FONTAINEBLEAU/CGMM

N-950

REMARQUES SUR LES FILTRES-PARTITIONS

G. MATHERON

Février 1985

REMARQUES SUR LES FILTRES-PARTITIONS

par G. MATHERON

Ce qui suit n'est qu'un commentaire sur le paragraphe 5-5 de la note de J. Serra intitulée "Semi-groupes morphologiques" et plus précisément du théorème 5-2 de cette note. Ce théorème, en effet, devrait être réénoncé dans le langage de l'induction transfinie, la simple limite séquentielle ne suffisant pas en général. En fait, j'utiliserai ici la technique, plus simple, qui consiste à considérer les classes stables pour telle ou telle opération engendrée, par un élément donné.

1 - CLASSE CONNEXE, COMPOSANTES CONVEXES.

Pour plus de généralité, je me placerai dans le cadre purement algébrique suivant :

E sera un ensemble quelconque. $\mathcal{P}(E)$, l'ensemble des parties de E, est alors un treillis complet pour \bigcup et \cap .

 ${\it C}$ désignera ce que l'on pourrait appeler une "classe connexe", c'est-àdire par définition une classe de parties de E vérifiant les axiomes suivants :

i/
$$\phi \in \mathcal{L}$$
 et $\forall x \in E$, $\{x\} \in \mathcal{L}$

ii/ Pour toute famille C dans
$$\mathcal{C}$$
, \cap C \neq $\emptyset \Rightarrow \cup$ C \in \mathcal{C}

En général, la classe $\mathcal C$ elle-même ne sera pas stable pour \bigcup . Mais, si nous désignons par β_x la sous-classe des C \in $\mathcal C$ qui contiennent un point donné $x\in E$, soit

$$\mathcal{L}_{\mathbf{v}} = \{ \mathbf{C} : \mathbf{x} \in \mathbf{C} \in \mathcal{C} \}$$

la réunion de toute famille non vide d'éléments de \mathcal{C}_{x} est encore dans \mathcal{C}_{x} , à cause de l'axiome ii/. Autrement dit, la classe

$$\mathcal{B}_{\gamma_{x}} = \beta_{x} \cup \{\emptyset\}$$

est stable pour la réunion et définit donc une <u>ouverture</u> γ_x que l'on peut appeler <u>composante connexe</u> de $x \in E$ (relativement à la classe connexe \mathcal{C}). Explicitement, pour tout $A \subset E$:

$$\gamma_{x}(A) = \bigcup \{c : c \in \mathcal{C}, x \in c \subset A\}$$

En particulier, $\gamma_x(A)$ est vide si x $\not\in$ A. Si, au contraire; $x \in A$, on aura toujours $x \in \gamma_x(A)$, et donc $\gamma_x(A) \neq \emptyset$, puisque $\{x\} \in \mathcal{L}$. Ainsi :

$$\gamma_{x}(A) \neq \emptyset \Leftrightarrow x \in A \Leftrightarrow x \in \gamma_{x}(A)$$

Cette famille d'ouvertures vérifie les axiomes suivants :

iii/ Pour tout x \in E, on a $\gamma_x(x) = \{x\}$

iv/ Pour tout A \subset E, x, y \in E, γ_x (A) et γ_y (A) sont égales ou disjointes, soit :

$$\gamma_{x}(A) \cap \gamma_{y}(A) \neq \emptyset \Rightarrow \gamma_{x}(A) = \gamma_{y}(A)$$

$$v/\bigcup_{x\in E} \gamma_x = I$$

En effet, iii/ résulte de $\{x\} \in \mathcal{C}_x$ (axiome i/) et v/ est une conséquence immédiate de iii/. Pour montrer iv/, on note que $\gamma_x(A) \cap \gamma_y(A) \neq \emptyset$ entraine

$$C = \gamma_x(A) \cup \gamma_y(A) \in \mathcal{C}$$

D'autre part, $\gamma_x(A)$ n'étant pas vide, on a $x \in \gamma_x(A)$, donc $x \in C$. Donc $C \in \mathcal{C}_x$ et cela entraine $C \subset \gamma_x(A)$. Par suite, $\gamma_y(A)$ est contenu dans $\gamma_y(A)$. On montre de même l'inclusion inverse, et l'égalité en résulte.

Ces axiomes sont d'ailleurs caractéristiques d'une classe connexe. En effet, supposons donnée, pour chaque x \in E, une ouverture $\gamma_{\rm x}$ satisfaisant à iii/, iv/ et v/. On définira la classe ${\mathcal C}$ comme la réunion des domaines d'invariance des $\gamma_{\rm x}$:

$$\mathcal{C} = \{ \gamma_{\mathbf{x}}(A) : \mathbf{x} \in E, A \subset E \}$$

Pour A = \emptyset , on trouve $\gamma_x(\emptyset) = \emptyset \in \mathcal{C}$. Pour A = $\{x\}$, il vient, d'après iii/, $\gamma_x(x) = \{x\} \in \mathcal{C}$. Donc i/ est vérifié.

Soit maintenant C_i une famille d'intersection non vide dans \mathcal{L} , et $x \in \bigcap C_i$. Comme $C_i \in \mathcal{L}$, on peut trouver pour chaque i un point y_i tel que $C_i = \gamma_y(C_i)$. Mais $x \in C_i$, donc, d'après iii/, $\{x\} = \gamma_x(x) \subset \gamma_x(C_i)$. Ainsi $\gamma_y(C_i)$ et $\gamma_x(C_i)$ contiennent toutes deux le point x: elles sont donc égales d'après iv/, et on a $C_i = \gamma_y(C_i) = \gamma_x(C_i)$.

Alors \bigcup $C_i = \bigcup$ $\gamma_x(C_i)$ est un invariant de γ_x , donc appartient à la classe $\mathcal C$. Donc ii/ est vérifié, $\mathcal C$ est bien une classe connexe, et γ_x est l'ouverture connexe associée à $\mathcal C$.

Notons encore la propriété suivante, utile dans toute la suite :

vi/ Pour tout $A \subset E$ et x, y $\in E$, on a :

$$y \in \gamma_x(A)$$
 si et seulement si $\gamma_x(A) = \gamma_y(A) \neq \emptyset$

et, en particulier

$$y \in \gamma_x(A) \Leftrightarrow x \in \gamma_y(A)$$

De fait, si y $\in \gamma_x(A)$, on a aussi y \in A et donc y $\in \gamma_y(A)$: comme $\gamma_x(A) \cap \gamma_y(A)$ n'est pas vide, il en résulte l'égalité. Inversement, si $\gamma_x(A) = \gamma_y(A) \neq \emptyset$, on a y $\in \gamma_y(A) = \gamma_x(A)$.

2 - FERMETURES RESPECTANT LA CONNEXITE.

Dans tout ce qui suit, ${\mathcal L}$ désignera une classe connexe fixée, et γ_x la famille des ouvertures associées.

Nous dirons qu'une fermeture ϕ respecte la connexité, ou, plus brièvement, que ϕ est une fermeture connexe si <u>l'image de tout connexe est un connexe</u>, et si de plus <u>l'image de l'ensemble vide est l'ensemble vide</u>:

$$\phi \text{ connexe } \Rightarrow \phi(\mathcal{C}) \subset \mathcal{C} \text{ et } \phi \in \mathcal{B}_{\!\phi}$$

CRITERE 1 - Soit φ une fermeture laissant l'ensemble vide invariant. Alors φ respecte la connexité \mathscr{Q} si et seulement si l'une des 5 propriétés équivalentes suivantes est vérifiée pour tout $x \in E$:

a/
$$\varphi \gamma_{x} \varphi = \gamma_{x} \varphi$$

b/ $\gamma_{x} \varphi \gamma_{x} = \varphi \gamma_{x}$

c/ $\beta_{\gamma_{x}} \varphi = \beta_{\gamma_{x}} \cap \beta_{\varphi}$

d/ $\beta_{\varphi \gamma_{x}} = \beta_{\gamma_{x}} \cap \beta_{\varphi}$

e/ $\gamma_{x} \varphi \supset \varphi \gamma_{x}$

On sait que ces cinq propriétés sont équivalentes, [] critère 6. Supposons ϕ connexe. Pour tout A, $\gamma_x(A)$ est connexe. Si $x \notin \gamma_x(A)$, on a $\gamma_x(A) = \phi \gamma_x(A) = \gamma_x \phi \gamma_x(A) = \phi$. Si $x \in \gamma_x(A)$, $\phi \gamma_x(A)$ est connexe, puisque ϕ respecte \mathcal{C} , et contient x, donc $\gamma_x \phi \gamma_x(A) = \phi \gamma_x(A)$. Inversement, si b/est vrai, pour tout connexe C non vide et $x \in C$ on a $\gamma_x(C) = C$, et b/donne $\phi(C) = \gamma_x \phi(C) \in \mathcal{C}$.

Soit ϕ_i une famille de fermetures. On désignera par $\mathsf{V}\,\phi_i$ la plus petite fermeture majorant $\bigcup \phi_i$, dont le domaine d'invariance est $\bigcap \mathscr{B}_{\phi_i}$. Alors :

THEROREME 1 - La classe des fermetures connexes est stable pour V . En particulier, toute fermeture φ admet une plus grande minorante par une fermeture connexe.

On le voit en remarquant que la classe des surpotentes $\psi \supset I$ respectant $\mathscr C$ est stable pour \bigcup et pour l'autocomposition. En particulier, pour un élément $\psi \supset I$ donné respectant $\mathscr C$, la classe stable pour \bigcup et l'autocomposition engendrée par ψ est une sous-classe de la précédente, et son plus grand élément respecte donc $\mathscr C$. Mais ce plus grand élément est la plus petite fermeture $\widehat{\psi}$ majorant ψ : donc $\widehat{\psi}$ est une fermeture connexe.

En particulier, pour une famille ϕ_i de fermetures connexes, en posant ψ = $\bigcup \phi_i$, on a $\hat{\psi}$ = $\bigvee \phi_i$, et $\bigvee \phi_i$ est donc une fermeture connexe.

Etant stable pour v, la classe des fermetures connexes constitue le domaine d'invariance d'une ouverture G_c sur le treillis complet des fermetures : pour toute fermeture ϕ , G_c ϕ est la plus grande minorante de ϕ respectant la connexité.

Construction explicite de l'ouverture G_c.

Pour construire cette plus grande minorante connexe G $_c$ ϕ , construisons d'abord la fermeture ϕ' définie comme la plus grande fermeture connexe minorant ϕ sur la classe ${\mathscr C}$. Il est facile de voir que ϕ' est définie par :

$$\varphi'(A) = \bigcap \{ \gamma_c \varphi(C), C \in \mathcal{L}, C \supset A \}$$

où Υ_{c} $\varphi(C)$ désigne, pour tout $C \in \mathcal{C}$, la composante connexe de $\varphi(C)$ qui contient C (évidemment, Υ_{c} $\varphi(C) = \emptyset$ si $C = \emptyset$).

De fait, C \supset A entraine γ_c $\varphi(C) \supset C$ \supset A, et donc $\varphi' \supset I$ et $\varphi' \varphi' \supset \varphi'$. Mais C \supset A entraine γ_c $\varphi(C) \supset \varphi'(A)$. Comme γ_c $\varphi(C) \in \mathcal{C}$ et γ_c $\varphi(\gamma_c) = \gamma_c \varphi(C)$, il vient aussi $\varphi'(\varphi'(A)) \subset \varphi'(A)$ et donc l'égalité $\varphi' \varphi' = \varphi'$. Comme toute fermeture connexe minorant φ sur \mathcal{C} est \mathcal{C} φ' , φ' est bien la plus grande fermeture connexe minorant φ sur \mathcal{C} .

Cet élément ϕ' n'est pas encore G_c ϕ , mais on a :

$$G_c \varphi = \varphi' \cap \varphi$$

De fait, $\phi' \cap \phi$ est une fermeture, comme intersection de fermeture, et pour tout $C \in \mathcal{C}$ on a $\phi'(C) \cap \phi(C) = \phi'(C) \in \mathcal{C}$, puisque ϕ' minore ϕ sur \mathcal{C} et respecte \mathcal{C} . Comme toute fermeture connexe minorant ϕ est majorée par ϕ' , et donc par $\phi' \cap \phi$, on a bien $G \cap \phi = \phi' \cap \phi$.

Fermetures ne créant pas de composantes connexes.

Dans les applications, il y aura sans doute intérêt à remplacer l'élément $G_C \phi = \phi' \cap \phi$, difficile à former, par un élément plus simple. Nous dirons, avec J. Serra, qu'une fermeture ϕ ne crée pas de composantes connexes si :

$$A \subset E$$
 et $x \in \phi(A) \Rightarrow A \cap \gamma_x \phi(A) \neq \emptyset$

Noter que cela entraine que ϕ est une fermeture connexe. De fait, pour $A = \emptyset$, on a $A \cap \gamma_x$ $\phi(A) = \emptyset$ pour tout x, et donc x $\not\in \phi(A)$ c'est-à-dire $\phi(A) = \emptyset$: l'ensemble vide est invariant par ϕ . Si $C \in \mathcal{C}$ est non vide, on aura $C \cap \gamma_x$ $\phi(C) \neq \emptyset$ pour tout $x \in \phi(C)$, et donc γ_x $\phi(C) = \gamma_C$ $\phi(C)$. Mais, $x \in \phi(C)$ entrainant $x \in \gamma_x$ $\phi(C)$, il en résulte $\phi(C) \subset \gamma_C$ $\phi(C)$ et donc l'égalité: par suite $\phi(C)$ est connexe.

Mais la réciproque est fausse : il existe des fermetures connexes qui créent des composantes connexes. On obtient un exemple simple en prenant pour $\mathcal C$ la classe des connexes topologiques de (R^1) (i.e. les segments de (R^1)) et pour ϕ la fermeture $A \rightarrow A^B$ où B est constitué de deux points.

THEOREME 2 - La classe des fermetures qui ne créent pas de composantes connexes est stable pour V V. En particulier, toute fermeture φ admet une plus grande minorante φ' ne créant pas de composantes connexes.

De fait, cela résulte aussitôt de l'idempotence de l'élément ϕ défini par :

$$\varphi'(A) = \bigcup_{x \in A} \gamma_x \varphi(A)$$

(Voir la démonstration dans J. Serra).

Fermetures connexes égales à ϕ_0 sur ${\cal C}$.

Dans tout ce qui suit, $\phi_{_{\scriptsize{0}}}$ désignera une fermeture connexe donnée, et on désignera par :

- \sim Φ , la classe des fermetures égales à ϕ_{o} sur ${\cal C}$
- $\sim \Phi_0$, la sous-classe des $\varphi \in \Phi$ telles que $\varphi \subset \varphi_0$.

Comme ϕ_0 est une fermeture connexe, il est clair que les éléments de Φ et Φ_0 sont encore des fermetures connexes. Notons aussi que Φ et Φ_0 sont stables pour \bigcap et pour V, et constituent donc des treillis complets.

En effet, il est immédiat que ces classes sont stables pour l'intersection. D'autre part, la classe $\mathcal S$ des surpotentes \supset I qui coı̈ncident avec ϕ_o sur $\mathcal C$ est stable pour U et pour l'autocomposition. En particulier, si ϕ_i , i \in I est une famille de fermetures égales à ϕ_o sur $\mathcal C$, l'élément $\psi = \bigcup \phi_i$ est dans $\mathcal S$, et par suite $\mathcal S$ contient la classe stable pour \bigcup et l'autocomposition engendrée par ψ , et, en particulier, son plus grand élément qui est la fermeture $\psi = \mathsf V$ ϕ_i . Donc $\mathsf V$ ϕ_i coı̈ncide avec ϕ_o sur $\mathcal C$.

En particulier, donc, Φ admet <u>un plus grand élément</u> $\overset{\sim}{\phi}$ = V Φ . Ce plus grand élément est défini par :

$$\varphi$$
 (A) = $\bigcap \{\varphi_o(C) : C \in \mathcal{C}, \varphi_o(C) \supset A \}$

i.e. $\mathcal{B}_{\varphi} = \widetilde{\varphi_{o}(\mathcal{L})}$ (classe stable pour \bigcap engendrée par $\varphi_{o}(\mathcal{L})$)

De fait, désignons par $\widetilde{\phi}_o$ le plus grand prolongement sur $\mathscr{P}(E)$ de la restriction de ϕ_o à \mathscr{C} , soit :

$$\widetilde{\varphi}_{O}(A) = \bigcap \{ \varphi_{O}(C), C \in \mathcal{L}, C \supset A \}$$

On a $\overset{\sim}{\phi}$ $\overset{\sim}{\phi}$ $\overset{\sim}{\phi}$, puisque $\overset{\sim}{\phi}$ prolonge la restriction de $\overset{\sim}{\phi}$ à $\overset{\sim}{\mathcal{C}}$. Mais C \supset A

entraine $\varphi_{o}(C) \supset A$, et, comme $\varphi_{o}(C) \in \mathcal{L}$ et $\varphi_{o} \varphi_{o}(C) = \varphi_{o}(C)$, on a aussi

$$\widetilde{\varphi}_{o}(A) = \bigcap \{ \varphi_{o}(C), C \in \mathcal{C}, \varphi_{o}(C) \supset A \}$$

Ainsi $\overset{\boldsymbol{\sim}}{\boldsymbol{\varphi}}_{o}$ est une fermeture, et son domaine d'invariance est $\overset{\boldsymbol{\sim}}{\boldsymbol{\varphi}_{o}}(\boldsymbol{\mathscr{L}})$. Comme $\overset{\boldsymbol{\sim}}{\boldsymbol{\varphi}}_{o}$ est égal à $\overset{\boldsymbol{\sim}}{\boldsymbol{\varphi}}_{o}$ sur $\overset{\boldsymbol{\sim}}{\boldsymbol{\mathcal{L}}}$, cela entraine $\overset{\boldsymbol{\sim}}{\boldsymbol{\varphi}}_{o} \subset \overset{\boldsymbol{\sim}}{\boldsymbol{\varphi}}$, et donc l'égalité.

Notons aussi que Φ et Φ_o sont stables pour <u>l'opération de nettoyage</u> $\phi \to \nu(\phi)$ où $\nu(\phi)$ est la plus grande minorante de ϕ ne créant pas de composantes connexes, définie par

$$V(\varphi)(A) = \bigcup_{x \in A} \gamma_x \varphi(A)$$

Nous allons maintenant examiner deux autres opérations α et α_o sur Φ ou Φ_o . Donnons auparavant un critère d'appartenance ϕ \in Φ .

CRITERE 2 - Deux fermetures connexes ϕ et ϕ coıncident sur $\mathcal C$ si et seulement si pour tout x \in E on a

$$\varphi_{o}$$
 γ_{x} φ = γ_{x} φ ; φ_{x} φ_{o} = γ_{x} φ_{o}

Notons que, ϕ et ϕ_o étant connexes, on a déjà $\gamma_x \phi = \phi \gamma_x \phi$ et $\gamma_x \phi_o = \phi_o \gamma_x \phi_o$ (Critère 1). Comme $\gamma_x \phi$ et $\gamma_x \phi_o$ prennent leurs valeurs dans $\mathcal C$, on a aussi $\phi \gamma_x \phi = \phi_o \gamma_x \phi$ et $\phi_o \gamma_x \phi_o = \phi \gamma_x \phi_o$ si ϕ et ϕ_o coıncident sur $\mathcal C$, d'où les relations de l'énoncé.

Inversement, supposons vérifiées les relations de l'énoncé. On a donc $\phi_{0} \gamma_{x} \phi = \gamma_{x} \phi = \phi \gamma_{x} \phi \quad \text{(puisque ϕ est connexe), et, en multipliant à droite par γ_{x}}$

$$\varphi_{o} \gamma_{x} \varphi_{x} = \varphi \gamma_{x}$$

Mais $\phi\supset I$ entraine ϕ_o γ_x ϕ γ_x \supset ϕ_o γ_x , et donc ϕ $\gamma_x\supset \phi_o$ γ_x . On démontre de même l'inclusion opposée, d'où l'égalité

$$\varphi \gamma_{x} = \varphi_{o} \gamma_{x}$$

pour tout $x \in E$: par suite ϕ et ϕ coıncident sur $\mathcal C$.

3 - LES OPERATIONS α ET α o.

Ces opérations sont définies en posant

$$\alpha_{o}(\varphi) = \bigcup_{x \in E} \varphi_{o}(I \cap \gamma_{x} \varphi) \qquad (\varphi \in \Phi_{o})$$

$$\alpha(\varphi) = \bigcup_{x \in E} \varphi(I \cap \gamma_x \varphi) \qquad (\varphi \in \Phi)$$

En particulier, si $\phi \in \Phi_o$, i.e. $\phi \subset \phi_o$, on aura $\alpha(\phi) \subset \alpha_o(\phi)$. Les 3 premiers des lemmes qui suivent sont dûs à J. Serra, op. cit. Je ne donne 1a démonstration que pour α_o . Le cas de l'opération α s'en déduit en prenant $\phi_o = \phi$.

LEMME 1 - α et α sont anti-extensives :

$$\alpha(\phi) \subset \phi$$
; $\alpha_{\cdot_{O}}(\phi) \subset \phi$

En effet, d'après le critère 2, on a pour tout $x \in E$

(a)
$$\varphi_o(I \cap \gamma_x \varphi) \subset \varphi_o \gamma_x \varphi = \gamma_x \varphi$$

et donc
$$\alpha_{O}(\phi) \subset \bigcup_{X} \gamma_{X} \phi = \phi$$

LEMME 2 - Pour tout $x \in E$, on a

Posons $\phi' = \alpha_o(\phi)$ pour abréger les notations, et partons de l'inclusion (a) du lemme 1. Soit $A \subset E$ et $y \in E$. Si $y \notin \gamma_y \phi'(A)$, on a $y \notin \phi'(A)$ et $\gamma_y \phi'(A) = \phi$. Dans ce cas, on a aussi $\gamma_y \phi_o(A \cap \gamma_y \phi(A)) = \phi$: car sinon y appartiendrait à cet ensemble, et donc aussi à $\phi'(A)$. Supposons alors $y \in \gamma_y \phi'(A)$ et donc aussi $y \in \gamma_y \phi(A)$, et soit $z \in \gamma_y \phi'(A)$ un autre point de cette composante.

De $z \in \gamma_y$ $\phi'(A) \subset \gamma_y \phi(A)$ résulte $\gamma_z \phi(A) = \gamma_y \phi(A)$, d'après vi/. D'autre part, on a évidemment aussi $z \in \phi'(A)$. Donc, d'après la définition de $\phi' = \alpha_Q(\phi)$, il existe un $x \in E$ tel que

$$z \in \varphi_o(A \cap \gamma_x \varphi(A))$$

D'après (a), cela entraine $z \in \varphi_0 \gamma_x \varphi(A) = \gamma_x \varphi(A)$, et donc, d'après vi/, $\gamma_x \varphi(A) = \gamma_z \varphi(A)$. Par suite aussi, $\gamma_x \varphi(A) = \gamma_y \varphi(A)$. On a donc $z \in \varphi_0(A \cap \gamma_y \varphi(A))$ pour tout $z \in \gamma_y \varphi'(A)$. Par suite :

$$\gamma_y \varphi'(A) \subset \varphi_o(A \cap \gamma_y \varphi(A)) \subset \varphi'(A)$$

Multipliant à gauche par γ_y , il vient :

$$\gamma_y \quad \varphi' = \gamma_y \varphi_o(I \cap \gamma_y \varphi)$$

LEMME 3 - $\alpha_0(\varphi)$ et $\alpha(\varphi)$ sont idempotentes et $\supset I$.

Posons $\phi' = \alpha_o(\phi) = \bigcup_o \phi_o(I \cap \gamma_x \phi)$. Comme ϕ_o est $\supset I$, on trouve $\phi' \supset \bigcup_x (I \cap \gamma_x \phi) = I \cap \phi = ^xI$. Donc $I \subset \phi' \subset \phi$, et par suite $\phi = \phi' = \phi' = \phi$ et $\phi' = \phi' = \phi'$. Il reste à montrer $\phi' = \phi' = \phi'$. Or, on trouve :

$$\varphi' \varphi' = \bigcup_{y} \varphi_{o}(\varphi' \cap \gamma_{y} \varphi \varphi') = \bigcup_{y} \varphi_{o}(\varphi' \cap \gamma_{y} \varphi)$$

puisque $\phi \phi' = \phi$, soit, d'après le lemme 2 :

$$\varphi' \varphi' = \bigcup_{y} \varphi_{o}(\gamma_{y} \varphi \cap (\bigcup_{x} \gamma_{x} \varphi_{o}(I \cap \gamma_{x} \varphi_{o})))$$

Mais, pour chaque x, on a

$$\gamma_{x} \varphi_{o}(I \cap \gamma_{x} \varphi) \subset \varphi_{o} \gamma_{x} \varphi = \gamma_{x} \varphi$$

et l'intersection $\gamma_y \phi \cap \gamma_x \phi$ est vide, si x $\not\in \gamma_y \phi$, ou égale à $\gamma_y \phi$, si x $\in \gamma_y \phi$. Par suite :

$$\gamma_y \circ \cap (\bigcup_x \gamma_x \circ_o (i \cap \gamma_x \circ_o)) = \bigcup_x \in \gamma_y \circ \gamma_x \circ_o (i \cap \gamma_y \circ) \subset \circ_o (i \cap \gamma_y \circ)$$

On en déduit :

$$\varphi' \varphi' \subset \bigcup_{y} \varphi_{o}(I \cap \Upsilon_{y} \varphi) = \varphi'$$

ce qui achève la démonstration.

LEMME 4 - La classe Φ_{o} est stable pour α_{o} , la classe Φ est stable pour α .

En effet, d'après le 1emme 3, $\phi'=\alpha_o(\phi)$ est une fermeture. Pour c \in ${\mathcal C},$ il vient :

$$\varphi'(C) = \bigcup_{\mathbf{x}} \varphi_{\mathbf{0}}(C \cap \Upsilon_{\mathbf{x}} \varphi(C))$$

Mais $\gamma_x \varphi(C) = \varphi(C)$ pour $x \in \varphi(C)$, et $\gamma_x \varphi(C) = \emptyset$ pour $x \notin \varphi(C)$. Comme $\varphi(C) \supset C$, il reste $\varphi'(C) = \varphi_0(C)$: φ' coincide sur \mathcal{L} avec φ_0 .

LEMME 5 - Le plus petit élément ϕ_{m} de la classe Φ_{o} est aussi le plus petit élément de la classe Φ . Il vérifie

$$\varphi_{m} = \alpha_{o}(\varphi_{m}) = \alpha(\varphi_{m})$$

De plus, $\boldsymbol{\phi}_{m}$ est la plus petite fermeture $\boldsymbol{\hat{\psi}}$ majorant la surpotente

$$\Psi = \bigcup_{x} \varphi_{o} \gamma_{x} = \bigcup_{x} \varphi \gamma_{x}$$

En effet, Φ_o , étant stable pour \cap , admet un plus petit élément ϕ_m . Mais Φ_o est stable pour α_o (lemme 4). Donc $\alpha_o(\phi_m) \in \Phi_o$. Comme $\alpha_o(\phi_m)$ est \subset dans ϕ_m et que ϕ_m est le plus petit élément, il en résulte bien $\phi_m = \alpha_o(\phi_m)$.

De plus, comme $\phi_m=\phi=\phi_o$ sur ${\cal Z}$, on a $\phi_m\gamma_x=\phi_o\gamma_x$, donc $\phi_m \supset \phi_o\gamma_x$ et

$$\phi_{m} \supset \psi = \bigcup_{x} \phi_{o} \gamma_{x}$$

Cet élément ψ majore I, car $\phi_0 \supset I$ donne $\psi \supset \bigcup \gamma_x = I$, donc est surpotent, mais en général il n'est pas idempotent. On note aussi que cette surpotente ψ coı̈ncide avec ϕ_0 sur $\mathcal C$. Comme la classe des surpotentes égales à ϕ_0

sur $\mathcal L$ est stable pour \bigcup et l'autocomposition, un raisonnement déjà utilisé montre que ψ coıncide encore avec ϕ_o sur $\mathcal L$. L'inclusion $\psi \subset \phi_m$ entraine donc l'égalité $\psi = \phi_m$, puisque ϕ_m est le plus petit élément de Φ_o .

Le même raisonnement appliqué avec $\varphi_0 = \varphi$ (plus grand élément de Φ) conduit au même élément minimum $\varphi_m = \psi$, car φ coıncide sur \mathcal{C} avec tous les éléments de Φ , soit $\varphi_X = \varphi_X$ pour tout x: de sorte que $\psi = \bigcup \varphi_X$ ne dépend pas du choix de l'élément particulier $\varphi \notin \Phi$.

4 - LES FERMETURES INVARIANTES PAR α_0 ET α .

Raisonnons, par exemple, dans le cas de l'opération $\alpha_{_{\scriptsize O}}$. Cette opération est \subset I donc sous-potente sur le treillis complet $\Phi_{_{\scriptsize O}}$, puisque $\alpha_{_{\scriptsize O}}(\phi)$ \in $\Phi_{_{\scriptsize O}}$ et $\alpha_{_{\scriptsize O}}(\phi)$ \subset ϕ comme on l'a vu. Il existe donc une plus grande <u>ouverture</u> $\alpha_{_{\scriptsize O}}(\phi)$ minorant $\alpha_{_{\scriptsize O}}$, et $\alpha_{_{\scriptsize O}}(\phi)$ et $\alpha_{_{\scriptsize O}}(\phi)$ admettent <u>le même domaine d'invariance</u> que nous désignerons par $\Phi_{_{\scriptsize O}}(\phi)$:

$$\Phi'_{o} = \{ \varphi, \varphi \in \Phi_{o}, \alpha_{o}(\varphi) = \varphi \}$$

Pour tout ϕ , $\overset{\checkmark}{\alpha}_{0}(\phi)$ est <u>la plus grande fermeture stable pour α_{0} minomant ϕ dans Φ_{0} . De la même manière, on désignera par :</u>

$$\Phi' = \{ \varphi, \varphi \in \Phi, \alpha(\varphi) = \varphi \}$$

le domaine d'invariance de l'opération α , qui est aussi celui de l'ouverture $\check{\alpha}$. Pour tout ϕ , $\check{\alpha}(\phi)$ est <u>la plus grande fermeture stable pour α et minorant ϕ dans Φ .</u>

En particulier $\check{\alpha}_o(\varphi_o)$ est <u>le plus grand élément</u> de Φ_o , et $\check{\alpha}(\varphi)$ est le plus grand élément de Φ' .

Nous allons maintenant montrer que ces deux ouvertures coıncident sur Φ : autrement dit, pour tout Φ Φ (ce qui implique Φ Φ 0), on a

$$\overset{\star}{\alpha}(\varphi) = \overset{\star}{\alpha}(\varphi)$$

On a déjà vu α \subset α_o sur Φ_o , et cela implique

$$\alpha \subset \alpha_0$$
 sur Φ_0 , i.e. $\Phi' \cap \Phi_0 \subset \Phi'_0$

et il faut donc montrer l'inclusion inverse.

LEMME 6 - Les éléments de $\Phi_0^{'}$ ou de $\Phi^{'}$ ne créent pas de composantes connexes.

En effet, si $\varphi \in \Phi_0$, on a pour tout A \subset E

$$\varphi(A) = \bigcup_{x} \varphi_{o}(A \cap \Upsilon_{x} \varphi(A))$$

Supposons que, pour un point x, on ait A $\cap \gamma_x \varphi(A) = \emptyset$, donc aussi

$$\varphi_{O}(A \cap \gamma_{X} \varphi(A)) = \emptyset$$

Cela entraine $x \notin \gamma_x \varphi_o(A \cap \gamma_x \varphi(A)) = \gamma_x \varphi'(A)$ d'après le 1emme 2, avec $\varphi' = \alpha_o(\varphi)$. Donc $x \notin \gamma_x \varphi(A)$, puisque $\varphi = \varphi'$, et par suite $\gamma_x \varphi(A) = \varphi$. Ainsi toute composante $\gamma_x \varphi(A)$ non vide rencontre A.

LEMME 7 - Une fermeture $\varphi \in \Phi$ est invariante pour α si et seulement si $\gamma_{v} \varphi$ est C i \cap pour tout $y \in E$.

Une fermeture $\varphi \in \Phi_{0}$ est invariante pour α_{0} si et seulement si

$$\gamma_y \varphi = \varphi_o(I \cap \gamma_y \varphi)$$
 $(y \in E)$

Posons $\varphi' = \alpha_0(\varphi)$. Si $\varphi = \varphi'$, i.e. $\varphi \in \Phi'_0$ on trouve (Critère 2)

$$\varphi_{o}(I \cap \gamma_{y} \varphi) \subset \varphi_{o} \gamma_{y} \varphi' = \gamma_{y} \varphi = \gamma_{y} \varphi'$$

et $\gamma_y \varphi' = \gamma_y \varphi_0(I \cap \gamma_y \varphi)$ d'après le lemme 2. Cela entraine

$$\varphi_{o}(I \cap \gamma_{v} \varphi) = \gamma_{v} \varphi_{o}(I \cap \gamma_{v} \varphi) = \gamma_{v} \varphi$$

Inversement, si $\varphi_o(i \cap \gamma_y \varphi) = \gamma_y \varphi$, il vient $\varphi' = \bigcup_y \gamma_y \varphi = \varphi$.

<u>LEMME 8</u> - Si une fermeture $\varphi \in \Phi$ est invariante pour α_0 , on a

$$\varphi (I \cap \gamma_y \varphi) = \gamma_y \varphi (I \cap \gamma_y \varphi)$$
 (y $\in E$)

Avec
$$\varphi' = \alpha_o \varphi$$
, si $\varphi = \varphi'$, on trouve
$$\varphi(I \cap \gamma_y \varphi) = \varphi'(I \cap \gamma_y \varphi) = \bigcup_X \varphi_o(I \cap \gamma_x \varphi)(I \cap \gamma_y \varphi)$$
$$= \bigcup_X \varphi_o(I \cap \gamma_y \varphi \cap \gamma_X \varphi(I \cap \gamma_y \varphi))$$

D'après un calcul déjà fait, ceci se réduit à :

$$\varphi \, (\mathrm{I} \, \bigcap \, \gamma_{\mathrm{y}} \, \varphi) \, = \, \varphi_{\mathrm{o}} (\mathrm{I} \, \bigcap \, \gamma_{\mathrm{y}} \, \varphi) \, (\mathrm{I} \, \bigcap \, \gamma_{\mathrm{y}} \, \varphi)$$

et donc, en utilisant le lemme 7 :

$$\varphi (I \cap \gamma_y \varphi) = \gamma_y \varphi (I \cap \gamma_y \varphi)$$

COROLLAIRE 1 - Pour tout $\varphi \in \Phi_0$ invariant par α_0 , on a

$$\varphi_{o}(I \cap \gamma_{y} \varphi) = \varphi(I \cap \gamma_{y} \varphi)$$
 $(y \in E)$

En effet, ϕ \subset ϕ entraine ϕ ϕ = ϕ , et d'autre part ϕ ϕ ϕ = ϕ ϕ (critère 2). En multipliant par ϕ la relation du lemme 8, il vient donc

$$\varphi_{o}(I \cap \gamma_{y} \varphi) = \gamma_{y} \varphi(I \cap \gamma_{y} \varphi) = \varphi(I \cap \gamma_{y} \varphi)$$

En termes de domaines d'invariance, ce corollaire implique

$$\Phi_{o}^{'} \subset \Phi^{'} \cap \Phi_{o}$$
, i.e. $\alpha_{o} \subset \alpha^{'} \sup \Phi_{o}$

En effet, $\operatorname{si}_{\phi} \in \Phi_{o}^{'}$, on trouve d'après le corollaire 1 :

$$\alpha \, (\phi) \, = \, \bigcup_{\mathbf{x}} \, \phi \, (\mathbf{I} \, \bigcap \, \gamma_{\mathbf{x}} \, \phi \,) \, = \, \bigcup_{\mathbf{x}} \, \phi_{\mathbf{0}} \, (\mathbf{I} \, \bigcap \, \gamma_{\mathbf{x}} \, \phi \,) \, = \, \alpha_{\mathbf{0}} (\phi) \, = \, \phi$$

Or, nous avons déjà vu l'inclusion inverse. Concluons :

COROLLAIRE 2 -
$$\alpha$$
 et α coIncident sur Φ , soit Φ = Φ Φ

Il nous reste maintenant à caractériser le plus grand élément de

que nous désignerons pour abréger par ϕ_{M} , soit, d'après le corollaire 2 :

$$\varphi_{\mathbf{M}} = \overset{\checkmark}{\alpha} (\varphi_{\mathbf{O}}) = \overset{\checkmark}{\alpha}_{\mathbf{O}} (\varphi_{\mathbf{O}})$$

Comme ϕ_o peut être choisi arbitrairement dans Φ , nous aurons par là même caractérisé l'ouverture $\overset{\smile}{\alpha}$ sur Φ .

Pour chaque $x \in E$, nous poserons

$$\phi_{x} = \gamma_{x} \varphi_{o}$$

et nous désignerons par ψ_x la plus grande ouverture minorant ψ_x . On sait que ψ_x ψ_x est alors la plus grande minorante C i \bigcap de ψ_x . Noter que γ_x ϕ_M est C i \bigcap (lemme 7) et minore ψ_x = γ_x ϕ_o . Par suite

$$\gamma_{x} \varphi_{M} \subset \psi_{x} \widecheck{\psi}_{x}$$

Prenant 1'union en x, et posant $\psi = \bigcup \psi_x \overset{\checkmark}{\psi}_x$, on en tire

$$\phi_{M} \subset \phi = \bigcup_{x} \phi_{x} \phi_{x}$$

Montrons l'inclusion inverse, d'où résultera l'égalité. Pour celà, considérons la classe \Re des φ \in Φ majorant ψ , classe stable pour l'intersection.

Pour $\varphi \in \mathcal{H}$ et $x \in E$, on a

$$\phi$$
 ϕ \Rightarrow ψ \Rightarrow ψ_{x}

Comme $\psi_x = \gamma_x \phi_0$, on a $\gamma_x \psi_x = \psi_x$, et donc

$$\gamma_x \varphi \Rightarrow \psi_x \overset{\checkmark}{\psi}_x \Rightarrow \overset{\checkmark}{\psi}_x$$

Par ailleurs, $\psi_x \subset \gamma_x \varphi$ entraine :

$$I \cap \gamma_x \varphi \supset \psi_x$$

puisque $\overset{\checkmark}{\psi}_x$ est une ouverture. Multipliant membre à membre ces deux inclusions, nous trouvons :

$$\gamma_{x} \varphi (I \cap \gamma_{x} \varphi) \supset \psi_{x} \psi_{x}$$

En prenant l'union en x et utilisant le lemme 2, cela donne

$$\alpha(\varphi) \supset \psi$$

Donc la classe $\mathcal H$ est stable pour α , et aussi, comme on l'a vu, pour l'intersection. Donc elle contient la classe $\mathcal H_o$, stable pour α et \cap engendrés par ϕ_o , et, en particulier le plus petit élément de $\mathcal H_o$, soit ϕ_o . D'ailleurs $\phi_o' = \alpha(\phi_o')$, puisqu'on a toujours $\alpha(\phi_o') \subset \phi_o'$ et que ϕ_o' est le plus petit élément de la classe $\mathcal H_o$ stable pour α . Il en résulte que ϕ_o' est le plus grand minorant de ϕ_o invariant pour α , i.e. $\phi_o' = \phi_M$. On a donc $\phi_M \in \mathcal H_o$, c'est-à-dire

$$\varphi_{M} \supset \psi$$

Comme on a vull'inclusion inverse, on a bien l'égalité $\psi = \phi_M$. En conclusion

THEOREME 3 - Soit Φ une classe de fermetures connexes coıncidant sur $\mathcal C$, ϕ_o un élément de Φ , α et α_o les opérations

$$\alpha(\varphi) = \bigcup_{\mathbf{x} \in E} \varphi(\mathbf{I} \cap \gamma_{\mathbf{x}} \varphi) \quad ; \quad \alpha_{\mathbf{o}}(\varphi) = \bigcup_{\mathbf{x} \in E} \varphi_{\mathbf{o}}(\mathbf{I} \cap \gamma_{\mathbf{x}} \varphi) \\ \downarrow_{\mathbf{v}} \varphi \in \Phi \qquad \qquad \downarrow_{\mathbf{v}} \varphi \in \Phi \qquad$$

Alors ϕ_o admet dans Φ une plus petite minorante ϕ_m et une plus grande minorante ϕ_M stables pour α . ϕ_m et ϕ_M sont également la plus petite et la plus grande minorante de ϕ_o dans Φ qui soient invariantes pour α_o .

Plus précisément, ϕ_m est la plus petite fermeture majorant $\bigcup_{x\ \boldsymbol{\xi}\ E} \phi_o\ \boldsymbol{\gamma}_x$ et ϕ_M est donnée par

$$\varphi_{\mathbf{M}} = \bigcup_{\mathbf{x} \in E} \psi_{\mathbf{x}} \psi_{\mathbf{x}}$$

où ψ_x ψ_x est, pour chaque x, la plus grande minorante C i \cap de ψ_x = = ψ_x ϕ_o . De plus ϕ_m et ϕ_M ne créent pas de composantes connexes. Enfin, ϕ_M est le plus petit élément de la classe stable pour \cap et pour α (ou α_o) engendrée par ϕ_o .