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ABSTRACT 

Process-based models allow generating realistic sedimentary bodies and 

arrangements in complex environments such as fluvial meandering systems. The 

model consists in (1) migration of the channel with deposition of sandy point 

bars according to hydraulic equations, (2) aggradation (building-up) of the 

system caused by overbank floods with construction of levees and deposition of 

shales vanishing further away in the floodplain, and (3) levee breaches resulting 

in new channel paths (avulsions). The efficiency of the model depends on the 

appropriate selection of processes and ruling parameters, and results in 3D 

blocks models for reservoirs. While the qualitative influence of each parameter 

is easier to understand, their quantitative contribution is difficult to assess. In 

this paper we develop an assessment of the principal volumes being deposited 

and propose a formula giving an order of magnitude of the sand proportion. For 

this we make a heuristic use of the Boolean model, taking as the individual 

object the set of points made by the meandering channel between two avulsions. 

An application to a real case study is included.  

 
 
INTRODUCTION 

Stochastic process-based models allow generating bodies and arrangements with 
a realism that may be difficult to obtain by the purely stochastic techniques 
proposed by geostatistics. This is the case of the reservoirs deposited by a 
meandering channel studied here. We use the comprehensive model developed 
initially by Lopez (2003), now called Flumy. This depends on a few key 
parameters, and includes tools that control the spatial distribution of the deposits 
and their conditioning to data.  
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Despite the limited number of parameters, the model is capable to reproduce 
various architectures. The influence of each parameter is generally clear. 
However, when modelling a reservoir, it is not easy to choose the parameters 
values, as it is difficult to assess the joint quantitative contribution of these 
parameters. Of course one can proceed by trials and errors, launching repeated 
simulations until he obtains a satisfying result. But it is better to have tools 
giving the order of magnitude of the parameters. In the following, after 
reminders of the model and its parameters, we present an approach to quantify 
the influence of parameters on deposited volumes, and to have in particular an 
order of magnitude for the resulting Net/Gross (sand proportion).  
 
 
THE MODEL 

The Elements of the Model 

Migration of the Channel 

The evolution of the channel in time and space is represented by equations 
developed by Ikeda et al. (1981), revisited by Sun et al. (1996). These are 
recognized as capturing the essential factors acting in the long term (Camporeale 
et al., 2005). Let w and h, supposed constant, be the width and mean depth of a 
channel cross-section. The channel flow equals Q = w H U, where U is the mean 
velocity. At steady state, this velocity is given by: 
 

   
f
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where Cf = 0.0036 is the friction coefficient, g = 9.81 m/s² the gravity; and I the 
channel slope (typically 0.001). The migration of the channel at its outer bank is 
proportional to the velocity perturbation u at that point (difference between 
velocity and average velocity, typically a small fraction of this): | |u Eζ = , 
where E is the erodibility coefficient. Finally this velocity perturbation is 
proportional to the channel width and obeys a differential equation which can be 
written as: 
 

 
4 2

2
22

2f f
u U w C U UU C u U C C A
s H s HgH

⎡ ⎤⎛ ⎞∂ ∂
+ = − + +⎢ ⎥⎜∂ ∂ ⎝ ⎠

⎟
⎣ ⎦

           (2) 

 
where C = C(s) is the curvature at curvilinear abscissa s, and A a scour factor 
taken here as 7. This equation describes the migration of the channel in time, and 
is solved by time iterations, 1 iteration representing grossly 1 year in temperate 
regions (as currently agreed, a normal erodibility value is taken as giving a 
migration of 0.63 m per iteration for a velocity perturbation of 1 m/s). The 
meandering wavelength is found to be practically proportional to the mean depth 
(800 H). While migrating, the channel erodes the outer bank and deposits sandy 
point bars on the inner bank, which have good reservoir properties. Migration 
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tends to increase the meanders, and so the lateral extension of the channel, but 
this phenomenon is stabilized by cutoffs of the channel, then creating an 
abandoned channel filled by mud plug (Figure 1).  
 

    

- 

1 

2 

3 

4 

0 10000 20000 30000

iteration

si
nu

os
ity

 

Iteration 5000 Iteration 7500 

Point bar 

Iteration 2500 

Mud plug 

 

Figure 1: Channel meandering in time, depositing point bars (red to yellow) and mud plug (green) in 
abandoned loops (top). The sinuosity begins small, then increases and fluctuates (bottom). 
 

 
Aggradation 

While migration corresponds to a lateral subhorizontal movement of the channel, 
the aggradation of the system corresponds to a vertical upward movement. At 
every overbank flood (occurring periodically or randomly with a given 
frequency obf ), there is deposition of a sandy channel lag on the channel bottom 
and deposition of fine overbank flood sediments such as shale on the levees and 
further away on the floodplain. The intensity of the overbank flood  gives the 
thickness of the channel lag and the increase of the elevation of the levees. The 
thickness and granulometry of overbank sediments decrease away from the 
channel as a negative exponential with specified range λ. Between two overbank 
floods, there may be deposition of peat in the lowlands, with a thickness 
proportional to the time interval between the overbank floods, rapidly compacted 
afterwards. 

obi

 
Avulsions 

Due to the aggradation, the channel tends to dominate its floodplain. But levee 
breaches may occur randomly, preferentially where the velocity perturbation is 
larger. This leads to crevasse splays (small volumes), then possibly to a new path 
for the channel (avulsion), chosen preferentially when this increases the slope 
downwards. As levee breaches may occur upstream of the modelled domain, so-
called regional avulsions, correspond to new entry points in the domain. 
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On Domain and Conditioning 

 is rectangular, dipping slightly in the W-E x-

ey parameters and their qualitative influence  

 of key parameters: 

The 2D domain to be simulated
direction conventionally taken as the direction of flow. The above processes 
occur within this domain, but also outside of it. The processing outside the 
domain cannot be ignored because it influences what happens within the domain. 
Developments have been made on this, in order to eliminate borders artefacts, 
and in particular to be able to simulate a stationary system (Rivoirard et al., 
2007). In brief the processes outside the domain are necessarily simplified, but 
are present within a domain extended by lateral margins (where in particular 
regional avulsions can be generated), and by upstream and downstream margins 
(where in particular the behaviour of the migrating channel is initiated). The 
underlying hypothesis of the system is this of one channel being present within 
the laterally extended domain at any time iteration of the model (hence the 
model does not take into account avulsions that would send the channel outside 
of this). Note that stationarity in our case is less a necessity of the model as 
usually in geostatistics, than a way to be able to control a possible stationarity or 
non-stationarity. Non-stationarity, as indicated by an uneven distribution of sand 
within the domain as inferred from seismic, for instance, can be taken into 
account through a map of erodibility, an “Emap” (Lopez, 2003, Cojan et al., 
2005). A methodology has also been developed to generate simulations 
approximately conditional on well data. Typically migration or avulsion of the 
channel is favoured towards sand datapoints to be honoured, away from shale 
datapoints (Lopez, 2003; Rivoirard et al., 2007). 
 
K

The model depends essentially on a limited number
- channel width w, mean height H, and slope I; 
- erodibility E; 
- frequency obf  and intensity  of overbank floods; 

po e s λ; 
 domain area; 

obi
- thickness ex nential decreas  of overbank sediment
- area of lowlands to be covered by peat, as a percentage of
- frequency avf  of avulsions. 

 
iven the above description of the model, the qualitative influence of these can G

be summarized as follows. For simplicity we will consider essentially sandy 
bodies (including associated mud plugs) and overbank sediments (including 
levees), and neglect crevasse splays and peat. The larger the height H, the width 
w, the erodibility and the slope I, the higher the velocity and the migration. As 
channel migrates, sand bodies develop laterally, increasing or maintaining 
meandering and sinuosity. Aggradation (i.e. its parameters: frequency obf  and 
intensity obi  of overbank floods, thickness decrease λ) makes sand dies 
develop v tically, but reduces sand proportion while increasing proportion of 
overbank sediments. Finally avulsions frequency is responsible for more 
numerous but less developed meander loops, spaghetti like. We will now present 

 bo
er

an approach to quantify the influence of parameters on the deposited volumes. 
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QUANTIFICATION OF THE INFLUENCE OF THE PARAMETERS 

Assessment of Individual Volumes 

Sinuosity (S) is defined as the rati
between its extremities (which ca

o of the channel length by the distance 
n be approximated by the x-distance). 

r generic sections orthogonal to 
e channel, and then x-sections orthogonal to the valley. For the channel itself, 

n the model the aggradation is obtained by the deposition of channel lags and of 
verbank flood deposits (possibly replaced later by point bars with no change on 

Generating a nearly straight channel on a slightly dipping plane gives a sinuosity 
starting small (~1.1), then increasing and fluctuating grossly around 3.5 (Figure 
1). In the model the sinuosity increases with w U E Δt (Δt = time interval), this 
being around 0.014 to get a sinuosity of 1.5, conventionally taken as the 
threshold between a small and a large sinuosity.  
 
To quantify the model, it is convenient to conside
th
(the measure of) its cross-section is simply the product of its width by the mean 
depth w*H. Now the average measure of the 2D x-section of the channel is 
simply equal to S*w*H, per definition of the sinuosity. Note that this average 
cross-section includes the case of an x-section with several connex components 
(Figure 2). 
 
 

 
 
Figure 2: Different x-sections of channel. 

S N 

 

 
I
o
aggradation). The channel lag deposited during an overbank flood in a cross-
section of the channel is simply equal to obw i , so that the 2D-volume of 
channel lag deposited during Δt in an x-cross-section is equal to: 
 
   ( ) ob obCL t S w i f tΔ = Δ              (3) 
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Here the sinuosity is the rin  Δ ntaneous average sinuosity du g t, not the insta
nuosity. Taken the other way round, recording CL as a function of time is a 

ximal 2D-volume deposited during an 

si
way to measure the average sinuosity. 
 
The overbank flood deposits are more difficult to handle. Within a section 
rthogonal to the channel, the mao

overbank flood corresponds to the volume under the negative exponentials on 
both sides of the channel, that is 2 obiλ . When looking at the maximal 2D-
volume deposited on an average x-cross-section during a time interval Δt, this 
has to be multiplied by S * obf *Δt. ver the effective volume deposited is 
lower than this, because the effect of the sinuosity vanishes if the range 
parameter is large and mea ers small, and above all because there is no 
overbank sediments deposited away from the channel where the current 
topography increases. In the following, we have adopted the formula: 
 
   ( ) ob ob obOB t S k i f t

Howe

nd

λΔ = Δ             (4) 
 
with the average sinuosity imated as and a coefficient  < 2, and further est
.2. Finally the average 2D-volume of aggradation deposited in an x-section can 

obk
1
be written as: 
 
 ( ) ( ) ( ) ( )ob ob obAggrad t OB t CL t S k w i f tλΔ = Δ + Δ = + Δ            (5) 
 
The aggradation rate can be deduced: 
 

 ( ) ( /Aggradation rate m iteratio ) ob ob obS k w i fn
domain width

λ +
=            (6) 

Finally point bar is the most difficult to estimate. The point bar deposited by a 
igrating channel in a channel cross-section during a small Δt is 

 

m H tζ Δ , with 
migration rate | |u Eζ = . The velocity perturbation |u|, proportional to w, is also 
a fraction of the average velocity U. Then the 2D-volume of point b osited 
on average in an n during Δt can be written as: 
 
  ( ) migPB t S H wk U E tΔ = Δ              (7) 

ars dep
 x-sectio

uosity. In this formula, the coefficient  (in m-1

d on Δt, in particular decreasing when the meanderin

cons
 

using the average sin ) is 
expected to depen g is well 

migk

developed and new deposited PB replaces older PB). It was possible to deduce 

migk  by dividing PB and CL for a channel migrating and aggrading, showing a 

slight decrease with time around 0.004. In the following migk  has been taken as 
tant, equal to 0.004. It is assumed not to be affected by aggradation. 
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The Meandering Channel Object 

By the important concept of meandering channel object, we mean the set of 
oints that has been occupied by the channel at some time within an interval Δt. 

n can be deduced from the above formulas: 

 
and aggrading can be written as: 

p
Its average 2D-volume in an x-sectio
 

( ) ( )t mig ob obK S w H PB CL S w H H k UE t i f tΔ = + + = + Δ + Δ   (8) 
 

 follows that the proportion of sand, corresponding to one channel migratingIt

1( ) 1
( )

migt
t

1 ob ob ob

H k U EK
sand t

kaggrad t i fλ
Δ

Δ ↑

⎜ ⎟

w

⎛ ⎞
⎛ ⎞

Δ = ⎯⎯→ +⎜ ⎟⎜ ⎟
⎜ ⎟⎝ ⎠+⎜ ⎟
⎝ ⎠

However the use of such a meandering channel object will be m nteresting 
when adding avulsions, as just now. 
 

nd proportion resulting from our process-
ased model. We know the qualitative influence of the parameters, but are rarely 

e. For this, we will resort to another model, the 
 

 our meandering channel object between two successive 

Δ
  (9) 

ore i

The Boolean Formula for Sand 

It is very difficult to forecast the sa
b
able to predict their joint influenc
Boolean model, for the extraordinary tractability of its formula. The Boolean
model consists in the union of independent objects, located at random points in 
space. In more details, objects are located at Poisson points with density θ. 
Objects are possibly random, independent on their location, and tossed according 
to the same distribution. Then, if K is the average volume of an object, the 
expected proportion of space occupied by the objects is equal to: 1 – exp(θ K) 
(Matheron, 1967).  
 
The originality of the approach proposed here is to represent the meandering 
channel model by a 2D Boolean model, where the 2D space is an x-section and 
where an object is
avulsions. From (8), the 2D-volume of such an object is: 
 

( ) mig ob ob
av

av

k UE i fK SwH PB CL Sw H H
f

⎛ ⎞
= + + = + +⎜ ⎟

⎝
  (10) 

avf ⎠

while the 2D density is the average number of avulsions reported gradat
 

  

 
to ag ion: 

 
( )ob ob obS k w i fλ +

avf
θ =            (11) 

portion of sand: 
 
This gives the expected pro
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( )11 exp 1
1

av mig
ob ob ob

Hsand f k UE
k i f

w
λ
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⎛ ⎞
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         (12) 

to be used as an order of magnitude for sand in our process-based model. Further 
tuning from simulation of the process-based model has lead to adopting values 

h
par and eses made, that sand 

 more sensitive to channel width and depth, overbank intensity, period and 

he meandering channelized reservoir model has been applied to two successive 
formation of Loranca, south-east of Madrid (Diaz-Molina et al., 
important field observations for our purpose are the followings. 

= − − +

 

ob  = 1.2 and mig  = 0.004 for the additional coefficients. 
 
T e Boolean formula has also been used for a sensitivity analysis of the different 

ameters on s  (Figure 3). This shows, under the hypoth

k k

is
thickness parameter, and to erodibility. And it is poorly sensitive to the slope and 
the frequency of avulsions. 
 
 
Case Study 

T
units of the 
1995). Most 
Measures of the depth of channels were made, leading to choosing a mean 
channel depth of 2.5 m. According to the analysis of actual systems, this 
corresponds to a channel width around 80 m. The average velocity of the flow 
can be deduced (2 m/s). Point bar outcrops present up to 2000 successive 
laminations with thickness 5 mm, each lamination representing a migration 
iteration (6 mm horizontally). According to the formula, the migration would be 
of 0.40 m per iteration using the normal erodibility value. In order to have a 
migration of 0.006 m, we need to choose an erodibility equal to 0.015 times the 
normal one. While laminations could be clearly observed on a 12 m outcrop, the 
extension of point bars can be expected to be a few hundreds meters, taken at 
maximum at 400 m by choosing a frequency of avulsions equal to 1/60000. The 
overbank flood intensity could be assessed to 0.5 m, an upper bound for 
observed levees. Such a value is typical of sheet floods with little decrease in 
thickness away from the channel. Consequently a large thickness decrease 
parameter of 3000 m was chosen. Finally the overbank frequency was deduced 
from the sand proportion and previous parameters using the Boolean formula. 
The sand proportion was calculated from different field sections. It was found 
equal to 0.36 for the lower unit, presenting amalgamated channels, and 0.18 for 
the upper unit, with isolated channels. This led to an overbank frequency of 
1/40000 for the lower unit, and 1/16700 for the upper one.  
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Figure 3: Sensitivity analysis of sand by varying each parameter while maintaining the others fixed 
in the Boolean formula (normal erodibility, channel width 100 m, mean depth 3 m, slope 0.001, 
overbank flood with intensity 0.3 m, frequency 0.01, and thickness parameter 1000 m, avulsions 
frequency 0.001).  
 
 

 

 
 
Figure 4:  Cross-valley section of a simulation in Loranca meandering channelized system (6 km 
wide x 40 m high). Note the lower unit with amalgamated channels, and the upper one with isolated 
channels (yellow: point bar sand; orange: channel lag sand; blue: mud plugs; green: overbank shales; 
dark green: levees).  
 
 
Simulations were performed with the determined parameters. Results clearly 
show the difference between the amalgamated channel in the lower unit, and 
more isolated ones in the upper unit (Figure 4). They give sand proportions equal 
to 37% and 20% for the two units. Given the uncertainty on the parameters, such 
an agreement is essentially due to chance. Various other data-free simulation 
tests (not presented here) have shown that, while not designed to be precise, the 
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sand formula was helpful to deliver orders of magnitudes, taking into account 
jointly the key parameters. Note that the sand formula can be used, either to 
predict the order of magnitude of the sand knowing the model parameters, or to 
choose parameter values knowing the others and the desired sand proportion. 
 
 
CONCLUSION 

To quantify the influence of the model parameters on the resulting simulations, 
first we have made a raw assessment of the principal volumes that are being 
deposited. In doing this, we have made drastic simplifications in order to obtain 
orders of magnitude, in the spirit of the back-of-the-envelope calculations 
favoured by the physicist Fermi.  
 
Then we have assimilated our process-based model to a Boolean model. This has 
enabled us to use the Boolean formula, as a plausible formula for the order of 
magnitude of the sand proportion knowing the parameter values. In short we 
have made a heuristic use of the Boolean formula. (Note that this situation is not 
rare in geostatistics: the (multi-)gaussian model of Random Functions is 
essentially used for its extraordinary simple properties and the consistency of its 
results: but beyond univariate and possibly bivariate distributions, who checks 
the normality of higher multivariate distributions that fund the model?).  
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