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RESUME On résume deux modifications du krigeage ordinaire pour estimer le risque
d’une maladie rare a partir de fréquences observées et on compare leurs performances.
On suppose que les fréquences ont une répartition binomial le qui dépend du risque.
L’adaptation la plus simple est assez stable vis-a-vis la taille du voisinage, mais elle
lisse fortement. Si1’on ajoute la contrainte que D'espérance et la valeur vraie sont égales
(cokrigeage conditionel sans biais) on augmente la sensibilité de l’estimation. Cependant

on a besoin de plus de points (au moins 100 points) pour obtenir des estimations stables
avec un intervalle de confiance raisonnable.

ABSTRACT Two novel modifications of ordinary kriging for estimating the underlying
risk of a rare disease from observed frequencies are summarized and their performances
compared. The frequencies are assumed to be binomial and dependent on the risk.

INTRODUCTION

In studying the geographical epidemiology of rare diseases we want to estimate the
risk of people’s developing them and to know whether this varies spatially. In general our
only knowledge of the risk derives from observed frequencies of the disease within small
neighbourhoods. These are poor local estimates of the risk because they embody errors
arising from the the small risk and the limited population. Lajaunie (1991) and McNeill
(1991) showed how data of this kind might be analysed geostatistically, and Oliver et al.
(1992, 1993) applied the method to estimate the underlying risk of childhood cancer by
binomial cokriging. Lajaunie (1991) also pointed out that for a constant overall risk the
expected local risk at a place equals the actual risk there, and this information can be
used to condition the cokriging. It results in conditionally unbiased estimates.

In this paper we summarize the methods and then compare our estimates from them
of the risk of cancer among children in the West Midlands Health Authority Region
(WMHAR) of England.

THE DATA

The Region covers about 25 000 km?, and it includes rural, urban, industrial and
suburban environments. During 1980 to 1984 inclusive there were 595 cases of cancer
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among some 1.13 M children under 15 years of age living there. The coordinates of the
home of each diagnosed child are known. The cases are distributed among 344 of the total
838 electoral wards (the smallest area for which population is recorded). So, the 595 cases,
their spatial coordinates, and the childhood populations of 838 wards at risk and their
locations constitute the data.

The overall estimate of the risk is the number of cases divided by the total population,
and is 0.000528. The first step in estimating the local risk is to calculate the local frequency,
F(x;), i.e. the ratio of the number of cases within each ward, L(x;), to the number of
children living there, n(x;): F(x;) = L(x;)/n(x;), where the x;,7 = 1,2,..., denote the
centroids of the wards. As above, these are crude estimates. Their average is 0.000586
and the variance 1.3225 x 1076.

THEORY AND ANALYSIS

To proceed further we assume that there is an underlying risk, R(x), of a child’s
developing cancer and to which all children are exposed. We also assume that the different
cases occur independently, so that R is the only source of correlation among them. This
is reasonable for a non-contagious disease. Hence the observed frequencies, F(x;), are
conditionally independent for a fixed risk:

1
F ;) = i i)y 7 .
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where ¢ = 1, 2, ..., n wards containing n(x;) children

Estimating the risk variogram

First we compute an experimental variogram of the frequencies, yr, with the usual
formula. It appears in Fig. la. This variogram. embodies error arising from the binomial
character of the frequencies and the uneven distribution of the children. Nevertheless, it
is our starting point from which we develop the variogram of the risk.

The conditional independence of the frequencies and the standard expressions for their
expectations and variances for given risk lead to the following expectation of semivariance:

BI{FGx) - Flxi + W] = 23a(h) + {u(1 - ) - ok} "L (g
where yg(h) = 1E[{R(x;) — R(x; +h)}?], 0} is the variance of the risk, and y is the mean
estimated without bias by F', the average of the data, and n(x;) and n(x; + h) are the
numbers of children in the wards centred at x; and x; + h, respectively,

This equation does not define a semivariance in the strict sense because the quantity
depends on x. However, the average over the whole Region is correct, and from it we
obtain the relation

in(h) = '?F(h)——%{F(l—F)~&R}{n(m)+n(xi+h)}o 3)

n(x;).n(x; + h)

where the quantity beneath the bar is the average over all pairs of wards involved in
calculating 9p(h). The variance 0% is unknown, but it can be estimated iteratively as the
sill of a fitted model (Oliver et al., 1993).

Figure 1b shows the experimental variogram of the risk. The solid line is the fitted
model, Whittle’s (1954) elementary correlation. The model is bounded, and its effective
range is about 50 km. This suggests that the risk is patchy in its distribution.
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Figure 1) Experimental variograms of childhood cancer in the West Midlands: a) vari-
ogram of frequency, yr, b) variogram of risk, yg, the solid line is the fitted model.
Binomial cokriging

To estimate the risk at an unknown place we have two options. The first is an extension

of ordinary cokriging. Assuming the mean to be unknown, the risk at a place for which
we have no record, say Xg is

N
R(xo) = Y NF(xi), (4)
=1

where N is the number of data and ); are weights. The estimate is unbiased if "N, A; = 1,
for E[R(x;)] = E[F(x;)] = . Under this constraint it involves solving the kriging system:

N
Z/\icF(Xi,Xj) + = CFR(XO,Xj) Yi,
1=1

N

=1

where 1 is a Lagrange multiplier, the CF (xi,x;) are the covariances of the frequencies, and
the CF'R(xq,x;) are the covariances between the frequency and the risk. The covariances

of the risk, CF, are obtained from the variogram, and from these the other covariances
are derived by

CFF(x0,%;) = CF(x0,%;) and CF(x;,x;) = CB(xi,%;)
except when ¢ = 7, for which
1

Frx %)= 41— Rig: x) 4 — (1 —
CF (i) = {1 2 | Ol + o =)

The second option is to krige without bias conditional on R. The condition is

E[R(xo) | R(x0)] = R(xo)- (6)

100
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Figure 2. Maps of the estimated risk of childhood cancer: a) and b) are for ordinary binomial cokriging
with 20 and 100 points in the neighbourhood. respectively: c¢) and d) are for conditionally unbiased
binomial cokriging with 20 and 100 points. respectively.
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Figure 3. Maps of the estimation errors: a) and b) are from ordinary binomial cokriging with 20 and 100

points in the neighbourhood. respectively: c) and d) are from conditionally unbiased cokriging with 20
and 100 points. respectively.
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Lajaunie (1991) has shown that

R X0. X:
BR(x) | R(xo)] = n+t 9——(0—1%—) (R(x0) — 1} . %)

So in addition to the weights’ summing to 1 to assure unbiasedness we have the extra
condition:

N
ZAiCR(xo,x,-) = o%. (8)
i=1
The full kriging system is therefore
N
Y ANCF(xi, %) + $1CR(xo, %) + 92 = CFR(x0,x;) V3,
1=1
N
Z A= 1,
=1
N
Z)\iC'R(xo,xi) = o%. 9)
i=1
RESULTS

We solved the above kriging systems, and we first compared the performances of the
two methods for different numbers of points in the neighbourhood and at locations in
different environments. We estimated the risk at three points. We chose one point in each
of rural, urban, and suburban areas with sparse, dense and intermediate populations and
data, respectively. Table 1 summarizes the results.

Ordinary cokriging produces fairly stable estimates in all three environments for num-
bers of points ranging from 20 to 139. The variances decrease somewhat with increasing
numbers of points. Conditionally unbiased cok}iging, however, is less stable. Estimates
based on only the 20 nearest points have much larger variances, and it seems as though
about 100 points are needed for stability. The variances are greatest for the rural areas,
where the data are most sparse, and least for the urban areas where they are most dense.

We estimated the risk over the whole Region at 2 km intervals by the two procedures.
We set the kriging neighbourhood to 20 and 100 wards, respectively. The maps of the risk
for ordinary binomial cokriging, Fig. 2a and b, are fairly similar. The one using 20 points is
somewhat more ‘noisy’, however. The maps made using conditionally unbiased cokriging
with 20 and 100 points, Fig. 2c and d contrast more: that using 20 points is very ‘noisy’.
The latter is more different from the equivalent one for ordinary kriging, Fig. 2a, than the
maps using 100 points are, Fig. 2b and d. The estimation errors for ordinary binomial
cokriging, Fig. 3a and b, are generally smaller than those for the conditionally unbiased
estimation, Fig. 3c and d. The errors from either method are locally more variable using
20 points (Fig. 3a and ¢) than with 100 points (Fig. 3b and d). The estimation variances
for conditionally unbiased cokriging are three times larger with 20 points than with 100,
Fig. 3c and d. These results largely confirm the summary in Table 1.

CONCLUSIONS

It seems that ordinary binomial cokriging is somewhat more sensitive to the number
of points used for estimation than ordinary kriging, presumably because of the implicit
estimation of the mean, y, within a given neighbourhood. Conditional unbiased binomial
cokriging, however, is much more sensitive to the size of neighbourhood, as the estimation
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Table 1. Estimates and kriging variances for urban, suburban and rural points.
Estimates (x1073)
ordinary binomial conditional non-biased
Points urban suburban rural urban suburban  rural
20 0.548 0.357 0.662 0.444 0.381 0.520
40 0.516 0.335 0.705 0.553 0.232 0.482
70 0.523 0.351 0.669 0.624 0.279 0.720
100 0.507 0.317 0.653 0.510 0.156 0.693
139 0.506 0.336 0.658 0.502 0.325 0.810
Variances (x107%)
ordinary binomial conditional non-biased
Points urban suburban  rural urban suburban rural
20 0.0145  0.0700  0.1842 0.0431  0.5541  0.8382
40 0.0126  0.0566  0.1382 0.0284  0.2477  0.4584
70 0.0124  0.0537  0.1325 0.0192  0.1171  0.3374
100 0.0123  0.0530  0.1319 0.0155  0.0910  0.2957
139 0.0122  0.0525  0.1317 0.0140  0.0795  0.2709

variances show. The difference between the estimation errors for the two methods decreases
as the number of points increases, however, and the overall interpretation placed on the
two maps made with 100 neighbouring points would be the same. Where the implications
are significant it should be worth pursuing the more sensitive method.
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