Cahiers de Géostatistique, Fascicule 3
Compte—rendu des Journées de Géostatistique,
25-26 Mai 1993, Fontainebleau, pp. 35—46

MODELING OF HETEROGENEQOUS SPATIAL CORRELATION
STRUCTURE BY SPATIAL DEFORMATION

Pascal MONESTIEZ, Paul D. SAMPSON * and Peter GUTTORP *

Laboratoire de Biométrie, (*) Department of Statistics,
LN.R.A. University of Washington,
84140 Montfavet Seattle, WA. USA

RESUME. Soit Z(z,t) un champ aléatoire ot = représente les coordonnées géogra-
phiques dans R? et t le temps. On suppose connue une série d’observations du champ
aléatoire sur un ensemble fini de sites de monitoring, z;,7 = 1,2,...,n. Les résultats pré-
sentés concernent une classe de modeles basés sur la déformation spatiale du support du
champ aléatoire, z — y € RF, k > 2, afin de rendre Z(y(z),t) stationnaire et isotrope en
y. La méthode comprend ’estimation de la déformation y(z) au travers d’un algorithme
de multidimensional scaling appliqué aux sites de monitoring, ainsi qu’une estimation du
modele de variogramme du champ aléatoire dans I’espace déformé. Nous nous intéresse-
rons plus particuliérement au choix du paramétre controllant la déformation de 1’espace
par validation sur un jeu de stations test. L’exemple présenté concerne ’analyse de 20 ans
de pluviométrie sur 75 sites du Languedoc Roussillon. '

ABSTRACT. Let Z(z,t) denote a random field as a function of geographic coordi-
nates z € R? and time t. We assume repeated observations of the random field at a finite
number of monitoring sites, z;,4 = 1,2,...,n. We will discuss recent results concerning
a modeling approach based on a deformation of the spatial domain of the random field,
z — y € R¥ k > 2, for which Z(y(z),t) becomes a stationary and isotropic random field
when considered as a function of y. The method involves the estimation of the deforma-
tion y(x) by metric non-linear multidimensional scaling of the monitoring sites z; together
with estimation of a variogram model for the random field represented in the transformed
spatial domain. The focus of this paper is a demonstratiom of a validation analysis for the
choice of a parameter controlling the smoothness of the deformation y(z). We present an
analysis of 20 years of rainfall data from the Languedoc Roussillon region of France.
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1 Introduction.

The analysis—modelling and estimation—of the spatial covariance structure underlying
spatial-temporal environmental processes has been the subject of increasing research in
recent years. Knowledge of the spatial covariance of a random field is fundamental in
spatial estimation or kriging and in the design of optimal monitoring networks. We have
been concerned primarily with environmental monitoring data whose stochastic charac-
teristics are driven by atmospheric processes; for example, rain fall, acid precipitation,
and air pollution. But the issues and methods we discuss here are important also to data
analysis in many other environmental fields including, for example, hydrology, geophysics,
and oceanography. Particularly important is the fact that the spatial covariance structures
underlying such processes are almost always nonstationary (or, nonhomogeneous) over the
spatial scales of interest. By this we mean that the stochastic relationship (covariance or
correlation) between time series of observations of, say, rainfall monitored at two sites z,
and z; separated by a geographic vector h = z, — z; will depend on the absolute location
of these two monitoring sites—how they are located with respect to various topographic
or orographic features such as coastlines and mountain ranges, and how they are located
with respect to the flow of weather systems. A pair of sites separated by a vector of
length |h| oriented along the path of weather systems will have observations more highly
correlated than a pair of sites separated by a vector of length |h| oriented perpendicular to
the path of weather systems. Furthermore, the strength of that correlation may depend,
for example, on how close the sites are to coastlines.

The fact that environmental processes display correlation structures that are not spa-
tially stationary has been recognized in some fields of study for a number of years. See,
for example, Journel and Huijbregts [5] for discussion in the “geostatistics” literature and
Thiébaux [13], [14] for discussion in the meteorological literature. However, only recently
have models been proposed for the analysis and estimation of nonstationary spatial co-
variance structure. For a review, see Guttorp and Sampson [3]. The methods introduced
to date have left a number of important practical issues unresolved, and as a result, they
are not yet widely used in applied studies. In this paper we begin to address some of
the most important practical problems underlying a methodology introduced by Sampson
and Guttorp [11], [3] and further developed by Monestiez and Switzer [9]. Mardia and
Goodall [7] have also considered this approach. In particular, we discuss the generality of
the model, the problem of choice of the dimensionality of the model, and demonstrate a
validation analysis for the choice of a smoothing parameter critical in fitting the model to
data.

2 The nonstationary spatial covariance model.

We consider space-time processes representable as

Za(,t) = p(y(2), 1) + o(y(2)) x Z(y(2), 1), (1)

where z denotes geographic coordinates and ¢ time. u(y(z),t) represents the mean field
generally varying in space and often also in time because of periodic structure or long-term
trends. a2(y(z)) is the variance field and Z(y, 1) is a zero mean, unit variance, space-time
process that is stationary in time ¢ and both stationary and istropic as a function of
“location” y(z).

The expression of the process given in (1) indicates the fact that we aim to determine a
new coordinate system y = y(z) in which the spatial covariance structure of Z is stationary
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or homogeneous. While the geographic coordinate space is typically R?, the dimension of
the new space of coordinates will be two or more with y(z) representing a smooth mapping
or deformation of the geographic coordinates. An interpretation of this coordinate system
is given below in terms of a real example.

Note that Z(z,t) is not stationary in z. But in terms of the new coordinate system
Z(y,1) has a stationary, isotropic covariance structure, which may be represented with
a (parametric) covariance model ¢(h) where h denotes distance between monitoring sites
in the y space. The covariance model must be positive definite. Very broad families of
covariance functions may be considered using, for example, results presented in Matérn
[8]. In practice we have been using mixtures of a small number (one, two, or at most three)
exponential or gaussian covariance functions. For example, a mixture of two exponential
correlation functions can be written

p(k) = a1po(brh) + azpo(bh), h >0,

where po(h) = ezp{—h} and o + a; < 1. Note, however, that interpretation of these as
nested correlation models corresponding to processes operating at different spatial scales
(b1 and by) is generally not convenient because this correlation model applies to the process
represented in a transformed coordinate system. In particular, the “range” parameter
often discussed in geostatistics would be difficult to interpret. (For this reason, we do not
usually employ the “spherical” covariance or variogram model common in geostatistics.)

One often hopes to determine a scale of measurement on which the process Z can be
assumed to have constant variance. However, this is not always possible and the model
(1) accomodates a heterogeneous variance field. In this case it is most convenient to

separate the analysis of the variance field from analysis of the correlation field, although

this approach is not pursued in the example presented below.

Let Z; = Zg(z;,t) denote the obserations at monitoring sites z;, ¢ = 1,...,N, at
times ¢, t = 1,...,T. Let z; denote the empirical mean of the Z;; over t for site z; and let
c;; denote the empirical covariance for the pair of sites (3, 5):

L T
¢ij = 7 X_:(Zit = ZiNZ; — %)- (2)

The c¢;; may be considered as “similarities” relating the sampling sites. Adopting a
framework closer to that in geostatistics, we may also carry out analysis in terms of a
transformation of these covariances to “dissimilarities” or “distances”

8(zi,z;) = var(Z(x;,t) — Z(z;,1)). (3)

The corresponding empirical quantities can be computed as

di; = cii + ¢j; — 2 X ¢, (4)

We have called this the spatial dispersion function ([11], [3]). In the geostatistics
literature (where variances and covariances are not computed over replicates in time)
stationarity is often assumed and é(z;,z;) = y(z; — z;) is called the variogram. Our

assumption of an isotropic correlation structure in the transformed space means that we
can write

6(zi,z5) = 7(lyi — y;1)- (5)
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This equation defines the class of models we consider, with the variogram function 7()
based on the families of mixtures of covariance functions described above. Because trans-
formation of the geographic space is viewed as a multidimensional scaling problem using
the dispersion function as a metric or distance measure on the monitoring sites, we refer
to the coordinate space of y's as the D-space in contrast to the geographic G-space.

3 Semiparametric estimation by least squares.

Current approaches to estimating the deformation model (5) have been framed in terms
of the minimization of a weighted or simple sum of squares with respect to the parameters
0 underlying the variogram (mixture) model and the image points {y;}:

min Sz(yl, vy Yny 0) = Z[dij —ve(jyi — yjl)]2- (6)
i<j

(In fact, [9] and [7] express the optimization in terms of the covariances c¢;; rather than
the dispersions d;;.) This is conveniently minimized using an alternating least squares
calculation, minimizing first with respect to variogram parameters § for given coordinates
{y:}, and then with respect to the coordinates for given variogram parameters, iterating
to convergence. We refer to this as semiparametric estimation because the deformation is
essentially represented nonparametrically in terms of image coordinates for the monitor-
ing sites conditional on a parametric variogram model. An analytic form extending the
mapping of the site coordinates, z; — y;, to the entire geographic domain of interest has
been computed only post-hoc after calculation of the {y;} using either thin-plate splines
[3], [7], or “bi-kriging” with a linear drift [9].

As noted above, our model, (1) and (5), assumes a mapping of the original space of
geographic coordinates: ¢ — y(z). In fact, we assume this mapping to be continuous and
bijective so that two distinct geographic locations are not mapped into the same point in
D-space. Sampson and Guttorp ([11], [3]) further assume the mapping is differentiable,
or a diffeomorphism, in representing it with thin-plate splines and visualizing it using
biorthogonal grids [12]. However, when estimating the coordinates y; as parameters of
the model by a least-squares criterion such as (6), the y; are not constrained so that the
relationship between the original z; and estimated y;, extended to the whole domain of
analysis by some reasonable form of interpolation, can be represented by such a mapping.
In fact, because of sampling error in the spatial dispersions d;; on which the estimation is
based, computed mappings y(z) will often “fold.” That is, they will not be bijective. We
provide an example below.

To obtain a bijective relationship it has been necessary to smooth the y; as a function
of the geographic coordinates z;. This has been done using either a kernel smoothing
procedure [9] or smoothing splines [3]. The kernel smoothing procedure is used in the
following example.

The kernel smoothing procedure computes a transformation of the y; effectively shrink-
ing them toward the original geographic coordinates:

N
o= ot Y (yi — 25) x exp (—5lei — z;]*/s?)
= x; )
1 YLy exp (—3lzi — «2/s2)
One could minimize criterion (6) defined in terms of the ¥, but the smoothing becomes

ineffective if the y; are absent from the criterion and so themselves are not constrained to
fit the dispersions. Supposing that a set of y; are accurate estimates of the coordinates

(7)
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in a “true” model, the y; deviate from these due to noise or uncertainty in the empirical
spatial dispersions. We therefore considered a minimization criterion defined in terms of
the y; but balancing contributions from both the y; and the y! as defined above.

min $(41, - ¥, 0) = D _[dij — 70(ly} — Y1 + A D _[di — vo(lys — ysDI%. (8)
i<y i<

In fact, the solution in y! is not very sensitive to the value of A over a range giving
adequate weight to both parts. The value of A was set at 0.5 for all minimizations reported
here. Note, however, that although the quantity in (8) was used for minimization, only

the value of the first part of (8) is reported for comparisons in the following sections.
The value of smoothing parameters s; in (7) could be kept constant for all j, but
this is not effective in dealing with varying density of monitoring sites. The s; were
therefore specified to be locally proportional to the distances to the nearest neighbor and
the smoothing parameter s reported in the example below is the mean value of these s;.

4 Example: A rainfall network in southern France.

As an example we present the result of fitting the spatial dispersion model to rainfall
data in southern France. Time series of ten-day rainfall totals over more than 20 years
were collected in the region of Languedoc Roussillon. The monitoring sites, pictured in
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Figure 1: Map of the studied region of Languedoc Roussillon. The numbers denote the 45
rain gauge sites; the dots mark the 30 sites used for validation of the fitted model. The
regular grid has cells of 10 km by 10 km and will be used to represent the deformation.

. Figure 1, belong to three French departments: Aude, Herault and Gard, and cover an area
from the Mediterranean littoral to the southeast mountain range of the Massif Central.
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For purposes of model validation the monitoring sites were partitioned into two sets.
One set of 45 rain gauges used for fitting the model for the spatial dispersion function and
a second set of 30 rain gauges, located approximately inside the convex hull of the first
set, was reserved for validation.

Preliminary analysis and transformation of the time series was necessary in order to
obtain site means and variances that were reasonably homogeneous over time and over
the whole region. First, the time series were deseasonalized by subtraction of a periodic
seasonal term. We considered both local seasonal terms for each site as well as a common
seasonal adjustment for all sites in the region. The differences among sites were small and
so we chose a common seasonal adjustment for all sites. This also simplifies reconstruction
of the series after prediction of rainfall at unmonitored sites.

Second, modeling an altitude effect was necessary to correct for local variation in site
means and variances. After deseasonalization, the cumulated rains over ten-day peri-
ods show site means clearly linearly proportional to the corresponding standard errors,
suggesting a multiplicative correction term. Referring to equation (1), we now write:

Zg(z,t) = p(t) + K(h(2)) x Z(y(2),1), (9)

where p(t) is a periodic term, h(z) the altitude at location z, and Z(y(z),t) a standardized
series for altitude zero.

The term K (h(z)) was deduced from the regression

log(Zg(z,t) — p(t)) =a+bh(z)+c/h(z)+¢ (10)
and has the form

K(h(z)) = exp (b hz) + e \/17(;)> . (11)

This expression represents a local adjustment and has no general meaning. The corrected
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Figure 2: Plot of the geographic inter-site distances |z; — ;| in km vs empirical spatial
dispersions d;; and the fitted exponential variogram model.

series Z(z,t) are no longer mean-centered as in (1), but after altitude correction, site
means and variances are reasonably homogeneous over space and the resulting Z(z,t)
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may be interpreted as potential rain over the region at hypothetical sea level (ignoring the
fact that the topographic variations are partly responsible for the fact of rainfall as well
as for variation in mean amount).

Figure 2 shows a plot of geographic inter-site distance vs the corresponding empirical
spatial dispersions d;; — to which one would fit a variogram model if one assumed sta-
tionarity and isotropy for Z(z,t). There is considerable scatter in this figure and it seems
appropriate to apply our algorithm in order to reduce it.
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Figure 3: Plot of the D-plane inter-site distances |y; — y;| vs empirical spatial dispersions -

d;; and the fitted exponential variogram model.

We first execute the alternating optimization algorithm to fit the spatial dispersion
model by minimization of (6) without smoothing. Figure 3 presents a plot of distance
in the D-plane vs the empirical spatial dispersions. The vertical scatter about the fitted
exponential variogram is now dramatically reduced.

Figure 4 shows the corresponding coordinates y; and the mapping z; — ¥; for the
45 sites (fixing sites 6 - Narbonne and 22 - Nimes as reference points). The mapping
represented by the arrows clearly shows some spatial coherence for a majority of sites, but
it is also clear that some site displacements will generate foldings for any interpolation of
these pointwise correspondences to the entire region}

Several procedures might be considered to “solve” the problem of folding. One solu-
tion is to use a higher dimensional D-space. However, that approach would result in a
model fitting the observed spatial dispersions even more closely than the fit represented in
Figure 3. Because we believe that Figure 3 represents, in fact, some degree of overfitting
of the variogram, we use instead the smoothing algorithm described the previous section.
First we empirically adjust the smoothing parameter until the foldings, manifest in de-
pictions of interpolated mappings computed as bi-thin-plate splines, completely vanish.
We achieve this with a smoothing parameter of approximately s = 40km (as defined at
the end of Section 3); both the spatial dispersion plot and the corresponding interpolated
mapping of the 45 sites (computed using thin-plate splines) are displayed in figure 5.
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Figure 4: Plot of the spatial deformation from the z; (black dots) to the y; (circles). The
coordinate system is a Lambert two standard parallel projection with units in km.
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Figure 5: (a) Image of Figure 1 grid and department contours in the D-plane for the
model fitted with smoothing parameter s = 40km. Site locations correspond to the y;.
The deformation of the contours and the nodes of the square grid was computed using a
thin-plate spline mapping the z; in Figure 1 into the y!. (b) Inter-site distances |y} — y7|
vs empirical spatial dispersions d;; and the fitted exponential variogram model.
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5 Choice of smoothing parameter by validation on a test
set.

There are two important issues in the specification of a fitted model: choice of dimension
for the D-space representation and the amount of smoothing. In Figure 6 we show, in
contrast to Figure 5, the thin-plate spline deformation computed from the model fitted
with smoothing parameter s = 20km. Small folding in the mapping is evident. The square
grid in Figure 1 is folded over on itself in the region encompassing sites 61, 57, 3, and 6.
Increasing this parameter “smooths out” this fold (as shown in Figure 5) at the expense
of increasing slightly the scatter in the plot of dispersion versus distance. We consider
here calculations relevant to the choice of a smoothing parameter. We note first that the
smoothing parameter must be chosen large enough to eliminate folds in the mapping (as
diagnosed by visual inspection of figures such as Figures 5 and 6). If this is not achieved
by the values of s suggested by the following calculations, then a higher-dimensional model
for the D-space coordinates is necessary.
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Figure 6: Image of Figure 1 grid and department contours in the D-plane for the model
fitted with smoothing parameter s = 20km. Site locations correspond to the y:.

The deformation of the contours and the nodes of the square grid was computed using a
thin-plate spline mapping the z; in Figure 1 into the y!.

We have assumed that a smooth deformation is capable of describing the nature of the
non-stationarity in the covariance structure. One can imagine topographic or orographic
features that might sharply alter the orientation of the principal directions of strongest
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and weakest spatial correlation. It must therefore be assumed that the spatial density of
the monitoring network is sufficiently dense to capture the spatial features of interest. In
general terms, if, for example, topography is the important factor influencing the local
spatial correlation structure, then the monitoring network must comprehensively sample
the variation in topography.

Assuming the monitoring sites are in fact redundant with respect to the spatial scale
of nonstationarity, we may consider classical methods of validation and cross-validation to
choose a smoothing parameter.

1. Set aside a subset of (at least two) sites chosen at random. Estimate the spatial
dispersion (covariance) model on the remaining sites and use it to predict the in-
tersite dispersions (covariances) involving those sites initially set aside. Choose s to
“optimize” this prediction by some weighted least squares criterion.

2. Set aside pairs of sites, two at a time, and compute corresponding predicted intersite
dispersion (covariances). Choose s to minimize the average prediction error over all
pairs of sites.

The second of the two cross-validation methods is highly computationally intensive.
Here we present only the results of a validation analysis of the first type.
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Figure 7: Mean Square Errors of spatial dispersion vs smoothing parameter s. Dashed
lines represent the MSE of fit among all pairs of the 45 sites. Solid lines represent the
MSE of prediction among all pairs of the 30 test sites. Horizontal lines, dashed and solid,
represent the corresponding MSEs for an isotropic model, i.e., no deformation.

In our analysis of the Languedoc Roussillon rainfall data, 30 of the 75 gauge sites were
set aside from the beginning for validation. These were chosen randomly, subject to the
condition that they lied inside or near the convex hall of the entire set. Their locations
are identified by dots in Figure 1. For each of 12 values of the smoothing parameter s,
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the spatial dispersion model (5) was fitted to the 45 remaining sites. We interpolated the
correspondences of the geographic sites z; with the deformed locations y; using thin-plate
splines (as in [11] or [12]) in order to compute a mapping y(z) everywhere and so predict
the values of the spatial dispersion (or variogram) for the 435 pairs determined from the 30
test sites. Figures 5 and 6 show the interpolated locations of the test sites for the models
fitted with smoothing parameters s = 40 km and s = 20 km, respectively.

We computed mean squared errors (MSE) to compare the predicted spatial dispersions
among the 30 test sites with the observed values. The solid curve in Figure 7 shows this
MSE as a function of the smoothness parameter. It can be seen that the MSE first
drops, reaching a minimum for a smoothness parameter of approximately 35 km, and
then increases. Overfitting is thus suggested for models resulting from no smoothing, or
smoothing with a parameter s < 35 km. The horizontal solid line represents the MSE for a
stationary isotropic model; that is, for a model with infinite smoothing (no deformation).

The dashed lines in Figure 7 represent the mean square errors of fit for the dispersions
among all pairs of the 45 sites used to fit the model. As expected, the mean square error
of fit increases as the smoothing parameter s increases. The asymptotic mean square error
of fit for infinite smoothing, denoted by the horizontal dashed line, happens to be at a
higher level than the asymptotic mean square error of prediction. But this is due, in part,
to differences in the ranges of dispersions among the 45 fitting sites and among the 30
validation sites.

It happens to be the case that the value of s we chose to produce a smooth, non-folding
mapping, is near the minimum for the mean square error of prediction. Although this
need not be the case, it is comforting as it is the result one would expect if a smooth two-
dimensional deformation model is adequate to represent the spatial dispersion structure.
If such a validation exercise suggested a model with substantial folding, then a higher-
dimensional deformation model may be called for.

References

[1] Bookstein, F.L. (1989): Principal warps: Thin-plate splines and the decomposition
of deformations. LE.E.E. Trans. Patt. Anal. Mach. Intell. 11, 567-585.

[2] Bookstein, F.L. (1991): Morphometric Tools for Landmark Data, Cambridge Univer-
sity Press.

[3] Guttorp, P., and Sampson, P.D. (1992): Methods for estimating heterogeneous spatial
covariance functions with environmental applications. In Handbook of Statistics, Vol.
12: Environmental Statistics (G.P. Patil and C.R. Rao, editors), Elsevier, (to appear).

[4] Hastings, W.K. (1970): Monte Carlo sampling methods using Markov Chains and
their applications. Biometrika 57, 97-109.

[5] Journel, A.G., and Huijbregts, C.J. (1978): Mining Geostatistics. Academic Press,
New York.

[6] Mardia, K.V., Kent, J.T., and Walder, A.N. (1991): Statistical shape model in image
analysis. In Proceedings of the 23rd Symposium on the Interface between Computing
Science and Statistics, pp. 550-557. Interface Foundation, Fairfax Station.

[7] Mardia, K.V., and Goodall, C.R. (1993): Spatial-temporal analysis of multivariate
environmental monitoring data. To appear in Multivariate Environmental Statistics.
N.K. Bose, G.P. Patil, and C.R. Rao, eds., North Holland, New York.



46 P MONESTIEZ, PD. SAMPSON and E GUTTORP

[8] Matérn, B. (1986) Spatial Variation. (2nd Ed.) Lect. Notes in Statistics (Vol. 36).
Springer Verlag.

[9] Monestiez, P., and Switzer, P. (1991): Semiparametric estimation of nonstationary
spatial covariance models by metric multidimensional scaling. Technical Report, Dept
of Statistics, Stanford University.

[10] Monestiez, P., Sampson, P.D., and Switzer, P. (1992): Multidimensional scaling and
nonstationary spatial covariance modeling. In Distancia ’92: Congres International
sur Analyse en Distance, S. Joly and G. Le Calve, eds., Rennes, France, 425-428.

[11] Sampson, P.D., and Guttorp, P. (1992): Nonparametric estimation of nonstationary
spatial covariance structure. J. Amer. Statist. Assoc. 87, 108-119.

[12] Sampson, P.D., Lewis, P., Guttorp, P., Bookstein, F.L., and Hurley, C. (1991): Com-
putation and interpretation of deformations for landmark data in morphometrics and
environmetrics. In Proceedings of the 23rd Symposium on the Interface between Com-
puting Science and Statistics, pp. 534-541. Interface Foundation, Fairfax Station.

[13] Thiébaux, H.J. (1977): Extending estimation accuracy with anisotropic interpolation.
Mon. Weather Rev. 105, 691-699.

[14] Thiébaux, H.J. (1991): Statistics and the environment: The analysis of large-scale
earth-oriented systems. Fnvironmetrics 2, 5-24.



