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NEW TYPES OF DIJUNCTIVE KRIGING : PART II

G. Matheron, M. Armstrong

INTRODUCTION

In the decade since the first .paper on non-linear geostatis-
tics appeared (Matheron, 1973), geostatisticians have had the time
to test the method and find its strengths and weaknesses. One pro-
blem to date has been that, in its present form, disjunctive kriging
has always been associated with a transformation tc a normal distri-
bution, which is unsuited for use with data like uranium, with a
large peak of zero values, or with discrete variables such as the
stone counts on diamonds or with grouped data as is found in size
or density distributions. So there is a very real need for new types
of disjunctive kriging, particularly for "discrete disjunctive kri-
ging".

The first note on disjunctive kriging (Matheron, 1973) gives
the theory behind the method and shows how it can be used for data
having one of the following distributions: the normal distribution,
the gamma, the Poisson and the negative binomial. More importantly,
the general conditions for finding distributions suitable for dis-
junctive kriging are presented. These are that the joint distribution
f(x,y) can be expressed in an iscofactorial form; that is,

[o o]

£(x,y) = Z T X, (¥) x, (¥) £4(x) £,(x)
. n=

where f1(.) is the marginal distribution, Tn are constants and xn(.)
are the factors which, for simplicity, must be polynomials. A recent
translation of this work is presented in a previous paper (Matheron
and Armstrong, 1984).

One unfortunate limitation of this method for finding distri-
butions suitable for disjunctive kriging was that it could only be
applied to infinitely divisible distributions. This limitation can
be overcome by using a different approach (infinitesimal generators).
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This was first developed for continuous distributions (Mgatheron,
1975a) and afterwards to discrete distributions (Matheron, 1975Db).
The objective of this paper is to present an updated translation
of those parts of these two research notes which are directly re-
levant to alternative types of disjunctive kriging.

The first of these two notes is a collection of rather dis-
parate results which are not all concerned with the subject under
discussion, and which will therefore not be presented in detail
here. However, an overview of both papers will be given for the
seke of completeness.

1 - OVERVIEW OF THE FIRST NOTE.

The first note "Compléments sur les modéles isofactoriels"
regroups some rather diverse results, as can be seen from the chapter
headings:

1. A random set deduced from a Gaussian random function.

2. The general form of "Hermitian" distributions.

3, The general form of "Laguerre" distributions.

4. The covariance of an anamorphosis.

5. The infinitesimal generator approach.

6. The compactness of a family of isofactorial distributions.

In the first section, it is shown that if Y(x) is a normally
distributed random variable (N(0,1)) with spatial covariance of
p(x,y), then the covariance of the random set A = fx:¥(x) 2 a} can
be expanded in terms of Hermite polynomials as

(B, (a) g(e)?

n-
n!

cum>=u-Gwn2+§(mme
n=

where g(.) and G(.) are the p.d.f. of the standard normal distribution
and the corresponding distribution function. It then goes on to show
that if p(x,y) is near 1 (that is, if h = |x-y| is smaller and there
is no nugget effect), the variogram corresponding to c(x,y) is pro-
portional to the square root of the variogram (1 - p(h)) of Y(x)e.
Consequently for the variogram of the random set to be linear near

the origin, 1 - p(h) must be parabolic. So the covariance model for

—bh2
o(h) would have to be like e bhe



The second and third sections are devoted to definitions of
wider classes of bivariate distributions that have respectively the
standard normal distribution (or the gamma distribution) as their
marginal distribution and having Hermite (or Laguerre) polynomials
as their orthogonal polynomials. For want of a better name, they
were called "Hermitian" and "Laguerre"-type distributions. These
are a generalisation of the bivariate normal and bivariate gamma
distributions. In a course on non-linear geostatistics, Rivoirard
(1984) pointed out that the Hermitian distributions may prove use-.
ful in handling anamorphosed uranium data which, by construction,
has a normal distribution as its marginal distribution but which
is often not a bivariate normal. Figure 1a presents a diagrammatic
representation of the isoprobability curves for typical uranium
data while Figure 1b represents a bivariate normal distribution.

As the same line of reasoning is used in both sections, the
the first one (on the Hermitian distributions) will be presented
in full but the details of the other will be left to the reader.

The objective of the fourth section is to extend some results
on the covariance of an anamorphosed variable, which Maréchal (1975)
has obtained.

By far the most important section is the fifth one which uses
infinitesimal generators to produce isofactorial models with polyno-
mial factors for continuous distributions. In addition to the Hermite
and Laguerre-type distributions, the beta distribution is shown to
be suitable for disjunctive kriging. (The corresponding factors are
the Jacobi polynomials). The theory developed in this section demons-
trates that the isofactorial models with polynomial factors belong
to the family of semi-groups associated with diffusion type processes.
More recently, Matheron (1983) has presented some change of support
models for these diffusion-type processes.

In the last section, it is shown that the families of isofac-
torial distributions are closed and compact.



2 - OVERVIEW OF THE SECOND NOTE.

One limitation of the first note was that it dealt only
with continuous distributions. This is overcome by the second
one which treats discrete distributions. The infinitesimal gene-~
rators are used to obtain isofactorial models with polynomial
factors for the binomial, Poisson, negative binomial and hyper-
geometric distributions. As with Section 5 of the preceding note,
a full translation of the work is given.

The second half of the note introduces a bivariate form of
Walsh's distribution which also has polynomial factors. Walsh's
process X(t) is

[>]

X('t) = Z) Sn(t)
L

where the gn(t) form a two state (O or 1) Markov chain with the
transition matrix

14p 1-p

a 2

1—p 1+p -t
- 5 where p =8

Walsh's process is Markovian but its transition matrix
cannot be expressed in a simple way because the transition pro-
babilities are continuous but not absolutely continuous.

At the end of the note, a link is established between de
Wijsian random variables and a generglisation of this process to
the case where the correlation coefficient p is a random variable
instead of being deterministic.

As possible applications for this model are somewhat limited,
this section will not be presented in detail.



We now present translations of sections directly related
to disjunctive kriging; viz
* the Hermitian distributions
* the Infinitesimal Generator approach used with continuous

distributions
* the Infinitesimal Generator approach used with discrete

distributions.

3 - THE GENERAL FORM OF HERMITIAN DISTRIBUTIONS.

When the correlation coefficient p of a bivariate normal
- distribution Gp(dx,dy) takes the value 1, Gp(dx,dy) is no longer
a cumulative distribution function. However the relation

B[4 (X)[|Y] = p" H (¥)

is still valid. It is interesting to generalize the bivariate nor-
mal distribution to include this case and others.

A distribution F(dx,dy) is said to be a Hermitian distribu-
tion if it satisfies the following two conditions :
1. The marginal distributions are all standard normal distributions.
2. The Herﬁite polynomials satisfy :
E[Hn(X)|Y] Tn Hh(Y)
E[Hn(Y)IY] Tn Hn(X)

]

forn:O,'l,.-o (1)

This condition means that Tn is the correlation coefficient
between the normed Hermite polynomials nn(X) and nn(Y), and conse-
quently that

T =1
o

and |T1’1I < 1..

Even if these conditions are satisfied, it is not clear that
a sequence of coefficients Tn should be unigque. We now establish the
necessary and sufficient conditions for this.
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THEOREM. A sequence of coefficients T, is associated with a
—— . n
Hermite distribution if

v, =[o" (@) (2)

where w(dp) is a distribution function concentrated
on the closed interval [—1,+1] end the T are unique.

This condition is clearly gufficient since if the condition
holds, the Hermitian distribution is a random mixture of normal
distributions obtained by letting p vary according to a distribu-
tion w. It is gefined by its characteristic function 3

w(dp)

1 /178
- Q(U +V2) n n n
e s P (iU) (iV)
n!
We now show that this condition is also necessarye let P
pe a Hermitian distribution. From the relation (established in

Mgtheron 1975a)

2 n
e—)\X-t-)\ /2 = 2 (_1)11 %T Hn(X)

it follows that
n

2 A -
el /2 E[e—xX|Y=y] =3 i;;l T A Hn(y)

; £2/2 oo M
fhe left-hand term 18 non-negative. Moreover e™. E(e™ |Y=Y) G(dy)
is a probability. S0 is the expression

>3 -(-"-1,1 T AR Hn(y) G(dy) (3)

n:

Provided that To = 1 and Tn < 1 we can take the Fourier
Trensform and get a characteristic function.

9,(0) = T G gm0 W () sy



Moreover since

: 2
[elUy H (y) 6(ay) = (-0 @0)" e™°

-00

we have

n 2
2, (V) = 51, A (au)R ¢ 07/2

Replacing U by t/A and letting A tend to infinity gives

)y =z

lim N (K

A—00

As this limit is a continuous function of % (since |Tn| < 1),
the resulting function is still a characteristic function. (The
positivity is clearly preserved when going to the limit). There is,
therefore, a distribution w such that

. n .
» Tn (%}E) - / el‘l:p w(dp)

Hence

T, =fpn w(dp)

Moreover since |T | s 1, this distribution has to be concen-
trated on the closed interval [-1,+1]. Finally, since @ is concen-
trated on a bounded interval, it is uniquely determined by its
moments. (See Kendall and Stuart, Vol. I, pp. 89-90). Consequently
the Hermitian distribution F is unique.

In addition to this, these distributions form a closed convex
set which is compact under convergence in distribution. (The conver-
gence of a sequence of Hermitian distributions Fn is equivalent to
that of the associated distributions wn(dp) and so the distributions
form a compact set).
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- NOTE 1 - As was indicated in the introduction, a similar result
can be proved for the "lLaguerre"-type distributions which bear the
same relation to the gamma distribution as the Hermitian distribu-
tion does to the normal. One slight difference is that as the gamma
distribution is defined on R+, the correlation coefficient between
the orthogonal polynomials p must be positive, and consequently

1
T = J pn w(dp) (4)

n
0

This is not the first time that this relation (4) has appeared
with gamma processes. It also arose in the form
n
Tn = B[X ]

where X had a beta distribution (pa, (1-p)a) With mean p, in Mathe-
ron (1973).

More recently (Matheron. (1983)), it also was proved for the
negative binomial distribution :

1
R TS
0
What is even more interesting, an equivalent result was
also established for the asymmetric bivariate distribution (i.e.
the point-block distribution) which is essential for change of
support.

4 - THE INFINITESIMAL GENERATOR METHOD APPLIED TO CONTINUOUS DIS-
TRIBUTIONS.

The principal aim of this paper and of the preceding one
is to follow the development of alternative types of disjunctive
kriging. In Part'I of this paper, four distributions (normal,
gammna, Poisson and negative binomial) were shown to have the re-
quired isofactorial properties together with polynomial factors.
Unfortunately the method used for finding suitable models could



only be used with infinitely divisible distributions.

Here infinitesimal generators and the theory of semi-groups
are used to find other suitable models. In this section, the method
is applied to continuous distributions; the discrete case is treated
in the following one. In both cases we give only an outline of the
proof. Readers who wish to f£ill out the proof may find it helpful
to consult a text on functional analysis (such as Brezis (1983)),
in particular for the Hille-Yosida theorem.

Iet g(x) be the marginal distribution. Working in the space
LZCB,g), we want to find a function a(x) so as to write the differ-
ential operator Af associated with the stochastic process in the
form

frd
Af=agf"+ ga (ag)

bft
where f' = a—t— .

Provided that a(x) and g(x) are regular enough in the domain
of definition of g(x) and that their product goes to zero at the
limits of this (which is the case in practice), then integration by
parts can be used to show that

J a(x) £(x) g(x) o(x) dx + f ) 4 (4(x) glx) elx) p(x) dx
g(x) dx

= - J £1(x) a(x) g(x) o'(x) dx

So
Af

af" + -2-' = (ag)
= é é% (agf')

That is, the evolution equation:

dft

=ar= 41 2 s (5)
T =Af = g % |28 5
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is a type of heat equation. The operator A is a negative Hermitian
operator (in the sense that the scalar product <Af, f> = - <Va £',
V_a.'f'> SO.

Now provided that A is closed and dense in LZGR,g) there
exists a semi-group Pt = eAt with A as its infinitesimal operator,
and since we are dealing with a heat equation, this is a diffusion
semi-group. From (5), [g A:ﬂt = 0 and so the density g is the ergo-

dic limit of Pt(x;dy) as t - oo,

The next step is to see whether the eigen functions associa-
ted with the operator A include a series X, Which forms an orthonor-
mal basis for L20R,g). If this is the case, then

= e-)‘nt

s Xn Xn

where A, is the eigen value corresponding to Xn*

Consequently for any function f € L20R,g)
'-. —)\nt
Ptf=2e <f,xn>xn

The bivariate distribution Ft(dx,dy) = g(x) Pt(dx,dy) dx
can therefore be written in an isofactorial form :

-xnt
F.(dx,dy) = Ze Xn(x) %, (v) &(x) &(y) dx dy.

In other words, the Markov process associated with this

semi~group is an isofactorial model.

A few examples should help clarify this approach.

1. Gaussian Process on the whole line.

2
This corresponds to the case a(x) = 1 and g(x) = X /2 .
Here v all
Af = £f" -x !
which is clearly equal to é é%-(g:f'). The orthogonal polynomials

relative to the normal distribution are the Hermite polynomials Hh(x).
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Moreover, since A Hn = =N H , the eigen leues are Xn =n and
so the bivariate dlstrlbutlon P (dx dy) is % p H (x) H (y) g(x)
g(y) dx dy where the correlation coefficients p equals e -t

2. The Gamma Process on rR'.

This time a(x) =x and g(x) =
r'(a)

Consequently,

Af= xf" + (o=x) f!
The Laguerre polynomials

n (--1)k n(n-1) ... (n-k+1) x¥

L(-n,q,x) = 1 +
alatl) oo (qtk=-1) k!

are the eigen functions associated with the eigen value -\, = -
Letting -&n denote the normed polynomial, the representation for
the bivariate distribution is then

£ ——
Py = L £ xr( ) yP(a) =

— NOTE 1 = The definition given here for the Laguerre polynomials
is not the same as in earlier notes. They differ by a multiplicative
factor (=1)*(g+n-1)(a+n-2) ... a. The new definition is used because
it considerably simplifies the form of the recurrence relation used
to a Laguerre polynomial from the preceding two polynomials.

3., Beta Process on (0,1).

In this case a(x) = x(1=x)

and
r(a+g) x%(1-x)P
g(X) = _ 0 £ X < 1
r(a) T'(B)
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5 - THE INFINITESIMAL GENERATOR METHOD APPLIED TO DISCRETE
DISTRIBUTIONS.

In the preceding section it was shown how isofactorial
models with polynomial factofs could be found for continuous
distributions from Markov processes where the infinitesimal
generator was local. In this section, similar models are obtained
for discrete distributions. The local nature of the infinitesimal
generator A is replaced by a condition limiting possible transi- -
tions to ad joining states, that is i - i+1 or i - i-1. Consequent-“

ly

(Af)i = - (ai + bi)fi + ay fi+1 + by fi-1 (6)

where ay is the probability of the transition i - i+1 and bi is
the probability of the transition i - i-1.

Three different types of processes can be distinguished,
depending on the values of ay and bi.

1. If ay and bi are strictly positive for i = 0, %1, #*2,...,
i can vary from - o« t0 + . This case will not be treated
here (the reasons for this choice become apparent in the

next paragraph).

> 0 for all i,

2. If bo = 0 and bi >0fori=1, 2, ..., and ay

then i varies from O to o (infinite case).

a; > 0 fori=20, ... N=1, then i varies from O to N (finite

case).

In addition to this, the process must be ergodic, so there
must be a probability W = {w,} such that

=gy B W ey W bW,

On re-writing this as

b1 Wi 3 Wy =0 W i1 V54
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it is eclear that

(7)

+ W

i
[
=

i+l i+l T Y

If a, and b, are strictly positive, (7) is true provided
that a; W and bi LA tend to O as i tends to - w. However in the
two cases of interest to us (the finite and infinite cases), we
have bo = 0 and so (7) is true. No additional hypotheses are re-
quired. Therefore the limiting distribution (if it exists) is
defined by

a a a
W =—o'_1' a0 0 n-1 w (8)
o, by b °
1 72 n

and so the condition for its existence is that I wn < 00e

Condition (7) also means that the process is reversible,
since w, ij(1:) = W, P.i(t) (where Pij(t) is the probability of

1 d J
going from i to j in time t).

5.1 Condition for Polynomial Factors.

Since the process is reversible, there will be polynomial
factors if and only if

I. The polynomizls belong to L20R,W); that is

E(in) = Ewi e < o0

II. For each n, A? is a polynomial of degree n in i (where
n=0,1,2...00rn=0,1, ... N as the case may be).

Taking condition II first,
n . n n . n .n
A = ai[(1+1) -17] + bi[(1-1) - i"]

So for n =1

and this must be 1st degree polynomial in i.
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For n = 2

2 .
A = ai[21+11 + b, [-21+1]

and this must be a 2nd degree polynomial in i.
These two conditions are satisfied if

a; = b; is linear and

a; + bi is quadratic

that is, if a; and bi are of the form

_ 2
ai = ao + ai <+ Yi
> (9)

b; =Db + By + v

Moreover bo = 0 since we are not concerned with cases where
i goes from - o to . It is easy to see that if a; and bi are of
this form, condition (7) is satisfied for all n.

It remains to show that condition I is also satisfied in
the infinite case. (It obviously is for the finite one). In the
case where ay and bi are both strictly positive, i.e. where i
varies from - o to + o, we find tuhat E[i"] = w for sufficiently
large n and consequently that there are no models with polynomial
factors. This is why this case has not been considered .

5.2 Linear Models : y =0

Here 8, = a_ + a.

b

]
™
[N

i

Now a, must be strictly positive or else the process stops,
and similarly so must B. There are three cases to consider : a > O,
a = 0, ¢ <0, which lead respectively to the negative binomial, the
Poisson, and the binomial distributions. (This progression is hardly
surprising when the limit relations between the different distribu-

tions are remembered).
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(i) Case o > O : Negative Binomial Distribution.

From (8), it is clear that

nra /a a w
w =(Z 2 (=2 1) cee <—9 + nF4)] -2
n B a a _ a n!
8
Putting P = % s V = E—-
n _ -V _1_
» w s = (1 - ps) Wo s <3

Therefore the limiting distribution W exists iff p < 1,
that is 1f ¢ < B. In that case, the generating function is

where q = 1-p. Since G(s) can be differentiated as many times as
is desired, the polynomials belong to L2GR,W). Provided a < B,
there is therefore an isofactorial model with polynomial factors
and with the negative polynomial

11
W o= gV T(vtn) p=

n r(v) n!
as its marginal distribution.

The polynomials now have to be determined explicitely.
To do this, we need the eigen values of the operator A, which
can be found by finding the coefficient of i™ in the expression
for A?

A = (ag + o) [G+1)® = 7] - gy 147 - (5-1)7]

P

n(q - B) i 4 polynomial of degree < n.

Consequently

A, == n(B - a) = - npq
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So if we let xn(i) denote tie normed factor of degree n,
the bivariate distribution Fij(t) is

Pig(8) =Wy Wy B 0" x,(3) x5(9) (10)

where p = e-Bqt.

Moreover

Fij(t) =W, Pij(t)

where Pij(t) is the transition matrix which is the resolution of
the second Kolmogorov eguation :

d - -
it Pij(t) = (aj + bj) Pij(t) *ay Pij-1(t) + bj+1 Pj+1(t) (11)
Putting j

bi(s,t) = ?Pij(t) s

equation (10) then becomes

oG 0b
3t (1 = s)(as - B) rol -a (1 - s)

with Gi(s,o) = sv. Integrating this gives
v

(1 - ps (1-8) !
G, (s,t) = L -1 q 10
+ <1 - ps pp(1-8) > <1 - ps - pp(1-s)) (. :

The bivariate generating functions in terms of s and ¢
(t is implicit) can be deduced from (11)

G(s,0) = z . s. o

o W, ot 6, (s,1)

2 \Y
=< q >
(1-ps)(1=po) - p p(1-8)(1-g)
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This can be expanded in terms of p as

q? >v°° r(vtn) p%P (1 - 8)B(1 - g)n

G(s,q) = ‘
° ((1 - ps)(1 - po) 0 r'(v) n! (1 = ps)™(1 = po)®

From (10) we also have
n oy i . ’
G(s,0) =X p A A xn(l) gt Z}Wj xn(J) o?
n i J
Since p = e P saries from 0 to 0, we can equate the terms

in these two expansions. This shows that the generating function of
the x,(1)W, is

. i / n (1 - 8)"
> oy (1) W st oo oY I'(v+n) p
oty ! r'(v) n! (1 - ps)™*V

The polynomial xn(i) can be deduced from this to be

[I‘(v+n) _p_r_l_]1./2 % (_1)]§. ey r(v+i+n-k) i(i-1) ... (i-k+1)
‘T(v) n! k=0 r(v+i) p*

(ii) Case a = 0 : Poisson Distribution.

If a =y="b,=01n (9), then a, = a and b; = B, where
B > 0. From (8) the limiting distribution still exists and is a
Poisson distribution with parameter o = %o. The corresponding
stochastic process describes a queueing process with an infinite
number of servers, when the arrival times follow a Poisson distri-
bution with parameter a, and the service time distribution is ex-

ponential with parameter B. The infinitesimal generator is

(Af); = a(fy,4 = £3) - B;(f5 - %5 4)

Consequently the eigen value A, associated with the poly-
nomial factor y, (of degree n) A, = - nf.
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So the bivariate distribution Fij(t) = W, Pij(t) can be
written as ' - ]

00
n . .

Wwhere p = e PF,

Using Kolmogorov's second equation, it is not difficult to
show that

£ Byy(8) 89 = (12 p 4 pp)d e7OU1-R)(1-8)
j

and hence to deduce the generating function for the bivariate
distribution :

G(S 0') =E F, . Sj ()'j

= W. P,. gt s
i% i 7439 8
- ¢=08(1=8) = 8(1=0) + p(1-s)(1-0)

We now compare this with the expression for the generating
function obtained from (12)

G(s,0) =:L:' Pn? LA Xn(i) oi%) Wj xg (3) g9

Identifying the coefficients of the terms in pn gives

W xn(i) gt =‘/-;:IS (1-5)™ 66(1-—5)

n .n
= (-1)" [& d—-n e8(1-8)
n! 4o

Consequently

n .n i
W, oy, (i) = (-1»)n \/51":' i.n (L e'9>
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Therefore
n e n i
n [0 il e” @& P
v (1) = (=1) ‘/—- ite’ & <—e )
n nt gt de™ \1i1

(iii) Case a < O : Binomial Distribution.

If o is negative, a; = a8, + a; would become negative for

gufficiently large values of i. As {i} must therefore be finite,
ay must be zero for some value of i = N and the process is res-
trained to the interval (O,N). We therefore have

a; = a(¥N-i) , b, = bi

From (8), the limiting distribution is a binomial distribution

with parameters p and N where

- 2
p = a+b

The infinitesimal generator is

(a£), = a(¥-1) [£,

- fi] - bl[fi - fi—1]
and so the eigen value associated with Xy 1S
A, = - n(a+b)

Consequently the bivariate distribution is

Pyg(8) = W W D"y (1) 5 (3) (13)

where p = e~ (atb)e and W, = (f) p* (1-P)N-i

[0 o] .
The expression for z Pij(t) sd can also be obtained
directly to be J=0

[a(1-p) + (p+pa)s]® [q + pp + p(1-p)e]" 2

where @ = 1 - p.



2=

Consequently

G(S,O)

j i
> Wi Pij(t) sY g

[(a+ps)(a+po) + ppalt-s)(1-a) 1"

Expending this in powers of p gives

hod n
6(s,0) = (q + ps)'(q + )Y & " PP & 'g [ (1-8)(1-0)]
0 (g+ps) (a+po)

Another expression for G(s,s) can be obtained directly from
(13). Identifying the terms in the two expressions gives

2 xy(1) st = (8) B @ (1-8)"(qepe) "

1 (N n g° N
= = (5) p" g Q—h [a(1-8) + s]
Nt dq
Consequently
. t (/N\ n n &% |(N i N-i
W, oy (i) = &= (—) P q — I:(-) (1-q)” q ]
i *n Nt n dqp i
Hence
. n! p- g 1 a® . N-i i
x..(1) = - —, La (1=a)7]
n NI (Nen)! (1-@) g+ ag®

We now consider the case where y is not zero.

(iv) Case y # O : Hypergeometric Distribution.

In this case,

_ 2
2
b; = By * vy

where y # O. In the infinite case y > 0, a > 0 and a;, b; > 0
fori=1,2, ... , it is possible to obtain a limiting distri-
bution W provided that certain conditions are satisfied but even
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then the polynomials of degree n need not belong to LZ(R,W) when
n becomes large. Consequently there are no polynomial factors.

However in the finite case, there is a solution. Suppose
0 i <N, Then, changing the notation slightly we have

(N-1) [a + y(N=-1i)]
i[b + vi]

aj

by

where a+vy>0,a+N>0; b+y>0,b+Ny >0

From (8), the limiting distribution is of the form

N(N-1) ... (N-n+1) (2 + Moo (2 + N - n41)

E nt (1 +2) (n +2) °
mUBRER Y
Putting % + N =g¢g and % =B gives
W o= (—N) coe (—N+n-1) (—a)(—a+1) PR (—a+n—1)
n n! B(p+1) (B+n-1) °

Since I Wh =1,

T(a+N) T(B+N)
©  r(B) r(a+p+N)

Hence

a(a—l) cee (a-n+1)

(g) I(B+N) I o+N)
B AR/ p(g+n) r(a+p+l)
The polynomial factors still have to be found explicitly,.

but as this is much more complicated than in the preceding cases,
it will be left till it is needed for practical applications.
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CONCLUSION.

The isofactorial models presented in this paper and its
predecessor make it possible to carry out disjunctive kriging
when the data is not normally distributed. Continuous distributions
such as the gamma and the beta may be very useful for modelling
long~tailed distributions, thus obviating the need for an anamor-
phosis as used in traditional Gaussian disjunctive kriging. The
discrete isofactorial models have a wide range of potential uses
with discrete data or grouped data. Only experience will show how
useful they really are in practice.

Before concluding, it is important to point out to potential
users, two limitations in the work presented in this paper. The
first is- of a numerical nature. While it is all very well to have
isofactorial models with polynomial factors, these are of little
practical interest unless the polynomials can be calculated quickly
and efficiently. Some sort of recurrence relation is therefore
needed. These exist and can be found in any standard reference on
orthogonal polynomials.

The second limitation concerns the "change of support". One
of the great advantages of the normal distribution is that it faci-
litated models of change of support, which are needed for the point-
block models and block-block models. In this work, nothing is said
about how these can be developed for these isofactorial models.
Interested readers can consult some recent work (Matheron (1980),

(1983), (1984)).



