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CHANGE OF SUPPORT

IN THE CASE OF DIFFUSION TYPE RANDON FUNCTIONS

by

G. MATHERON

ABSTRACT

Diffusion type réndom functions are a first attempt at a
non-Markovian and multidimensional generalization of the Ito
étochastic integral theory. Within this framework, the variation
§f of the p.d.f. cen be evaluated for a swall change of support.
Comparison with the usual gpproximate models suggests the fol-
lowing conclusions : the affine correction is false for the first
order approximation unless z-m is a factor. The isofactorial wmo-
del is exact for the first order and, in the multigauss;an case,
is almost correct for the second order approximatibn. éounter—
examples are giVeﬁ in the discontinuous case, and a more general
model is suggested.

KEY WORDS : Diffusion processes ; Ito conditions conditional

H
drift ; conditional variogram ; change of support.

O. INTRODUCTICN

Change of support is probably the most important problem
of Geostatistics tdday.'In some parts of the mining industry, the
support v of the selection is chosen by taking into acéount the
information available at the time of selection (e.g. following
the ore/waste contours). In this case, gecs tatisticians say that
‘the geometry is adaptative, and only ewpiriczl approaches are

possible. In what follows, we shall consider only the case of a



fixed gecmetry, where the choice of the wvolume v is not influenced

by any knowledge concerning the regionalization z(x). In this case,
exact mathematical results can be obtained, although the problem

of the change of support remains extremely difficult.

Fundamentally, this problem is of =a physical, not statis-
tical nature, even if the language used here is probabilistic,
Naturally, estimation problems also arise, but the influence of
the support effect upon the recoverable reserves is generally
much more important than any estimation error. The basic problem
is to predict how the distributions, cohaitional or othérwise,
assumed to be known for a point or quasi point support, will be
- altered under &z change of support. This physical law that we have
to infer involves the structure of the multivarizte distributions
in an essential way. As long as this basic problem is sidestepped,
it is possible to dream about a "distribution free" geostatistics.
See Journel (1683). If the change of support'is taken into account
as it must tve in practice, speaking of a distribution free geosta-

tistics sounds as unrealistic as, say, model free physics.

After en introductory exawmple of a non-probabilistic na-
ture, the definition of the diffusion typé random functions and
the expressim for the variation §f of the p.d.f. are given in
Secticn 2. Ekamples are presented in Section 3. In section 4,
thie predictions from the usual approximate models are compared
with true distributions. Finally, the discontinuocus case is

examined, and a more general model is suggested.



1. AN INTRODUCTORY EXAMPIE

This first example is purely deterministic, not probabi-
listic, Its aim is to emphasize the physical nafure of the change
of support. For simplicity, we restriét ourselves to the one-di-
mensional case x € R, but the multidimensional case can be han-
dled in the same way, as will be done in Section 3.3, but in a

probavilistic framework.

We consider a function, or regionalized variable z(x),

x € R, which has continuous derivatives z', z" and 2z"! To eliminate

any edge effect, this function z(x) is assumed to be periodic, with

a period L. Under these hypotheses, we may write :

2 3
(1-1) ‘z(x+h) - z(x) =h z'(x).+ %? z"(x) + %r R(x+h)

where the function R is bounded by a constant C independent of h,

Now, if the point x is replaced by a random variable x
uniformlydistributed on (0,L), z(x), z'(x)... become random va-
riables. For simplicity, we assume that the distribution F of z(x)

has a p.d.f. £(z). This p.d.f. f(z) is defined by the relation .

L
(1-2) J@(z) f(z) dz =~% J olz(x)] dx

0
which holds for any regular enough function ¢.

The law of the change of support depends on‘thabehavior
of the function z in the neighborhood of the random point x ; so
we tust examine the variables z(x+h) with |h| < ¢ for a given
e > 0. Cur tools will be the conditional drift and the conditional

varicgram.



1.1 The infinitesimal conditional drift.

From relation (1-1), the conditional drift is of the
feorm @

E[z(x+h) - z(x)/z(x) = z] = b(z;h) + 0(82)

where the function b(z;h) is defined by the relation :

ﬁu>wmmfu)@=

b=tl—

L 2
j [h z'(x) + %? z"(x)] o[=z(x)]ax
0

wrhich holds for any regular enough function ¢.

But we have

L : z(L)
J ofz(x)] z'(x) dx = j o(z) dz = 0
0 - z(o)
beéause;the function z(x) is periodic. In the same way, we find s
L I | | . ‘
[ 2n(x) o[2(x)] ax = - j [2'(x)]2 ¢'[2(x)] ax
o . 0

Thus, the infinitesimal conditional drift b(z;h) is of

the form :

b(z3h) = h2 b(z)
(1-3)

2(z) = 5 Blz"(x)/2(x)= 2]

and the function b(z) is defined by :

‘ L
(=0 Jola) v(2) £(2) 4z = = 4p [ [/ 9[3(x)] ax
O

1.2 The infinitesimal conditional variocgram.

In the same way, for |a], |h']| < e, the conditional



covariance is of the form :
E[(z(_:g+h)'— z(x)) (z(x+h')-z(x))/z(x) = z] = C(z5h,h") + 0(e?)

and the infinitesiwal conditional covariznce C(z;h,h') is

' ¢(z3;h,h') = 2 h h' a(z)
(1-5) :

a(z) = 1 B[z'%(z)/ 2(x) = 2]
~ with the function a(z) defined by :
(1-86) thp(z) a(z) £(2) dz - gf‘ jL[z'(x)ﬁ o[z(x)] ax
o
If h = h', we find 3
1 E[(a(z+h) - 2(x))/2(z) = 2] = b a(z) + 0(c?)

so that the infinitesimal conditional variogram is @

v(z3h) = n2 a(z)
so tne first relation (1-5) may be rewritten in the form :
(1-7) C(z;h,h') = y(z3h) + y(z;h') - y(z;h-h")

This means that our conditional process behaves like an
intrinsic random function in the neighborhood of the conditioning

point,

1.3 A differential equation for the p.d.f.

Now, by comparing (1-4) and (1-6), we find :
{@ b f dz = - [@' af dz
J

2y integrating by parts, it follows :



J@ b f dz = J¢ é% (af) Qz

for any function ¢. Thus, the functions a and b and-the p.d.f.

f(z) satisfy the following differential equation

(1-8) | bf=§—z-(af)l

In other words, the p.d.f. is determined once the infinitesimal
’

conditional drift and variogram are known, and we have ¢

VA
) -y o (] A )
0

wnere C 1s a suitable normalizing constant.

1.4 lNoments of order > 2.

" The moments of order > 2 may be neglected, because i%
follows from (1-1) that we have for any Ihil <eg, 1=12... k

> 2

(-9) B Lo | 2(zmy) - 2(2)]/2(x) = 2] = o(c?)

1.5 The law for = suwall change of support

from these results, it is possible to find the expression
’ P ! L

)
>

or the variation 8§f of the p.d.f. under a small change of support.

4

et €= ¢ be an infinitely small length, and consider the region-

t‘

alized variable Zg defined by :

N o

ZZ(X) = % z(x+h) dh

§
ol



Proz (1-1), we may write :
| (xj = z(x) + éz z"(x) + 0(62)
Z, -z 24

Then for any function ¢ which is bounded and has bounded deri-

vatives @' and ¢", for instance a complex exponential, we have :
‘ 0 2 o
olzp(x)] = o[z(x)] + 57 z"(x) ¢'[z(x)] + 0(€°)

If £, is the p.d.f. of the variable z,(x), and 8f = f,- £ is the

veriagtion of the p.d.f., it follows :

% " " . :
Jote) 821 a2 = & L[ 20 or2(0] ax
2 i’
= - %Z % J [z'(x)]2 o"[2(x)] ax
o] .

By comparing with (1-5) and integrating by parts, we conclude :

J@(Z) 8f(z) dz

2
- %5 J¢"(z) a(z) f(z) dz

2 2

_ 2 J ( 4

= em oe—— Z)—_'—(af) dz
12 |® 422 o

end finally, by also taking into account the differential eQua—

tion (1-8) :

2 2 2
- _ A _a° - _ L 4
(1-10) 8 = - 73 o (af) = T (of)

In geostatistics, the tonnage T(z) selected above a

given cut-off grade z, and the corresponding conventional benefit
function B(z) (Matheron, 1983a), are defined by :
o0

T(z) =1 -~ #(z) = J f(u) du

o5} zZ 00

J (u-z) f(u) du ='J T(u) du
z

2

li

B3(z)



By (1-10), the variations of these functions under a

small change of support are :

2
(1-11) 6T=—$’—§bf ;i 5B=——= a f

In other words, under a small change of support and for
a given cut—off grade z, the variation of the tonnage is propor-
tionnal to the conditional drift, and the loss (in dollars!) is

proportional to the conditional variogramn.

" Another important geostatistical function is the func-
tion Q(T) which represents the quantity of recoverable metal for

a given selected tomnage T. It is definéd by

Q(T) = B[z(T)] + T z(.T)

where z(T) is the inverse function of T(z). Inus, for.a fixed T,

the variation of Q(T) is :

50(1) = 83(2) + 52(1) L& + T s2(1)
" OB _ ‘ :
But we have -l T, and finally :
02
(1-12) 53(1) = 6B(z) = -~ 35 2 £ (with z = 2(1))

Under a small change of support and for a given selected

tonnage T, the loss in metal is also proportional to the condi-

tional variogran.




2. DIFFUSTION TYPE RANDOM FUNCTIONS

These fundamental results, i.e..the differential equa~
tion (1-8) and the expression (1-10) for the law for a small
‘change of éupport, were obtained under strong regularity hypo-
theses. We shall now generalize them inside a much wider frame-
work, but this will require the use of probabilistic language. |
In a sense, our goal is a multidimensional zand non-Markovian
generalization of the Ito stochastic integral. Roughly speaking,
it will be assumed that, in the neighborhood of a conditioning

point, the conditional random function behaves like a Gaussian

intrinsic random function.

The physical implications of this model are emphasized
by the terminology : diffusion type random function. It may be
said that this has implicitiy worked as an heuristic model since
the beginning, so that it might be responsible for the successes

of Geostatistics up to now.

2.1 The Ito conditions.

e consider a stationary, but in general not multigaussian,
random function Z(x), x ¢ R, and we want to study the behaviour
of the conditional version of 2(x) in the neighborhood of a given
conditioning point X Without loss of generality, this point X,

may be chosen as the origin of the coordinates, i.e. X, = 0. More

precisely, if v is a small neighborhood of x = O and y(h) is the

variogram of the R.F. Z(x), we put

e = Sup {y(x~y) 5 x, y € v}
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and the notation 0(g) will denote a quantity such that 0(e)/e

~

- C if ¢ - 0.

The following conditions, which will be called Ito con~

diticns, even though they are not in quite the standard form,

are assumed to be satisfied for any x, Yy, X, €V
E[Zx - ZO/ZO = z] = b(z;x) + R1
(2-1) E[(ZX—ZO)(Zy—ZO)/Zo = z] = Clz;x,y) + R,

k>2
B[ szi_ zol/zO =z] =R

i=1 3

with remainders R1, R2, R3 satisfying bounds of the form :
2] < 0(e) B 3 E[H'] < o, n=1,2...

We also assume that the random variable b(ZO;X) and C(Zo;x,y)

have finite moments for all the required orders.

The function b{zj;x) is the infinitesimal conditional

drift ; C(z3;x,y) is the infinitesimal conditional covariance,

end the infinitesiwel conditional variogram y(z;h) is defined by

y(z3h) = % C(z3h,h) (h e v)

2.2 A differential equation for the p.d.f.

Iet ¢ be a bounded function with bounded derivatives
o', ¢" and ¢". For instance, ¢ may be a complex expohential.

Then, for any:x € v, we may write :

o(2,) - 9(20) = (2-3,) 9'(20) + 3 (2,-2)% o"(3,) + —Xp2— U



-11=

with a random variable U such that |U| < Sup [9"(2) | < oo It

follows from the Ito conditions :
E[@(Zx) - qg(ZO)/Z0 = z] = b(z;x) ¢'(2) + y(z,x) ¢"(2) + R

with a remainder R satisfying a bound of the form (2-1'). By

taking the expectation, we have :
E[@(ZX)] - E[@(ZO)] = E[b(Z;x) ¢'(2) + v(2Z;x) ¢"(2)] + 0(e)

But this expression is zero because of the stationarity. Thus

we hagve :

jb(z;x) o' (2) £(2) dz = - Jy(z;x) o"(z) £(z) dz + O(e)

J@v(z) Ea—z- ('Y(Z;X) f(z)) dz + ‘O(E)

The term O(eg) may be dropped out, becausé the functions
b and y are defined up to O(e) type quantities only. This rela-

tion holds for any function ¢, so that it follows :

(2-2) b(z5x) £(2) = 5 (y(z5x) 2(z))

Thus, the p.d.f. is determined once the infinitesimal
conditional drift and variogram are given. From another point
of view, relation (2-2) also shows that the tWo functions b and
y 40 not behave independently. An equivalent form, which will

be useful, is. the following :

(2-2') E[o(z;x) ¢'(2) + v(2;x) 9"(2)] = 0
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2.3 S%ructure of the conditional covariance

Iet x and y be two points in v. Consider the random va-
riatles :

2, =« 2(x) + (1=a) 2(y) = 2, + «(2,-2) + (1-a)(2,-2)

Then, for any bounded function ¢ with bounded derivatives

¢'y o" and o™, we have : ‘

ozg) = 0(2) + (272) (2 + % (2292 o7(2) + 4 (2,27 v
with |U| < Sup {9"'| < o . By the Ito conditions, it follows : |
Ele(2,)/2, = 2] =‘¢(z) + [o b(z3x) + (1-a) b(é;y)] 9'(z)

+ [a® y(z3x) + (1-0)2 v(z35) + al1=a) C(z;%,7)] ¢"(z) + R

and the remainder R satisfies a btound of the fornm (2—1'). Thus,

by taking the expectatién, we have
Elo(2)] = E[9(2,)] + E[b(2,y) ¢'(2) + v(Z;5) ¢"(2)]

+ o BE[(b(2,x) - v(Z,y)) ¢'(2) + (¢(z,%,y)-2 ¥(2,y)) @f(Z)]

+

o B[ (y(2,x) + v(Z,y) - ¢(2Z3x,7)) ¢"(2)] + 0(e)
From (2-2'), this may be rewritten :

Blo(2)] - El9(2)] = ali-a) E[(C(Zix,7) - ¥(Z,x) = v(2,3)) ¢"(2)]

Now, because of the stationarity, this expression does not change
wnen X and y are replaced by x+h and y+h. In particular, if h =-y,

we have y(Z;0) = C(Z;x~y,0) = O, and we find :

B[((0(25x,5) = ¥(2,%) = ¥(Z,5))9"(2)] = - E[v(Z5x-y) ¢"(2)]
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for any regular enough function ¢, and thus :

(2-3) Clz3x,y) = yv(zyx) + y(z,y) - v(z3x-y)

This reletion means that, in the neighborhood of the
conditioning point X, = C, the conditional random function be-
haves like an intrinsic random function, except for the drift

b(z;x).

2.4 Variation of the p.d.f. under a small change of support.

Now, we consider the variable Z_ = (1/#)] z(x) ax, or,
v

more generally, the variable :

oz - jz(x> 2 (dx) () = 1)

vhere p is a wmeasure with its support ¢ v and such that Ju(dx)v= 1e
Then, for any regular enough function ¢ we find as gbove :
(2) - o(z) = (2 -2) ¢'(2) +5 (2-2)% g"(z) ++ (2 -2)° v
(PHCPO pOcPOQpO'(PO-ng

|l < Sup [¢" | < e

and, by the Ito conditioms :

B[o(2,)-9(2,)] = 5{9"(2) [0(2,x) u(ax) + § o"(D)|[0(z3%,3) w(ax) u(ay)]
+ 0(e)
But, from (2—3), we have

% ch(z;x,y) u(dx) ulay) = JY(Z,X) L(ax) - % = (2)

?(z) = ij(z;x—y)ju(dx) p(ay)
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and from (2—2') :
2 (2) [b(252) w(ax) + ¢"(2) [y(zim) wlan)] = o
so that we find :
(2-4)  E[9(2,)-¢(2,)] = - 3 Ble"(2) ¥(D)] * 0le)
Thus, the variation &§f =.fu-f of the p.d.f. satisfies

the following relations :

JCP(Z) éf(z) dz :»... .12. J¢" --Y-(Z) f(Z) dz = —.-12- Jrcp —2—;2 (? f) dz

for any regular enough function. It follows :

1 a° =
(2=a1) §f(z) = - 5 Eﬁé (¥(z) £(2))
. Z

From the differential equation (2-2), we find that the

variation of the tonnage T(z) = 1 -~ F(z) is given by :

87(z) = 3 T (2) £(z)

wnere o(z) = Jjb(z;x—y) p(dx) p(dy) is the average of the condi-
tional drift. Concerning the function B(z) and Q(T), we find exact-

ly as in Section 1 :

(2-5) s8(z) = 8Q(T) = - £ ¥(2) £(2)

]

7.B. From the relation }B(z) dz % E(Zz), (Matheron, 1983a), we

always have :

jéB(Z) dz = % 0" = - % = - % IV(Z) f(z) dz

=<
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The relation (2-5) shows that this general rule also
holds in the conditional sense, in the case of a diffusion typé
random function. It weans that, for a given cut-off gradevz, the
loss due to a small change of support v is proportional to the

average value in v of the conditional variogram.

2.5 The case of the proportional effect.

In the general case, the behavior of the conditional
veriogram y(z;h), and in particular its kind of anisotropy, way
depend in a complex way on the conditioningvalue z. The simplest

rossible model is the case of the proportional effect, i.e. s

y(z3n) = a(z) y(h)

where y(h) is the non conditional variogram. In this case, we
elsc find

b(z3h) = b(z) y(h)

and the functicnsa, b and f satisfy the differential equation :

(2-6) Laf)-vr=0

In particular, the p.d.f. is of the form :

Z
£(z) = =& exp(Jf g%}au>
(o] .

Consequertly, the variations of the functions f(z), T(z), B(2)

and G(7) under a small change of support, are :
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4 I d 2b' — ba' + b2
-1 & -1 &
< 80(z) =% of
5B(z) = 8Q(T) = - a f
N

If u(z) is a regular enough function, we have :
(2-7) & E[u(z)] L E[n(2) u'(2)] = - % E[a(2) u"(2)]
ard in particular the variation of the moment of order n is :

(-1 &1, =372 v(@)] = - 2= 7 5(2772 a(z)]

Note that we have :

(o-8) - E[a(2)] =

because, by definition, y(z;h) = a(z) y(h) and y(h) = E[y(2;h)].

Taus, in the particular case n = 2, (2-7') becomes :

6 M2 =80 = - %

a5 expected.

This very simple model of the proportional effect will
probably prove to be very useful in the applications. But it must

be Xept in wind that more complex models are also possible,

3. EXAMPIES

It is not obvious a priori that stationary diffusion
type random functions inJRn do exist. I shall give three examples,

but I hope that many others do exist.
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3,1 Diffusion Harkov processes on the straight line

This first example is obvious, because 1t is the start-
ing point of the whole theory. It is the stationary solution to

the Ito stochastic differential equation :

d z, = b(Zt) at +Va(Zt) dg .,

where . is a standard brownian motion, with E(g,) = 0 and
Var(g,) = 2 t. The Ito conditions are satisfied, and we are
in the case of the proporitional effect (see sectidn 2-5), The
only required condition is the existence Qf the stationary

p.d.T. £(z), i.e. :

J Zf%T exp (jz %%%% du) dz:< 00
o)

The infinitesimal generator A of the Markov process 2. is the

operator :

2
(3-1) p=alz) &) o+ n(a) &
- 4z

For any regular encugh function ¢, the function

o4(2) = E[g(2,)/2, = 2]

is the unigue solution of the evolution eguation

d i
T - Ay (9o = 0

so that we can write
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or explicitly :

ko)

o (2) = {Pt(z;dZ') e(z")

wnere Pt(z;dz') is the transition probability of the Harkov
process Zt‘ This means that the stationary vivariate distribu-
tion

e

£,(z.,2") dz dz' = £(z,) P, (2 ;d2")

of (Zo’zt) is determined once the operator A, i.e. the two func-—

tions a(z) arnd b(z), are known.

Now, if 2(x) is a diffusion type random function in IR
with a prOpoftional effect, we may also consider the Markov pro-
cess Z, on R defined by the operator (3-1), with the same functions
a and b. Te p.d.f. £(z) is the same for 2(x) and Z,. But what hap-
pens to the bivariate distributions ? Are they of the samé form,
or more precisely, for any h = x-y ¢ mp, is it possiblé to find

a vzlue of t such that :
- = o
(3=2) fh(zx,zy) ft(zo,zt)_ ;

The answer to this question (3-2) is very important for
- the practical epplications, because any consistent non-linear
estizmation procedure requires the knowledge of at least the bi-

variate distributions (zx,zy) and (zx,zv).

The answer is in the affirmative in the multigaussian
case, which will be our sec¢ond example., It is doubtful in the
case of the third example, and probably negative in the general
case. For this reason, I suggest a "call for research" of the form :

under what condition is the answer to the gquestion (3-2) positive ?
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3,2 The multigaussian case.

Iet Y(x) be a stationary multigaussian random function.

Witnout loss of generality, we may assume

E(Y(x)) =0 5 Var(¥(x)) =1

Cov(YX,Yy) = p(x-y) = 1 - vy (x=y)

vWe assume that there is no nugget effect, i.e. the vario-
gram ¥y is continuous. Then, the Ito conditions are satisfied with
a proportional effect, and we have

b (75%) = =7 v, (x) 5 vo(ysh) = v, (h)
Now, we may define a new random function by putting

Z2(x) = ¢(¥(x))

Then, if the tramsform ¢ is regular enough, z(x) is also
a diffusion type randon function with a proportional effect. If we
assume for instance that o9, @'y ¢" and ¢"' satisfy an exponential

bound of tne form :
Yol + lorl + lgnl + lg™ | = B exalely])
it is easy to show that the TIto coﬁdifions are satisfied and that
we have a proportional'effect :
p(z3x) = b(z) v (B) 5 v(z3h) = a(z) v,(h)

Note that these functions a and b are not exactly the
same as in Section 2.5, because the variogram y(h) of 2Z(x) is
nroportional but not equal to yo(h). If Ay is the generator of

=i
VR

-

standard Gaussian Markovian process Yt, i,e.



0 dy2 ay

the funciion a(z) and b(z) are given by :
(3-3)  blz) = B[A, o(D/o(y) = 2] 5 alz) = E[e'2(¥)/e(¥) = 2]

Tne appearance of the conditional expectation is due
to the fact that generally the equatiqn ¢(y) = gz may have more
than one solution. If the transform ¢ is‘a true anamorphrosis,
i.e, is strictly increasing, the conditional expectation can

"be dropped out, and we have :
(3-3") (z) = &, o(y) 5 alz) = ¢'%(y)

with y uniquely determined by z = oly).

Note that the transformations (3-3) or (3-3') are gene-
ral : if Y(x) is a diffusion type R.F. with a proporfional ef-
fect defined by two functions ao(y) and bo(y), and if the trans-
form ¢ is regular enough, the R.F. Z2(x) = o(¥(x)) is also of the
diffusion type with'a proportional effect, and the new functions

a(z), o(z) are given by

(z) = B[4, o(¥)/9(¥) = 2] ; a(z) = E[a,(¥) cp'?(Y)/q)(Y) = z]

a2 .. .4
(AO = aO(Y) 5;2 + bo(f) Iy )

3.3 The regular case

Now, we suppose the stationary R.P. Z(x) to be three

times differentiable in quadratic mean. More precisely, we as-—
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o 3 4g 5 X X aij Zo t o(|x]) r

with

R| < H for a random variable H independent of the point x
and such that E[H'] < « for any n. We also assume that the par-
tial derivatives éi Z

o? aij Z, and 7 itself have finite moments

of all reguired ordres.

Then, it is easy to show that the Ito conditions are

satisfied with :

b(z;x)

%t % bij(z) s b..(z) =

it

Y(z;h) n* hd aij(z) H a..(z) = % E[éi Z,0: Z /Z. = z]

In the case of a proportional effect, there is a constant

positive definite wmatrix Kij such that

Cagg(2) = alz) Ky o5 by4(2) = b(2) Ky,

But there is no reason for these relations to be satisfied

in the general case.

4, APPROXIMATY MODELS QF CHANGE OF SUPPORT

The preceding results, and in particular the formu1a
(2-4) can be used only in the case of a very small change of
support. But in practice'the variance reduction is often gréater
than 50%. In the case of a relatively large change of support,

two kinds of approximate models are available :

~ the affine correction (Journel and Huijbregts, 1978)

~ the isofactorial models (Matheron,1923b), especially
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popular in the very particular case called discretized Gaussian
model (latheron, 13750 and Journel and Huijbregts, 1978). A more
general presentation is given in Matheron(1983b) in the discrete
case,

In this section, we shall compare the predictions of
these models with the true distributions, in the case of a dif-
fusion type random function with prdportional effect. The compa-
rison will be made for the first order approximation in the gene-
‘ral case, and for the second order in the multigaussian case.
Moreover, we shall give actual values in a few particular exam—

ples. The general conclusions will be as follows :

~ Isofactofial model predictions are exact for the first

order approximation and, in the multigaussisn case, are almost

correct for the second order approximation.

~ Affine correction is false for the first order onwards,

except if z — m is g factor, i.e. an eigen function for the opera-

oy a2 d
tor A = a(z) &2t b(z) iz °

4.1 The affine correction (A.C.)

In this very simple model, it is assumed that (Zv-m)/cv

and (2, -m)/c have the sawe distribution. Thus, by putting

o" ——
— v - X -
e=1--L-= + 0(7)
o 202

Z, and Z - € (Zo—m) have the same distribution, and we find,

for any regular enough function u(z) :

EAC[u(zv)} = E[u(z,)] - ;—;—2 E[(z-m) u'(z)] + o(¥)
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By comparison with (4-1), we see that this expression

is correct only if we have

E[(2) w'(2)] = - 1 B[(2-0) u'(2)]
' c

for any function u, i.e.

Zo-m

2
o

- b(z) = -

In terms of the differential operator

2 .
d d
dz2 | dz

associated with the diffusion type R.F. z(x), this condition may
be written as :

- Az—1) = - A(z-m)

Hence the conclusion : the affine correction is false for the

first order, except if (z-m) is an eigen function of the opera-

tor A.

In the multigaussian case,of'Section 3.2, the conclusion

is as follows :

If ¢ is a true anamorphosis, the affine correction is

exact for the first order if and only if

A (g-m) = - A(g-m)

i.é. if ¢-m is en Hermite's polynomial : but Hermite's polynpmials
of degree n » 2 are not monotonic, so that in fact the affine cor-

rection is false for any non~-linear anawmorphosis.

Now, if ¢ is a regular transform, but not strictly mono-
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tonic, , the affine correction is exact for the first order if

o-m is an Hermite's polynomial, or more generelly, if

B[4, o(D)/9(Y) = 2] = = A(z-u)

Tnis condition is satisfied for instance, if ¢(y) = y2, and al-

: _ .2
so if oly) =y Tyso *

4.2 Tne Isofactorial model

The starting point of this wodel is the Cartier condi~

tion
E[2/Z,] = Z,

where the random point x is uniformly distributed inside v. (Mathe-
ron, 1983a e%.b). Moreover, the bivariate distribution of (Z,,Z)

iz assumed to be the same as if we had
4y = ¢v(zto) P2y T 24 41
where'zt is the diffusion Markov process defined by the generator

2
A = a(z) 4_

d
dz dz

2

FProm Cartier's condition, this comes back to rutting
Z, = 9,(2) ;3 ¢, =P z=¢€¢ "z

so that, for the first order approximation, we find

oy(2) = 2 tt Az o(t) =z + ¢ b(z) + 0(t)
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The parameter t must be chosen so that the variance has the

. correct value c& . For the first order‘approx;mation,'we have :
E[go(2)] = B(2%) + 2 % B(z A(2)) + O(%)

But, from the differertial equation (2-6), we find
E[u(z) A v(2)] = - E[a(2) u'(2) v'(2)]

ard thus E(Z A 2) = - E(a(2z)) = - 1 from (2-8). It follows that

the variance has the correct value if

t =

R |

and finally the model is :
9,(2) =z + % b(z) + 0(¥)
For any regular enough function u, it follows :

E[u(e,(2))] = E[u(2)] + % E[v(2) u'(z)] + 0(¥)

3y comparison with (2-7), this is the correct value, and we con-
clude ¢

The iscfectorial model is exact for the first order

apvroximation.

4,3 The second order approxiwmation

In the multigaussian case Z(x) = ¢(¥(x)) of Section

3,2, it is possible to obtain the second order approximation
formula for the variation &f of the p.d.f. f(z), After routine

calculations, we find for any regular enough function u(z) :
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'.?
- 0 " 2
a[g(zv)] =lE[?(ZO)] - = E[u"(3,) 9" (¥,)]
. 4 _ —
+ .% ’:B”—ZL—LQ"_L (Y’o)2 + um .(Cp')2 YoYé + -%-u".((p")Z Yg]
+ O(y )

In particular, if u(z) = 2z, the order n moment Mh(v) is given
by

1 (v) = 3 (o) - B 3 52 i2(1)]

+ + n(n=1)(n-2) yy& 2 3 12

OYO

%E[n(n—ﬂgn—Q)(n—B) (70)2 4 i

-

J——nn")zn" " g] + 0(¥2)

Note the occurence of the term

YoYo = :% JJJYO(X"Y) Yo {x-¥y') dx ay ay’

For the second order approximation, we find after some

calculations that the prediction of the isofactorial model is

correct, except that this term y_y! is replaced by (?0)2 . From

a numerical point of view, the difference is very small. For ins-

tance, in the one-dimensional case, if Yo(h) = {h] + O(|h|2), we
find =
5

]

(?O)2 =1 1n2 4 0m? =0,11 111 12 + o(n?)

9

Hence the conclusicn : in the multigaussian case, the isofacto-

rial model is almost correct for the second order approximation.

4.4 The lognorwmal case

In this model, we have
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2
' sY(x) - %
Z2(x) = m e

where Y(x) is a standardized staticnary multigaussian random
function, as in Section 3.2. In this case, the prediction of
the isofactorial model is another lognormal distribution with
the same mean m, i.e.
2
va;sv/Z

=m
,ZV e

and the paraumeter S, is determined so that the variance has the

ccrrect value cg .

But in this case the true values of the order n moment

N%(v) are |
. = -
kn(V) = E[Zﬁ] == J E[ZX1ZX2...th] dx1dx2...d§n‘
n
v
2
1 ~T ;) Tolrymyy) |
— R/ e
==y Jh(O) J e . dx, dx2...dxn
v n
v

so that numerical csglculations are always possible, at least

forn = 3% and 4.

In the one-dimensional case, if the variogram of Y(x)

v,(n) = |n] if |a] <1, 1 otherwise

explicit formulae were obtained, after fairly tedious calcula-
tions. Figures 1, 2, 3 and 4 show the results in the case mw = s

= {1, for the variable

.
Zv = % J ZX dx
0

Fizure {1 shows the relative order 3% moment m%(t)/m3(o). At this

scale, true values and isofactorial predictiors Cannot be dis-
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tinguished. It is surprising that the order two approximation

formila is better than affine correction prediction.

Fizure 2 - A much clearer discrimination is obtained by using

the order 3 relative cumlant

“m
S e8]

v

The true values are decreasing because of the convergence towards

norzality. The isofactorial predictions are extremely good if

<t

< 1. However in the affine correction wmodel, X3/U3 remains
constant, because (Z_v—m)/cv and (Z-w)/c have the same distri-

bution.

Pigure 3 shows the order 4 relative cumulant X g 04 : the conclu-

sicns are the same,

Fizure 4 shows (or a2 logarithmic scale) the long run behavior of
he relative cumulant x3/03. From the general theory (convergence
towards normality) we know that the true values are ~ 1/V% for
large enough t. The isofactorial prediction is also ~ 1/t (this
is a general result). If t is » 5 or 10, the ratio isofactorial
prediction/true value remains constant =~ 0.78, while the affine

correction prediction remains constant !

YX.2. In the multigaussian case, we saw that thé isofactorial mo-
del is correct_fof a small change of support. It turns out that
it is also correct for a very large change of support, because

the convergence of (¢V(Y)-m)/gv towards a normal variable N(0,1)
automatically holds. This is the reason why the isofactorial mo-

-

¢l gppears really gcod for any change of support in this case.

(2
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4.5 The gamma diffusion process

If Y(t) 4is the Markov process defined by the generator

4

2
A= al(y) 2—2 - o(y) 3y

dy

' t
| —hi p(Y_)dz
Hny) = E [e /Yy = y}

This is the conditional Laplace transform of

put 3

t
52, = | 9(x) ds
o)
and the non conditional ILaplace transform is :
| —xl o(Y )t
3. (A) =E [e J = B[H (A, 1) ]
In fact, Ht(y;x) is the solution to the equation :

@ H;_
L
ot

= A H, - A oly) H (5, = 1)

We shall consider the diffusion process defined by

2
a- d
dy2 dy

Tais is the gamma vrocess : the p.d.f. is the gamma (a) p.d.f.

~ As a first exauple, we choose ¢(y) = y itself, and the

variable of interest is 3

t
Y, = % J Y(<) dt
0

where Y(t) is the gamma process.
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By solving the equation

2 . .
O H 3 H d H
Yt ) o - Ay (g =)
y
we find
-AY t ' %
(4=1) o, (0) =E [e M ] = Rt RRi)/g Rt RE)
_(RCQT+Sh_4-(ChT,+RShT
R = Vi+4 A)

Tnis is the rigorous solution.

~ In this particular case, y-m is a factor for the gamma pro-

cess, so that the isofactoriagl and A.C. models coincide and give

the same prediction :

o—Mat(1-p) 1
[1+x p $]°

3. (A) =

Yumerically, Dt and @: are very similar.

hnl

Figure 5 shows the relative third cumulant x3(t)/03(t) for this.
At the beginning, the true values decrease very slowly
because y-m is a factor.

The common isofactorial ard A.C. prediction is x3/c3 =

constant. It is good if t < 2 or 2.5, or oz(t) > % 62(0).

In the same figure we give the values of x3(t)/c3(t)

in the case of the Ambarzumian prqcéss. It is as follows :
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(exponential decrease and, from time to time, according to a
Poisson process, a random exponentially distributed jump).The
Ambarzumian process :

~ is Harkov

~ has the same stationary gamma (a) distribution

; . . -lh
~ has the same exponential covariance e I l .

But y-m is not a factor for the Ambarzumian process.
This is the reason why the relative cumlant decreases much

faster.

Figure 6 : the same process in the long run : the common predic-
tion of A.C. and isofactorial models becomes very poor after t = 5,

The reason is the convergence of the true variable YV towards

‘normality.

The true Iaplace transform of Y, given by (3~9), has

a Welerstrass type expansion as an infinite product :
' a

00 bn
a.(A) = T (————>
t n=1 bnfx
i.e. ¢ Iv is an infinite sum of independent R.V. The eigen values

bn are known. In the case

«=1 i.e. gly) =e¥

we obtain an expansion of the form :

B
A) = 1
®t( ) sz +A
n
so that an explicit inversion is possible. Numerical values are
given in Watheron (1983b): the agreement between the true distri-
bution and the isofactorial prediction is extraordinarily good.
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4.6 The sguare Y% of the gamma process.

With the same gamza diffusion process Y, , We now choose
2 t L2

Yt 1 YT
Z, =— 3 Z, == J — dv
t. m2 v t m2

0]

Here, o(y) = y2/m2 is not 'a factor, so that we shall have

a ciear discrimination between the isofactorial and A.C, models.

Figure 7 - By using Laguerre polynomials, it is possible (although
fairly tedious!) to calculate the true values of the third moment.

Tis shows that

~ A.C. is veri poor . _
~ The isofactorial model is very good for c% = 05/2, but it
is not correct if t is large : in this model, the variable @v(Y)
converges towards the first factor, which is gamma andinot normal

as it should.

5. A MORE GENERAL MODEL

In the discontinuous cases, the preceding models do not work.

Iet us give two simple exauples.

?irst example., In the multigaussian case, if the transform ¢ is

not continuous, our approximation formulae are no longer valid.

For instance, if ¢ 1s an indicator function, i.e.

z(x) = 1Y(x)>a

we find
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s
M2(V) =1 - G(a) - —— \/'Y + O(\/'.Y')
T
2 jy — —_
() = 1= oa) = FeTT/EVy + o)

where G is the standard normal c.d.f. Note the occurence of the

square root of the variogram, which is characteristic of the in-

dicator function.

" 1f Y(%) is the standard Gaussian Markovian process,,it

is possible to calculate the general moment Mﬁ(t) of the variable
t

-
i, = % j Y(o)s 247
0

After some fairly difficult caleculations, we find

: » 2 2
: Mn(t) =1- G(o) - "? e /2 [T-%ﬁ -2 TQ%%F—‘] + 00/%)

This is compatible with neither the isofactorial nor the affine

correction model.

Second examples: Feller type Markov processes. These processes are

jump processes, defined by an infinitesimal generator A of the

form :

(5 9)(¥) = - C(y) o(y) + o(y) |m(aw) g(w)

where ny(du) is a transition probability, and C(y) = O.

A Feller type process is discontinuous, nevertheless
it is possible to find the first order approximation for the

variable

t
z, =1 f 9(¥,) dr
0
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For, if t is very small :
~ either Y_ remains constant on (0,t), with a probability

c(y) + o(%)

1
ot

~ or it has only one jump, with a probadility % C(y) + 0(%)

~ the probability of having more than one jump is 0O(t).

Now this (eventual) unique jump point is uniformly dis-

trivuted on (0,t), so that, neglecting events of probability O(%)

we have @

Zy = U 24 + (1-0) Z,

with U uniformly distributed on (0y1) and independent of the pro-~
cess. Clearly, this relation also holds if there is no jump, be-

cause in this case Z0 = Zt .

This very simple result leads to :

n-1
M (V) = H (o) + ok Z (" & ¢ 7] + 0(+)

It turns out that this formula also holds in the case
of the Ito type processes, and also for various other types of

processes,

This suggests a new model, more general than the isofac-

torial model,

A new model : the uniform mixture.

If the bivariate distributions“(zx,zy) are of the same
type gp(z,z') except for the value of (say) the correlation coef-

ficient p, put :
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Zy = Uz, + (1-U0) 3,

~ U is uniformly distributed on (0,1) and independent of Zys2,
~ the distribution of (zo,z1) if gp(zo,z1) and p is chosen

so that the variance has the correct value :

~ In practice, this model is good only if p = O, Hence the

limitation

If so, this uniform mixture model is'practically equiva-
lent to the isofactorial wmodel, in the case of a diffusion fype
R.F. (and identical to it for the first order approximation).

But 1t may be applied in other cases, in particular in disconti-

nuous cases. New estimation technigues could be based upon it.
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Figure 2

Iognormal Process
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Figure 3
Tognormal Process 1-D
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Figure 4
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Figure 5

The gamma Process Yt
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Pigure 6

The gamma Process Y, in the long Tun
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x3/03 in the case of the Auwbarzumian process.
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Figure 7
The gamma Diffusion Process Y, a =5
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