que \mathfrak{F}_{f} est complètement réticulé (pour l'ordre induit par c).

Considérons d'abord les enveloppes supérieures F f = \hat{f} f et F, f = f f. Comme $\hat{f} \supset f$ entraîne \hat{f} = \hat{f} \hat{f} f on a :

Par suite \hat{f} est encore la plus petite fermeture majorant f \hat{f} et \hat{f} f. D'après le Théorème 12-1, cela entraine que f et les deux enveloppes supérieures f \hat{f} et \hat{f} f ont <u>le même domaine d'antiextensivité</u> $\hat{\mathcal{S}}_{\hat{f}}$.

Les domaines d'invariance \mathcal{B}_{ff} et \mathcal{B}_{ff} des deux enveloppes sont donc contenus dans $\hat{\mathcal{B}}_{f}$. Mais, sur $\hat{\mathcal{B}}_{f}$, on a f=f \hat{f} (puisque $\hat{f}=I$ sur $\hat{\mathcal{B}}_{f}$), donc aussi $f=\hat{f}$ f=f \hat{f} (à cause des inégalités $f\subset \hat{f}$ $f\subset f$ \hat{f}), de sorte que chacune des égalités \hat{f} f(A)=A ou f $\hat{f}(A)=A$ (qui entraine $A\in\hat{\mathcal{B}}_{f}$) a lieu si et seulement si f(A)=A, c'est-à-dire $A\in\mathcal{B}_{f}$.

THEOREME 13-1 - Toute application croissante f admet le même domaine d'invariance \mathcal{F}_f que ses quatre enveloppes f f, f f, f f et f f et f f. De plus, f, f f et f f ont le même domaine d'antiextensivité $\hat{\mathcal{F}}_f$, sur lequel elles coîncident. De même, f, f et f f ont le même domaine d'extensivité $\hat{\mathcal{F}}_f$ sur lequel elles coîncident.

COROLLAIRE 1 - S est complètement réticulé pour l'ordre in-U duit par c .

COROLLAIRE 2 - G Ff, F G f, G F f, G F f, F G f, F

Pour aller un peu plus loin, introduisons les classes $\mathfrak{F}_{\mathbf{f}}$ et $\mathfrak{F}_{\mathbf{f}}$ (classes stables respectivement pour \cup et pour \cap engendrées par $\mathfrak{F}_{\mathbf{f}}$), ainsi que l'ouverture \mathbf{I} et la <u>fermeture</u> \mathbf{I} associées. On a évidemment $\mathbf{I} \subset \mathbf{f} \subset \mathbf{I}$, puisque $\mathbf{f} = \mathbf{I}$ sur $\mathfrak{F}_{\mathbf{f}}$ (et que, par suite, \mathbf{f} est compris entre le plus petit et le plus grand prolongement de l'identité sur $\mathfrak{F}_{\mathbf{f}}$). Il en résulte :

(13-1)
$$\mathbb{I}$$
 $\subset \hat{f}$ $\subset \hat{f}$ $\in \hat{f}$ $\in \hat{f}$ $\subset \hat{f}$ $\in \hat{f}$ $\subset \hat{f}$

Maintenant, d'après le Théorème 13-1, F f = f f a même domaine d'invariance \mathcal{S}_f et d'anti-extensivité $\hat{\mathcal{S}}_f$ que f ellemême. Sa plus grande minorante surpotente, qui est G F f = G(ff) a encore le même domaine d'invariance \mathcal{S}_f (d'après le même Théorème 13-1), et un domaine d'anti-extensivité qui contient $\hat{\mathcal{S}}_f$ (puisque G F f minore F f). Or G F f est idempotente (et même c.i.U, d'après le Corollaire 2 du Théorème 11-2). Elle vérifie donc la relation (4-1'), soit G F f = I sur le domaine d'anti-extensivité de G F f, lequel contient $\hat{\mathcal{S}}_f$. On a donc :

(13-2)
$$G \ \mathbb{F}_{\bigcup} \ f = \mathbb{I} \ \text{sur} \ \hat{\mathcal{B}}_{\mathbf{f}}$$
 et de même
$$\mathbb{F} \ G_{\bigcup} \ f = \mathbb{I} \ \text{sur} \ \hat{\mathcal{B}}_{\mathbf{f}}$$

Comme $F_{i,j}$ $f \supset F$ $f \supset f$, on a d'ailleurs les inégalités :

et de même

$$G F_{U} f \supset G_{\cap} F f \supset G_{\cap} f = f f \supset f \supset I$$

de sorte que ces inégalités deviennent des égalités sur $\hat{\mathcal{A}}_{\mathbf{f}}$:

$$\begin{cases} G & \text{Form} & \text{form}$$

De (13-2) résulte évidemment :

$$(G F_U f) \hat{f} = I \hat{f}$$

d'où résulte I, $\hat{f} \supset G$ F, f (car $\hat{f} \supset I$). Mais F, f = f \hat{f} , et donc I, $\hat{f} \subset f$ $\hat{f} = F$, f. Comme I, \hat{f} est idempotente, cela implique I, $\hat{f} \subset G$ F, f. D'où l'égalité :

$$\mathbf{I} \mathbf{f} = \mathbf{G} \mathbf{F}_{\mathbf{I}} \mathbf{f}$$

La plus grande minorante surpotente de F f est donc I f . Elle est c.i.U, en accord avec le corollaire 2 du Théorème (11-2) et de plus :

d'où résulte en particulier que \mathbb{I} applique $\hat{\mathcal{J}}_{\mathrm{f}}$ sur \mathcal{J}_{f} :

$$\mathcal{B}_{\mathbf{f}} = \mathbb{I}(\hat{\mathcal{B}}_{\mathbf{f}})$$

Il en résulte f \mathbb{I} $\hat{f} = \mathbb{I}$ \hat{f} . Donc (critère 3) :

$$\texttt{I} \,\, \mathbf{\hat{f}} \,\, \mathbf{f} \,\, \in \,\, \mathbf{J}d(\mathcal{B}_{\mathbf{f}})$$

Que représente cette idempotente ? Etant surpotente, et minorant \hat{f} f = F f, elle minore G F f. D'un autre côté, \hat{f} f \supset G F f entraine I \hat{f} f \supset I G F f. Mais G F f est idempotente et appartient à J d(\mathcal{S}_f). Donc I G F f = G F f (Scholie 1 du Théorème 3), et par suite I \hat{f} f majore G F f. On a donc l'égalité :

$$\mathbf{I} \mathbf{\hat{f}} \mathbf{f} = \mathbf{G} \mathbf{F} \mathbf{f}$$

THEOREME 13-2 - Pour f croissante quelconque, on a :

$$\mathcal{B}_{\mathbf{f}} = \mathbf{I}(\hat{\mathcal{B}}_{\mathbf{f}}) = \mathbf{I}(\hat{\mathcal{B}}_{\mathbf{f}})$$

$$\mathbf{G} \ \mathbf{F}_{\mathbf{f}} = \mathbf{I} \ \mathbf{\hat{f}} = \mathbf{\hat{f}} \ \mathbf{\hat{f}} \quad ; \quad \mathbf{G} \ \mathbf{F} \ \mathbf{f} = \mathbf{I} \ \mathbf{\hat{f}} \ \mathbf{f} = \mathbf{\hat{f}} \ \mathbf{\hat{f}} \ \mathbf{f}$$

$$\mathbf{F} \ \mathbf{G}_{\mathbf{f}} = \mathbf{I} \ \mathbf{\hat{f}} = \mathbf{\hat{f}} \ \mathbf{\hat{f}} \quad ; \quad \mathbf{F} \ \mathbf{G} \ \mathbf{f} = \mathbf{I} \ \mathbf{\hat{f}} \ \mathbf{f} = \mathbf{\hat{f}} \ \mathbf{\hat{f}} \ \mathbf{f}$$

Enfin les six enveloppes G F f, G F f, G F f, G F f, f f et f f coıncident avec f et avec I sur le domaine d'antiextensivité \mathcal{F}_f . De même, F G f = F G f = F G f = f f = f f = f f = I sur \mathcal{F}_f .

COROLLAIRE 1 - Si f est surpotente, on a f = \mathbb{I} sur $\hat{\mathcal{B}}_{f}$. Si f est \mathbb{Z}_{f} sous-potente, f = \mathbb{I} sur \mathbb{Z}_{f} .

EEn effet, pour f surpotente, on a f = f f, et f f = I sur f , d'après le Théorème.

COROLLAIRE 2 - Toute surpotente f (resp. sous-potente f') applique
son domaine d'anti-extensivité (resp. d'extensivité) sur son
domaine d'invariance, soit :

$$\mathcal{B}_{f} = f(\hat{\mathcal{B}}_{f})$$
 (resp. $\mathcal{B}_{f} = f'(\hat{\mathcal{B}}_{f})$)

En effet, d'après le corollaire 1, si f est surpotente, on a F f = f f = I f, et le domaine d'invariance de cette idempotente est donc $\mathcal{B}_f = I(\hat{\mathcal{B}}_f) = f(\hat{\mathcal{B}}_f)$.

Soit, maintenant, f_i une famille de surpotentes, et $f' = \bigcup f_i$ sa réunion, qui est encore surpotente. Comme $\bigcup f_i(A) \subset A$ équivant à $f_i(A) \subset A$ pour tout i, on a évidemment :

$$\hat{\mathcal{A}}_{\mathbf{f}} = \cap \hat{\mathcal{A}}_{\mathbf{f}_{\mathbf{i}}}$$

D'après le corollaire 2, il en résulte :

$$\mathcal{B}_{f}$$
, = $f'(\cap \hat{\mathcal{B}}_{f_i})$

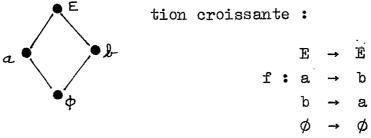
Ainsi:

COROLLAIRE 3 - Pour toute famille de surpotentes f_i ou de sous
| potentes g_i , on a respectivement:

$$\mathcal{B}_{\bigcup f_{i}} = \{\bigcup f_{i}(B) , B \in \cap \hat{\mathcal{B}}_{f_{i}}\}$$

$$\mathcal{B}_{\bigcap g_{i}} = \{\bigcap g_{i}(B) , B \in \cap \hat{\mathcal{B}}_{g_{i}}\}$$

La réciproque du corollaire 1 <u>est fausse</u>. Soit, en effet, un treillis $\mathcal P$ à quatre éléments : E, ϕ , et deux éléments a et b non comparables. Considérons l'applica—



Ici, $\hat{\mathcal{B}}_f = \{E, \phi\}$. Or $\underline{\mathbf{I}}(E) = \mathbf{f}(E) = E$, $\underline{\mathbf{I}}(\phi) = \mathbf{f}(\phi) = \phi$, donc $\underline{\mathbf{I}} = \mathbf{f}$ sur $\hat{\mathcal{B}}_f$, mais f n'est nullement surpotente (on remarque aussi que f f = I n'a pas le même domaine d'invariance que f).

Sur ce même treillis, considérons deux applications f₁ et f₂ définies comme suit :

Elles sont croissantes et sous-potentes, $\mathcal{A}_{f_1} = \mathcal{A}_{f_2} = \{\emptyset\}$, donc elles ont le même domaine d'invariance, et, étant toutes deux antiextensives, le même domaine d'anti-extensivité, qui est \mathcal{P} luimême. Ici, \tilde{I} est donné par :

$$\widetilde{\mathbf{I}}$$
 (E) = $\widetilde{\mathbf{I}}$ (a) = $\widetilde{\mathbf{I}}$ (b) = E ; $\widetilde{\mathbf{I}}$ (ϕ) = ϕ

Pour \tilde{I} f₁ et f₁ \tilde{I} , on trouve

Ies domaines d'invariance sont, respectivement, $\{\phi, E\}$ et $\{\phi, a\}$, strictement plus grands que $\mathcal{B}_{\mathbf{f}_{\bullet}}$.

D'une manière générale, donc, les inclusions:

$$\mathcal{B}_{\mathbf{f}} \subset \mathcal{B}_{\widetilde{\mathbf{I}}\mathbf{f}}$$
 ; $\mathcal{B}_{\mathbf{f}} \subset \mathcal{B}_{\mathbf{f}\widetilde{\mathbf{I}}}$

peuvent être strictes.

Sur le même exemple, considérons l'application $f_1 \cup f_2$:

$$f_1 \cup f_2 : \begin{array}{c} E \rightarrow E \\ a \rightarrow \emptyset \\ b \rightarrow \emptyset \\ \phi \rightarrow \emptyset \end{array}$$

Son domaine d'invariance est $\{E, \phi\}$, strictement plus grand que $\mathcal{B}_{f_1} = \mathcal{B}_{f_2}$. Ainsi, pour des applications f_i admettant le même domaine d'invariance \mathcal{B}_i , l'inclusion

peut être stricte.

De manière générale, désignons par $\mathcal{P}'(\mathcal{B})$ l'ensemble des applications croissantes admettant <u>le même domaine d'invariance</u> \mathcal{B} (nous supposons \mathcal{B} complètement réticulé pour l'ordre induit, de sorte que $\mathcal{P}'(\mathcal{B})$ n'est pas vide).

Nous savons que le sous-ensemble $\mathcal{J}d(\mathcal{B})$ est complètement réticulé. L'exemple ci-dessus montre que $\mathcal{N}'(\mathcal{B})$ n'est pas, en général, <u>un treillis</u>. (Toute application $g \supset f_1 \cup f_2$ vérifiera g(E) = E, soit $E \in \mathcal{B}_g$, et donc $g \notin \mathcal{N}'(\mathcal{B})$, puisque \mathcal{B} est ici réduit au seul élément ϕ). Il n'est même pas vrai, toujours d'après cet exemple, que $\mathcal{N}'(\mathcal{B})$ admette un plus grand et un plus petit élément.

Cependant, si $f \in \mathcal{P}^{\bullet}(\mathcal{F})$ est surpotente, on a nécessairement

$$\mathtt{f} \subset \psi_{\mathtt{M}}$$

et de même f $\supset \psi_m$ si f est sous-potente ($\psi_M = I$ \widetilde{I} est le plus grand élément de $Jd(J\widetilde{S})$, et ψ_m son plus petit élément). En effet, on a f \subset F f, mais F f est idempotente, donc majorée par ψ_M , dès que f est surpotente.

En fait, l'ensemble des surpotentes, et celui des souspotentes de $\mathcal{S}^{\bullet}(\mathcal{B})$ constituent des <u>demi-treillis</u> complets. Plus précisément :

THEOREME 13-3 - Soit f_i une famille d'applications croissantes surpotentes (respectivement sous-potentes) admettant le même domaine d'invariance \mathcal{J}_i . Alors $\bigcup f_i$ (resp. $\bigcap f_i$) admet encore \mathcal{J}_i comme domaine d'invariance.

En effet, soit f_i une famille de surpotentes dans $\mathcal{P}^{\bullet}(\mathcal{I}_3)$, et $f^{\bullet} = \bigcup f_i$. Etant surpotentes, f_i et f^{\bullet} admettent des idempotentes comme enveloppes supérieures, soient Ff_i et Ff^{\bullet} . Comme toute ferme ture, F vérifie la formule

$$F(\bigcup f_i) = F(\bigcup F f_i)$$

qui donne ici :

$$F_{i}f^{i} = V_{i}F_{i}$$

puisque les F f_i sont idempotentes (v désigne le Sup dans le treillis des idempotentes, voir Th. 5-1). Mais F $f_i \in Jd(\mathcal{F})$, d'après le Th. 13-1. Donc F f' = v F f_i est encore dans $Jd(\mathcal{F})$, d'après le Th. 5-3. Comme f' et F f' ont le même domaine d'invariance, on conclut $f' \in \mathcal{F}'(\mathcal{F})$.

COROLLAIRE - Ies surpotentes (resp. sous-potentes) de $\mathcal{F}^{\bullet}(\mathcal{F})$ admettent un plus grand (resp. plus petit) élément, qui est $\psi_{M} = \vec{I}$ \vec{I} (resp. $\psi_{m} = \vec{I}$ \vec{I}).

Notons encore quelques résultats à peu près évidents.

THEOREME 13-4 - f a le même domaine d'invariance que ses surcomposées è droite et à gauche. Si f est surpotente ou sous-potente, f et f f ont le même domaine d'invariance.

En effet, les inégalités $f \subset f$ o(I \cup f) \subset F \cup f montrent que l'on a F \cup (f o(I \cup f)) = F \cup f. Par suite, d'après le Théorème 13-1, f et f o(I \cup f) ont le même domaine d'invariance. Démonstration analogue pour les trois autres cas.

Si f est surpotente, on a f f = $(I \cup f)$ o f. Si f est souspotente, on a f f = $(I \cap f)$ o f : dans les deux cas, f et f f ont donc le même domaine d'invariance.

On a vu plus haut un exemple montrant que l'inclusion

$$\mathcal{B}_{\mathbf{f}} \subset \mathcal{B}_{\mathbf{ff}}$$

peut être stricte si f n'est ni sur- ni sous-potente.

corollaire 2 - Si f est surpotente, la classe stable pour la réunion et l'autocomposition (ou la surcomposition à droite engendrée par f) est constituée de surpotentes admettant le même domaine d'invariance \mathcal{B}_f . Enoncé dual pour f sous-potente.

En effet, d'après le corollaire 1 et le Th. 13-3, si f est surpotente, la famille des surpotentes de $\mathcal{P}'(\mathcal{B}_{\mathbf{f}})$ est stable pour la réunion, l'autocomposition et la surcomposition à droite, et contient \mathbf{f} : elle contient donc la classe correspondante engendrée par \mathbf{f} .

mettant le même domaine d'invariance 3 est stable pour les deux surcompositions, les deux sous-compositions et les quatre enveloppes F, G, F et G. La classe des surpotentes de $\mathcal{P}'(\mathcal{B})$ est stable pour ces 8 opérations, ainsi que pour la réunion et l'auto-composition. Si le treillis \mathcal{P} est modulaire, la classe des c \cap de $\mathcal{P}'(\mathcal{B})$ possède les mêmes propriétés. Mêmes énoncés pour la classe des sous-potentes et celle des c \cup , avec "intersection" au lieu de "réunion".