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ABSTRACT 

Estimating concentrations or flow rates along a stream network requires specific 

Random Functions (RF) models. We propose a construction by “streams”, 

which combines one-dimensional-RF defined on each path between sources and 

outlet. The model properties are examined, namely the consistency conditions at 

the confluences for different variables. In practice, the data are spatially too 

scarce for a precise inference of the covariances. To verify if a 

phenomenological model can be used to guide the geostatistical modelling, 

measurements are compared to the output of the ProSe model. The similarity of 

results is convincing for discharge, and acceptable for the nitrates 

concentration. 

 
 
INTRODUCTION 

Estimating concentrations or pollutant loads along a stream network makes 
specific Random Functions models necessary. Indeed, the usual geostatistical 
models were developed for Euclidean spaces and are not valid anymore for the 
graph topology: the Bochner and Schoenberg theorems that give the spectral 
characterization of the covariance or variogram, explicitly refer to the Euclidean 
distance (Chilès and Delfiner, 1999 for example). Using the curvilinear distance 
along a stream network, authors (Ver Hoef et al., 2006) give an example of 
negative eigenvalues of the covariance matrix, with the spherical model. The 
variances calculated with this “model” can thus be negative too. 
 
We first recall (de Fouquet & Bernard-Michel, 2006) the principles of a RF 
model defined on directed trees, constructed by combining 1D RF. Then the 
critical inference question is examined: on the treated cases, the data are spatially 
too sparse for a precise inference of the covariance. Can a phenomenological 
model then be used as a mock-up to guide the geostatistical modelling? To 
answer this question, the experimental data are compared to the ProSe model 
outputs, with a detailed study of time and space variograms. 
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RANDOM FUNCTION DEFINED ON A TREE  

The few models found in the literature are briefly recalled, and we present the 
construction principle of a wide class of RF models. 
 
 
Bibliographic Elements 

To model the fluvisol width in a part of the Hérault hydrographic network 
(Monestiez et al., 2005) or the drain ditches of the Roujan Basin (Bailly et al., 
2006), the authors construct a RF on a tree from the outlet to the sources. Given 
all the values downstream of a confluence, a hypothesis of conditional 
independence between points located on different rivers upstream of this 
confluence is made. On each river, all one-dimensional covariance models are 
admissible; the covariance between points from different rivers is not stationary.  
 
To estimate the heavy metals concentration along a stream network, Ver Hoef et 
al. (2006) use a construction in the opposite direction, from the sources to the 
outlet. Hypothesizing the independence between rivers upstream of their 
confluence, they adapt the classical moving average method, distributing the 
“kernel” on the half line among the rivers upstream of the confluences.  Using 
this model, others (Cressie et al., 2006) combine Euclidean and curvilinear 
distances.  
 
In the same way, Bruno et al. (2001) developed a “contribution model” of the 
metals regional distribution from measurements made in sediments along the 
stream. The value at a point is the sum of the value immediately upstream and of 
a local contribution. The points along the stream are expressed by curvilinear 
distance, while the local contribution is expressed with the Euclidean distance.  
 
 
Stationarity 

In the following, a covariance is said to be “stationary” when it only depends on 
the curvilinear distance between two points, and non-stationary when it depends 
on the two points separately. If the covariance depends on the river orientation, 
the global covariance (on the whole graph) is considered as non-stationary. 
 
 
Combination of One-Dimensional RF 

Construction Principle (Bernard-Michel, 2006) 

Let us suppose two affluents, with respective discharges d1, d2 and 
concentrations c1, c2 immediately upstream of their confluence. Immediately 
downstream of the confluence, the discharge is d = d1 + d2 and the concentration 

1 2
1

1 2 1 2

d dc cd d d d= ++ + 2c  , i.e. a linear combination of the variables defined on the 

affluents. Similar equations are obtained for specific discharge 
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(discharge/watershed area) or residues. At the confluence, all these variables 
show a discontinuity. 
 
Let us prolong the affluents as distinct “water paths”, whose gathering forms the 
“rivers”. For each path, from one source to the outlet, we define a discharge and 
a concentration, which are functions of the curvilinear abscissa counted from the 
outlet. Downstream of the successive confluences from the sources, the paths 
discharges cumulated themselves to form the global discharge, and the river 
concentration is given by a combination of the different paths concentrations, in 
accordance with their relative discharge. This procedure gives a general method 
to construct RF on a tree, by combining 1D processes. 
 
Definitions and Notations 

The usual geographic terminology is used together with the one relative to 
graphs. Some notations are taken from Ver Hoef et al. (2006). The hydrographic 
network is represented by a tree whose vertex (or nodes) are sources, confluences 
or the supposed unique outlet. A “river” is a path from a source to the outlet; each 
river corresponds to a unique source, and vice versa. Two points (or edges) are 
stream-connected if they belong to at least one common river. Two unconnected 
points (or edges) belong to different rivers, upstream of their confluence.  
 
The rivers are indexed in capital letters and the edges with small letters 
(Figure 1). The edge immediately downstream of a source is indexed by the 
source. Each river has the index of its upstream edge. There are two ways to spot 
any point of the river network si: its curvilinear distance s positively counted from 
the outlet (where s = 0), or the number i of the edge it belongs to. The upstream 
vertex ui belongs to the edge i when the downstream vertex is supposed to be the 
upstream part of the next edge (going with the current) and does not belong to 
edge i.  
 

 
 
 
 
 
 
 
 
 
 

Figure 1: Tree description. (a) definition of edges and (b) rivers.  
 
The indexes of the edges belonging to the river J upstream of the edge i, this one 
being excluded, is noted B

1 2 3

4

5

F1 F2 F3

s = 0(a) (b) 

uii J  

BiJ. Vi refers to the rivers set going through the edge i. 
The confluence abscissa of the rivers I and J is noted uIJ while uij refers to the 
confluence abscissa of the rivers going through the edges i and j. The curvilinear 
distance along the tree is: 
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- ( ),i jd s t s t= −  on the whole river; 

- ( ) ( ) ( ),i j i ij j ijd s t s u t u= − + −  between unconnected points. 
 
The length of the river J is the curvilinear abscissa uJ of its source. The 
confluences can be denoted by their downstream edge.  
 
The “paths” are in bijection with the rivers. The RF or “component” YJ is defined 
on the FJ “path”(Figure 1b), which is a segment whose length is uJ. The RF Z 
represents the discharge or a concentration along the river network and can be 
defined on the tree indexed by its edges. The covariance of Z is written as a 
function of (s - t) when it only depends on the curvilinear distance between the 
points, or as a function of si and sj when it also depends on the edges. 
 
 
Combination of Stationary RF  

Let us consider a tree with N sources and “components” YJ, 1 J N≤ ≤ , centered 
and with any 1D covariance CJ(h). At each confluence, let’s attribute to each 
upstream edge k a weight wk (Figure 2). On the tree, the RF is defined as: 

( ) ( )
i iJ

i k
J V k B

JZ s w
∈ ∈

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ ∏ Y s                               (1) 

1
1

1w2
w3

w1 w3.w4

w2.w4

w1 w2 w3

w4

In this linear combination, the coefficients of the YJ components of the paths 
going trough the edge i are equal to the product of all weights of the edges strictly 
upstream of i (from the source uJ). The sources are treated like confluences with 
only one upstream edge, whose coefficient is one. On the edge i = I immediately 
downstream of a source, Z(si)=YI(s). 
 
 

 
 

 
 
 
 
 
Figure 2: Combining rivers. On the left, weights assigned to the edges and on the right, resulting 

coefficients along the rivers. 
 
Simple Case of Independent Components  

Let’s first assume the mutual independency of the YJ components, all with the 
same covariance C(h). In the combination (1), unconnected points don’t have any 
common component. Given the spatial independency of the YJ the covariance 
between these points is null. 
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For two connected points located on different edges, with i upstream of j, only the 
common paths components, those going through the edge i, have a contribution in 
the covariance. The Z covariance between these points is, for s > t and  : i jV V⊂

( ) ( )1,
i iJ jJ

Z i i k l
j V k B l B

C s t C s t w w
∈ ∈ ∈

⎛ ⎞⎛ ⎞
= − ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑ ∏ ∏               (2) 

Along the whole river, the Z covariance is proportional to C1(s – t) up to a factor 
varying according to the edges i and j. The weights of all the edges located 
between sources and each point contribute to the covariance (2). On any edge i Z 
is a linear combination of the same YJ components, iJ V∈ , and its covariance is: 

( ) ( ) 2
1,

i iJ

Z i i k
J V k B

C s t C s t w
∈ ∈

= − ∑∏                (3) 

In particular, ( ) ( ) 2
1 0

i iJ

i k
J V k B

Var Z s C w
∈ ∈

= ∑∏  

On an edge, the Z variance is constant and its covariance is stationary. At the 
confluences Z is discontinuous in squared mean, meaning that its covariance is 
discontinuous. Z is non-stationary on a river and thus on the tree: its variance 
generally changes at each confluence. For a defined curvilinear distance, the 
covariance depends on common sources of the considered points, intermediate 
confluences, and edges weight. 
 
This model, constructed from the sources to the outlet, makes the description of 
the concentrations along a hydrographic network possible. When they are known 
(for instance calculated from the drained watershed area), the relative discharges 
play a part via the confluences weights. 
For the discharges, the mass conservation condition is respected if each edge 
weight is 1. The RF Z is constructed by summation of its components YJ: 
( ) ( )

i

i J
J V

Z s Y
∈

= ∑ s                  (4) 

When variance C1(0) is identical for all the paths, the Z variance is at each point 
proportional to the paths number: constant by edge, it increases from the sources 
to the outlet. 
 
Let’s now suppose that at each confluence the squared weights sum is equal to 1. 
For a n edges confluence: 

2

1

1
n

j
j

w
=

=∑                   (5) 

The demonstrations given by Ver Hoef et al. (2006) remain valid for any 
covariance C1. By recurrence on the successive confluences from the sources, we 
show that on each edge the covariance (3) is equal to C1(s – t). The Z variance 
C1(0) is then constant on the tree. For two connected points si and tj separated by 
at least one confluence, the only weights contributing to the covariance are the 
ones of the confluences located between si and tj: 
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( ) ( ) 2
1,

ij

Z i j k
k B

C s t C s t w
∈

= − ∏                 (6) 

The Ver Hoef model corresponds to a particular case, where covariance C1 is the 
autoconvolution of a kernel f defined on the half line. The YJ components are 
constructed by convolution of a random orthogonal measurement with kernel f. In 
the combination by “paths”, any covariance C1 can be used. In case of 
convolution kernel f can be symmetric for instance. 
 
More generally let’s introduce a weighting function aJ (s) by path. The linear 
combination: 
( ) ( ) ( )

i

i J i J
J V

Z s a s Y
∈

= ∑ s                 (7) 

defines a RF with non-stationary variance and covariance, given respectively by: 

( ) ( ) ( )( )2
1 0

i

i J
J V

Var Z s C a s
∈

= ∑ i , and 

( ) ( ) ( ) ( )1,
i j

Z i j K i K j
K V V

C s t C s t a s a t
∈

= − ∑
I

              (8) 

The initial model corresponds to a constant by edge function, with: 
( )

iJ
J i kk B

a s w
∈

=∏ . 

A weighting function constant by edge gives a Z covariance stationary by edge. 
For discharges, aJ (s) is constant and equal to 1 along each river ((4) and (7)). 
 
This model is easily extended to correlated components YJ or to different 
covariances CJ (de Fouquet and Bernard-Michel, 2006). Modifying the operator 
acting on the YJ gives other classes of RF models on tree: the linear combination 
(7) can be replaced by an average of any order, or by a product, the minimum or 
the maximum. The previous models can be extended to other graph types by 
combining components defined on the paths connecting two “end” nodes. 
 
EXPERIMENTAL RESULTS 

In practice, inferring 1D covariances CJ becomes problematic because of the 
scarcity of data points. The French RNB (National Basin Network) has been 
providing monthly measurements for more than fifteen years, but with rarely 
more than one measurement site per edge (Bernard-Michel, 2007). 
 
A solution to this problem could be to use a deterministic model as a mock-up 
provided it represents pretty well the reality. The flexibility of the time and space 
output resolution of the model should enable us to make a detailed variographic 
analysis and fitting. Preliminary results of the comparison between 
measurements and a deterministic model are now presented.  
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The Deterministic Model ProSe 

The ProSe model (Even et al., 1998, 2004, 2007; Flipo et al., 2004) is composed 
of three modules: hydrodynamic, transport and biogeochemical. The conceptual 
scheme is based on a macroscale simulation of the micro-organisms dynamics 
that govern the transformation of many components (organic matter, nutrients, 
oxygen). Only two compartments, water column and sediments, are simulated 
here because biogeochemical reactions due to periphyton are less important in 
large rivers (Flipo et al. 2004). In the following, the output of the model is called 
“ProSe values”. The simulation was run for year 2003, for the rivers Marne and 
Seine, upstream of the greater Paris to the estuary (200km). The model gives 
three outputs per hour, namely at ten measurement sites (Figure 3). 
Note useful hereafter: Veolia Water provided daily integrated data, obtained 
from hourly sampling, which were used for boundary conditions. More details 
about these and the model parameterization can be found in Poulin (2006).  
 
The discharge is very well reproduced by the ProSe model. The Nash criterion, 
often used to qualify the simulated discharge in hydrology and representing the 
variance part explained by the model, is superior to 0.97. This model can thus be 
used to infer the variographic model, or even directly to estimate the discharge 
between measurement sites. This allows us to go on with the variographic 
analysis of the specific discharge (discharge/watershed area) initiated by 
Bernard-Michel (2006).  
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Legend 
Model ProSe domain
Water quality  
Discharge 

 
 
Figure 3: Modeled area. Sampling sites of water quality (dots) and discharge (diamonds).  
 
Nitrates Measurements and “ProSe values” 

The Interdistrict Federation for Sewage of Greater Paris (SIAAP) provides 
weekly measurements at nine sites over the Seine river (including Choisy) and 
one site over the Marne river (Figure 3). The nitrates concentrations are chosen 
for this exploratory study because of their environmental impact. Their “slowly 
changing” behaviour is known. Since the “ProSe values” are only available for 
the year 2003, we first verified on the experimental data (from 2001 to 2003) 
that the nitrates in 2003 didn’t show a particular behaviour.  
For these “instantaneous” data, the measurement day is known but not the 
sampling hour. We thus arbitrarily choose to take the “ProSe values” at noon for 
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the comparison. It should only introduce a weak deviation, given the high 
continuity at the origin of the time variogram (Figure 4(a)). At Choisy, the 
comparison of the weekly measurements and the “ProSe values” at “likely hours 
of measurement”, from 8.00 to 12.00 a.m. and from 1.30 to 5.00 p.m., shows that 
the daily variability of the ProSe nitrates values stay low compared to the gap 
between this model and the measurements. 
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Figure 4: Nitrates time variogram at Chosiy: (a) Short time step according to “ProSe values”, (b) 
measurements (line) and “ProSe values” (dashed) simple and cross (dotted) variograms. 
 
The superposition of measurements and “Prose values” times series (Figure 5(a)) 
shows that if the deterministic model correctly reproduces the amplitude of the 
seasonal variations, with minima during the summer and maxima during the 
winter, ProSe tends to overestimate the concentrations. This correlation is 
confirmed by the scatter diagram between each measurement and the “ProSe 
values” at “likely hours of measurement” on the same day (Figure 5(b)).  
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Figure 5: (a) Nitrates chronicles at Choisy: “ProSe values” (line) and measurements (points). (b) 
Correlation between nitrates measurements and “ProSe values” at “likely hours of measurement”. 
 
The model’s overestimation can be explained, at least partly, by the different 
measurement procedures used by Veolia Water (automatic hourly sampling) and 
SIAAP (manual weekly sampling). Indeed the comparison between the two data 
sets in Choisy – the only location where both measurements are available – 
showed greater values for Veolia Water data, used as boundary conditions. 
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Time Variability  

Simple and cross time variograms show that ProSe reproduces the temporal 
variability of nitrate concentrations, even if a greater variability can be noticed 
on the cross variogram after 60 days (Figure 4(b)). The cross variogram is very 
similar to the simple ones, showing a high correlation between the experimental 
and ProSe time series. The ProSe model can thus be used to study the nitrates 
temporal evolution in more details. 
 
Figure 6 presents the simple and cross temporal variograms between different 
measurement sites located on a same river (left) and on different rivers (centre 
and right). The best correlations are observed for Choisy and Ivry located on the 
same river, and for Choisy and Alfortville respectively located on the rivers 
Seine and Marne (Figure 6). The correlation is weaker for Ivry (Seine) and 
Alfortville (Marne) although they are the closest sites. 
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Figure 6: Simple and cross temporal variograms of nitrates measurements at Choisy and Ivry (Seine), 
and Alfortville (Marne). (a) Between sites located on the same segment; (b) and (c) between sites 
located on different rivers upstream of their confluence. The correlation coefficient is reported. 
 
Spatial Variability along Edges 

The spatial variation of nitrate concentrations seems more problematic. Figure 7 
shows the mean instantaneous variogram between sampling sites along the 
stream. Couples of sites located on both sides of a singularity (confluence, 
treatment plants…) are not taken into account. 
 
 
 
 
 
 
 
 
 
 
 
Figure 7:  Mean spatial variograms of instantaneous nitrates in 2003 on a river segment.  
Measurements (line), “ProSe values” (dashed) and cross (dotted) variograms. 
 
While the variogram of “ProSe values” is increasing the spatial structure of 
measurements seems less clear. The cross variogram is low, indicating a poor 
spatial correlation between measurements and ProSe concentrations. This is due 
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to the different sampling techniques between boundary conditions and SIAAP 
data. Nevertheless the values of spatial variograms are very low compared to 
time variograms, with a ratio greater than ten. Thus the influence of the sampling 
techniques on spatial experimental variogram seems to be important. 
 
 
CONCLUSIONS  

Discharges and nitrate concentrations simulated by ProSe are in agreement with 
the data. A comparison between Veolia Water and SIAAP data could help 
understanding the model overestimation. However, a detailed variographic 
analysis on the whole modeled network is therefore possible using the ProSe 
model as an approximate mock-up to choose consistent classes of RF models. 
RF models along hydrographic networks become useful in the scope of 
implementing the Water European Framework directive, to construct estimators 
for concentrations or loads on “water masses”. In addition integrating the 
phenomenological model will improve the consistency and the precision of the 
geostatistical model. On another hand, geostatistics could help improving the 
efficiency of the Prose model by providing co-kriging boundary conditions. 
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