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FILTERS AND LATTICES

4.0 - INTRODUCTION

Taroughout this paper, R will be a complete lattice,
that is, a set P provided with an ordering < such that any
finite or infinite family of elements A € 72 has a least
upper bound v A; € & ard a greatest lower bound A Ay € 7.
In particular, /7 itself has a greatest element E and a smal-
lest element @. ' '

e ———
~

In @athemati;;;j;%rphOIOgy, the lattice ¥ will be the
SoomeRa

set of all the pOssible images to be treated. For instance, TP
may be the set <P (E) of all the subsets of = given space E :
in ‘this case, the supremum v is the union U and the infimum A
is the intersectionn . If E is a topological space, P may be
the set 7(E) of the closed subsetsof E, or the set %(E) of the
open subsets of E. In the case P = z(E), the infimn A is the
ordinary intersection N, because 7 is closed under intersection,
but the supremum v is the closed union v A = [FK;. In other
cases, A will be a family of functions, for instance the latti-
ce of 21l the positive functions bounded by a given nuumbsr b,
and so on.

A trensform, or mapping ¢ : P — P is increasing if
A < A" ioplies ¢(4) < ¢(A'). It is idempotent if ¢ o ¢ = ¢. We
shall say that ¢ id a filter if it is increasing and idewpotent.

A transfora ¢ is extensive if ¢(A) > A for any A ¢ P,
that is ¢ > I, where I is the identity function on P , A trans-
form ¢ 1s anti-extensive if ¢ < I. A closing is an extensive
filter, an opening is an anti-extensive filter.

Let J5' denote the set of all the increasing mapvings
from J? into itself. The relationship ¢ < ¢', i.e. ¢(A) < ¢'(4)




for any A € J? is an ordering on {R', and J¥ provided with

this ordering is a complete lattice : the supremum v ¢; » for
instaace, is the mapping ¢ defined by ¢(A) = v ¢i(A),‘A e R.

1 ] ' | ' ' —
Clearly, ¢1 < ¢1 andv¢2 < ¢2 1mp1y.¢1'¢2 < ¢1 ¢2 . More gene
rally ¢ :

(v ¢;) o b =v (¢; ¢)
(4.1) ;
LAy 04 = A (4 0)
Note that the equalities ¢ o (v ¢3) = v (¢ ¢;) or
b o (A ¢i) = A (¢ ¢i) are not true in general. We only have
the inequalities '

¢ o (v ¢;) > v (4 ()
(4.2) 3
¢ o (A db;) <A (b dy)

In particular, ¢ o (I v ¢) is greater than ¢ v ¢ ¢,
wnile (Iv¢) odb=¢vdd. If ¢ is a filter, we have

(Ivd)od=¢ (TA¢)op=2¢"

e

but only :
bo(Ivd)>e 3 ¢o(Iad)=<de-
We say that a filter ¢ is a v — filter (resp. a A — filter) if

oo (Ive)=¢ (resp. $ =TI A ¢ =¢). A filter ¢ which is at
the same time a v — filter and a A — filter will be called a

strong filter. Openings and closings are strong filters.

Proof - If ¢, for instance, is a closing, i.e. ¢ > I, we have

=9 ¢ =9

If y is an opening and ¢ is a closing, then yg is a v -
filter and ¢y is a A - filter (for the proof, see criterion 4.7
below).



We shall see that the converse is true. In other words,

a_transform ¢_is a y - filter (resp. a A — filter) if and only

if ¢ is of the form ¢ = yo (resp. ¢_= ¢y) for an opening y_and
a closing o. :

Hote that filters ¢texist which are neither v - nor A -
filters, so that they are not of the form yp or ovy.

EXAVPIE ¢+ If B e J° is neither E nor ¢, let us consider the
transform ¢ defined as follows :

$(A) = A if A > Bor A <3B

¢(A)

B"otherwise

Il

Taen, ¢ is increasing and idempotent, i.e. is a filter. But :

b (Av ¢(A)y =A if A<B , = A v B otherwise

¢ (A A ¢(a)) A if A> B , A A B otherwise

Hence, ¢ is neither a v - filter nor a A - filter.



4.1 — SEVEN CRITERIA

For eny mapping ¢ : J° - 9 , the notation I3, will de-
note the invariance domain of ¢, that is the family of the ele-
@ B ¢ 7 invariant under ¢, i.e. such that ¢(B) = B. The inva-
riance domain J3, is a subset of the range ¢&(JJ), i-e.
(/3¢ c (L), and ¢ is idempotent if and only if ﬂqu = $(\P).
The following criteria will be useful in the sequel :

£~ Criterion 4.1 - For any mappin’és?g fromJ? into itself,

Criterion 4.2 — Two mappings ¢ and ¢’ from {° into itself are

idempotent and have the same invariance domain ﬁ‘b = 57;’>¢,
if and only if ‘

Q' =t mmd = ¢

% Proof - Criterion 4.1is obvious. For any mappi\r\\,g b, b%, Wwe have

By o(P) and By c ¢'(P), so that ths inelusions

(a) - ¢'(33) c 05¢ and.¢(39) C 43¢v

are satisfied if and only if

B, =B, , = ¢(P) = ¢ (R)
¢ ¢
i.e. if ¢ and ¢' are idempotent and adwmit the same inva?i< ce .
EJV domain. But the inclusions (a) are equivalent to ¢¢' = @d
¢'¢ = ¢ (criterion 4.1).Criterion 4.2 follows.

Criterion 4.3 — Iet ¢ be idempotent on P, Then, for any mapping
f from J° into itself such that

fo = ¢
of is idempotent, and \T:Eq)f = B .




Thus ¢f is idempotent, and B, . = \Bq) (criterion 4.2).

Of

Criterion 4.4 - ILet ¢ be idempotent on N Then, for any mapping
f= P-P such that

¢ £=4
f¢ is idempoten‘d.

EEEQi*If(bf'—"tl),wehairef¢f¢=f¢¢;—.f¢,

In these four criteria, the ordering <« does not inter—
vene. From now on, we will only consider increasing mappings ¢
i.e. ¢ €J?'. For any filter ¢, the class of the filters ¢'
which have the same invariance domain B , as ¢ will be denoted
J4(B). In the same way, if B is a subset of P , ga(\B) will
denote the class of the filters ¢ such that \34) = B, In gene-
ral, 4 (B) will be enpty, and we have to find the condition
under waich a given subset A« ¥ is an actual invariance do—

‘malin.

For any subset B c P, we shall consider the class A
closed under v genersted by J3 , that is the intersection of
all the classes closed under vy and containing ~3 . This class

B is the invariance domain of an opening which will be deno—
ted Igs or siwply I , if there is no ambiguity. In the same
way, B will denote the class closed under A generated by B

and 'f@ » Or siuply T will be the corresponding closing. ‘:‘[’J3

(resp. TJS) is the swallest (resp. thre greatest) increasing
extension on 9 of the identity function L on <3 . Expli~
citly :

I(a)

v {B:BeB, B< A}

It

T(A) = A {B: BeB, B> A}

Criterion 4.5 — For any subset B &lPand any £ ¢ ', the following

equivalence is true ¢

'531-3(/3 o l\BCfCI\B



Proof ~ If any B ¢ 3 is invarient under f, f is an increasing

extension of I, and thus is smaller (resp. greater) than the
‘greatest (resp. the smallest) extension of Iz . Conversely,
we have I(B) = T(B) = B for any B € B, so that I c f = T

implies f£(B)

theory ¢

= B and J?é:éBf.

The following criterion is the starting pcint of the whole

Criterion 4.6 - Let f and g be two filters on ¥ such that £ > g.

Then :
i)

ii)

iii)

iv)

f>fgfs>gfvieigsgtafsgsggfg>g
gf, fg, £gf and gfg are filters, and

fef € Ja(fg) ; efg € Jalef)

fgf is the smallest filter greater then gf v fg,
gfg is the greatest filter smaller than gf A fg.

The following equivalences are true :

= = B i =
o fgf = gt » gig = fg

& gf > fg

Proof ~ The inequalities i) are obvious. From relationships

fg =

ff fg > fg fg > fg gg = fg

we conclude that fg is a filter. By the dual inequalities, gf
also is a filter. Now we have A

fgf . fg = fg fg = fg

fg . fgf = fg fg . £ = fgf

ard thus fgf ¢ Jd(fg) by Criterion4.2,.In the szze way, we find

gfg e Jalgt),

so that ii) is proved.



Now, fgf is a filter (by ii) and fgf > &f v fg (by i)). Tet ¢
be a filter such that ¢ > fg and ¢ > gf. It follows that '
¢ = ¢b > fggf = fgf. Thus, fzf is the smallest filtering upper
bound of fg and gf. By duality, gfg is the greatest filtering
lower bound of fg and gf, hence iii) is proved.

By criterion 2, we have \E§g = éBgf if and only if
fg . gf = fgf = gf and gf . fg = gfg = fg

But in fact, these relations imply each other. For instance,
fgf = gf implies fgf . g = gfg, i.e. fg = gfg. By iii), these
relations are equivalent to gf > fg.

The inclusions o
B
£ r\ébg c Jsfg c 66f

always hold, so that By, = B, ryCBg if and only if Bp, c B,
i.e. by Criterion 4.1 if and only if gfg = fg. This completes the
prcof,

Criterion 4.7 — Let £ and g be two filters on J” and £ > g. Then :

if £ is a vy — filter, gf anf fgf are v - filters
if g is a A - filter, fg and gfg are A — filters

-ty 1f gf is a A - filter, £gf is a A - filter

if fg is a v - filter, gfg is a v -~ filter.

—— e —

I <« Iygf < T v fgf <Ivy £, and thus :

f<fo(Ilvgf)<fol(lvifef)<~Ffo (Ivi)

If £ is a v - filter, we have £ = f o (I v f). The above ine-
qualities become equalities, and thus gf and fgf are v — filters.
In the same way, if gf is a A - filter, the inequalities

fgf > fgf o (I A £3f) > £ o gf o (I A gf) = fgf



become equalities, and fgf is also a A - filter.

E7AYPIE ¢ If y is an opening and ¢ is a closing, i.e. y < I < o,
Y and ¢ are strong filters, yp and ¢yp are v — filters, oy
ard ygy are A - filters. Moreover, if yp is a A - filter and
thus a strong filter, gyp is a strong filter. In the same way,
if ¢y is a strong filter, YOY :Ls a strong filter.

4.2 — STRUCTURE OF THE INVARIANCE DOMAIN \73(1).

If B is an arbitrary subset of J° » in general there exist
no filter ¢ having & a3 its invariance domain, and Ja(v3) = @.
Urder which condition is Ja(J3) not empty ? A sufficient condi-
tion is that J2 be closed under A or under vy, because in this
case the closing 'f$ or the opening I »n belongs to Jd(93).

e shall see that the necessary and sufficient condition is in
& certain sense a generalization of these two particular cases.

Iet ¢ be a filter, and ~B = 73 its imvariance domain.
By Criterion 5, the opening I = 'I'\B and the closing T = T_,,, |
satisfy the relationships ‘
(4.3) ‘ I<¢ < T

loreover, by Criterion 4.1,the inclusions J3 c B and J3 ¢ N
ieply

(4.4) I = T¢ = ¢
sc that, by Criterion 4.3 we also have
¢ Le JA3) , ¢ Te JaB)

fore precisely ¢, = ¢T is the greatest element of Ja(B),
b, = ¢l is its smallest element.

In fact, by relation ( 4.4) , we have for instance



and the inequalities ( 4.3) jmply :

~r

IT=I£TCL¢T=¢MCLTT=LT

Hence by = I T , and in the same way b, = T I : But the
filter I T only depends on J3 , and not on the choice of the
particular element ¢ ¢ Ja(w). Hence, we have Gar = & 75 ¢ for
any ¢ € 34aH3), and gy 1s the greatest element of Ha(3). In
the same way, ¢, = ¢ I =1 I is the smallest element of Za(s3).
Also note that by Criterion 7, by=LI1is ay = filter, and by
is a A — filter.

Tamdg=1,

Now, by applying Criterion4.6 ,iv) with f
we find | ’

IT1=171

we .

B-BnB ; 1T-T17
By the same Criterion 4.6, these necessary conditions are
2lso sufficient. kore precisely, we may summarize our results as
follow :

THEOREH 4-1 — Let B be a subset of J° . Taen oJi(B) is not
empty if and only if the condition :

B=-n.3

and one of the three following equivalent conditions are sa-
tisfied :

i) 1TI-5TL
i1) 1 T=T17
111) T 1 =371

If so, Jﬂﬂ;ﬁ) has a greatest element $rp wnicn is a y - filter,
end a smallest element ¢, which is a A - filter. Koreover,
we have for any other filter ¢ ¢ od(¥3) :
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( g =T1=1T1-¢1
E by = LI =T1T=¢T
(4.5) é b= o =T

The same theorem may be restated in a more synthetic lan-
guage. If Jd(-J3) # ¢, let B; be a famlly of elements of 3 . We
have v B; € B and thus I (v B; ) = B; - By the first relation
(4.5) , it follows for any ¢ € .JdGIB)

ovB)=¢L(vE) =TZ(v3)

But I (V Bi) = v By, and then

T (v B;) =¢ (vB) eRB

. .

In the same way, we also find

TB) =4 (r3B)eB

In other words, -B is a complete lattice with respect to the ordering
on B deduced from <, i.e. any family Bi in ~/3 has a smallest upper
bound T (v Bi) € J3 ané a greatest lower bound I (A Ei) c .

Conversely, let us assume that U3 is a complete lattice.
Thus, for any A ¢ J?, the family {B : B¢ B, B> A} has in B a
greatest lower bound, which is :

g(//\ {B:Beﬁ,B>A})=}£T(A)EJS

But this implies JB¢ c B for the filter by = L T. Conversely,

b
for any B ¢ J8 we have I(B) = I(B) = B, and thus ¢,(B) = B, i.e.
R c QB¢ . We conclude 5@¢ = B, and Ja(B) is not empty. In
M
other words :
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THZOREME 4-2 - Let -Jd be a subset of J° . Taen Jd(J3) is not
empty if and only if J3 is a complete lattice with respect
to the ordering on v3 deduced from < , i.e.

I(vB)eTd; LB e T3
for any family B; in {3 . If so, we have

T(vB)=¢(vB) 5 L(AB)=¢(aB)

for any ¢ ¢ Ja(~B).

4.3 - UNDER AND OVER FILTERS

Toe set J°' of the increasing mappings from J° into
itself is itself a complete lattice, so that¥we may also casi-
der the complete lattice J*" of the increasing mappings from P!
into itself. For instance, the transform £ — £f (£ ¢ ') is an
elemt of 2", which is called the self—comnosition. The element

of (P! invariant under the self-composition are the filters onP.

wWe shall consider four other elements of JP" and their invariance
domzins 3

Over composition from the left : £ - (I v £f) o f =f v ff

Under composition from the left : £ — (I A £) o £ =T A £f

Over composition from the right : £ - f o (I v f)

Under composition from the right : £ — £ o (IA f)

The corresponding invariant elements will be called res-—
pectively : under filters, over filters, y-under filters, and
A—over filters.:

Under filters : (Iv£f)of, ie. ff ¢ £

Over filters (TAZFf)of, i.e. £ffF S F

fo(Ivif)

I}

v-under filters

£ o (I AT)

A—over filters

ey Hb b b
I




N\
\ .

b fho QT < P g

- WYy

< Dortup) op g 0

[\ ~ i / f(

b e ool

e (NS S R
( —0re
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Any v-under filter is an under filter, any a-over filter
is an over filter : if f is for instance a v-under filter, we
have :

f=Ffo(Ivef)sFfyffsTt

and thus £ = £ v ff is an under filter. But the converse is not
true : there are under filters which are not v-under filters.

Mn-element ¢ ¢ J°' is a filter if and only if it is at
the same time an under and an over filter. It is a v=filter if
and only if it is at the same time a y-under filter and an over
filter. It is a A~filter if and only if it is a aA—-over filter
and zn under filter. It is a strong filter if and only if it is
a v-under filter and aAA~over filter.

THEQREM 4-3 — The class of the underfilters (resp. over filters)

|

is closed under A (resp. under v), self composition, over and
under composition from the right and from the left.

———— ——

By the relationships (4.1) and (4.2), we have

(A £)o(aA £)= A (£, 0(A £.)) < A £, £, < aA £
ied 7 jed 3 ied Y jes Y ieg * t dieg *t

so that A fi is an under filter.

If £ is an underfilter, ff < £ implies ff o ff < £f, so
that the self composition ff is an underfiltsr. By (I v £) o f

=f and (I A £) o £ = £f, the over and under compositions from
the left are under filters. In the same way, the relations :

Il

Po(IvE)ofo(Ivi)=Ffo({Ivyflotf)ol (Ivrs)

ff o(I v £f) < £ o(I v £)

fo(IAf)ofo(IaTf)

fo ((Iazflozf)o (IaTct)

i

foffo(IaTf)=<foll acz)
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prove that the over and under compositions from the right are
underfilters.

Concerning the y-under and aA—over filters, we only obtain
the following results :

THEQOFEHM 4-4 — The class of the y-under filters (resp. a—over
filters) is closed under A (resp. under v), self compesition,
over and under composition from the left and over composition
(resp. under composition) from the right. But in general it

is not closed under the under composition (resp. over compo~
sition) from the right.

N-evertheless, the class of the v—under filters is closed
under the under composition from the rlgat if the lattiee J° is
distributive (i.e. AA (Bv C) = (AAB) v (AAC 2nd Av(Ba C)
= (Av B) A (Av C), as it is generally in the applications. In
fact, a weaker hypothesis is sufficient. We say that the lattice

J is modular if the following implication holds for amy A, B,
Ccin P ’

(4.6) B<A=_>AA(BVC)=BV(AAC)

Any distributive lattice is modular, but the converse is not true
in general.

THEOREM 4-5 -~ If the lattice P is modular, f o‘I A f\ls a y-under

filter for any v-under filter f ¢ &', and g ofI v g is a A—
cver filter for any a-over filter g ¢ Pr.

Iet us suppose for instance that £ is a y— under filter
and put :

h=fo (I AaATf)

We must show h =h o (I v h). Explicitly, we have :

ho(Ivh)==%fo[(Ivh)aAaTfo (Ivh)]
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But the inequality h < f jmplies f <f o (I vh) <f o (I vy f)
= £, because f is a ' y-under filter, and thus £ o (I v h) = £. It
follows

h o (I.v h) = £ o [(I vh) A £]

Now, the lattice J° is modular and h < £, so that by relation
(4.6) we have

(IVvR) AZ=(IAf)vh=(IAL)vEolIaf)=(Ivz)o (lat)

and thus : : _
ho(Ivh) =fo0(Ivie£)o (IaT9f)

But £ oV(I v f) = f, because f is a y-under filter, so that

ho(Ivh)=f0(IAf)=h

Herce, h is a y-under filter.

THECREM 4-6 — Any under filter (resp. v-under filter) f ¢ o' is
the infimum of the filters (resp. strong filters) ¢ > f. Any
over filter (resp. a~over filter) g ¢ /' is the supremum of
the filters (resp. strong filters) ¢ < g. |

Iet for instance g be an over filter. For any A ¢ J°, we
cor.sider the mapping ¢A € P' defined as follows :

i

$¢A(A')
L4,(a")

g(A) if A' > A or A' > g(a)

i

0] otherwise

Clearly, ¢, is a filter. If A' > A, we have ¢,(a') = g(4) <sg(a').
If 2' > g(a), we find ¢,(A') = g(4) < g(g(4)), because g is an
over filter. But g(A) < A' implies g(g(A)) < g(A'), and then
¢A(A') < g(A'). Ve conclude by < g for any A € . But‘¢A(A)'=
g(A) for each A € J°, and thus g is the supremm of the filters
b, » AeR.



Now, let g be a aA-over filter, i.e. € o (I A 8 = g. Put :

b,(A') = g(a) if A' > A A g(n)

.

¢,(a") =90 otherwise

We have Q’A < g, because g is a a-over filtei-, so that A' > A A g(A)
implies ¢A(A’) = g(A) = g(A A 8(A)) <g(A'). In the sawe way, it is
easy to see that ¢, is a strong filter. But ¢,(4) = g(4) for each
A e J¥, so that g is the supremum of the family of the strong £il-
ters ¢, < 8. ‘

4.3.1 — The Lattice of the Filters.

By Theorems 4-3 and 4-6, if £* < g9' 1s the class of the
filters, ('}:is the class of the over filters and (¥ is the class of
the under filters. Iet G and F denote the corresponding opening
and 4closing on J*' : for any & ¢ ', G4 is the supremm of the
over filters g < ¢ and R} is the infimum of the under filters
f > &. By Criterion 4-7, GF and FG are filters (on the lattice R ').
The first condition of Theorem 4-1, i.e. ¥ = ,lfn ¥ is satisfied,
and thus GF and FG have the same invariance dowmain ¢* (i.e. the set
of the filters) if and only if GF > FG. We shall see that this ine- |
quality is true. '

Let ¢ be an element of P '. Put £ = Fy. Then f is the
supremum of the class € closed under v and self composition gene-
rated oy ¢. In fact, the class &' of the elewents ¢' € P smal-
ler than f is closed under vy and self composition. For g c £ im-
plies gg ¢ ff « £, because £ = Py is an under filter, and thus |
g2 ¢ 2'. But ¢ itself belongs to £ '. This implies L £°.

Yow, let fo be the supremum of the class €. We have fo cc,
because & is closed under v, and thus £, € &', i.e. T <Af. On
the other hand, (& is closed under self composition, so that

f, f, € €, and thus £ f c £, , because f_  is the supremun of £ .
Hence, fo is an under filter. But this implies f, > F = f, because
fo > ¢. We conclude f, = £.
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If ¢ is an overfilter, instead of the class ' we may
consider the class " of the over filters ¢" < f = Fy : £ " is
closed under vy by 'fheorem 4-3, and closed under self composition
(2s a2bove). We see as above that the supretum of @€ ™ is again
fo = Py = £. Thus fo is an under filter, because fo = Fy, and f,
is an over filter, because fo € &" : we conclude that fo is a

filter.

In other words :

THEQOREM 4-7 — For any increasing mepping ¢ € P', the closing F¢
is the smallest under filter > ¢ and the supremum of the class
closed under y and self composition generated by &. Loreover,
if ¢ is an over fllter, then F¢ is a filter.

- In the same way, the opening G¢ is the greatest over filter
< ¢ ané the infimum of the class closed under A amd self compo-
sivion generated by ¢. If ¢ is an under filter, then G¢ is a
filter. | -

Lioreover, GF and FG are filters on {P*' and have the same
invarience domain (¥, which is the set of the filters on & .
More precisely GF is the greatest element of Jd(£*) and FG is
its‘sma]lest element. We have in particular :

GF > FG 3 FGF = FG sy GFG = FG.
From Theorem 4-2 it follows :

COROLIARY - The set (¥ of the filters on { is a complete lattice.
For eny family by of filters on 77 , the smallest filter greater
than v ¢, is ¢(v by ), and the greatest filter smaller than A by
is G(A ¢y ) '

If the filters ¢; have the same invariance domain J3 ,
have a more precise result :

THEQOREM 4-8 — Iet JB be a subset of J° such that Ja(B) is not
empty. Then, Jd(J3) is a complete lattice, and for any family
b, of filters in Ja(R), F o(v ¢i) and G o(a ¢i) belong to
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Jd(®B). Moreover, we have for any ¢ ¢ jd(JB)

1l
I

Foly ;) = ¢ olv ;) = Tzolv ¢;)

It

G oA ¢5) = ,¢. o(A &;) I$0(A by )

Proof — For any ¢ € Jd(ﬂ%), we have (V.¢i) o¢p=v (¢ 4) =9
(Criterion 4.2) and thus ¢ o(v ¢i) e Jd(W3 ) (Criterion 4.3).
For eny A € P, v ¢;(A) is an element of ¥8 , so that we have
v b; =1 o(v by ). By relation (4.5), it follows ¢ o(v by ) =

¢,I,0(V¢i)=TIO(v¢) But I o(v ¢;) = v ¢;, and thus

O(V ¢i) = T O(V ¢i)

~

(LO(V(I,Ji):TI

for any ¢ ¢Ja(sB). If ¢ = by = T I is the infimum of Ja(V3),
wehave(,, <vq) ,a.ndthusq, 0(v¢)<F(V¢)0F(V¢)
v by ). On the other hand T o(v by ) s v ¢; implies T o(v & )
> F(v by ), because F(v by ) is the smallest filter > v ¢;
ThusIO(v bs) = By ¢1)

4.3.2 — The Lattice of the Strong Filters

Concerning the y-under and the a—over filters, we
obtain very similar results if we assume that the lattice J° is
modular. In fact, let U% be the class of the strong filters on
J? , so that gé is the class of the A-over filters, 5% is the
class of the y-under filters, and 0% = Q% N 55 (Theorem 4?6).
let Fv'and G denote the corresponding closing and opening : for
any ¢ €¢R', F ¢ is the smallest y-under filter £ > ¢, and G ¢ is
the greatest A—over filter g < ¢. Now, G F and F G are fllr _
ters on P'. But this time we have G F 3 F G only if the lat-
tice P is modular, hecause of Theorem 4—5 . berwise9 the proof
'is the same as above. | | o

THECREM 4-9 ~ For any ¢ € P'y the closing Fv¢ is the smallest
v-under filter > ¢, and the supremum of the class closed under

v and over couposition from the right generated by ¢. In the

same way, the opening GA¢ is the greatest a—over filter < ¢ ,
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and the infimum of the class closed under A and under compo-
sition from the right generated by .

Yoreover, if the lattice J?is modular, taen F g and G £
are strong filters for any a~over filter g and any v-under
filter f£. In this case, the filters G, Fy end F G, on '
nave the same invariance domainA‘LV which is thae set of the
strong filters on P, G, F, is tne greatest element of<3d(CP)
and FV G its smallest element In particular, we have

G > F 3 F
A Fv \Y; GA i \Y% G

Proof - Iet us prove dnly the second part of the Theoremn.

Iet g be a a-over filter. We have Fvg > g, end thus @

rg > (Fg) o (Ia FVg) >g0(Iag)=

because g is a aA—-over filter. But F g o (I A Fvg) is a y-undexr
filter by Theorem 4-5. Since Fvg is tho smallest yy—under filter
greater than g, it follows : '

(Fvg) o (I A Fvg) =Fg

and Fvg is a A-over filter. Since Fvg is 2iso a v—undér filter,
it is a strong filter. The remainder follows from Criterion 4.6.

COROLLARY 1 - If the lattice P is modular, the set (% of the strong
£ilters on J° is a complete lattice. For any Tamily ¢ of strong
filters, Fv(v by ) is the smallest strong filter greater than

v ¢y and G (A by ) is the greatest strong filter smaller than \
A by T . !

In this corollary, the assumption of modularity cannot
vpe dropped out. On the contrary, the following corollary holds
wnatever the lattice P :
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COROLIARY 2 — If g is a A-over filter (resp. an over filter)

Pg (resp. F g) is a A-filter (resp. a v-filter). If f is a
v-under fllter (resp. an under filter) Gf (resp- G f) is a
v-filter (resp. a A~f11ter) The set OV (resp. 5}/) of the
A-Tilters (resp. v-filters) is the common 1nvarlance domain
of FG, and GAF (resp. G, and rvG) and is a complete lattice.
Koreover, we have

G . .
GAF >F&, 5 G Fv > FbG

Fg is a filter (Theorem 4-7). On the other hand, the class
of the under filters is closed under the under composition
from the right (Theorem 4-~3), so that (Fg) o (I A Fg) is an
under filter, because Fg is a filter, and hence also an under
filter. But Fg > g implies that the under filter (Fg) o (I A Fg)
is greater than g o (I A g) = g, end thus greater than Fg it-
self, It follows (Fg) o (I A Fg) = Fg, and thus the filter Fg
~is also a A—-over filter. Hence Fg is a a—-filter.

It follows that for any ¢ e ', F GA¢ is a A—filte:,
because GA¢ is a A-over filter, so that the invariance domain
:BFG of the filter F G € P is LY But conversely, any

A
A—filter is invariant under F G . It follows JBﬁG - L@ and
the equality.

Now, we have F GA < F, because GA is an opening, and
thus F GA¢ < F). But this implies F G ¢ < G ¥d, because
the apA-filter P G ¢ is a aA~over Lllter smaller than Fp. It
follows F G < G F , and, by Criterion 4-6, F GA and G F

have the Same 1nvar1ance domain JBFG = C{ , Which is a
A

complete lattice by Theorem 4+-2. The remainder of corollary
2 follows by duality. |

YNOTE ¢ It follows from Theorem 4-56 that GA is the opening asso-
ciated with g‘;\ y SO that, by relation (4.3)n F GA is the
- smallest element of 'dd(é}k), and, in the same way, G FV is
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the greatest element of 36(0;). But we did not prove that
G F is the greatest element of <jd(éa).

4.4 — CHARACTERIZATION OF THE FOUR ENVEIOPES

~If an increasing_mapping g e P' is extensive, it is an
over filter because g > I implies gg > g, and thus Fg is a filter
(Theorem 4-7). Hence, Fg is a closing, since Pg > g > I, i.e. the

smallest closing > g. In the same way, for any increasing mapping
¢ €P', we see that the smallest closing greater than ¢ is F(I v ¢).
It will be more convenient to use a shorter notation by writing :

= ™MIv )

Wnat is the invariance domain of this closing & ? If » 1s a clo-
sing such that ¢ > ¢ , we have ¢(A) = A > ¢(4) for any A e.E%
The subset of J° defined by

R .
B, = {A:ael, 2> (M)}
will be called the anti-extensivity dowain of ¢, and we have
\B@ c £B for any closing ¢ > ¢ . Conversely, JB C'JB implies
¢ <I on 33 y and thus ¢ is smaller than the sreauest extension
¢ of the identity on :B¢’ In other words,

\Bcpc\ﬁ(p o 9> ¢

But the anti-extensivity domain JBQ is closed under A .
For A E\B, i.e. ¢(A ) < Ay implles &(A Ay ) < A Q(Al) <A K.
Tnus, the 1nvar1ance domain of ¢, which is tne greatest class
B close@ under A such that 3 c:J3¢ is JB¢ itself. By duality,
we obtain similar results concerning the greatest opening < ¢ :
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THEOREM 4-10 — For any ¢ € ', the anti-extensivity domain
j§¢ = {¢ < I} is the invariance domain of the smallest clo-
sing ¢ greater than ¢, and the extensivity domain B, =
{b > I} is the invariance domain of the greatest opening &
smaller than ¢. '

Criterion 4-8 - Iet ¢ be an increasing'mapping, @ the smallest

closing > ¢, E the greatest opening < ¢. Then
¢ is an under filter if and only if ¢ = $¢
¢ is a y-under filter " ¢ = oo
¢ is an over filter: , " ¢ = $¢
¢ is a A—ovef filter " ¢ = ¢¥

More generally :

5é ¢ is an undeqﬂ%ilter if and only if ¢ = 9g
¢ 1is a y-under filter - " b =801

¢ is an over filter ‘, " b = Y8
¢ is a A-over filter ) " b =.8Y

for a given ihcreasing~mapping g and a closing ¢ > g, Or an

opening y < 8. ‘

Proof - ¢ is an under filter, i.e. ¢ < ¢, if and only if for any

——— e —

A eda,¢(A) belongs to the anti-extensivity domain j§¢ , l.e€.
if and only if ¢(&(4)) = ¢(A) (Theorem 4-10), i.e. ¢ = § .

~ On the other hand, the closing $ is a y—under filter
and is greater than ¢, so that we have

G <4 0o (T v id) < ¢d o (T v ) =4d

and thus ¢ = 40 o (I v ¢d) is a y-under filter. Hence, ¢ = W
implies that ¢ is a v-under filter.

Conversely, if ¢ is a vy-under filter, we find :
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M



y

._22_.

(T v ) o (Iv ) =TI vdovgolIve)=1Ivy

Thus I v & is an extensive filter, i.e. 2 closing. But ¢ < $
implies I v ¢ < §. Hence § = I v ¢. It follows

¢ $=¢ ol ve)=
because ¢ is a y-under filter.

Now, if ¢ is an underfilter or a y-over filter, it is of
the desired form ¢ = gg or‘¢ = gp with ¢ = @ > g = ¢. Conversely,
¢ > g implies ¢p = ¢ > ¢g and thus ¢g ¢z < 993 = ¢g, and g is
en under filter. In the same way gp 1s a y-under filter by the
inequalities

gp <890 (Ivggp)<gogo(lveo)=

THEOREY 4-11 — For any ¢ ¢ &', the under filtering closing F¢,

-the vy-under filtering closing FV¢, the over filtering opening
G and the A~over filtering opening GA¢ are given by the re-
lztions : \

Fo =4 ¢ H Fv¢

1l
e

)
¢ H GA¢ =¢ 3

€<

G =

Iet g be zn under filtering, so that g = £z by Criterion

4~-8. 1If g > ¢, we also have g > @, and thus g = 2g > Dy > ¢.

It foilows from Criterion 4~8 that $¢ is the swmallest under fil-

ter > ¢, 1i.e. $¢ = F¢., The proof is about the szwe for the three
other relations.

CCROLLARY 1 - An 1ncre4f)ng mepping ¢ €' is a filter if and only
if $b = Jb. ¢ is a strong filter if and only if ¢3 = ¢¥. ¢ is
a v—fllter if and only if m¢ ¢¢ and ¢ is a A—filter if and

orly if ¢ = Q.

COROLLARY 2 - Iet ¢ be a filter and let T and I denote the closing

l and the opening associated with 8 andiB . Ther we have :

b
&VW/ ﬂ W .
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PO =4b =4 =10 5 co=¢l =3 =1y
In particular, ¢ is a y-filter (resp. a a-filter) if and only
if it is of the form ¢ = y¢ (resp. ¢ = gy) for an opening y
and a closing g¢. |

=<
A
&
B
o
ot
oy
&

Proof -~ We have I <

But, by relation (4.5), I& = ¢, and thus ¢§ = 16 < 1§6 = 10.
= ¢¢ = ¢¢ follow. -

Now, if ¢ is a v~filter, we have ¢ = q,@ é—-_ b, so that-d,;
is of the desired form yp with y = § and gp = §. Conversely,
Yp is a y=filter by Criterion 4-7. -

4.4.1 — Invariance of the Invariance domain,

THEOREM 4-12 — Let ¢ be an increasing mapping. Then ¢ and its
four envelopes ¢$, C¢, ¢§ and &, have the same invariance
domain. LIoreover, Gy ¢(,) and Qv have the same ant:.-—extensn.v1ty

doma:m Jbu y ON which they are equal. In toe sane wa_{, by q,Zﬁ
~and qab have the same extensivity domain \ﬁq,

on which they are

equal,

Proof - By § > ¢, we have § = 00 > ¢B. But F, > F implies F ¢ =
?;,q, > ¢, so that :

€
<
v
k=i
.e.
Il

3}>¢$>$¢>¢

Hence /(: is the smallest closing > q,’q‘, and also the swmallest
closing > ¢¢. Thus, by Theorem 4-10, ¢, ¢$ and P¢ have the
same anti-exten31v1ty domain Jiq). But ¢4; ¢ on 339 y be~
cause ¢ = I on \BI, and also $& = ¢ on B, , because ¢f >

T4 > ¢. Then, for(’)any Ac®,$p(A) = A implies A ¢ B, , and

thus A = $¢p(A) = ¢(A) € B, In the same way, $b(A) = $od(a)
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because ¢ = ¢y on f3¢ y and thus ¢H(A) € ﬁ¢. Then ¢&(A) =
egain implies A eﬁq) and A = t‘,@(A) = ¢(4) e£¢. Conversely,
if AeB, , we have A 63 y because B cﬁ, y and thus

A - ¢ b
A= ¢(8) =Tp(A) = ¢gp(4).

COROLIARY - :/Bq) is a compl'ete lattice. The two filters GF) and
FG¢, the three A-filters G, F¢, F G AV and 6 F ¢ and the
three y-filters G F ¢ ’ F G ¢ and F G ¢ belong to Jd(\fé’)

Note that if the lat’cice J? is modular, GA qu) and Fv GA(};
are strong filters : in this case, for any J3< 7 suc that

34(8) is not empty, there are strong filters in Jda(®).

THEOREM 4-13 — For any increasing mapping ¥ we have the equali-

ties
LV AV N
¢RE=16=¢% ;5 oM=13¢=000
~ o~ Y RV 4
FGA(!):I(I):&E 3 FG¢=I(\6¢—_—(Q,¢

o . - 3 - -
woere I and I are the opening and the closing associated with

Land

7?4.) end 43¢.

A

Proof - ¢¢ is a y-filter ™ Criterion 4-7), so that U¢. <F q, G
implies ¢¢ <G F 4, Joreover, I< (;,, so that we may Write :

LE<dP<eRyp<Fy=¢8<?

When multiplying by I it follows I § < IG Fo <L T,
and thus 1 =L G F¢ . But G ¢ is a filter, and its
invariance domain is \B (Theorem 4-12, corollary). Tnus,
byrelation(A,S),NGFqJ:GFq;.ItfoJowsIcp Y
and by the 1nequal:|_t1es I fb\ < I; ¢ <G F q,, we also have
So=c¢ Fo =1 7.

Note that q,g‘m = M}, because the invariance domain of
the filter 4o is 3, and thus, by Criterion 4-3, 1 & =
{0y is a filter. Then, the inequality I3 ¢ <& ¢ = Fy
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implies I ¢ $ <G P ¢. On the other hand, G F ¢ ¢ {Id(l%)

by Theorem 4~12, and thus I G F ¢ = G F ¢ by relations(4.5).
Hence G F¢ =16 Fod <L P =19 ¢ and the equality I $ ¢
=G F ¢ -

THEOREM 4-14 ~ Let £; be a family of over filters (resp. under
filters) which have the sawme invariance domain R . Then B

is the invariance domain of v 5 (resp. A fi).

Proof - Let for instance f; be a family of over filters. Put
£=vf,. Then ¥ is an over filter (Theorem 4-3)n Ff and F £,
are filters (Theorem 4-7). From the formla F(v fi) = Fvy F fi)
waich is true for any closing, we have Ff = F(v F f.). But
F £; ¢Ja(B), by Theorem 4-11, Thus Ff = F(v F £) eJa®
(Theorem 4-8). Now f and F f have the same invariance domain,

by Theorem 4-12, and we conclude J3, =3 .

CFor any & €' &, & oI v ), (ITvd)od, ¢ oI Ad)
and (I A §) o & have the same invariance domain JB .

Proof - The 1nequallt1es ¢ cbo(Ive)cdbd=TF W imply
Fv(p oI v ¢)) =F e Thus, by Theorem 4—12, ) ana ¢ oI v ¢)
have the same invarlance domain. Ihe.PrOOL is the same in the

other cases.

In the sawe way, if g is an over filter or an under filter,
g and gg have the same invariance domain. For gg = (Iveg) og
if g is an over filter, and gg = (I A g) o g if g is an under
filter.

The following theorem is only a sumrpary :

THEOREM 4-15 — Tae class P '(3) of the increasing mappings which
have the szme invariance domain A is closed under the two

over and the two under compositions. It is alsoc closed under
the four envelopes F, Fv s Gy G . The subclass of the over
filters (resp. under filters) of A'(J3) is closed under these
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eight operations, and also under vy (resp. A) and self compo-
sition. Moreover, if the lattice J° is modular, the subclass
of the aA-over filters (resp. v-under filters) is closed under
these ten operations.

4.5 — THE MIDDLE EIEMENT.

Throughout this section, the lattice P is assumed to be
nodular, so that Theorem 4-9 may be applied. Iet f be a y-under
filter, and let‘g be a pA-over filter such that £ > g. Iet f' =
GAf and g' = Fvg sy SO that £' and g*.are strong filters (Theorem
4-9). Xote that g < f implies g < £! = GAf, because g is a ap-over

filter and thus g' = Fvg < f', because f' is a strong filter, so
that we have : ' '

fsf'>sg'sg
[

Now £ > £' = ff ( Theorem 4—11) and-ff > -

. v v
greatest opening < f', i.e, £ = f'. But

£ imply that £ is the
f =1 A f'y, because f?
is a A-filter. In the same way, &' = I v g' = £. Then, lét us

define a new element « € J*' by writing
a=fg=(IAf)o(Ivg)

Note that we have £'< £' o(I v g') < £' o(T v £') = f£!, because
f' is a strong filter, and thus f' o(I v g') = f'. Hence :

a=(IAf'Y) o(Ivg') =(Iveg')a f'

In the sawe way, starting from
A VY
o' =g f£=(Iveg') o(IaTc£")
we find o' = (I A £') v g'. But the lattice - is modular, so
that (I v g') A £' =(I AZf') vg' i.e. @ = o', and we way

write
v A A Vv
a=fg=g*f
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Taus g is a strong filter. We have ¢ <f§ = f, and thus ¢ < !

= GAf y because aq is a strong filter. In the same way we find
a>g' , and finally

g <g'" <a <f' < f

Note that « = (I v g') A £ is equal to £' if and only if
E=Iveg'>#f ie. 8 =1vy £'. In the same way « = £ if and
only if & = £, and in this case f is a strong filter.

o)

_ y _
Note also that the inequalities §< a=f § <ff=2F
imply ¢ = f, and in the same way & = /g\. Now the invariance
: A

v

domain of ¢ is "ﬁa = J?sa N B, » and then we have

i A v
J3a=\75gn,j3f

Iet us summarize these results.

THEQOREM 4-16 — If f is a v-under filter and g is a a—over filter

4> g implies § > £ and $& = §. Tous ¢a = WE = 38

@, called the middle element of f and g, such that

v
a’:f 3 a:%
VA AV A v v A
a=fTg=gf=gaAff=%vgg
A v
g < g8 < a < ff hid

| . . ~ A v
Moreover, a = f (resp. a = g) if and only if g = f (resp. £

on a modular lattice <P and f£f > g, there exists a strong filber

g).

With the same notationﬁ, if ¢ is a strong filter such that

g <¢ <f

. ' Av YA ANA . . v v vV
we find ¢a = ¢ fg = g, because ¢ <« £ implies ¢ < £ and ¢f =

AN \V' N . . . AN A
But ¢b = ¢, because ¢ is a strong filter, and ¢ g = c’p‘, because
v _
= 4, =

In the same way, we find « ¢ = ¢. In other words :
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ba=ad=
Since o ¢ = ¢, by Criterion 4-2 we have ¢ ¢ Jd(\Ba)' if
and only if ¢ ¢« = a, i.€. o = ¢ beceuse ¢ ¢ = &. Thus :

CORCLLARY 1 - The middle element g is the on 11y strong filter
b € Jd(IBa) such that g < ¢ < £.

If f and g admlt the same invariance sei ~7§, we have
B= \BgnJS c(f,’s n-73f, because g < £ implies & < f and
"4
3 @ . But \73) N \Bf = 03(1 by Theorem 4-16, so that B c "Ba
and thus T_ > IB . Now the greatest element of Jd(féa) is

B
a,=@al, » by reTatlon (4.5). Thus :
333 \Ba
<ot =f8%, =f%, =F%¢%
Ut T 8B TR T B

Bt ¢ £ € Ja(B) (Theorem 4-12 and 4-13) and thus, by relation
(4.5), ff I@ =1 I‘?3 = ¢y is the greatest element of Jaws).

In the same way, we find that the smallest element an of Jd(JB )
is greater than the smallest element ¢ of Jd(B) :

bp < Oy <@ < ay < by
UM it follows that

emyueJd(CB)ls>a >g = ¢, and < £ = ¢, . Thus, by corol-
lary 1 , « is the only strong flltpr in Jd(JS ) In this case,

In the particular case f = LbI, y &

« € Jd(B) if and only if there is only one s»ron:r filter in
J dM3) : we have just seen that this condition is necessary.
Conversely, by < @ <y implies F by < @< u QL, » because q
is a strong fllter. But the two strong flltero v by - and G (b{
belong to Jd(R) (Theorem 4-12) and thus are egual if Jd(x.G)
contains only one strong filter. But this implies ¢ = FV b, =
G, by € Jd(B). Taus : -

CORCLIARY 2 — If £ and g are the greatest and the smallest ele-
zent of a same class <Jd(B), there is no other strong filter

in Jd(\Ba) than the middle element o itself., Moreover, we
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have o € Ja(R), i.e. /B = JB_1if and only if Jd(B) contains-
only one strong filter.

EXAMPIE : If y is an 6pening and ¢ is a closing, we may choose

TPY9P 3 &E8=YQPY

(see Criteria 4-6 and 4-7, and the example). If f and g are
strong filters, the middle element a« is of the very simple
form :

= (I v yer) A ove = (I A 9Y9) v Yov

For instance, suppose that E is a topological space and

JD L (E) is the lattice of the subsets A « E. For any A €
A is the interior of A, and A is the adherence of A. ILet v
and 9 be defined by :

v(4A) =3 3 o(A) = A

‘Then gyp and yopy are strohg,filters , and the middle element
a between gygp and ygy is defined by :

op

a(a) = (AU.:.) nl}—x= (Anlpz)u \

e

sufficient to prove that ¢y is a y-filter. “y duaiity, this

implies that y¢ is a A-filter, and thus g¢yp and ypy are strong
filters.

5
Let A be a subset of E. Put A' = Ay A . We must prove
the equality : - '
_ _ 3,

o] -

But two closed sets are equal if and only if they meet .
the same open sets. For any 0pen set G we have

GnA#QS

if end only if there is another open set G!' « G such that
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G' <« A. In the same way, we have G N A"# ¢ if amd only if
there is an open set G" < G such that

G" « A' = A A .

- _ = _
Bat G" « AU A implies either G" « Aor G" N A # ® , so that
in both cases we have '

Gni#'(b .

o

< 5 '
Conversely, G N A # ¢ implies G N A' # ¢, because A' o A .

K
Being met by the same open sets, the two closed sets A' and

o
A are equal, and ¢y is a strong filter .

4.6 - PILTERS ON 3(E) or JS&(E).

Iet E be a locally compact and Hausdorff tepological space.
Then, the space z(E) of the closed subsets of E is a complete
lattice with respect to the order < : the infimm is the usual

intersection ryE& y but the supremum is the ciosed union L’Fi
end not the ordinary union U F;. In the same way, the space & (E)
of the openosubsets_of E is a complete lattice, with v Gi = L}Gi
and A Gy =N (Gi)’ i.e. interior of N Gy . '

Concerning the space JG(E) of the compact subsets of E,
it is not a complete lattice, except if the space E itself is
compact, because it does not contain a greatest element, For this
reascn, we add the element E and write :

6= JoU (E}

This notation is consistent. Strictly speaking, the space
JGis not closed under intersection, although it contains the inter-
section r1Ki for any nongempty family of coumpact sets Ky since it
does not contain the intersection of the emwpty f=amily, wnich is E
itself. For this reason, the space Jo|J {E} is really the class
closed under intersection spammed by ¥G, i.e. L& U {E} =5 .
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In ,j'%, the supremm and the infimmim are given by the formulae

td

A K. =NK. if J#® , A K. =
ieg * iep *

vE =U Ki 1IfUK; €6, and v K; = E otherwise, so that 6 is
a complete lattice. ' ' :

From the topological point of view, the space J6 may be
identified with the compactification of the locally compact space
J6 provided with the myope topology. Tae point E is the point at
infinity, i.e. its open neighbourhoods are the complements of the
compact subsets of JG . In particular, the family of the subseits
of JG6 of the form {K : X ¢ 6, K £ Ko'}’ K, € JO constitutes a
fundamental system of open neighborhoods of the point E ¢ .?'(3.

A sequence K in J6 converges towards E if it has no accumlation
point inJG, i.e. if for any XK, € 4G we have K & K, for n great
enough. See [1].

If ¢ is a filter on the complete lattice Jo y its invariance
domain J3 ¢ 6 is also a complete lattice (Taeorem 4-2). Its anti-
extensivity domain J3 and the class J3 are closed under N . Its |
extensivity domain 55 and the class N3 are closed under v , but
not under the ordinary union {J .

We recall thail an increasing mapping ¢ from J& into itself
is upper sermi-continuous (u.s.c.) if for any set K ¢ Jt and any
open set G ¢ & such that G o $(K) there is an open set G' 5 X
such that X' < G' implies ¢(K') < G for any X' € 4o .

~ ' v
If a filter & on 46 is u.s.c., its extensivity domain J3
is closed in Jé.

_____ 1
such that G o o(X), XN Gy 7 b, G, NG, =@ If ¢ is u.s.c.,

there also exists an open set G' o K such that K' « G' implies
¢(X') ¢ 6, . Thus the open neighborhood (¥ of K defined by
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{K' K'CG',K'nG\‘#gﬁ}

Vv v ~
is disjoint from J3 : thus J3 is closed in vG.
We know that dé is closed in FG if ard cnly if the
. v
corresponding opening ¢ is u.s.c. (see [1]). In other words :
a filter ¢ on Jo is u.s.c. , the greatest opening J‘c &

I,

i

is also u.s.c.

A v=filter on £6 is u.s.c. if ard only if § and & are

u.3.C.

Proof ~ If a v-filter ¢ is u.s.c., m’ls u.s.c. (see above). But
== '
¢ =1IU ¢, because ¢ is a v-filter, and I ¢ is u.s.c., as
is the case for any finite union of u.s.c. increasing map-
pings. Conversely, if ¢ and ¢ are u.s.c., ¢ =& & iS U.S.C.,
because the composition of two increasing u.s.c. mappings

~is u.s.c.

The class of the increasing u.s.c. meprings from $6 into
itself is closed under | , so that any dincreasing rarping ¢
hes a u.s.c. closing¥¢k which is the swmallest u.s.c. mapping
greater than ¢. Its explicit construction is as follows : first

rut for any G ¢ g?:

4g(6) = U {b(K), X €f6, X < G}

Note that in general ¢g(G) £ g Then, for any X ¢ S6:

b (X) =N {¢g(G), G eg, G > K}

Then by is the u.s.c. closing of ¢ and may be rswritten in a
more direct form :

. ~ o
(4.7) ¢ (K) = n {o(x"), k' efs, K' = K]

compact set K' ¢ JG such that X ¢ K' c K' ¢« G. It follows
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¢L(K) c ¢ (K ) c o(K! ) c ¢ (G) and the eqaa]n ty (4.7).
this equaJ.lty, q’k maps JG 1nto 1tself

Iet G be an open set such that G o Qk(K). If XK = &,
we have ¢, (X') < ¢, (E) for any k' c E. If X # E, i.e. K ¢ 6 ,
the class of the compact sets G° M ¢(X'), K' ¢ v& , K' o K has
an eapty intersection. Thu.s there ex1st_ finite subclasses I\
i= 1,...,n sucn thatK ::;Ka_ndnq;(K)ch. et X! —nK .

We have X o N K 5> K and ¢(K') ¢ N ¢(I\. ) G. ~ In other words

there exists a compact set K' e\f(psuc?‘ that ¥ o K and ¢(K') < G.
Now, for any other compact set K" c K , we have q,k(K") c (K')
c G. Thus by is u.s.c.

?

Now, 1if ¢' is u.s.c. and ¢' o ¢, we find d,;' ) cp and
¢l'( ) q,k But it is easy to see thet ¢' = ¢' for an;y mcreasi_ng
u.s.c. mapping. Then ¢' 5 ¢, and ¢, is the u.s.c. closing of ¢.

- If ¢ is a u.s.c. filter, its invariance domain I3 is
closed under decreasing intersection : if K, = ¢(X,) end K, UK
we have q)(Kn) L ¢(X), because ¢ is u.s.c. and thus X = ¢(K).

The notation Jd(JS & ) will denote the class of the
filters on Jé wnich have the same invariance donain J3 & pr .

THEOREM 4-17 - Let JB be a subset of & such that Ja(J3B, 7o)
# ®. Then, for any ¢ e€Ja(B, ¥&), the u.s.c. closing ¢y is
a filter and belongs to Jd(B,vG ) if and only if the greatest
element ¢, of Ja(B, &) is u.s.c.

(dy), eJ (Js,m) and (‘*’M)k = (,M . Thus, q,m = \q,m)
because ¢, is the greatest element of JalB,J5), i.e.
¢y is u.s.c.

Conversely, for any increasing mappings by &by if
U is u.s.c. , we have :
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by 4(K) = b0 N B(K"), XK' 5 K) =n {4, $(K"), k' 5 K]

If ¢, and ¢ have the same invariance domain, we have by & = ¢

Hence :

Concerning by ¢o’ we only find by (bo D¢ b, =9, . But, if
by 2 &, we also have 4’0 b ¢k s because b, is u.s.c., aand thus
by = 4)0 QJO D ¢y ¢o o ¢0 « It follows :

q’k 4’0 = ""o

and &, € ;!dcq,o, o) by Criterion 4-2. In particular, if the
maxizal element of Jd(B,vH) is u.s.c., it follows that by €
:(d(VQ,K?) for any ¢ € Jd(\B,\FG).

4.6.1 — Open Filters.

In general, if ¢ is a filter on A , its u.s.c.

closin is not a filter, but only an over filter.
___5_¢k

since it is the composition of two u.s.c. increasing wappings,
Thus ¢ ¢) D ¢« In thesame way, the mapping b, Trom {&7 into
P(E) defined by

¢é(G) =y {¢(x), K €, Kc sl (6eg)

is not in general a mapping from g' into 9 . If it is, i.e.
if q,g(c;) € Qy for any G € 4 , we say that ‘the mapping ¢ is
an open mavping. Then : '

THEOREM 4-18 — If a filter ¢ on % is open, then "'"g is a 1l.s.c.
“ filter ong , and ¢, a u.s.c. filter on Y6,

Proof — In a more general context, if (A is a compleie lattice

in P(E), and ¢ : L - O a filter on ¢ , the smallest
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extension ¢ and the greatest extension ¢ of ¢ on JA(E) are
defined by :

o(®) =y {e(h), A e, Ac P

~ (P € 3°(E))
¢(P) =N {6(8), A e, A> P}

Then ¢ is an over filter, and ¢ is an underfilter :
& o®) =¢ (U {p(a), A e, Acp})

SU {g ¢(8), A e, Ac P} = ¢(P)
because ¢ G(A) = ¢ ¢(A) = ¢(A) for any A € (%.

In our case, ¢ (¢) = (@) for any G 69 If ¢ is open,
it follows by ¢ (¢) =¢ ¢(@) 5 b (G), and g is an over filter
on g But, for any compact set L c G, there is another compact
set K! such that X ¢ K' c XK' ¢ G, so that we have

b,(6) =y {dgg(%'), X' ¢l

If ¢ is open, q;g(G) is the union of the open sets g (K )y
K' « G, so that for any compact set K ¢g(G) we can find K' c G
sucn that X < d;g(K') c ¢(K') = q;g(G) But this implies ¢(K) <
¢g(G) for any X c ¢g(G) and thua :

2 ¢g(G) = U {¢(K), K < ¢g(G)} c ¢>g(G)

Taus ¢, is also an under filter on gf. Hence ¢, is a
filter ong . From the same inequalities X & g (X') ¢$(K?)
c tbg(G) it follows that 4) (G') > X for any G' ¢ 9 such that
G' o ¢(X'), so that the fllter ¢, is lower seml—contvnuous

on&(?

Concerning bys we know that it is an u.s.c. over filter.
But, for any X ¢ J& , we have "’k(K) 4, (K), ard the greatest
extension q, of the filter ¢ on % is an under filter on J°(E).



Thus ¢k(h) = cb tb (X) c ¢ (X) = ¢, (K), end 4y s =a under-
filter on . Hence ¢’k is a u.s.c. filter on J&.

In the same way :

 THEOREM 4-19 - ILet & be a filter on % Put

w(B) =n {4(6), 6 e@, 65K (K¢
35(6) = U {4 (0), K e, K6} (G e

- Then ¢ is a l.s.c. under filter on @ and it is the greatest
l.s.c. mcreasmg mapping @ ,9 smaller than ¢'. XMoreover,
1f ¢k(K) € $o for any K €46, bg is an u.s.c. filter on o and
q, is a l.s.c., filter on ‘g

In the case E = ®, any increasing mapping & = 6 — -G
(resp. ¢' : & ~ % ) compatible with translaticns is an open
mapping (resp by (X) efb for any K eJ«’p) so that Theorem 4-18
(resp. 4-19) may be applied.



