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DITATIONS ON TOPOLOGICAL SPACES

2.0 - AIGEBRAIC FRAME,

If E is an arbitrary set, let I' be a mapping from E into
P(E), i.e. the transform of a point x ¢ E is a subset I'(x) of E.
Then, the mapping I’ admits an extension by a mapping from P(E)
into itself defined as follows :

(2.1) r(a) = Uy r(x) (A €2 (E))
XEA

The mapping (1) is called a dilation, see [1], and the
notation &(E), or simply & will denote the class of the di-
lations from (P(E) into itself. Obviously, a mapping I from
P(E) into itself is a dilation if and only if we have

(2.2) r( U 4) =ura)
for any family Ai of subsets of E.

As in [1], for any mapping I : E - P (E), we shall de-
fine its recivprocal mapping f by writing :

(2.3) v e I'(x) if and only if x e r(y) (x, ¥y € E)

and the corresponding dilation f, defined according to rule (1),
is said to be the reciprocal dilation of I The dilation I and
its reciprocal f.satisfy the equivalence : .

(2.4) T(A) NB#P o ANT(B) £ ¢

for any subsets A, B of E. In fact, the class & of the dilation
is fully characterized by relation (2.4) :



THEOREM 2.1 = A mapping TI' from J%E) into itself is a dilation if
and only if there exists a wmapping [' : J(E) - ~”(E) such
that the equivalence (2.4)is true. If so, this reciprocal

v o, . v, . .
mapping I' is unique. Moreover I' is a dilation and its reci-
procal mapping f is T itself.

The condition is necessary, because the equivalence (4)
follows from definition (3). Conversely, let I and ' be two
wmappings satisfying equivalence (4). If the set A is a point
x € E, i.e. A = {x}, we write I'(x) instead of r({x}). We must
prove that the mapping x - T(x) from E into itself satisfies
relation (2.1). |

If B = {x} for a point x ¢ E, it follows from (4) :
(2.5) x €T(A) o AN T(x) # &

Moreover, if A = {y} for another point y ¢ E, we get x ¢ I'(y)

if and only if y ¢ I'(x), i.e. relation (3). By this relation (2.3)
the relation A.ryf(x) # @, i.e. "there exists a point y ¢ A
such that y e T'(x)" is equivalent to "there exists a point y € A

such that x € I'(y)", i.e. to x ¢ Uy {I'(y), ¥ € A}. Thus equivalence
(2.5) implies :

r(a) = y ry)
yeA

and I is a dilation. In the same way, we find

r'B) = y T(y)
YeB

so that F is a dilation, and its uniqueness follows from relation
(23). The remainder is obvious.



2.1 - UPPER SEMI-CONTINUITY,

From now on, we assume E to be a topological space
locally compact, Hausdorff and separable (ICS), and we define:
certain sub-classes of dilations with good topological proper-

ties. If A is a subset of A (E), By denotes the class of the
closed subsets of E which meet A. In the same manner, JGA de-
notes the class of compact sets which meet A. The spaces
3 = 3(E) and 56 = JO(E) are topologized in the usual way (see
[2]). Then :

IEIA 2.1 - For any A € PP(E), F, is closed in 3 if and only if
[ A is compact, JG, is closed in G if and only if A is closed.

Proof - If A is compact, Ty is closed in 3, by definition of the
topology on 3. Conversely, let us suppose that Fp is closed
in F. For any x £ A, we have F = {x} £ F, » and thus there
exists a neighborhood of {x} in 3 of the form

::'GI;”_GN = {F: Fes. FNK=9 FNG # ¢}

containing {x} and disjointfrom 3, -But in this case 3K is

also disjoint from j, and contains {x}, because PN A = ¢
implies F' N A = @ for any other closed set F' c P, and we
have y £ A for any point y £ X, i.e. A c K. Thus, for any

x £ A, there exists a compact set K, such that Ac K, x £ K-
It follows that A =N {Kx, x £ A}, and A is compact. The proof
is the same for JGA.

LEKMA 2.2 - For any dilation I' ¢ & (E), the two following condi-
tions are equivalent :

(2.6) T(K) is compact for any compact set K

(2.6") {F : F € 3, I (F) N K # @} is closed in 3
for any X e Jt6.

In the same way, the two following conditions are equivalent




(2.7) T(P) is closed for any closed set F

(2.7') {K:KeJd6, T(K) N F# ¢} is closed in J6
for any F ¢ 3. '

Proof - By Lemma 1, I'(K) is compact if and only if the set

Fyg) = [F:Fes PN # @)

is closed in . But, by relation (2.4) , this is equivalent
to (2.6') . In the same way, lv"(F) is closed if and only if

J{pf:"(F) is closed in #6, and this is equivalent to (2.7').

THEOREM 2.2 - For any dilation I' ¢ ¥(E), the three following condi-
tions are equivalent :

a) T(K) is compact for any K ¢ {6 and \f(F) is closed
for any F ¢ .

b) I is an u.s.c. mapping from ¢G into itself

c) I is an u.s.c. mapping from F into itself.

Proof - This is an immediate consequence of Iemma 22 because we

have
a) o (2.6) and (2.7)

b) o (2.6) and (2.7')
c) o (2.6') and (2.7)

Stronger results can be obtained by using the following Lemma :

IEMMA 2.3 - For any dilation I' ¢ ¢(E), I(x) is closed for any point
x € E if and only if, for any A ¢ P(E), we have :

i) r(a) =n {r(e), G eg, G > A}

: v
In the same way, if T'' = 8f@ is the erosion dual of r, the
set I'(x) is compact for any point x ¢ E if and only if we have
for any A € R(E) :

ii) r*(a) =y {r'(K), X €6, K c A}



Afﬁ.f(x) = ¢, there exists an open set G such that G o A
and x ¢ T(G), i.e. G N F(x) = ¢, With A = {y}, this implies
that any point y £ f(x) admits an open neighborhood G dis-
joint from f(x), i.e. T(x) is closed. Conversely, if I'(x)
is closed, the open set G =_(§f(x) satisfies the required
condition.

If the notation &£ denotes the class of the open sets
which are the complements of compact sets, i.e. L ¢of if
L = K° for a K €6, the condition ii) may be rewritten in the
form :

. v
ii')  TA) =N {[(L), Le&s, Lo A}
and the proof of the second part of the lemma is the same.
THEOREM 2.3 - A dilation I ¢&(E) is an u.s.c. mapping of O into

itself if and only if one of the following equivalent condi-
tions is satisfied :

d) The mapping x - I'(x) is u.s.c. from E into /G.

e) r'(x) is compact for any x ¢ E and T(F) is closed
for any F e 3

£) f(y) is closed for any y ¢ E and I'(K) is compact
for any X € #.

Proof — A mapping x - I'(x) from E into J®is u.s.c. if and only
if the set {x : x ¢ B, I'(x) N F # @} is closed in E for any
F¢3% . But, by relation (2.4) , this set is I'(F). Thus the
conditions d) and e) are equivalent.

A dilation I' which maps & into itself is u.s.c. if and
only if r = Ty » where Ty is the u.s.c. closing. of I (see
[3], section 6). But Iy is defined by :

ry(k) =n {r(e), ¢ €&, 6>k}

thus, by lemma 23 we have T = Ty if F(y) is closed for any



¥ € E. In other words, the condition f) of Theorem 2.3 implies
the condition b) of Theorem 2.2 Conversely, the condition a) of
Theorem 22 implies the condition f) of Theorem 2,3.

In the same way, an erosion I'' which maps g into itself
is 1l.s.c. if and only if rt* = I‘g' s Where I‘é is defined by

I‘é(G) =y {r(x), K ¢ 56, K c G}

Thus, by Lemma 2.3 if P(x) is compact for any x ¢ E, we have
rr=r! i.e. rt* is l.s.c. But the erosion ' is l.s.c. from
@ into itself if and only if the dual mapping I is u.s.c.
from 3 into itself. Hence, the condition e) of Theorem 2.3
implies the condition ¢) of Theorenm 22.Conversely, the condi-
tion a) implies the condition f), and this completes the proof.

Note that, according to [1], eny increasing mapping ¢ of
P (E) into itself is an intersection of dilations, or an union of
erosions. In fact, if for any B ¢ P(E) we define a mapping Iy from
E into ®(E) by putting :

rglx) = ¢(B) if x e B
.I‘B(x)=E if x £ B

the corresponding dilation I'g € & (E) is defined by

(A) = ¢(B) if A< B
et TR A (4 ¢ P(E))

I‘B( A) E otherwise

and we have :

$(A)

N {rg(a) 5 B eR(E)}

In the same way, any increasing u.s.c. mapping ¢ from SG
into J6 is an ‘intersection of dilations u.s.c. from & intoJ6 .

(for the definition of the space Jé = V6 U {E}, see [3] section
9.6). |



In fact, ¢ is u.s.c. if and only if we have for any K ¢ i :

oK) = {6(K"), XK' € (G, k' o K}

~

Thus, for any K' € f6 consider the mapping Tx» from Jfe into 5%
defined by ‘

0
T (K) = $(K') if K <K'
I‘K,(K) =E otherwise

Then Iy, is a dilation u.s.c. from J6 into itself, and
we have

$(K) =N (T (K) , X' esd)

for any compact set K.

2.2 - IOWER SEMI-CONTINUITY.

Concerning the lower semi-continuity, we have very similar
results. We begin with a lemma :

IEMA 2.4 - For any A ¢ PR (E), JGA is open in $6 if and only if A is
open in E. 3, is open in 3 if and only if A ¢ % .

The proof is about the same as for Iemma 2.1.

IEIA 2.5 = For any dilation I' € & (E) and any G ¢ 9 , the following
conditions are equivalent : '

i) f"(G) is open in E
ii) The set {x ¢ x ¢ E, P(x) N G # @} is open in E
iii) The set {F : Fe 3, T(F) NG # @} is open in 7

iv) The set {K : K €46, I"(K) N G # ¢} is open in JG&

The equivalence of conditions i) and ii) is an obvious con—
sequence of relation (2.4) . By Leuma 2.4, F(G) is open in E if
and only if F1(a) is open in x. But, by relation ( 2.4) , we have



31{(G)=(F=F63,I‘(F)nGr’¢}

8o that conditions i) and iii) are equivalent. In the same way,
i) and iv) are equivalent, because the set of condition iv) is

‘K’f‘(e) .

THEOREM 2.4 - A dilation I ¢ #(E) is l.s.c. from 46 into itself
if and only if

i",(G) e(g/ for any G ¢ (3 and T'(K) € f6 for any K ¢ 6,

In the same way, I' is l.s.c. from 3y into itself if and only if

v
r(e) e% for any G e% and T(F) ¢ 3 for any F ¢ 3.

~only if the set {K : K ¢ f6, I'(K) NG # ¥} is open in JO for
any G € . Bat, by Leuma 5, this is equivalent to F'(G) ¢ & .

The proof of the second statement is exactly the same.

COROLLARY - The dilation I' is a continuous mapping from Y6 into
itself if and only if one of the two following equivalent
conditions is satisfied :

i) The mapping x — I'(x) is continuous from E into JG.
ii) r(x) € 46 for any x ¢ E, r'(G) egfor any G 69
v
and T(F) ¢ g forany Fe¢ F .

v
In the same way I' is a continuous mapping from 3 into 7 if
and only if

iii) The mapping x - I'(x) is u.s.c. from E into J6
and I'(G) is open for any G e% .

Proof - If T' is continuous from JG into itself, condition i)
is satisfied. Conversely, if x = I'(x) is continuous from E
into G , T is u.s.c. from -G into 6 , by Theorem 2.3,because
x - I'(x) is u.s.c. But x - I'(x) is l.s.c. and thus, by Iemma
2.4;,1\‘,((}) is open for any G,Gg . Thus, by Theorem2.4,K - I'(K)
is l.s.cy from J& into 46 . The proof of the remainder is
about the same.



2.3 - OPEN DITATIONS.

We shall say that a dilation T ¢ &(E) is open if I(G) is
open in E for any G € %. We shall use the following elewmentary
lemma :

IEMMA 2.6 - A subset B of E is open in E if and only if ANB=¢
for any A € P (E) such that AN B = @.
Obviously, this condition is necessary. Conversely, if
it is satlsfled, put A B®°. Then B N B® = ® implies B N B = )
i.e. BcB. Thus B = B, andBeg.

Criterion 2.1 - For any dilation TI' ¢ &(E), the following conditions

are equivalent :

i) The reciprocal dilation I’ is open

ii) (&) < r(A) for any A ¢ A (E)

iii) r(Z) = r(a) for any A ¢ P (E)

iv) The mapping x - I'(x) is l.s.c. from E into 3.

Proof - We always have T'(A) < r'(A), so that ii) implies

r(A) ¢ T(R) < r(4) and thus T(Z) = I'(A). The converse is obvious,

therefore the two conditions ii) and iii) are equivalent.

Now, the condition iii) is true if and only if we have for

a.nyGe@ and any A ¢ #(E)

eNT(R) =0 « GNT(A) =

i.e., by relation ( 2.4)
infe) =¢ «ante) =

Thus, by Lemms 26,condition iii) is satisfied if and only
if I‘ is open. The equivalence of i) and iv) is obvious.

THEOREYM 2.5 - A dilation T € & (E) is l.s.c. from 3 into 3 if and

only if for any A € <P (E) we have :
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I maps ¥ into itself, and thus T'(Z) = r(a).

Conversely, if T(Z) = r(a) forvany A c E, T'(F) is closed
for any F ¢ 3, because F = F, and T is open by Criterion 2.1.
Thus, by Theorem 24,I' is l.s.c. from F into itself.

THEOREM 2.6 - If a dilation I ¢ &(E) is open, then T is l.s.c.
” from %into itself.

Proof - In the LCS space E, for any open set G theré exists an

v e s s [+]
increasing sequence of compact sets K, such that Kn (o Kn+1
and G =U K, SO that for any dilation I’ we have

r(G) =y r(ﬁn)

If the dilation I is open, we have P(ﬁn) € g for each n.

Thus, if a compact set K is contained into the union of the
increasing sequence of open sets I‘(Ic(:n), we have X ¢ P(I%N)

for a given number N, and for any other open set G' the inclu-
sion G' o Ky implies T(G') o I‘(KN) > P(ﬁN) > K. Thus T is l.s.c.

from % into % .

Note that an arbitrary increasing mapping from 6 into
itself is open and u.s.c. if and only if for any X ¢ £5 we have :

[~ ]
(2.6) ¢(K) =N {¢(X'), XK' oK, K' € 45}
In the case of a dilation, we have a stronger result .

THECREM 2.7 - If a dilation I maps J©% into 4G , then T' is open and
u.s.c. from G into $® if and only if we have for asny point

x ¢k :
. o o
(2.7) r(x) =n {r(x'), X' efB, x ¢ K'}
Proof - By relation (2.6) , the condition (2.7) is neces-

sary. Conversely, if (2.7) holds and T maps J5 into itself,
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let G be an open set, For any x € G, there exists a compact
set K such that :

o
x€KcKcG

because the space E is locally compact. By (2. 7) , this
implies

I‘(x) c I'(X)  r(X) < r(e)

and therefore we have :
[+]
r(¢) =y {r(x), K ¢f6, K c G}
[+
Hence r(G) is open, as it is the union of open sets T(X).

In the same way, for any K' e 6 such that x ¢ K', we have
another K ¢ J® such that x ¢ K cKc K', so that (2 7) im-
plies :

rx) =N {r(X), X ef6, x ¢ I%}

and there gxists a decreasing sequence of compact sets Kn
such that K o Koipg o NKy = {x} and

r(x) = A T(K,) = N I(K)

Now, if we have I'(x) ¢ G for an open set, i.e. N P(Kﬁ) c G,
this implies that one of these compact sets P(Kn) is « G, say
I'(Ky) c G. For any y € Ky, this implies I'(y) c F(¥y) < I'(K)) < 6.
Then T' is u.s.c, from E into 6. Hence, by Meorem 3, T is u.s.c.
from S into itself.

2.4 - U.85.C., DITATIONS NULL AT INFINITY.

We shall say that a dilation I' € & (E) is u.s.c. and null
at infinity if I is u.s.c. from JG into b and from 3 into % .

Note that we have I'(®) = @ for any dilation I'y because
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r(a) =y {r(x), x € A} for any A ¢ 9*(E), and the union of the
empty family is the empty set ¢. then, if I is u.s.c. from §
into g we have I'(Fn) = ¢ for any sequerice 'Fn in 3 such that _
Fn - ¢ in 3. In particular, if a sequence x, has no accumla-
tion point in E, the sequence of closed point sets F, = {1&1}
converges towards @ in thle space ¥, and we have P(Xn) - @ in 3.
Hence the terminology.

By Theorem 22,T' is u.s.c..andvnull at infinity if and
only if r and I are u.s.c. from JG into itself (or from 3 into
%). It follows :

THEOREM 2.8 - A dilation I' € &(E) is u.s.c. and null at infinity
if and only if the reciprocal dilation 1“7 is u.s.c. and null
at infinity.

This class is characterized by

THEOREM 2.9 - A dilation I' ¢ & (E) is u.s.c. and null at infinity
if and only if x - I'(x) is u.s.c. from E into 6 and F(K) € J6
for any compact set K.

3 into g if and only if I is u.s.c. from J6 into JG (Theorem
2.2)and this implies I‘:(K) € G for any compact set K.

Conversely, let us suppose that I' is u.s.c. from E into G
and f(K) € $6 for any K ¢SS5, Then by Theorem 2.3 condition d4),
T is u.s.c. from G into JOG . We must prove that I' is u.s.c.
from ¥ into g or, which is the same by Theorem 2.2\1" is u.s.c.
from 6 into J& . Since T'(K) is compact for any K €5, by
condition f) of Theorem 2.3 we only have to prove that I'(y)
is closed for any y € E.

Let x € I'(y) be a sequence such that x, = x in E, We must
prove that x ¢ I'(y) For each n, we have x € r(y), i.e.
y € I‘(x ). But T is u.s.c. from 3 into ki because T is u.s.c.
from J(b into J& (Theorem 2.2),Then y ¢ P(x ) and J% - x imply-
y € I‘(x), i.e. x € I'(y). Hence, r(y) is closed. ‘This completes
the proof. '
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Criterion 2.2 - Iet ' ¢ #(E) be a dilation such that x - r'(x) is

u.s.c. from E into JG . Then, I is u.s.c. and null at infinity
if and only if one of the following equivalent conditions is
satisfied :

i) For any compact set K, we have another K' ¢ JG
such that x £ X' implies I'(x) N K = @.

ii) T(K) is compact for any compact set K

iii) Por any sequence x, without accumulation point
in E, the sequence P(gn) converges towards the
empty set in the space 3.

is u.s.c. and null at infinity if and only if condition ii)
is satisfied.

It remains to show that the three conditions of eriterion
2 are equivalent for any dilation I such that x - r(x) is u.s.c.
from E into fG . Pirst, note that I' is u.s.c. from JG into it-
self by Theorem 2.3.

By relation (2.4) , condition i) is equivalent to "x £ K'
implies x £ F(K)" i.e. to I'(K) c K'. Besides, by Theoremziz,f(F)
is closed for eny F ¢ § , because I' is u.s.c. from SO into JG.
In particular, %(K) is closed. Peing closed and contained into
the compact set X!, f(K) is a compact set. Thus, condition i)
implies condition ii). Conversely, if ii) holds, we have
I(x) NK=¢ for any x £ XK' = F(K) € J6, and ii) implies i).
Hence, the two conditions i) and ii) are equivalent.

Now, let us show that i) iumplies iii). Iet {xn} be a se-
quence without accumilation point in E. We have I'(x,) = ¢ in 3
if, for any XK ¢J6, P(xn) N X = @ for n large enough. By condi-
tion 1), there exists K' ¢JGsuch that I'(x) A K = @ if x £ K'.
But the sequence {xn} has no accumlation point, so that we
have X £ X', and thus F(xn) N K = @ for n large enough. Hence,
r(x,) - @ in 3, and condition iii) is satisfied.

Suppose now that condition ii) is not true. Then, there
v . v
exists K € JG such that I'(K) is not compact. Nevertheless, I'(K)
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is closed, because I' is u.s.c. from <G into JG (Theorem 2.2).
Being closed and not compact, the set F(K) contains a se-
quence {xn} without accumulation point. We have X, € F(x)

- for any n, and thus there exists a point Y, € K such that
x, € P(y ), i.e. Y, € P(xh) Being contained in the compact
set K, the sequence {yn} has an accumlation point y, and
this implies y ¢ Tiﬁ_r(xn) in 3 : thus I(x,) does not con-
verge towards ® in 3. We conclude that iii) implies ii).
This conmpletes the proof.

THEOREM 2.10 -~ If a dilation I' is u.s.c. and null at infinity, the
three following conditions are equivalent :

i) I is continuous from Y& into J6&
ii) I is continuous from 3 into 3

iii) ¥ is open, i.e. I'(G) ¢ gfor any open set G.

Proof - Since p is u.s.c. from JG into J6 and also from 3 into

¥, the equivalence of the three conditions immediately follows
from Theorem 2.4.

We say that a dilation I’ is continuous and null at infinity
if it is continuous at the same time from J6 into 6 and from 3
into g. By Theorem 2.90,T is continuous and null at infinity if
and only if T is open and T is u.s.c. and null at infinity.

Do note that a dilation I' continuous and null at infinity
is not open in general, so that the reciprocal dilation f" is
only u.s.c. and null at infinity. If we want to preserve the
synmetry between I' and f we must consider the class of the
dilations open, continuous and null at infinity.

COROLLARY - A dilation I’ belongs to the class Efo of the dila-
tions open, continuous and null at infinity if and only if

v
P 6 ‘30'

The following criterion is an obvious consequence of the
preceding results and of the corollary of Theorem 2.4 3
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Criterion 2.3 - A dilation I' is open, continuous and null at infinity
if and only if the three following conditions are satisfied :

i) x - r(x) is continuous from /& into J6
ii) ¥(K) is compact for eny compact set K
iii) r(G) is open for any open set G

2.5 — OPENING ASSOCIATED WITH A DILATION.

If T is a dilation, we define the associated opening vy as
in [1], by writing for any A ¢ J°(E)

y(A) =y {r(x) : x € E, I(x) A}

The class B_ of the sets invariant under y is the class
of the sets B which are B = I'(A) for A ¢ P (E), i.e. B 1is the
range I'(JP) of the dilation T. Y

If we consider the erosion I'' = ﬁ'f B dual of the dilation
v
I'y we may write :
y=ror'

It is not generally easy to obtain simple criteria for the
various topological properties of the opening y, and we shall only
examine particular cases.

If the reciprocal dilation f is open, we know that F is
l.s.c. from g? into itself (Theorem 2.6), and thus ! = B r f is
u.s.c. from 3 into . Moreover, if I itself is u.s.c, from 3
into z,the opening y = I'I'' is u.s.c. from 3 into z since it is
the domposition of two increasing u.s.c., mappings. But the open-
ing Y is anti-extensive, so that the closed set y(K) is compact
for any K € /&, because we have y(K) < K € J6. Moreover, the
mapping K -+ y(K) from V6 into itself is u.s.c. not only for the
relative topology on JG deduced from ¥, but also for the myope
tcpology of A5 . In fact, if a sequence Kh ccnverges towards K in
in JG for the myope topology, the compact sets K, are contained
inside a fixed K, € J6 , and we have :
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Y(Kn) c Y(Ko) c K,

It follows that the sequence y’(Kn) has the same accumilation
points in & and in F, and the inclusion y(K) c lim y(K,) also
holds for the myope topology. Hence :

THEOREM 2.11 = If a dilation I ¢ &(E) is continuous from 3 into

¥, the associated opening y = IT' is u.s.c. from 3 into ¥
and from J® into JG . ‘

This is a simple consequence of the previous considerations,
becéuse, by Theorem 2.4,I' is continuous from 3 into 3 if and only
Y4 .
if I is open and T is u.s.c. from 3 into 7.

In the same way @

THEOREM 2,12 — If a dilation I' ¢ #(E) is open and u.s.c. from G
into JG , the associated opening y = IT' is l.s.c. from 9

from % into & , because T' is u.s.c. from JG into Y6, By
Theorem.6, I' is 1l.s.c. from gr into g y because it is open.
Thus y = I'T' is l.s.c. from & into & , because it is the
composition of two l.s.c. increasing mappings from gf into

e recall that an opening y is said to be coumpact if the

following conditions are satisfied :

i) y is u.s.c. from J6 into itself, u.s.c. from 3 into
itself and l.s.c. from g into itself.

ii) y is the smallest extension to R (E) of its restric-
tion to JG .

Then

THEQREM 2.13 - If a dilation I' is open, continuous and null at
" infinity, the associated opening y = I'T' is compact.




from ¥ into 3 and from 6 into V6 (Theorem 2.11) . Moreover, T
is open and u.s.c. from JG into J6 and thus, by Theorem 12,
y is l.s.c. from % into % . Hence, condition i) is satisfied.

Now, for any A c E, we have y(A) = Uy {I'(x), x € E, I(x) < 4}.
But I'(x) is compact for any x ¢ E and I'(x) = y I'(x). Hence
y(o) ey {yX), Kels, K A} and the equality, because the
converse inclusion always holds. Thus, condition ii) is satis- ':- -
fied, and the opening y is compact.
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