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In order %o study objects forming a sub-set A of the euclidean
space, mathematical morphology uses structuring figures B and notes
the frequency of events such as "B hits AU,‘"B is . included into A" .
ete. .. Thus, a probabilistic formalism is associlated with this ex~"
perimental technique and facilitates its interpretation. If A 1s
considered as a closed set, we obtain a random closed sets theory,
closely connected with integral geometry. The functionals T de-
fined by T™(K) = P(AN K # ¢) for K compact are characterized as
alternating capacities of infinite order. Interesting classes of
functionals T are obtained if A is indefinitely divisible or semi-
markovian. At last, the mathematical notion of granulometry (size

distribution) is studied by using an axiomatic method.
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O - INTRODUCTION

Two mathematical theories are of great importance for Stereo-—
logy : Integral Geometry, as it has been developed for instance by
H. Hadwiger, [3], but also the probability theory, for stereology is
generally concerned not with individuals, but rather with collectilons
or populations of similar objects. This statistical point of view
requires a specific probabilistic theory, which we may call a ran-—
dom sets theory, [6], [7]. it turns out that many results of inte-
gral geonmetry admit a probabilistic interpretation in terms of
random sets, and conversely. UMy purpose in this paper is only to

give a few examples of guch comnections between the two theories.

1 — STRUCTURAL ELEMENTS

In order to define the structure of an object relatively 1o
a family AR of possible relationships between elements or parts of
this object, we must know for each R € PRoif R is true or false. Let
us consider the simple case of a medium with two components only.
The first component constitutes a set A of space points, the second
one the complementary set A% . For instance, in the case of a porous
mediuvm, A is the union of the grains, while A° dis the union of the
pores. Let us now denote by B a geometrical figure which will be
used as a structuring tool. B is chosen among a given family'gg(for
‘instance, B is an open set, or a compact set, etc...). The simplest
relgtionships we may consider Ffor structuring the set A are the fol-
lowing : B A (B is included into A), or AN B # ¢ (A hits B), and
also all the relationships R we can obtain by apprlying the logical
operations "and", "or'", and "no" to the preceding ones. Lf we are
able to say for any such relationghip R if R is true or false, we

3
crfectly defined.

may consider the structure of the mediuwn A as I
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This definition is formally correct. But practically, there
are too many possible relationships R, and it is not possible to
examine each of them individually. Some statistical treatment is
required in order to condense this informaetion. It is not really
interesting to know if a given point x belongs or not to A, or if
a given ball B hits or not the grains of our porous medium. All
we need to know is the probability of such events, or the freguency
of their occurence in our medium (these two points of view being

equivalent if we assume hypotheges of stationarity and ergodicity).

Thus our medium A is now considered as a realization of a ran-
dom set, and as such it is perfectly defined if we know for each
possible relabtionship R the probability P(R) for R to be verified.
,‘This probabilistic point of view implies a change of scale. We are
leaving a microscopic (or granulometric) level, on which the rela-
tionships Rﬂposseés'éh,individual meaning, in order to rise up to -
a macroscopic level where our medium appears as homogenized and
simplified. On this macroscopic level, the probabilities P(R)
acquire the meaning of precise physico-geometrical concepts (deter—
ministic, and no longer probabilistic concepts). Let us give ele-
mentary examples, [2], [6] etc...

If the structuriﬁg figure B is reduced to a single point x,
we obtain the probability P(x ¢ A°) for x to belong to the pores

AC . 1t is the porosity of our medium.

If we consider now two points x and x+h, we obtain the cova-
riance function C(k) which already carries some significant struc-
tural information. It is well known in stereology that derivating
C(h) in the neighbourhood of the origin leads to the specific area.
On the other hand, by integrating C(h), we can obtain the range of
our medium, l.e. the dimensions of hypergranulometric structures,
if any. Finally, the covariance plays an important part in esti-

mation problems, for it enables us to compute cstimaltion variances.

Iet us give a few more exanples. With four points, it is possi~

ble to debtermine the Fuler-Polncard characteristics of oury medium,




With a line segment, we obtain the well known linear granulometrics,
and, in conrection with them, parsmeters like the stars which give
the average dimensions of the pores as well as of the grains, lore
generally, with convex sets B (circles, hexagons and so on) we can

determine pluridimensional gramulometries (see below).

These prdbabilities P(R), and the physico-geometrical parame-
ters commected with them, are easy to determine experimentally with
the aid of the texture enalyzer, [4], [5]. But the notion of ren-
dom set we have Jjust introduced in an heuristic manner is not al-
ways sufficient, even for practical applications, and 1t is neces-
sary to give more precise mathematical statements. From a theoreti-
cal point of wview, this will lead us to enlightening'comparisons

" with integral geometry.

2 — RANDOM SETS AND INTEGRAL GEOMKIRY

The mathematical notion of set is probably too rich for being
directly applied to empirical realities. In the case of a porous
medium, we have introduced above the set A of the points belonging
to the grains. But, from a topological pcint of view, we may ask if
A 1s to be considered as an open or a closed set, or as something
more complicated. In other words, does a bouhdary point belong to
the grains or to the pores ? From an experimental point of view,
this question is clearly meaningless, because the notion of a point
belonging to the boundary of A does not correspond to any physical
reality. Por an experimentalist kmows no individual points, but only
little spots with ill-defined boundaries. In first aprroximation,
we may bake this circumstance into account by considering only Qgén

sets as possible structuring figures B.

>

o oset, B ds dncluded dinto A If and only if
o]

B is dncluded dnmto the interior A of A, and B hits A 1f and only

m

But, if B 1s an op

if B hlts the closure A of A. Then the inclusion logics, Tounded



on relationships of the type B« A does not concern the set A
itself, but only its interior, and in the same way, the inter-
section logics conmcerns only the closure A of A. Prectically,
these two complementary logics are always used simultaneously.
‘But, for gimplicity purposes, we shall restrict ouvrselves only
to intersection logics in what follows. Comnsequently, instead of
the too general notion of random set, we will consider only the
concept of Random Closed Set (RCS), [1], [7] .

2—1 — Definition of & Random Closed Set (RC3).

Let us denote by ¥, ¢ and JO respectively the families
of the closed, open and compact sets in the n— dLm nsional eucli-
‘dean  space En . If B is & subset of En (a ¢ Lructuan figure, for -

instance), we denote V., the class of closed sets hitting B, and

B B
V™ its complementary :

VB:{F:Feg,FmB;f@}, V' ={F:Pecx, PNBF P
The intersection logics is founded on the VB with B € ¢, for at the
start, we are limiting ourselves to open structuring sets. In order
to define the notion of RCS, we must at first introduce a o—algebra
on F. We shall use the c-algebra o((?) generated by the Vg s B € Ge
Following this definition, the events "B hits A", B ¢ ¢ are measv-
rable for o((), and the same is true for any event we can obtain
by applying any enuvmerable sequence of logical operations to the
preceding ones. In order to obtain the precise mathematical defi-
nition of a RCS A, it remains to introduce a probability P on the
" measurable spece (F, o(@)). To any event V € () isg then associa-

ted the possible relationship A € V, and the prebability P(V)

i

P(A ¢ V) for this relationship to be true. Conversely, if we res-
trict ourselves to the intersection logics, the only possible re-

lationships R are of this type, and thus sre probabilisable.

It remaing to verifly that 1t ds actually possible to construct
3 J .

probabllities on such a4 rich g-alo2bra.



certain properties of conpacity, closely comnnected indeed with irn-

tegral geometry. Our c—algebra is rich enough to contain events

like "A hits X", for K compact. Ccnversely, it turns out that the

o K e<§§is identical
oy

with o(¢¥) itself. Bubt the events VG’ G €¢gand V7, X edbare also

generating a tepology for which the space F poszesses good properties.

o—-algebra genersted on Fby these events V

In particular, ¥ is a compact space., Thus, o(¢?) appears as the bo-
relian tribe associated with a compact space, and conscquently il is

actually possible to build probabilities on tals o-algebra.

In the same way, the topology generated by the VG’ G € ¢ and

F, P e 3 can be introduced on the space J6 of the compsct sets.

the V
This topology is locally compact, and can be identified with the
‘topology defined on J6by the classical Hausderff metrics. The asso-
" cilated borelian tribe leads to the notion df random_cbmpact set. . A
‘But this notion is perhaps less interesting for the appiications,~ 
because obviously a random compact set cannot be statlonary ([7]1,

[10], [11]).

0—2 -~ The Punctional T(E);

It is well known that the probability asscciated with
an ordinary random variable is entirely determined 1if the corres- .
ponding distribution function is given. There is a similar circums-
tance for the random closed sets. If A is s RCS and P the assocla-

ted probability on o(¢?), let us denote by :
T(K) = P(VK) = P(ANK £ @)

the probability Ffor A to hit a given compact K € J6. We obtain s
functional T onJGassecliated with the probahility P. Conversely,
1% can be shown that the probebility P on o((¥) is entirely deter-—
mined if the functional T on JO is givern. In respect to the RCS 4,

T is thus similasr to the distribution function of & Random Varisble,

[10] .



The functionals defined on lhe

of great

importance in integral geometry,[B] « Thus it 1

ing to find the recessary and sufficient conditions for
RCS.
() =

functional T to be assoclated with
that T be null for the empty set
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properties, classical in integral geometry, admit a probabilistic

interpretation, and cornversely. Let us give .a few examples, [11]

Iet us ccnsider at first the case wnere the functional T is

strongly additive on the class of the comvex compact sets [3], i.e.

verifies
T(KYUK') + (KN K') = T(K) + T(K")
if K, K' and their union XK |J K' are compact and convex. If the con-.

ditions of the Choguet theorem are also verified by T, then the as—

soclated random closed set A is almost surely convex, and the con-

verse is also true : thus, the strong additivity of the functional
. T and the almost sure ¢onVexity of the random set A can be identi-
fied. I

2=% = RCS indefinitely divisible for the Union.

A randem closed set A 1s indefinitely divisible for the
Union if for any integer m A is equivalent to the union A,]U...UAn
of n independent and equivalent RCS A1""An° Let us denote by

QK) = 1 - (K) = B(ANK) = @)

" the probability for A not to hit the compact'K Clearly, A is inde-
finitely divisible if and only if the conditions of the Cthuet theo~-
‘rem are verified by the functlonals

In order to eliminate unessential complications, let us also assumé
that there is no fixed points (i.e. no points x such that P(x € A) =
= 1). Then, we have the following theorem, [11] :

AE@SQI@EME : A functional T on J0 is associated with an indefinitely
divisible RCS without fixed points if audvonly if there exists
an alternating capacity of infinite order ¢ verifying (@) =
and Q(X) = 1 - T(K) = exp {~- (%)} for any compact X. A



The limitation T =< 1 is no longer reguired, and we obtain a

larger class of functionals T. For instance, the Polsson flats

of R.E. Miles [12], [13], [10] are the indefinitely divieible ran-
dom cmosed sets associated with functionals ¢, the restriction of
which on the ccnvex compacts are identical (in the isotropic case)

to the notorious Minkowski Tunctionals uermassintegrale
£

A more general exumple is given by the boolean schemes, [6],
[10]. In order to obtain a boolean scheme, we assume that a Poisson
process is given in the euclidean space. Independent primary RCS,
equivalent up to a translation, are located at each Poisson point,
and we consider the union of these primary sets. This union is a
randon (boolean) indefinitely divisible closed set, the functional

¢ of which is given by :
: _ y .
$(K) = 6 E[n(A' ® K)] (K € J0O)
0 denctes the density of the Poisson process, E the expectation, A
the ILebesgue measure, A' the primary random set located at the ori-

v
gin, ® the Minkowski addition, and K the symmetric of K in respect

to the origin.

2-4 — The semi-Markovian property.

The semi-markovian property, [6], [10], leads to another

interpretation for the strongly additive functionals of the integrsal
geometry. DLet us say that two compacts K and XK' are gseparated by a
compact C if amy segment (x,x') joining & point x € K to a point

x! é K' hits the compact C. Then, a random closed set A is said to
be semi-markovian if, for any compacts K and K' separated by ano-
ther compact C, the RCS A X and A:ﬂ X! are conditionnally indepen-
dent for C N A= @.

It can be shown [10] that A is semi-markovian if and only if

its functional @ = 1 - T verifies the relationship

QKU X' U ) qc) = a(XKuc) ek y C)




if K and K' are separated by C. In particular, if the compacts K
and K', not necessarily convex themselves, have a convex union,
they are separated by their intersection K N K', and thus the semi-

markovian property implies :
QXU K') (XN k) = Q(K) Q(X')

in'other words, the functional ¢ = - fn Q is strongly additive.
The converse is also true if A is indefinitely divisible. In other

words, [11], we have the

Theorem 3 : An indefinitely divisible random closed set A'is semi-
markovian if and only if the functional on JGdefined by : ¢(X) =
= -l P(ANK=9) is strongly additive on the class of the con-

" vex compact sets. ' | R

The corresponding class of functionals ¢ (alternating capaci~
ties of infinite order, null in K = @ and strongly additive for the
convex ‘compacts) is probably the most interesting one for integral
geometry. In the particular case where A is stationary and isotro-
pic (i.e. ¢ invariant under the translations and the rotations),

a classical theorem of integral geometry [3] shows that ¢(X), for
K convex compact, is given by the formula :
n

WK = = gy W(K)

i=0

where Wi(K) denotes the Minkowski functional of index 1, and B,; are
non negative coefficients. ¢ '

~ The boolean schemes with convex primary grains [6], [10], [11],
give a general example of semi-markovian RCS. It can be shown that
any indefinitely divisible semi-markovian RCS- is limit, in a cer-
tain sense, of such boolean schemes. (But I do not know if there
exist semi-markovian RCS which are not indefinitely divisible).
Figure 1 shows a realization of a boblean scheme in which the pri-

mary random sets are circles with fixed radii. (Figure 1)




The preceding examples intended to stress the conncctions
between integral geometry and random sets theory. Iet us now make
a 1little more detailed study of an important notion : the granulo-

metry.

3 — THE NOTION OF GRANULOMETRY

Generally, the uéual concepts of granulometry (or size distri-

~bution) are not very well defined from a mathematical point of view,

and do not clearly correspond to precise geometrical properties.. On

the other hand, they are relevant only for materials constituted =

by distinguishable grains (connex components). But very often the

grains are connected, and even if they are not, it would be also

interesting to get some information on the size distribution of the

pores. For instance, in a porous medium, an hydrodynamic property
like permeabiiity is clearly comnected with the dimensions of the
porés rather than with the granulometry of the grains themselves.
Thus, a mathematical deTinition of a granulometry neecds to satis-
fy the two following conditions [6] : |

a/ It must correspond to precise geometrical properties

b/ and be relevant even in the case of a connected medium,

and for the pores as well as for the grains themselves.

The linear granulometry (or statistics of linear intercepts)
gives us a first example of a satisfying definition. In what fol-
lows, we will try to build a general notion by using an axiomatic
method. | | -

3—-1 - The axioms of granulometries.

In view of finding the suitable axioms, let us at first’

snalyze the usual practice. BSieves are given, the nesh sizes of



which are characterized by a parameter A > 0. By applying the sieve
A to (a material idealized by) a set A, we obtain an oversize which
is a subset ¢A(A) of A, and thus we have ¢x(A) c A. If B is asnother
set including A, the B oversize for a given mesh A is clearly greater
than the A oversize, il.e. : ¢K(A) c ¢X<B) if A c B. In the same way,
if we compare two different meshes A and p with A z p, the p over-
size is greater than the A oversize, i.e. : ¢X(A) c ¢ (4) if A = p.
Finally, with A = p, we get the A oversize ¢X(A) of A itself by
applying the greatest mesh A to the y oversize., In the same way, we
obtain ggain ¢A(A) itself by applying the smallest mesh p to the A
oversize ¢K(A)' '

If we take these four properties of usual granulometries as

" axioms, we obtain the following definition,[8] :

Definition : If E is a space and & a family of subgets of E, a gra-
nulometry on (X is a family ¢A s A > 0, of mappings from X into
itself verifying the following axioms

1/ ¢,(A) ¢ A for any A € (land A > O
o/ A, Bedand A c B implies
4, (8) < ¢, (B)
3/ A €and N = p > 0 implies
| ¢)\(A) c d)p(A)
4/ if A and p are positive numbers

by © ¢u = ¢u O 4y = bup(a,p)

Axiom 3%/ is not really necessary, because it follows from
‘axioms 1/ and 4/, and is written only for clarity. If we complete
our definition by putting ¢O(A) = A for A = 0, axiom 1/ is implied
by axiom 4/ . Thus, a granulometry is actually characterized by
the only axioms 2/ and 4/ .



We note that the oversize ¢K<A) is a set (and not a number).
Tn order to obtain the usual granulometric (size distribution) curve,
we may take the measure (the volume, or the weight, ete...) of ¢k(A>’
if the set A is bounded. In the probabilistic formulation, we shall
rather take the probability for a given point x to belong to ¢A<A>’
This geometrical definition of ¢X(A) is required by axiom 4/, which

expresses the most characteristic property of granulometries.

Tet us now analyze this definition. For a given A, axioms 1/,
2/ and axiom 4/ written with p = A (¢X 0 ¢y :‘¢K) characterize ¢,
as an algebraic opening. ILike any algebralc opening, ¢x is deter-
mined by the family QBK of its invariant sets (i.e., sets B such
that ¢X(B) = B). For ¢X(A) is the union of the invariant sets in-
. cluded into A : ‘

It can then easily be shown that the axioms 3/ and 4/ are also
verified if and only if the families 65% are decreasing with A :

= A aéfﬁ c é@&

Thus formula (1) gives the general form of a granulometry.

3-2 ~ Buclidean Granulometries.

The preceding general definition is valid in any space
E. if E is the n-dimensional space, we may encounter additional
conditions. Usual granulometries are compatible with the transla-
tions : if Ah denotes the set A translated by a vector h, the
oversize of A, is the translated set (qJ)\(A))h ‘

5/ oy () = (6 (),




On the other hand, the usual sieves are homothetical. If we
take as parsmeter A the homothetic ratio between the mesh A and
a reference mesh (corresponding then to A = 1), the oversize for
the sieve A of the homothetic AA of a set A is the homothetic

A ¢1(A) of the oversize ¢1(A) for the reference sieve.
6/ G,(8) = A ¢, (A)

We shall say that a granulometry_¢x is euclidean if it satis-
fies also the two additional axioms 5/ and 6/.

Axiom 5/ is verified if and only if the family &8  is closed
‘under translations. Axiom 6/ is verified if and only if {Bx = %,5@
g:(i.e; B.eggx & % B €£B1). This family {B1 is required to be closed
“under translation and homotheties with ratios = 1, and these condi-

tions are sufficient.

In other words, ¢x is an euclidean granulometry if and only if

there exists a family B, closed for translations and homotheties

with ratios = 1, such that :

(2) ¢, (A) = U {AB, B eB, \B c A}

This is the general formula for euclidean granulometry. But it is

possible to simplify it .

Iet us at first introduce the notion of opening a set A fol-
lowing a set B, which will be denoted Ag . The definition of AB is ¢

where @ denotes the Minkowski addition, © the dual operation or
Minkowski's subtraction, and B the symmetric of B. It can be shown
that a point x belongs to AB if and only if there exists a transia—
ted Bh of B including x and included into A:

X € A

e Ehe R : x € B, < A



In other words, AB

sets Bh included into A. The mapping A - AB ig clearly an algebraic
opening. 1t is the reason why AB is sald to be the opening of A

following B.[6], [7]

is the domain covered by the translated

Tet us now return to euclidean granulometry, and denote by(ﬂ%
a . subfamily of <2 such that the closure of CE% by unions, transla-
tions and homotheties with ratios =1 is identical to 3. Thus, the
euclidean granulometry associated to PBis given by the following
formula [8] : |

(%) B “"x“*) = U AHB

U
Béﬂ% puA

. Conversely, formula (3) gives the general form of euclidean‘graan

" lometriess

In practice,éf% will always be a family of compact sets. For,
if B is compact, AB is closed when A is closed and open when A is
open. If f%o verifies convenient topological properties, and for

instance if.éﬁ% is finite, ¢%(A) itself is closed if A is closed.,

3.3 - Granulometry of A following the set B.

In practice, the most interesting case occurs if we choose
a unique compact B for the family 63% appearing in formula (3). The

corresponding euclidean granulometry is given by
(4) g (M) = U A
' A ey uB
If the compact B is also convex, we get a very simple result. In

this case, AXB is a decreasing function of A

Az op o= A?\BCAHB



and we simply get
(5) o (A) = Ay g

Conversely, it can be shown that the mapping A - AAB is a
granulometry 1f and only if the compact B is convex. Thus, the
remarkable simplicity of the granulometry (5) is closely connected

with the convexity of the structuring element B.

The mapping A - AxB from ¥ into itself is upper semi-continuous,
thus measurable for o((%), and thus the probability of the event
X € AKB does exist. If we put :

- F () = Plx € A )

we obtain the grarulometric curve associated with the random c¢losed
set A and the structuring element B. This curve represents the size
of the set A evaluated at the point x with the aid of the standard

B. In the stationary case (the most interesting in practice), this
curve does not depend on the point x, and expresses an intrinsic
property of an homogencous medlium (i.e. its size distribution in
respect to the standard B). ' |

The function FX(A) is glso the distribution function associated
to the random variable A (x) defined as follows :

A(x) = Sup {A : x € AxB}

This random variable represents the size of the greatest homothetic
AB included into A and including the point x. Thus, the size distri-
bution FX(K) admits the following simple probabilistic interpreta-
tion : ' '

1= F () = PA(x) = A)
If the structuring figure B is a line segment, we obtain the linear

granulometries mentioned above. These linear granulometiries-are ca-

sily measured, but give only unidimensional information. With circles




or balls, we obtain pluridimensional information. However, in

practice hexagons are often used instead of circles, and the cor-

responding hexagonal granulonetries are easily measured with the

texture analyzer [5], [6].

1) -
»':TIF?]“

(3] -

[6] -
[7] -

9] -

[10]-

[11]-
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