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Introduction

The discipline which is now known as geostatistics began to develope over thirty
years ago for mining evaluation and since has extended to other fields of activity. Around
1960 in particular, G. Matheron built linear geostatistics. Some of its tools (variogram,
kriging) are widely used nowadays. Linear geostatistics makes it possible for instance to
evaluate the metal content of a mining block or panel by estimating the mean of the grades
of the points in it from samples. The reader of this book is supposed to be familiar with
linear geostatistics.

In the sixties non linear methods based on lognormal distributions had alreadly been
developed for the needs of South-African gold fields. To estimate a panel from samples,
D. G. Krige had proposed a lognormal regression, which later led to lognormal kriging
and this is still in use today. Before that H. S. Sichel had been involved in evaluating deep
deposits from only a few samples. He had proposed an estimator and given confidence
intervals for the mean, assuming the sample values were independent and distributed
according to the same lognormal law.

But it was mainly from the seventies on that the techniques now called non linear
geostatistics have been developed. Among the more and more difficult mining evaluation
problems that geostatistics had to face was that of predicting the results of a selective
mining process. To simplify, imagine a deposit made up of many small selection blocks
before its exploitation starts. What is then important is not to have an estimated value (by
kriging or other method) for the grade of each block, but to know if the grade of such small
blocks, as they will be known at the time of their individual mining, will exceed the cut—off
between waste and ore, and to predict the quantity of metal which will be recovered. Such
a typically non linear problem arises in other fields. For instance in pollution, each time
we are not really interested in obtaining an estimate, often smoothed and of a limited
precision, of real values, but rather we want to find out the probability that such real values
pass a threshold.

The formalism and the tools of non linear geostatistics have been developed to solve
problems like these. These nonlinear methods are more powerful than their linear
counterparts but are more complex mathematically. So potentially interested users are
often put off by the mathematics. Nevertheless it is necessary to understand some of the
mathematics to use them correctly. In particular the user must understand why and how
these mathematical ideas come into play.

Thik text was written at the request of several users of linear geostatistics who were
interested in applying nonlinear methods. So instead of being mainly mathematical it
builds on their knowledge of and experience in linear geostatistics. The main
developments are given in detail, but to keep the text readable the less important ones
have been reduced to a minimum or omitted (e.g. estimation variances, the problems of
convergence, the DK probability density function, the 18t order variogram, etc...).

I hope that the reader will grasp the essentials of the methods presented here, and
that this will give him a solid grounding to which he can add more detail by further reading
(for example, on the different isofactorial models used in disjunctive kriging and changing
of support).
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Usual notations

Y.Z variables .

x a point in space

Z(x) variable (grade for instance) at point x
Y(x) another variable at point x

(e.g. gaussian transform of the grade)

Xg » X8 sample points

v a block, or its support

|4 a larger support

Z(v) grade on support v

Y,; gaussian transform of Z(y)
E(Z) expectation (mean value) of Z

Var (Z2) variance of Z

Cov (Y,Z) covariance between Y and Z

h a distance, or a distance vector
Ch) covariance at distance 7
wh) variogram

Sph (20) spherical variogram with range 20 and sill 1

F(z) c.d.f. of Z(x)
= P(Z(x) < z) probability of having Z(x) < z

Fy(z) c.d.f. of Z(v)
= P(Z(v) < z) probability of having Z(v) < z

ly(x) > indicator of Y(x) = j



vi(h)

v i)

SK
OK
CK
DK

CE

P(Y(x) = )
PYx) =i Y@+h=j)
variogram of indicator 1y(x) >j

cross-variogram between indicators ].y(x) >; and ly(x) =j

cut-off for Z(x) or Z(v)

cut-off for gaussian variable Y(x) or Y,

p.d.f. of a standard gaussian
c.d.f. of a standard gaussian

Hermite polynomial of degree n

Y(xa)

Hy[Y(xa)]

as superscript implies an estimator

as superscript implies kriging estimator
simple kriging

ordinary kriging

cokriging

disjunctive kriging

conditional expectation

weight of sample point x,
weight of Hermite polynomial H,(Y,) at sample point x4
a correlation coefficient

a correlogram (normed covariance) at distance A

correlation between Y(x,) and Y(xg)




()

w © N

gaussian anamorphosis function of Z(x)

coefficient of order » when expanding ® into Hermite polynomials
a variance

kriging variance

gaussian anamorphosis function of Z(v)

change of support coefficient
proportion of ore

quantity of metal

conventional profit
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1. Reminder on Cokriging

Cokriging will be used in the following chapters to define the disjunctive kriging estimator.
In the present chapter we will give some reminders, in particular of the cases where cokriging
simplifies.

1.1 Why use Cokriging ?

Should we use cokriging to estimate several variables or would it suffice to krige
them separately ? There are two main reasons for using cokriging.

1) When kriging an undersampled variable, cokriging allows us to take advantage of the
information available on another variable which is related to the first and for which
there are more data.

2) When the values of all variables are available at all sample points, it improves the
coherence between the estimated values by taking account of the relationship between
. them.

We now consider the second case. As a simple example we shall estimate the bottom
Z;(x) and the top Z>(x) of a seam of rock. Kriging gives the best linear estimate of each
of the variables separately. But most of the time we are also interested in the thickness
of the seam T(x): ’ '

Tkx) = Zx) - Z1(x)

Knowing any two of the three variables Zj(x), Z>(x) and T(x) we can obtain the third one
by simple addition or subtraction. Unfortunately the same simple relations do not apply
to the kriged estimates. In general the difference:

Zox)* - Zy(x)k
does not equal T(x)X.

In contrast, cokriging gives the best linear estimate of the variables and of linear
combinations of them. So the cokriged estimates satisfy:

20 - Zi)™ = T

Comments :

Kriging a positive variable does not guarantee that the resulting estimate will be positive.
Similarly cokriging the above variables does not guarantee that the kriged estimate of
thickness 7'(x)X will be positive, either. To ensure this, more elaborate techniques are
required.




1.2 Simplifying Cokriging

In order to use cokriging, we need to know the cross variograms (or covariances) of
the variables as well as the auto variograms. A mathematically consistent
coregionalisation model must be fitted to all these variograms, whose number increases
with the square of the number of variables. The size of the cokriging system also increases
with the number of variables. So it will be profitable if cokriging can be simplified.

In fact, two types of model allow us to do this. So it is useful in practice to try to get
back to these. In both cases the cokriging estimates are simply obtained by solving some
kriging systems.

In what follows we shall assume stationarity unless explicitly stated otherwise.

- 1.3 Intrinsically Correlated Variables

Let Zi(x), Za(x), ... Zn(x) be variables whose auto and cross covariances (or only
variograms) are all the same apart from a multiplicative factor. That is, if the cross
covariance between Z;(x) and Z(x) is Cj(h), then :

Ciih) = Cov [ Zix + h), Z®)] = CH0) olk)
where Q(h) is a spatial correlation function and Cj;(0) is a constant.

In general the correlation between two variables Z;(v) and Z;(v) depends on their
support v (which may be just a point) and on the field V" described by v. It is not an inherent
characteristic. On the contrary, when all the variograms are multiples of each other the
correlation is said to be intrinsic: it does not depend on v and V' (Matheron 1965, p.149;
Journel 1977, p.237 and Journel and Huijbregts 1978, p.174, call this model “the intrinsic
coregionalisation”).

Using this model (and assuming that all the variables have been measured at all
sample points), cokriging any variable (or a linear combination of the variables) is just the
same as kriging that variable. Only one kriging system has to be solved, the weights for
any sample are the same for all the variables.

1.4 F; rizing the Z;, 7

Suppose there is no spatial correlation between Z;(x), Zy(x) ... Z,(x), i.e. their
correlation coefficients are zero and their cross-covariances are identically null. Then
kriging each of these variables is equivalent to cokriging it.

Suppose now a correlation exists between these variables. It is sometimes possible
to go back to other variables which have no spatial correlation and whose kriging will give
the cokriging of all variables. This is the case when we can combine linearly the Z;(x),




Z3(x), ..., Zn(x) to built a set of spatiaily uncorrelated variables Y;(x), which can in their turn
be combined linearly to give the Z;(x). That is,

Zfx) = Z aj; Y{x)

These variables Y;, which can be obtained at each sampling point from the Z;, are spatially
uncorrelated; and so kriging them is equivalent to cokriging them:

YjCK = YiK
Then we obtain the cokriged estimates of the Z;:
Zi* = 3 i V;*
i
We call these variables Y; the factors, and so factorizing the Z; is just their decomposition
into these factors.
The estimation errors Y; — Y; X are uncorrelated, and so their estimation variances

give that of Z;:

Zj - Z;% = ) a; (Vi - Y;F)
i
Var [Z; - Z;K] = > (a;)? Var (Y; - Y; K)
i

1.5 Examples

Let us now return to our initial example to illustrate these models.

a) Assume that the top Z>(x) and the bottom Z;(x) of a seam have the following
coregionalisation model:
Cy (h) = 16 Sph (100) + 16 Sph (20)
C; (h) = 25 Sph (100) + 25 Sph (20)
Ciz2 () = 16 Sph (100) + 16 Sph (20)

where C;(h), C2(h) and Cj2(h) denoted the auto and cross covariances for the variables,
and where 16 Sph (100) denotes a spherical model with a range of 100 and a sill of 16.

These three covariances functions are all proportional to Sph (100) + Sph (20). And
so Z; and Z, are intrinsically correlated.

b) Now consider this coregionalisation model:



C: (k) = 16 Sph (100)
Ca (k) = 25 Sph (100) + 25 Sph (20)
Ci2 (h) = 16 Sph (100)

Here the structure of Z; C;(h), is the same as the cross-structure, Cy2(h) . This enables
us to rewrite the structure of Z; as:

Cy (h) = 16 Sph (100) + 9 Sph (100) + 25 Sph (20)
This means that we can represent Z, as the sum of two components, Z;(x) and T'(x):
Zyx) = Zyx) + Tx)
where T(x) = Z(x) — Z;(x) has the covariance:
9 Sph (100) + 25 Sph (20)
and is spatially uncorrelated with Z;(x).

The model has effectively been factorized into Z;(x) and T(x), and so we can krige these
components separately to obtain the cokriged estimates:

Zx) K = Ziw X
T(x) K = Tx)X -
Zyx) K = Zix) K + T(x) K = Z)X + T(x) ¥

Comments on this last example

1. As we are dealing with stationary variables we can calculate their means and then write
them as:

Zix) = my + (Zyx) —my)
Zyx) = (my + mr) + (Zyx) -m ) + (T&) - mr)

with m; + mr = my.

We have:
Cov [Zi(x), T(x + h)] = E [(Zix) - m1) (Tx +h) -m7)] = 0

Since the expected value of the product of Z;(x) -m; and T(x+h) — mr is zero for any
x and A, the two random functions (Z;(x) — my) and (T(x) — mr) are said to be orthogonal.

2. The variable T(x), which has the covariance:
9 Sph (100) + 9 Sph (20)

can be split into two spatially uncorrelated components with ranges of 100 and 20 ‘
respectively. But, in contrast to Z;(x) and T(x), these components cannot be obtained
experimentally at a given point x from Z;(x) and Z,(x).

10



2. Indicator Functions

Linear geostatistics deals only with linear combinations of the variable under study Y(x).
This makes it possible to estimate linearly the value of the variable at a given point or over a
given domain.

Sometimes we need to estimate, not Y(x) itself, but one or more functions f[Y(x)] of Y(x).
Considering linear combinations of the variable Y(x) is no longer sufficient and we call on non
linear methods: in particular the conditional expectation that will be given in chapter 7, and
disjunctive kriging introduced in the present chapter.

What makes the indicators interesting is the fact that any function f[Y(x)] can be
expressed in terms of the indicators of Y(x). By cokriging these indicators we obtain the DK

estimate.
2.1 ing through Indi

Suppose that a random function Y{x) can take a finite number of values. If, for
example, these values are 0, I, 2 and 3 then at each pointx Y{x) must take just one of them.
That is,

Y(x) = Oorlor2or3

We may code these different possibilities by using indicator functions (called indicators,
for short). If Y(x) =i then the indicator 1 o) = i is equal to I, and to 0 otherwise. Since

Y(x) can take only one value at any one place, this coding is said to be disjunctive. At any
point x, one and only one of the indicators is equal to 7, and the others are all zero. So:

Z 1Y(x)=i = 1Y(x)=0 + 1Y(x)=1 + 1Y(x)==2 + 1Y(x)=3 =1
i .
Thus we need to know only three of the four indicators in order to deduce the other one.

2.2 Developing functions

This disjunctive coding and these indicators are valuable because they allow us to
express any function of Y(x) conveniently. Let us consider, for example, a function f(Y(x))
that takes the values fj, fi, f> and f3 when Y{x) takes the values 0, 1, 2 and 3. This function
can be written as:

Zﬁ 1Y(x)=i = fo 1Y(x)=0 + fi 1Y(x)=1 + f2 1Y(x)=2 +f31Y(x)=3
1

11




We can see this by examining what happens when Y(x) takes each value. If Y{x) =0 then
1 Y)=0 = 1land the other three indicators are zero. So:

> fi ]-Y(x)=i = fox1+fix0+foax0+fzx0=f

Similarly for the other three possible values.

Examples
1. The variable Y{x) itself can be written using indicators:
Yx) =0 1Y(x)=0 + 1 1Y(x)=1 + 2 1Y(x)=2 + 3 1Y(x)=3

2. In geostatistics we often use indicators above a cut—off value. For example, the indicator
1 Y&) = 2 takes the value ] when Y(x) = 2, and 0 otherwise. So we have:

1Y(x)z2 = 1Y(x)=2 + 1Y(x)=3

3. If Y(x) represents the grade in a particular substance (e.g. metal concentration) of a
‘'sample taken at point x, the variable in example 2 indicates whether the grade equals
or exceeds the cutoff at 2. When multiplied by the weight of the sample this indicator
represents the weight of the ore above the cutoff.

4. Similarly the quantity of metal at the 2 cutoff contaiﬁed in the sample is taken as 0 if
the grade Y(x) is less than 2, and is equal to the product of the grade by the weight of
the sample if Y(x) = 2. So it is equal to:

Y0) 1ygyso

multiplied by the weight of the sample.
2.3 Limits of linear geostatistics

As the reader knows, linear geostatistics deals only with linear combinations of the
variable under study Y{x). This makes it possible to estimate the value of the variable Y(x)

at a given pointx , or its regularized -é J Y(x) dr over a given domain V', using a linear
4
combination of the values Y(x,) known at sample points x, (for instance kriging).
Linear geostatistics also provides the variance of estimation (i.e. the variance of the
difference between true and estimated values). A small estimation variance means a good
precision.
Now let us return to our variable Y{x) which can take the values 0, 1, 2, or 3. Imagine
that its kriged estimate Y(x)*at a given pointx equals 1. If the estimation variance is small,

12



there is a high chance for the true value Y(x) not to exceed 2. But if the estimation variance
is not small, as usually happens, the estimated value Y(x)* = 1 only represents an average
of tendencies. The true value may be equal to 1, but it may also equal 0, 2 or 3. The fact
that the estimate Y(x)¥is smaller than 2 does not mean that the true value Y{x) cannot be

equal to or larger than 2, which is represented by the indicator 1 Yo =2 -

This distinction is essential when we want to make predictions relative to cut-off
values. In the environmental sciences for instance, we may be interested in estimating in

the form of a probability whether a variable Y(x) passes a threshold, e.g. 1 Yo =22 - 10
predict the results of a selective mining process, we want to estimate indicators such as
1 Yoy =2 (which gives the ore above the cut-off 2), and also the corresponding quantities
of metal.

As we can see, computing an estimate for the variable Y{x) is not the solution when
we need to estimate, not Y(x) itself, but one or more functions f/Y{x)] of Y{x) : indicators,
metal quantities, etc. We then call on non linear methods like the conditional expectation
(chapter 7) or disjunctive kriging.

2.4 Disjunctive Kriging DK

As we have seen, the family of indicators 1 YE) =0 » - > 1 Y) = 3 allows us to
express any function of Y{(x) as:

) =folyg-o + ..
If we can estimate all of the indicators, we can obtain an estimate of ffY(x)] for any

function f. The disjunctive kriging estimator is defined as that given by cokriging all the
indicators:

If @)1 X = fo [1yg-0l¥ + i (1 ye=11€ + ...

In particular the DK of an indicator is equal to its cokriging with all the indicators:
[1yey= o = [1 v = 01K

Note that disjunctively kriging the sum (or similarly the difference) of two functions
is equivalent to summing the two DK estimates. That is:

AYG) + gV X = [RYO)] 2K + (Y] P¥

This ensures consistency between the estimates of different functions.

2 her Generating Famili
3
Since in our opening example 1 Ye)=0 = 1- Z 1 Ye)=i » We can write:
1

13




3 3
fY(x)) =f0(1-§ 1yey=:) +§1:fi 1 ye)=:

3
=fol+ 2 (fi-fo) 1v=i
1

This shows that (1 , 1 Yo =1 » 1 Yo =2 » 1 Yo)=3) is also a generating family.
Sometimes, it is more convenient to consider the cumulative indicators:
1 voo=0 = 1
1Y(x)21 = 1Y(x)=1 + 1Y(x)=2 + 1Y(x)=3
lY(x)zZ = 1Y(x)=2 + 1Y(x)=3
1 Y@ =3 = 1Y(x)=3
Clearly we have:
1 Yo =3 = 1Y(x)>;"3
1 Yo =2 = 1Y(x)22 - 1Y(x)z3
1Y(x)= 1 = 1Y(x)z1 - 1Y(x)22

]-Y(x)=0 =1 —lY(x)zl

Since any function of Y{x) can be expressed in terms of the indicators
(1y(x)=0 y eee s 1y(x)=3), it can also be  written in terms of

(1, 1 YO =1 5+ o 1 Y =3 ), which also forms a generating family.

2 we n for Disjunctive Kriging ?

All the generating families are equivalent. So we may cokrige using

(lvg=0 . -\ lyg=-3) or using (1, lywye1 s s Lyg=s): let us

consider the second case. We clearly must know the auto and cross covariance functions
(or variograms) of the cumulative indicators.

Let T; denote the probability that Y(x) exceeds or equals i , which is the expectation
of the indicator 1 YO =i

14



T, =PXkx) =2i) = E[lY(x)zi]

T; is just the inverse cumulative distribution function of Y(x). We can write the covariance
functions as:

i) = Cov[lyga1, Lygeny=1l

= E[Llyy=1- Lyerny=11-E[ 1ygy=1D?2
and similarly the cross—covariance functions as:

Cz () = Cov[lyy=1, lyesny=al

=E[lyge1 - Luwsm=2l~Ellyw=11 E[ Lygsny=2l

Let T %, where the sﬁperscript means at lag &, denote the bivariate distribution of Y{x) and

t]’
Y(e+h):

T:-; =PYkx) z2i, Yx+h)=j)=E] 1Y(x)2i . 1Y(x+h)2j]
We have:
G =Th-Tp
Coth) =T4% -T1 T,
This gives:
TH = Ci1(h) + (T
Th =Cao(®) + T1 T2

So knowing the auto and cross covariance functions is equivalent to knowing the bivariate
dlstrlbutlons of Y(x) and Y{x+h) for any lag h. In the same way that kriging is based on
the Varlogram, so disjunctive kriging is based on these bivariate distributions.

In practice we have to fit a model to the bivariate distributions, or what amounts to
the same thing, to fit a model to the coregionalisation of the indicators. Using this model
makes it possible to perform DK (i.e. cokriging of indicators).

However the size of a cokriging system increases with the number of indicators — here
the number of indicator variables. So as before we look for models that simplify the
cokriging. These are the mosaic model presented in the next chapter or isofactorial models
like those we will see afterwards.

15




3. The Mosaic Model: Indicators
that are Intrinsically Correlated

The mosaic model is a very simple one in which the auto and cross structures of all
functions of Y(x) are the same. In consequence the indicator cokriging (i.e. the disjunctive
kriging) is reduced to a kriging.

Suppose we have a region that consists of a mosaic of random compartments in any
one of which the value of Y(x) is constant. Moreover, the value in each compartment is
independent of the values in the other compartments, but the values all come from a
common distribution. An example is given in Figure 1.

Figure 1: Example of mosaic

Let p (h) be the probability that two points, x and x + h, a distance /4 apart, belong
to the same compartment. If they do, then Y(x) = Y{x+h). If x and x + h belong to

different compartments, which happens with a probability I — p (h), then Y{x) and Y{x+h)
are independent.

So we have:

E[Y®)Ya+h) ] =E[YoPle® + [EXE) P 1-e®)
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= ¢ (h) Var Y() + [ E (Y&) PP
This gives us the covariance:
Cov [Y(x), Y(x + k)] = o (h) Var Y(x)
Similarly for any function f(Y(x)):
Cov [ f (Y&)), f (Y& + h) | = ¢ () Var [f (Y())]
If we now consider any two functions f(Y(x)) and g(Y(x)), then it is easy to show that:
Cov If (Y&)), g (Yx + h)] = ¢ (#) Cov [f (Y)), g (Y¥))]

So the auto and cross covariances of all functions of Y{x) are proportional to p (h). In
particular this is true of the indicator functions, which are therefore intrinsically correlated
(see 1.3).

So cokriging them is equivalent to kriging them. We need to solve only a single

kriging system, the one based on p (h), to get the kriging weights for all the indicator
functions, and for all possible functions of Y{x):

[F e 12K = 3 fil Lyg=i 1
= Zﬁ'[]-Y(x)=i]K

=X filyy-: ¥ =1 O@)IF

As an exercise readers should write out the above krigings explicitly in terms of the kriging
weights A\, , the data 1 va)=i and f(Y(xg)), and the mean values

E [1 vy =il = P[Y(x)=i]and E[ f(Y{(x)) ] which have been assumed to be known.

As in current use in geostatistics the xo denote the sampling points in the neighbourhood
of the point x .

Thus the DK of any function is very simple. It is reduced to a kriging, with weights
that are the same for all functions. This makes the mosaic model very attractive. This
model can be tested experimentally by comparing the auto and cross structures of some
indicators, that must then be identical.

In the models we are now going to consider the indicators do not all have the same
structure. Moreover there always exists some correlation between the indicators. This
means that if we just krige the indicators separately the resulting estimate may be far from
the optimal one (see exercise 4.3 in the next chapter).

17




4. Isofactorial Model with no Edge Effects:
Orthogonal Indicator Residuals

In the model presented here, there are no edge effects: the edges of the set of points above
a given cut-off are not poorer than the center.

It is an isofactorial model, which means that DK (i.e. indicator cokriging) is obtained
by kriging the factors — here the indicator residuals.

4.1 Isofactorial Medel

We have seen in 1.4 that cokriging different variables simplifies when these variables
can be factorized. Then we need only to krige each factor separately.

It is the same thing for the indicator variables of a random function Y{x). Isofactorial
models are models where the different indicators are'factorized. Then cokriging the
indicators, i.e. DK, is equivalent to kriging the factors.

There are two types of isofactorial models: those with edge effects on the regions
defined by cutoffs, and those without them.

4.2 Edge Effects

Let us see what is meant by edge effects. As before, we consider a random function
Y(x) that takes four values: 0, I, 2, 3. Let A; denote the set of points where the value of
Y(x) equals or exceeds 1. So for each point x in this set we have:

1xeA1 = lY(x)zl =1

Of course, the value of Y{x) for a point x inside 4; might also equal or exceed 2. But this
may have less chance of happening when the point x is near the edge of 4;. That is, there
is an edge effect because the border areas of A; are, on average, of lower grade than is the
centre. Figure 4-1 illustrate this. In this case, the value at a point x inside 4; depends on
whether a neighbouring point x+# belong to A; or not. In particular the probability:

P[Yx) =22|Yx) =21, Yx+h) <1] = P[Y(x)>22, Yx +h) < 1]

-1
PlY(x) =1, Yx+h) < 1] “-1)
will depend on 4. In general, it increases with increasing / at least for short distances.

This can be seen experimentally using the variograms of the indicators. For example,
the variogram for the indicator 1 Yo = 1 can be written as:

18



1
y1(h) = > E[]-Y(x)zl - 1Y(x+h)zl P

So it is the mean value of a term which takes the value I if Y(x) = 1and Y(x + ) < 1
orif Y(x) < 1and Y(x + k) = 1, and takes the value 0 otherwise. So:

yi(h) = -;- {PIY®=1 Ya+h) <1] + P¥e+h) =1, Y@ < 11}

Figure 4-1

Example of Edge Effects. In this case, the border areas of A; are
poorer than the centre. The same is also true for A3, the set
consisting of points where Y(x) = 2. So these are edge effects on
these sets.

C

If we assume that the two probabilities are equal (that is, the distribution is symmetric
in h):

vi () = P[Y®) = 1, Yx+ k) < 1]

Similarly:

. |
vy (h) = 5 E [ 1Y(x)22 - 1Y(x+h)22 1 [ lygy=a - lygsm=1l
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is equal to:
P[Yx) = 2, Yx+h) < 1]

Consequently we have:

- - ()
PlYx) =22 | Y(x) =21, Ye+h) <1] 7 1) (h = 0)

Using the indicator vanograms it is easy to see whether there are edge effects. In general,
the ratio given above increases with / for small distances, which shows the presence ofan
edge effect. As the border area of 4; is, in general poorer than its centre, going from a
point where the value is small to one where it is large (2 or more) generally means going
through a zone of intermediate values (e.g. I).

4,3 Absence of Edge Effect ; hogonal Indicator Residual

We still consider the random function Y(x) which takes the values 0, 1, 2, 3 and we
assume that there are no edge effects on the sets A; (contains the points where Y(x) = 1)
and A, (where Y(x) = 2).

For any point x in 4; (i.e. where Y{x) = 1), the fact that its value equals or exceeds
2 is independent of a neighbouring point x+h belonglng to A;. That is, the indicator

1Y(x) > 2 is independent of ly(x+ K= 1-50:
P[Y(x) = 2,Y(x + k) = 1|Y(x) = 1] = P[Y(x) = 2|Y(x) = 1] P[Y(x + h) = 1|Y(x) = 1]
And therefore:

PYx) 22, Yx+h)=1] _ P(Y(x) =2) P[¥(x+h) =1, Yx) = 1]
PY(x) = 1) T PY(x) = 1) P(Y(x) = 1)

Using the notation introduced in 2.5, we have:
Th =Th == (4-2)
More generally, the bivariate distribution for j> i of these models satisfies the relation:
T;

Th =T% T (4-3)

As a general rule, the regression between indicator functions at a given pointx can
be written as:

E[]-Y(x)22| lY(x)zll = = lY(x)zl




This is clear as one of two things must happen:
— either the conditioning variable 1y(x) > 1 is zero (i.e. Y(x)<1) and so 1y(x) =2 = 03
- — or alternatively ].Y(x) >1 isequal to I, then 1Y(x) > 2 is equal to I with the probability

) ) . T>
or to 0 otherwise, and so its mean value is ——

PYG) 22 | Y&) = 1) = = =

22

Ty
. . T

So the regression can be written as above. Its residual ly(x) >2 — _T—% 1Y(x) > 1 clearly has
1

a zero mean and is uncorrelated with the conditioning variable ly(x) >1-

When there is no edge effect, this residual is also orthogonal to ly(x+ B =1:

T T
E [(1Y(x)22'7% 1ygy=1) lygeny=11= 7"51"‘5% TH =0

Such residuals play a special role in this model. Let us consider the family consisting of:

Ho (Y(x)) = 1
- 1 Yo)=1
H; (Yix)) = ——T—l—— -1
Z 1 x) =
m o) = e - S
H; (Y(x)) = Lyy=s _ lyy=2

Ts T,

For i>0, H;(Y(x)) isequal to the residual of —Z(Tf,)—z—’ starting from the lower indicator
: i

ly(x) > ;-1 . The multiplicative factor 51,— permits to simplifie the writings. Then we have:
i

$ B (Vo)) = —X=i
2. T,

which means that these residuals form a generating family. Moreover, from [4-3], it follows
that they are orthogonal. So these residuals factorize the indicators. They are the factors
of the model whose bivariate distributions satisfy (4-3), which then is isofactorial. When
using this model, we have only to krige each of the factors separately in order to cokrige
the indicators or equivalently for the disjunctive kriging of any function:

DK
[ Iy =il
T;

j
= %‘, [ H; (Y&)) ¥
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It is easy to extend these results to more than 4 values. However, if a variable takes
many values, then these should be grouped into a few classes.

The model can be tested experimentally by comparing the indicator cross variograms
v () with the auto variograms vy ;(h) for j>i.

4.4 Im nt Exerci

Let Y(x) be a stationary Random Function taking the values 0, 1, 2, 3, ... Suppose
that the cross-variograms of its indicators y ;(k) are proportional to the auto variograms

v i(h) for j>i.So the indicator residuals are orthogonal. Once they have been calculated
at the sampling points, we observe that:

1 Yx)=1

T ~ 1, and hence 1 Y@) = 1, are spatially well
1

~ the first residual H; (Y(x)) =

structured;

1 Yo =2 1Y(x) =21
T> T

— the other residuals H; (Y(x)) = , Hj3 (Y(x)), etc ..., are pure

nugget.

An example of this might be a set of mineralised veins, with a geometry which is structured,
but within which the grades are completely random. The lowest cut—off, as it makes the
distinction between the mineralised veins and their waste surroundings, defines the
geometry of the veins.

1) First residual: show that the disjunctive kriging of the indicator 1 Yo = 1 » which then
represents the geometry of veins, is equal to its kriging.

2) Other residuals: show that, at an unknown point, their kriged values are equal to 0.
Deduce that the DK estimation of the indicators ly(x) > ; can be writen:

Ay =) ¥ = (v =% PG 2j | Yix) = 1)

Note that any local estimation is based on the estimation of the geometry. This agrees
with the fact that the grade at a point x, knowing it belongs to the veins, is pure nugget, and
then cannot be the object of a really local estimation. Whether the mineralised
neighbouring grades are 1, 2 or 3, has no influence on the estimation of the different
indicators.

We are far from the indicator kriging, proper to the mosaic model. This would

estimate for example 1 Ye) = 3 using the indicators known for the same cut—off at 3, and

would then give an illusory local influence to the high grades. All this clearly shows that
the model, on which the estimation algorithm depends, has to be chosen to represent the
reality at best.
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4.5 Constructing the model

Constructing models with no edge effects on the sets 4; is simple.
a) Start by assigning the largest value (e.g. 3) to all the points in the region.
b) Then put the next value (e.g. 2) instead of 3 in some parts of the region.
¢) For another independent set of sub-regions, put the value I (instead of either 2 or 3).

d) Finally, for a third set that is independent of both of the previous ones, put the smallest
value (0).

These steps are shown in Figure 4-2 a to d.

Figure 4-2
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The procedure can be reversed by starting from the smallest value and working to
the largest. We obtain the same model, which is just inverted. In this case there are no edge
effects for the sets of points up fo each cutoff, and the factors are the residuals of each

indicator 1 Yg) < i starting from the indicator for the larger cutoff grade 1 Y&)<i+1- The

cross variogram v; (h) between two indicators is proportional now to the variogram of the
larger cutoff yj(h) ( > i).

The way the figure 4-2-d has been constructed makes that there is no edge effect
when leaving the small values. But when leaving the large values, we meet medium values
preferentially to small ones. So there are edge effects in this direction. Note that in the
mosaic model of the chapter 3 there are no edge effects in either direction (i.e. working
upwards or downwards). Lastly, in the models described in the following chapters (and in
figure 4-1 as the reader will realize), there are edge effects in both directions.

24



5. Isofactorial Models with Edge Effects:
the Example of the Gaussian Model

The gaussian model is the most commonly used model with edge effects. It is an
isofactorial model, the factors of which are the Hermite polynomials. DK is obtained by kriging
these factors separately.

In pratice the variable under study seldom has a normal distribution. So a transformation
is needed to get to it.

5.1 Diffusion Model

In general edge effects exist, and in order to go from a point with a value (i-I) to a
point with a value (i + 1), we go through points that take the intermediate value i. We then
use “diffusion models” . We shall not go into the theory in detail here, but it is based on
stochastic diffusion processes. Once the process has reached a certain value i at a particular
time, it can remain at that value, or move to a neighbouring state — either (i+1) or (i-1)-
but it cannot jump straight to any other value.

These models exist both when the values taken by the variable are discrete and when
they are continuous. An example of the latter is the commonly used gaussian model.
2G ian Model
In this model the variable Y{x) which is assumed to have zero mean and unit variance,

has a normal (i.e. gaussian) distribution. That is, its pdf is:

1 e
2

80 = 7=

which when graphed has the familiar form in Figure 5-1. Its cumulative distribution
function is the integral (Figure 5-2):

Gu) = I _: g dt

There is no convenient analytical expression for this function. However, its values have
been worked out and tabulated, and it can be approximated numerically when using
computers.
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Figure 5-2

The pairs of points (Y(x), Y(x+h)) are assumed to have a bivariate normal
distribution (i.e. any linear combination of them is normal) which is characterized by their
correlation coefficient p = p(h). Their pdf can be written as:

1 _ 2 4+u’-2tup

g (1) = ——— e 0
¢ 2 [1 - ¢

Consequently their isodensity curves are the ellipses:
2+ u?-2tup = constant

The scatter diagram of the pairs of values is elliptic (figure 5-3), and all the narrower that
the correlation is higher. When p(h) is zero the variables Y{x) and Y(x+ ) are independent
and the scatter diagram becomes round.



5.3 Hermite Polynomials

Hermite polynomials H, [Y(x)] are polynomials that have special properties related
to the normal distribution. They are defined by Rodrigues’s formula (n = 0):

1 d"g0)
/n! g(y)

n!

where _/1= is a normalisation factor. The Hermite polynomial Hy(y) is a polynomial of

degree n. More specifically,

L

Ho(y)
Hy(y)

Ho(y)

The other polynomials are related and can be calculated using the recurrence relation

(n>0):

Figure 5-3

dy"

1
5 0*-1)
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Hy1 0) = - =z ¥ Ha 0) = [ Has )

So it is easy to calculate the Hermite polynomials starting from the value of the normal
variable Y(x). In practice, we generally need at most a few dozens of them.

Except for Ho(Y(Jc)) which is a constant (Z), their means are:
ELH, ) ] = [ Ha0)g0) dy = 0

and, because of the normalisation factor, their variances are:
Var [ H, (Y¢)] = E{[ H, Y@)’} = 1
Lastly when p # n:
Cov [Hp (Y(x)), Hn (Yx)) | = E [ Hp (Y&)) Hp (Yx)) ] = 0

So for a given point x, the Hermite polynomials are orthogonal when Y(x) is a standard
normal variable.

4 Expressin nctions in Terms of Hermite Polynomial.

Practically any function of Y(x) can be expanded in terms of Hermite polynomials:

FIY®)] = fo + fi Hi [Y®)] + f2 H2 [YR)] + ...

= Z fn Hy [Y(X)]

n=70

Using the orthogonality of the Hermite polynomials, we find that

E[AYX) H, (Yx) ] = E [[ i fo Hp (Yx)) 1 H, (Y(X))]
p=0

= 2 fp E[H, (Y6) Hy (Y&
p=0
is equal to f, . This enables us to calculate these coefficients:

fo = E [ AV@) Ha V() ] = jf(y) Hy 6) 80) dy

for any given function f . In particular:




fo=E[f(Y®)]

Example: the indicator function 1 YO)<y.

The coefficient of order n is:

" Ha 0) 20) &y

fo= [ Lo B 0 & = |

We find for n=0:
Jo = GOo)
and for n = 1, from the definition [5-1] of the polynomials:

1
fn = /; n-1 (Yc) g(yc)

Hence the expansion of the indicator:

Lyg<y = GOG) + 5 = Hut 6 809 Ha [Y)] (5-2)
T

n=1

So any function of Y{x), in particular any indicator of Y{x), can be expanded in terms
of the generating family H, (Y(x)). We then need only to cokrige Hu(Y(x)) in order to
deduce the cokriging of the indicators and hence the disjunctive kriging of any function.

Exercise:

Show that the variance of f [Y(x)] is given by:

var Y] = 3 G
Hint: use the orthogonality of the polynomials.
5.5 Gaussian Disjunctive Kriging

When the pairs (Y(x), Y(x+h)) are bivariate standard normal with correlation p (h),
the Hermite polynomials have the following property:

E [H, (Y +h) | Y] = [ e W] Hy (Yx)) (5-3)
and so:

Cov [Hp (Yx)), Hp (Y& + )] = E [Hp (Y(x)) Hn (Y(x + h))]
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E [ Hy(Y(x)) E(H/(Y(x + h)) [Y(x)) |
=[e®]" E[H (Y)) Hy (Y&x)) ]

Thking p = n gives the spatial covariance of H, (Y(x)) which is equal to [p(h)]"; that
is, the covariance of Y{x) raised to the nthpower. Asp(h) < p(0)=1, the spatial dependence
of H,(Y(x)) decreases rapidly to nothing as n increases, i.e. the structure tends to pure
nugget.

For p # n the two Hermite polynomials H,(Y(x)) and H,(Y(x)) are spatially

uncorrelated. They are the factors of the (bi-)gaussian model, which then is isofactorial.
Consequently the polynomials have only to be kriged separately to give the cokriging of
the indicators and hence the DK of any function of Y(x):

fYE)PK = fy + fi [H (Y)IX + f2 [Ha (YOO)IX + ... (5-4)
If we denote:

Xo the experimental points,

Papg = P (Ko —Xp) the covariance between Y(xy) and Y{xg),

H, (Yy) = Hy, [ Y(xo)] the Hermite polynomials,,
we have:

[ Hy (Y(x)) ]K = Z-lna H, Yo

where the \, satisfy the system:

% l,,ﬂ Cov [H(Yy), Hn(Yﬁ)] = Cov [ H, (Yo), Hy YY)l

ie: Zl,,ﬂ[gaﬂ]” = [ Qax 1" for all o
B

As the correlation structure [p(h)]" of H, (Y(x)) rapidly tends to one of pure nugget, the
kriged estimator at an unknown point rapidly tends to its mean, that is, to zero. So even
if the coefficients f, are not negligible, we have to krige only fairly few polynomials in (5-4)
to get the result. Usually it is less than a dozen.

Exercise:

Show that the kriging variance of H, (Y(x)) can be written:

Oan = 1‘zlna[9wc]"

and that the DK estimation variance of f [Y{(x)] is given by:

Var (TY®)]-AIYG)FP) = i (o) O
1
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5.6 Gaussian Anamorphosis or a Transformation to Normality

Gaussian disjunctive kriging presupposes that the variables (Y(x), Y(x+h)) are
bivariate normal, and consequently that Y{x) is univariate normal. The variable studied,
Z(x), is very rarely normally distributed, so some sort of transformation (called
anamorphosis) is required to convert it to a normal variate Y(x). We then assume that the
transformed pairs (Y(x), Y(x-+h)) are bivariate normal.

This transformation converts the histogram of data Z(x) into a standard normal
distribution, Figure 5-4.

L

Figures 5-4

31




On the cumulative distribution functions of Z(x) and Y{(x), it associates each value z with
the value y which corresponds to the same cumulative probability, Figure 5-5.

A | )

F(z) = P[ Z(x) < z] G =P[Y(® <yl
, L 1
F(z) = G(y)
0 0
> 3
4 y
Figure 5-5

The functionz=¢ (y) that relates z andy is called the anamorphosis function, Figure 5-6.

1

z = (@)

‘___—/

Figure 5-6
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Comments:

1) Knowing the anamorphosis of the variable Z(x) is equivalent to knowing its distribution.
In particular the anamorphosis records the irregularities that are present in the
- experimental distribution and create problems when one wants to represent the
distribution with a given statistical law (normal, lognormal, gamma, ...).

2) The anamorphosis of a normal variable is linear (see formula 5-5 further).

2) The lognormal case is presented in exercise 3, chapter 5.8.

her Diffusion Model

It is not always possible to transform the variable Z(x) to normality. Suppose for
example that we are dealing with a concentration and that 50% of the values at the
sampling points are zero. They correspond to the 50% of negative gaussian equivalents,
but there is a problem deciding which gaussian value we should associate each zero. An
arbitrary choice for each gives a normal distribution, but the local estimates obtained from
these values could well be arbitrary too. (Moreover, the bivariate distribution will not
generally be normal).

Other isofactorial diffusion models can be used in cases when:
— The distribution of Z(x) contains "atoms” (that is, classes of identical values).

- The transformed variable Y{x) is not bivariate normal.

In these cases, the following models may prove to be appropriate (Matheron 1973, 1976,
1984, Hu 1988):

— The hermitian model which is a generalisation of the preceding (bi-)gaussian one. The
marginal distributions are normal and the factors are still Hermite polynomials.

— The bivariate gamma, and more generally, the Laguerre models. Here the marginal
distributions are gamma and the factors are the Laguerre polynomials.

— The negative binomial models which are the discrete equivalent of the previous models.

Lastly a general method has been developed for constructing isofactorial models for the
discrete case on an empirical basis. (Cf. Matheron 1984, Lajaunie and Lantuéjoul 1989).
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Exerci

Here are some simple exercises designed to help readers work with the normal,
. .bivariate normal and lognormal distributions.

1) A non standard normal variable

Suppose the mean and variance of a normally distributed random variable Z are m

and o2 (instead of 0 and I for standard variables). In this case the variable U = —Z——;—ﬁ

is a standard normal variate. In other words, any normal variable can be written as:
Z=m+oU (5-5)

where m is the mean, o2 the variance and U is the associated standard normal variate. This

expression is very convenient as it allows us to express any normal variable in terms ofa

standard one for which we know the pdf and the cumulative distribution function.

Use this expression to show that the cumulative distribution function of Z can be
written as:

P(Z<2) = G(Z;’”)

Hence deduce the pdf of Z by differentiating this:

_].; g(z_m) -_ 1 e _.%(?;‘;_ﬂ
o o Pxo

2) Conditioned normal variable (important!)

Let (Yp, Y;) be a pair of bivariate normal random variables with a standardised
distribution and a correlation coefficient p . Consider the random variable:

Yo - oY
U = -8-¢11 (5-6)
J1-0%
a) Show that:
EWU) =0
Var (U) = 1

U is normally distributed.
Consequently U is a standard normal variate.
b) Secondly show that:

Cov(U,Y;) =0
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So U and Y; are uncorrelated. Note that the pair (U, Y; ) is bivariate normal (any linear
combination of U and Y; is normally distributed because it is also a linear combination
of Yy and Y; , which are bivariate normal). As U and Y; are uncorrelated and normally
. distributed, they are independent.
c) Show that 5-6 can be written as:
Yo = 0] Yi + J1- 92 U

where U is a standard normal variate that is independent of Y; .
Consequently, if we know that Y; = y; , we have:

Mo | Yi=y) =0y + J1-0°U 5-7

From this deduce that the variable ¥y conditioned by Y; = y; is normally distributed
with mean E(Yp | Y1 = y1) = py; and with variance 1-p2

If Y; = y; then we can use the value E(Yy | Y1 = y1) as an estimate of Yy. Note that
the estimation variance of Yy given Y; = y;  i.e. 1-p2, does not depend ony; .

d)‘Deduce the regression equation of Yy knowing Y1, that is:
EXo | Y1) = e T
Note that it is linear.

e) Use the operation 5-7 to find the expression for the estimator of 1 Y,<y givenY;=ys:

E(ly<, IYi=yn)=¢G }:ﬁ%)
0?

3) Lognormal variable

A varlable Z is lognormal if its natural logarithm log Z is normally distributed. Let
p and 02 be the mean and variance of log Z. We can then write:

(& logZ=u+oY
where Y is a standard normal variate. Consequently:
7Z =enrtoY — poup eoY

So we see that in this particular case, the anamorphosis function Z = ¢ (Y) is an
exponential. In the subsequent calculations we shall often use:

E[eiV ] =e¥% (5-8)
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if U is a standard normal variate.

a) Show that the mean of Z can be written as:
M=E[Z] = et*¥
From this deduce that Z can be written as:
Z=Me°Y % (5-9)
b) Use a similar procedure to calculate E(Z? and hence deduce the variance of Z:

Var Z = M2 (€7-1)

4) (Bivariate) Lognormal regression

Suppose that Zy and Z; are lognormal. From (5-9) we have:

o2
M, e % Yo7

4
Zy = M ez

Zy

where Yp and Y; are standard normal variates and where they are bivariate normal with
a correlation coefficient p. Knowing that Z; =z; is, of course, equivalent to knowing that
Y; =y; with:

4
zn =M %N 7

From 5-7, show that:
¥, %
Zo| Zi=2z1) = (Mp€%® "2 | Y1 =y1)

2

= My e % @1 +/1-¢0)-7 (5-10)
where U is a standard normal variate.
a) Use 5-8 to determine the mean of this distribution:

EZy | Zy=2z) = E(Zp | Y1 =y1)

b) Given that Z; =z; , we can use Zy* = E(Zy | Z1 = z1) to estimate Zy. Separate out

Zp* as a factor in the formula 5-10 and show that the conditional variable is also
lognormal. Calculate the variance of this variable (see exercise 3b). This is also the
estimation variance of Zy given that Z;=z;. Note that in contrast to the normally
distributed case the estimation variance depends on the value of z;.
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¢) Regression: E(Zy | Z1) = E(Zy | Y1) v
Note that it is not the initial form of Z,, where Yy would have been replaced improperly
by EVo | Y1) = o V1! ‘
Show that the regression can be written as:
2%
EZy | Z)) = ¢ (Z)*
where c is a constant. Note that this regression is not linear.

Remark: the bilognormal regression is sometimes used in Uranium mining to model the
relation between the radiometric measures and the chemical uranium grades.
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6. More about the Gaussian Model

In the preceding chapter we saw that we had only to krige each of the Hermite
polynomials H, (Y(x)) separately in order to deduce the disjunctive kriging estimator of any
function of Y(x) provided that the pairs (Y(x), Y(x +h)) are bivariate normal. This chapter gives
more details on disjunctive kriging that are needed for instance to program it.

6.1 Disjunctive Kriging of the Raw Variable

The transformed variable Y{(x) obtained from the raw variable Z(x) is assumed to be
bivariate normal. As we saw earlier, disjunctive kriging allows us to estimate any function
of Y(x) by using its expansion in terms of Hermite polynomials. So we can estimate

Z(x) = ® [Y(x)] this way once we have its expansion:

Zx) = ® [Y)] = ¢o + ¢1 H1 [Y&)] + ¢2 H2 [Y(¥)] + ...

The function ® can be determined graphically as was shown in figures 5-4 and 5-5. Here
we shall express it in terms of the coefficients ¢, of its expansion. We now describe a way
to calculate these (Lantuéjoul and Rivoirard 1984).

Suppose there are enough sample data for the distribution of Z(x) to be known

experimentally. Although there are often many different values of Z(x), there are only a
finite number of them. We can arrange them in increasing order:

z1 <z < 3 <..<z

with the frequencies:

p1 P2 P3 o DI G pi=1)
Their cumulative frequencies are:

Fz) = P(Zx) <z)) =0

F(z2)

i

P(Zx) <z) =p1

Fizz) = P(Zkx) < z3) = p1 + P2

i-1
Fz) = P(Zkx) < z) = 2 pj
1

Fz) = P(Zx)<z) = 1-pi
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These cumulative frequencies correspond to gaussian equivalents (normal scores)
y; with the same cumulative frequency:

F@) =G )

So we have:

F@i+1))-F@) =G+ 1)-G O
That is:

Plzi = Z(x) <zi+1 ] = P[yi s Y&) <yi+1l

PlZx)=2z] = Py < Y(x) <yisil

So Z(x) will be equal to z; when the gaussian equivalent lies betweeny; andy; ;. This allows
us to determine the coefficients of the transformation:

$o = E[®Y)] =E [Z&)] = > piz

6n = E[20) Hy (¥0))] = j ® ) Hy 0) 20) &

1 i o
-3 j,_y % Hy ) 80) dy
Yi

i=1

= 3 il Hat 00e2) 80i1) ~ = Hoa 0 500

i=1

~,

1
= 2 Zi1— Z,) ‘/—- Hp 1 (Vt) g(y;)

for glyg) = g(- ») = 0 and gly1+1) = g() =

As we now know the coefficients, we can krige the H,, [ Y(x)] to obtain the disjunctive
kriging of Z(x) = ® [Y (x)] :

¢ [ Zk&) 1°K = ¢o + o1 (Hi [YONX + ¢ (H2 [YRDX + ...

.2 The Relation en the Covarianc

Let us consider the expansion of a function f(Y{x)) in terms of Hermite polynomials:

Y@ = fo +§1°_‘, £ Hi(YE)
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with fyp = E [f (Y (x)) ]. Its spatial covariance is:

Cov [f¥ + m), AY@)] = E [(1¥e + Wl -fo) (V@] -fo)]

= E[( 3 fu Y&+ 1)) ( 3 fo Hl¥)] )]

nz1 p=1

Since the bivariate distribution (Y(x), Y(x-+h)) is assumed to be normal the Hermite
polynomials are orthogonal and so we obtain:

Cov [f¥G + B), X = 5 F:)? E [HY + b)) H{Y)]

nz1

=2 () [e @I (6-1)

nz1

So there is a relationship between the covariance of the gaussian equivalent and any
function of it. In particular, we get the following relation between the covariance of the
gaussian equivalent obtained by anamorphosis, assumed to be bivariate normal and that
of the raw variable Z(x)= ®[Y(x)]:

Cov [Z(x), Z(x +h)] = 2 ($n)? e @) (6-2)

n=1

This relation can even be used to test the binormality of the pairs (Y{x), Y(x+h)).

Remark:

As n increases, [p(h)]" becomes spatially less dependent and tends to pure nugget.
In particular, for n>1, [p(h)]" is less structured than p(h), which is the covariance of the
gaussian variable. From (6-2), Z(x), or more generally, from (6-1), any function of Y{x),
proves to be less structured than the gaussian variable.

6.3 Indicators

In many problems involving thresholds, we want to estimate whether the unknown
value Z(x) of the variable at pointx is more or less than a certain cutoff z.. In other words,

we want to estimate the indicator 1 Zk)<z - [Note that this is not a question of knowing
if an estimated value Z(x)* is less than the cutoff, which is represented by the

indicator 1 26y <z |-
In the gaussian model, the situation Y{x) < y. isequivalentto Z(x) = ®/Y(x)] < P(y.).

By choosing y. so that z. = ® (), that is, the cumulative frequency G() equals F(z),
we have:
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1Z(x)<zc = 1Y(x)<yc

We know the Hermite polynomial expansion of this (5-2):
- 1
Gy, + z "‘/= Hp1 (vo) 80vc) Hy [Y()l
T n

So the DK estimator is obtained by kriging each of the H, [Y(x)] separately (5-4):

Log<a® = G609 + 3 -—f; 1 00) 806 (Hy [YODK

As the kriged values tend to 0 rapidly as » increases, only a few terms are required, even

though the coefficients 71—,-1- H,; (vc) g(yc) are not negligible.

6.4 Ore and Metal ntiti

Let Z(x) represent the grade of an ore at a point x. As we have seen in 2.2, the
quantities of ore and metal recovered above a cutoff z are, apart from a multiplicative
constant, equal to:

1 Zx)=zz,

Z(x) 1 Z()=z,

If we let y. be the gaussian equivalent of z, and Y(x) be the gaussian transform of
Z(x), then the quantity of ore becomes:

1 Y=y,

That is:

1-1 Yo)<y. = 1-G(y.) - Z 71;;-‘ n-1 (Vc) 80e) Hp[Y(x)]

1

Similarly the quantity of metal can be written as:

Z(x) 1 Z@z=z = P [Y(¥)] 1 Y@)zy.

= (3 ¢, Hy [YO lywsy.

pz20

This is a function of Y{x). It can be expanded in terms of Hermite polynomials:
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Z(x) 1 02z, = Z qn H[Y(x)]

nz0

The coefficients g, , depending on y., can be written as:

an = E [® (Y®) 1 vey=y, Hn Y®))]

= j( S 6, Hy 0) 1yay, He ) 80) &y

p=0
=2 [ Hy0) HA0) 80) &
p=0 c

If we let U % (v;) denote the integral in the formula above, then:

qn = Z ¢p U;(YC)

p=0
Using the relation:

-1
UZ = "/_;l"'HpHn—lg'*'

B Sy

-1
v
and the fact that Uy = Uh we can get a recurrence formula fromU? | e):

Ug (YC) = I‘G(Yc)

0o = :f,—:— Hit 70) 800

o

Once we know the expansions of the quantity of ore and of metal, we get their DK
estimates by kriging the H, (Y(x)) separately:

[ zp=e ] = 1-G6 - 3 71-; 1 00) 80e) (HLY@DE

[Z&) 1 2922 1PK = qo + D gn (HAYODS
1
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7. DK and Conditional Expectation

In chapter 2 we have seen how DK makes it possible to estimate functions fIY&)] of a .
variable Y(x). Here we will see another estimator, more consistent and theoretically more
powerful, the conditional expectation. However we are able to use this estimator only in the
case of multivariate normal distributions.

1 The Mathematical i i Inconsistencies of D

Disjunctive kriging is just the same as cokriging indicators. As we have seen in 2.3
this ensures a certain amount of consistency between the estimates of the different
functions. In particular we have:

Ay, 2v0<) P = Lyes) K = L vi<y) X

But kriging a positive valued variable does not always give positive kriged values, nor does
cokriging indicators necessarily give results that lie between 0 and 1. Sometimes the DK

estimate of 1 Yo)<y for small values of y turns out to be negative, and similarly the
estimate is sometimes greater than I for large values of y. This is clearly a nuisance.

7.2 The Conditional Expectation in Muitinormal Model

Suppose that we are estimating the indicator 1 9,5 Y@<y, using the values Y(xq) = (Vo)
which are available around the point x. The estimator which is theoretically the best is:

Elly<sY®) <y | Y0a) =va ... ]

=Plyn=Yw)<y2| Y¥a) = ya .- |

That is, it is the conditional probability of having y; < Y(x) < y» given the Y(xo)=yq -..
But this conditional distribution can be determined only for a multi-normal random
function.

C
In that case, the multivariate distribution of variables like (Y{x), Y(xy), ...) is
multinormal; i.e. any linear combination of these variables is also normally distributed.
Consequently, the conditional distribution of Y(x) given the Y{xo) = yq ... is normal, with
a mean value equal to its kriged estimate:

Y(X)K = Zl" Ya
and with its variance equal to the kriging variance og 2 The reader will notice that this

conditional multinormal distribution generalises the conditional binormal one which has
been studied in exercise 2 chapter 5.8. Its pdf can be written as:

43




1 _ y-zl“ya 2
g8lys) = P oK € ( K )

So the estimate of 1 ysYw<y, is then equal to:
E[l, <voy<y, | Yx0) = ya ... ]

=Py =Y&)<y2 | Yia) = ya ... ]

p4!
= J 80 | ya -.) dy
Y2
- o1 . . _ Y- Z A% Ya
Now this is a probability and so its value lies between 0 and 1. If we put u = e
we can easily show that this is:
_ A _ A2
G (2 > 2 ya Y- > Ya
11):¢ oK
Similarly the estimate of any function f/Y{x)] can be written as:
E[AYX)] | Y*a) = Ya .- ]
[
= | o) 80 | ya ...) dy
”
= J fOC 2 yq + ogu)gu) du [7-1]

So if f]Y(x)] is a positive function this estimate will be positive. Similarly, if we are
estimating two functions with one always greater than the other the difference between
the two will always be positive. So the estimator (which is the conditional expectation) will
always ensure that the results are consistent, and as such, it is preferable to the bivariate
normal DK. However the multivariate hypothesis that is theoretically required is much
more restrictive than the one on the bivariate distributions.

Moreover DK is valuable for two reasons:

1. It allows us to estimate functions even outside the normal framework (when it is no
longer possible to obtain the conditional expectation).

2. As we will see in the next chapter, it is easy to estimate regularized variables using DK.



8. Estimation of Regularized Variables

In linear geostatistics it is possible to krige a regularized variable without kriging each
of its points. This is also true for DK. The regularized of a function f[Y(x)] can be estimated
directly without having to estimate each point.

8.1 Kriging
In order to krige a regularized variable:

ZW) = Il,IV Z(x) dx

we do not have to krige individually each of the points inside V" even though it is equivalent.
We can krige directly the regularized variable. We just replace the kriging system for each
point x :

% Ag Cov (Zg,Zg) = Cov (Zg , Z(x)) for all «
by the system for the block V':
% Ag Cov (ZaZg) = Cov(Zg, Z(V) for all o
with:

Cov (Za , ZV)) = —1'; J  Cov (Za , Z6) d

This property is very useful for estimating regularized variables using DK. This may
be in a gaussian framework, as it is here, or in a different model. Suppose that we want
to estimate the regularized variable:

1
> | ey

Now since:

FIY®)] =fo + Z fn H, [Y(x)]
1
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we can deduce that:

L, weena =+ 35 [ [ oo ax ]

To obtain the DK estimate we only need to krige each of the terms independently:

1
= | B ey ax

So:
[+ | ey ] -5+ ;fn[-};jvn,,mx»dx]"

The result of this would be exactly the same as the average of the DK estimates of f(Y(x))
at each point.

3 Example:; DK of a propertion

Suppose we want to estimate the regularized indicator:

1
v IV Lygyey ax

This is the average of all the indicators (which take the values 0 or ) inside V. As such
it represents the proportion of points where Y(x) is less than y.

From (5-2) we can see that:

L R e LA S T

The kriged estimate of —11; I H,(Y(x)) dx comes from the system:
4

S dup Cov [Hy (Ya), Ha (9] = Cov [ Ha (%) , ;| Hu (V) de ]
B Vv

ie.:

> dup Cov [Hy (Vo). Ha (9] = 35| Cov [ Ha (Vo) , Hy (VG0 1 i
B 4 .

Since the covariance of H, (Y{(x)) is [p(h)]", this becomes:
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oL .
5, hos Lo > |, e e

- ‘Hence the DK estimator of the proportion is:

(5[ Troey @17 = GO) + 37 Hux 0)86) 5 [, Ha 00 e 1¥

- GO+ 3 71-; 1 0) 80) { Y Ana HiYa) }

In practice, we need (just as in chapter 5.5) to krige only a few factors, that is, to solve only
a few systems.

In comparison, if we want to estimate the same proportion via the conditional

expectation we must estimate the variable 1 Yoy<y at a large enough number of points

for it to be representative of the integral over V. So we have to solve the kriging system
for each of these points (but the matrix on the left is the same and only has to be inverted
once).

4 Im nt commen

In the gaussian anamorphosed model we can now estimate the indicator
1 Zw<z = 1 Yo)<y

where z = ¢ () either using DK or conditional expectation. Similarly we can also
estimate the proportion of points in V where Z(x) < z:

1 1
v IV 1 209<z ax = v jV Lygy<y

However we cannot estimate indicators on a regularised support such as:

C

1 ZW)<z

For this, a change of support model is required (see the second part of the book).
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9. The Problems of Stationarity

In linear geostatistics the condition z Aa = 1 is normally used when kriging a variable.
This makes the local estimation more robust against a lack of stationarity.

Using such conditions in non linear punctual estimation requires caution. Only in the
mosaic model are there no problems. In DK estimation for example, these conditions lead to
problems of convergence that must be looked at closely. In the case of the conditional

expectation, the condition Z/'La = 1 is justified only when estimating a lognormal variable
(lognormal kriging).

9.1 Kriging

Let us recapitulate briefly on linear kriging. For simple kriging (i.e. kriging with a
known mean) we have:

Z@®® - E [ZW)] = X 4 [Za - E (ZJ)]

As the expectations E[Z(x)] and E[Z,] are known and are equal to each other (= m), we
have: B

Ze)SK = S 2 Zg + [1-2 Ag 1 m

This shows that SK gives a weighting factor 4,, = 1- 2 Ag to the known mean m. When

the samples are fairly close (relative to the variogram structure) this weight is small. It
increases as the information becomes more sparse, and the mean tends to counterbalance
the lack of information: its role is more important in areas where there is less information.
This is just the consequence of the stationarity hypothesis which gives a local meaning to
the mean m. In mining this causes problems in areas that are under sampled because they
are poorer than average and hence less economically profitable. (This should make us
reconsider the stationarity hypothesis). Even in cases where the sampling is regularly
spaced, the hypothesis of stationarity which attributes a local significance to the mean
value that has been calculated over the whole deposit, may seem too strong.

We then use kriging with an unknown mean. (This is called ordinary kriging). In this
case the sum of the kriging weights of the neighbouring data is 100%:

She=1

The kriging estimator is Z(x)°X = > 1, Z,. It is unbiased whatever the value of the
unknown meanm = E (Z(x)) = E [Z,]. So:
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EIZ() - Z0)°F| = E(Z@) - Y Aa Za) = O

In other words, we assume that the mean can take any value, and that this may vary from
one area to another but must be (approximately) constant over areas the size of the kriging
neighbourhood. This excludes systematic trend or drift at this scale.

2 Cokrigin:

What is true for kriging single variableé .is also true for cokriging. For example, if
the mean is known, we have:

[ Zi()~ EZ1eDICK = 3 Mo [Z1a- E(Z12)] + D 20p [Z2p~ E(Zp)]
a B
So if E(Z;(x)) = E(Z;o) = m; andsimilarly E(Zg) = m;, then:
Zy0)K = > dia Zia + 2. J0p Zop + (1= Y hia) my — (D A25) m2
a B a B

Here o describes the data on the variable Z;, and 8 those on Z;, which need not to be
located at the same points.

If we instead assume that the means are not known then we use the non bias
conditions:

zlla =1 ' leﬁ =
a

Note that the condition z}qa = 1 requires at least one value of Z; inside the kriging

a
neighbourhood.

9.3 Disjunctive kriging

Let us now consider the cases of indicators and of disjunctive kriging. In the mosaic
model imposing the condition z Ao =1 on the single system guarantees the
unbiasedness of the estimator for all the indicators or for any function of the variable such

as f(Y(x)):
E[ AY(®)*] = >.4* E[ AY2)] = E[ f (Y))]
since the means, E[f(Y{(x)] and E [f(Y,)], are locally the same.
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In the isofactorial models any indicator or any function of the variable can be
expressed in terms of the factors:

Y®)] = ao+ > an Hy (Y&))
1

When we impose the condition 2 ne = 1 on the kriging system of each of the factors:

a

[ Hn (Y(x))]K = z}ma H, (Yy)

we have:
E [Hp (Y(x»]K = Zlna E [ H, (Yo)]

= E [ Hy (Y))]

and then:
E [f{Yx)*] = ap+ >.a, E [ H, Y@)I¥
1
= ag + Zan E[ H, (Y))]
1

= E [(YW))]

So the estimator is unbiased whatever the local means of the factors. If, however, the
means of the factors are (locally) unknown then so are those of the indicators and so is
the (local) distribution of the variable. Taking gaussian DK as an example, this means that
the ”gaussian” equivalent Y(x) does not necessarily have (locally) a mean of zero and a unit

" variance, and does not even have (locally) a normal distribution. The factors (here the
Hermite polynomials) are not necessarily orthogonal, which means that the optimality of
the estimator is no longer guaranteed.

Moreover the unbiasedness conditions for gaussian DK have to be used carefully.
Any function f[Y{x)] can be expressed in terms of (an infinite number of) Hermite
polynomials:

FIY®] = fo+ X fo Ha [Y)]
n=1

As the structure of the Hermite polynomials tends rapidly to pure nugget with increasing
n, kriging the H, (Y(x)) at any unknown point without any unbiasedness condition soon
returns to the mean value (i.e. zero) say when n= L+ 1. This is why so few polynomials
(L) actually need be kriged.
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The situation is different when an unbiasedness condition is introduced into the
kriging system. In this case, for n> L, we have:

[ H, (Y(x))]K = Z H, (Ys)

1
N

where N is the number of sampling points x,, in the kriging neighbourhood, and there is
no reason for these quantities to be zero. But we have:

o L
Z fon Hy (Yo) = fYa)-fo- 21 fn Hn (Yo)

n=L+1

So the estimator of f(Y(x)) which has an infinity of terms:

L ®
R = fot+ 3 fo S na B O+ B (3 o (V)

a n=L+1

becomes:
L 1 L
fO + z fn Z Ana Hp (Ya) + 7\7 Z [f(Ya)"fO' Z fn H, (Ya)]
n=1 a a n=1
or more simply:
L 1 < 1
f(Y(x)) ==}i §:ﬂ32)+'25'ﬁ1280qm ‘E?*Hk(ya
a n=1 a
There is now only a finite number of terms. As:
S Gramm) = 1-1=0
pe N
we find again as expected:

EL R¥6)*] = 3, BLAYa)l = ELf (Y&)

This was for a punctual estimation. It is also possible to introduce unbiasedness
conditions in the DK estimation of regularised variables. But this will not be possible when
dealing with a change of support (see 12.1).

9.4 Lognormal kriging

Adding unbiasedness conditions to remove local bias cannot be done in general when
using the conditional expectation. The condition Z Az = 1 inthe kriging system for the
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gaussian equivalents would not ensure the removal of local bias when estimating a
nonlinear function. A notable exception is the case where the function fis an exponential,
which corresponds to estimating a lognormal variable. As a matter of fact, if Z(x) = f(Y(x))
is a lognormal variable with log mean p. and log variance 0?, then:

Log Z(x) = Log f[Y(x)] = n + o Y(x)

and we can write:
Z() = fiY®)] = @4+ oY) = ¢k ¢ 1O
Its means is (see exercise 3 in chapter 5-8):
EZ@)] = E[fIY®)] ] = e E[e7®] = e#*%

We can estimate Z(x) = f[Y(x)] by integrating (7-1), which gives:

R
e g+ o> MY+ —E

or, knowing Log Z,= p+ 0 Yy :

e (- 4 + Y A°LogZy + Sk
— e LuZ@)™ + 25E

The term 02 0% (which must not be forgotten) is the kriging variance when estimating Log
Z(x). If y denotes the variogram of the logarithms then:

Pk = - S AP -ve) = [1-(C A0 + D 2WPyes
So the estimator becomes:
e - 1%+ Y 1LogZa + (1Y APV5 + 3 > 1¥e

Now if we impose the condition Z Aqe = 1, we obtain:

Ze)* = e LAToeZa+ 32 Ky

This estimator is unbiased whatever the local mean and variance, say p’ and ¢’ of the
logarithm, and hence whatever the local mean of the raw variable:

E[Z(x)*] = e ¥ + 124 1)+ 5 ) 1l

’ a2

= el *+T = E[e'eZ®] = E[Z(x)]

Comments:

Whether there is or not a condition on the 4, , these estimators are obtained with
the kriging (or another linear combination) of the logarithms. Be careful however! Just
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taking the expectation and forgetting the other terms is not enough and would introduce
a dangerous bias. The term lognormal kriging often covers such estimators.
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PART TWO: THE CHANGE OF SUPPORT
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10. Change of support in Global Estimation

Every geostatistician knows that the distribution of a variable, and in particular its
variance, depends on the support on which the variable is defined. Often the data are values
measured on a quasi—punctual support, whereas what we want to estimate is defined on alarger
support. Hence the importance of models that can take the change of support into account.

We will see here a commonly used and very powerful model: the discrete gaussian model.
We will consider the case of estimating the global distribution first (the present chapter), then
(next chapter) the case of local estimation.

In the first half of this book we have seen how to estimate a function of a punctual
variable, given sample information at several other points. For example, we saw how to
estimate an indicator:

1 Z(x)<z

Tts mean value over the region represents the distribution function of the variable Z(x):
F@) = Pl Z0) <z] = E[ lzpe<.]

To be precise, the point corresponds here to the support of the samples, and is usually
very small, e.g. a drill core on which the metal grade has been measured. The grades
measured on a small support like this can be much richer or poorer than those measured
on larger supports v, e.g. mining blocks, which have more intermediate values. See Figure
10-1. Of course, the average grade is the same whether we consider small supports or large
ones. The difference in the distribution between large and small supports is called the
support effect by geostatisticians.

A

small support x

large support v

Figure 10-1 : distribution of values.
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The cdf also represent the means of the indicators 1 Zx)<z and 1 Z()<z*
Fo) =E[lzy<:1 =Pl 2() <2]
F,@ =E[lzp<:1 =P[Z0) <2]

Their difference (fig. 10-2) shows that estimating 1 Z@)<z for a point support is not

equivalent to estimating 1 Zw)< for alarger block. A change of support model is needed
to estimate the distribution of blocks given that of points.

In this work we assume that the histogram of our data (weighted, if necessary, to
remove the effect of clustered data locations) is representative of the distribution of point
values. But sometimes we cannot, particularly if there are too few samples or if their values
are very variable. In these cases even the mean value over the region is not well known,
and so it is better to compute the global estimation variance of this mean (linear
geostatistics) or even to look for confidence intervals for the unknown mean value. In
mining, this difficult problem has been studied by Sichel for independent and lognormally
distributed values.

The aim of the second part of this book is the change of support. This is vital for
predicting recoverable reserves in mining, but it also plays a very important role in other
fields such as environmental sciences where we have to estimate indicator functions or
probabilities of exceeding thresholds. .

Figure 10-2 : cumulative distribution functions.
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10.2 Recoverable reserves

Let us now consider the miner’s task of estimating recoverable reserves. Suppose
that a block v has a grade Z(v). Its recoverable reserves at cut~off z are:

— the ore tonnage, given apart from a multiplicative factor by the indicator 1 Z()=z

— the quantity of metal, given by Z(v) 1 Z()=z

For convenience we define the Conventional Profit Function!, which is:

Z0) 1 z0)22 -2z L2y = (20) -2) 1 24y
This is equal to (Z(v) —z) if Z(v) exceeds the cutoff z and is 0 otherwise.

Before mining commences we have data only from the exploration drillholes. The
grades Z(v) of the blocks are not known. The recoverable reserves are precisely what we
want to estimate in order to predict the results of selecting blocks above a certain cutoff.
(We assume that selection is free; i.e. blocks will be selected individually as ore or waste
independently of others).

Suppose we have a 50 x 50 grid of sampling data. It would be pointless to estimate
the reserves of each 5 x 5 selection block individually. When estimating the local reserves
we should rather know the reserves contained in the N=100 blocks v; inside a 50 x 50
panel. (Fig. 10-3). To be more precise we want to know:

— the ore tonnage of the panel (given by the number of blocks over the cutoff grade):

> 1 242z

or equivalently, the proportion of these blocks in the panel:
1
-ﬁ Z 1 Z(v,-)zz

— the metal tonnage:
1
N >z w) 1 zpy2.

1 1n effect the reader will show the following result. Imagine a mining exploitation where each of the blocks v (with known
grade) can be selected independently from the others, where the value of a block is proportional fo its metal content,
and where the extraction and treatment costs, proportional to the tonnage, are the same for each block. With these
conventions the profit is maximized by selecting each of the blocks if its metal pays these costs, i.e. if its grade exceeds
a given cut-off z. For each of the blocks the profit is equal, apart from a constant factor, to our ?conventional profit”.
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For the global estimation of recoverable reserves our objective is to estimate these
variables for all the blocks in the deposit that is:

— ore tonnage: Tz = E | 1 Zw)=z 1 = PL2Z(v) =z ]
- rﬁetal tonnage: Q@) = E[ Z(v) 1 Zw=z |
~ Conventional Profit: B(z) = E[ (Z¥) - 2) 1 Zwy=z 1 = Q@) -z T(2)

— Average Recovered grade: m(z) = %g— =E[Z(V) ]| Z(v) =2z ]

Clearly if we know the distribution of block grades Z(v) we can calculate all of these.

_Remark: information effect and conditional bias

The recoverable reserves as they have been defined above assume that the block
grades Z(v) are known (exactly) when the selection is being made. So they take account
of the support effect.

It is true that the ultimate information available when the selection is made will be
much more detailed than at the exploration stage, but the block grade Z(v) will still not
be known exactly. So the selection is based on estimated values, and consequently it will
not be as good as if the grades were known. The estimates of recoverable reserves should
also take account of this information effect as it is called.

Suppose that the ultimate estimator 'Z(w)“ is conditionally unbiased (which is
practically the case with kriging if its neighbourhood is large enough); that is,

E[Zp) | Zw)"] = Z@)"
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The average recovered grade:

E[ZW) | Zo)* =z ]
will equal the predicted value:

E [ Zewy™" | Zoy* =z ]

We then need to know the distribution of the final estimated grades Z(v)** (instead of the
real block grades Z(v)) in order to estimate the reserves.

10.3 Selectivi rv

In mining the distribution of grades is often represented by the corresponding
“grade-tonnage” curves. For example mine surveyors plot:

— the ore tonnage T as a function of the cutoff grade z

- the metal tonnage Q as a function of the cutoff grade z
— the average grade m as a function of the cutoff grade z
- the conventional profit B as a function of the cutoff grade z
— the average grade m as a function éf the ore tonnage T
— the metal tonnage Q as a function of the ore tonnage T

The functions T(z), Q(z), B(z) and m(T) are always decreasing functions whereas m(z) and
Q(T) are increasing functions. Two of these functions in particular (the metal against ore
tonnage and the conventional profit against cutoff) are valuable when one wants to
compare the selectivity for different sized supports (Matheron 198 1).
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T total tonnage set equal to 1.0

Figure 10-4

The graph of metal against ore tonnage is always convex from below. If we draw a
line from any point (7, Q) on this curve to the origin, its slope is Q/T = m. The slope of
the tangent at the point (T, Q) is equal to the cutoff z , and the tangent cuts the Q axis at
the value B. . . _

Now if we plot the metal against ore tonnage for two different supports, the one for
the small support always lies above the one for the larger support for the same ore tonnage.
Figure 10.5 shows this.

small support

4
Q A\

large support

Qv

Figure 10-5
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Figure 10-6

The other profitable curve is the one for conventional profit against cutoff. This is
always convex. The tangent at the point (B, z) cuts the two axes at the points (O, Q) and
(m=QIT, 0), and its slope is — T..

If we plot these curves for several supports we see that for a given cutoff grade the
conventional profit decreases as the size of support increases.

Figure 10-7
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Plotting the sets of curves of Q(T) and of B(z) is very valuable for assessing and
comparing the selectivity at different support sizes. Clearly, the change of support models
used to estimate the distribution of block grades from that of the samples must respect
the ordered relations among the curves.

10.4 Cartier’s Relation

We now want to work out how to obtain the distribution of the blocks Z(v) from that
of the grades Z(x) (which we know). We need a model to do this, and it has to satisfy certain
conditions.

— First, the mean values must be the same:

E[Zx)] =E[Z()]

_ Second, from linear geostatistics (Krige’s relation) we can calculate the variance of Z(w)
from the variogram model y(h) of Z(x):

Var Z(v) = Var Z(x) -7 (v,v)

"The term ¥ (v,v) represents the dispersion variance of points inside a block v. It is the
mean value of y(x—y) where x and y describe the block independently:

_ 1
7o =5 | [renas
If there is a large nugget effect or a large short scale structure ¥ (v, v) will be large, and
so the support effect is marked.
— Third, there is Cartier’s relation:
E[Z® | Zv) ] = 20)

where x denotes a point located at random inside the block v. This condition means that
on average the expected value of the grade of a point chosen at random given the block
grade is just equal to the block grade. It is important because we can show (cf Matheron
1981) that it guarantees the order relationship seen in the metal against ore tonnage
curve and in the conventional profit against cutoff grade curve.

10.5 The Discrete Gaussian Model (1):

Preliminary remark: In the discrete gaussian model, the field is considered as the union of blocks, and the
samples are randomly located within their block. In the narrow sense this model can be used for a change
of support for the global distribution. In the wider sense (see 11.2) it is a more complete model that can
be used for the local estimation of distributions.
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In the gaussian case, the punctual variable Z(x) can be expressed as a function of a
standard normal variable Y{x):

Z(x) = @ (Yx))

The function @ is the gaussian anamorphosis function that we described in chapters 5 and
6. Tt is known experimentally because we know the distribution of Z(x).

The variable Z(v) canalso be expressed as a function @, of another standard normal
variate Y, :

Z@y) = @ (V)

We now will determine ) , which is equivalent to determine the distribution of Z(v). We
can rewrite Cartier’s relation:

E[® (Y®) | &4 (1) ] = P (1)
or:
D) (V) = E [2(YR) | Vv ]
To evaluate this we make one more hypothesis. We assume that the pair (Y, Y(x)) hasa
bivariate normal distribution with coefficient of correlation r . Since Y, and Y{x) are

standard normal variates the conditional distribution of Y(x) given Y;, = y, is normal with
mean ry, and variance I - 2 (see relation 5-7):

Y®) = v+ V1-12U
This gives us the anamorphosis function @y, for blocks:

D) (V) = J(I) ¢Y, + V1-2 u )g(u) du [10-1]

where g(u) is the density function of the standard normal distribution.

Remark: This change of support formula conserves lognormality: if Z(x) is lognormal so is Z(v).

Proof: $rom exercise 3-9 in chapter 5.8, we know that a lognormal variable Z(x) can be written as:

Z() = E[Z] €°YO-%

Using formula 10-1, we obtain:

2
Z(v) = E[zje "=

This is also a lognormal variable with same mean E/Z] but its logarithmic variance r? 02 is smaller than
the logarithmic variance o? of Z(x).
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In practice it is convenient to use Hermite polynomials. As Y, and Y(x) are standard
normal variates, a relation similar to 5-3 gives:

E [H, (Y(E)) | Y, ] =" H, 1)
So:
D) ) = E[® (Y) | Yy ]

=E[%¢n Hn(Y(J_C))!Yv]
= %:(bnE[Hn(Y(ZC_))IYv]
= %:(bnran(Yv)

So we obtain the anamorphosis coefficients for blocks by multiplying the corresponding
punctual coefficients ¢, by 7" We note that the lowest order term ¢y is the same since:

¢o = E[Zx)] = E[ Z2() ]

As there is no correlation between the different polynomials, we obtain (see exercise in
5-4): '

Var Z(v) = Var ®y) () = Z (pn)* "
1

Since Var Z(v) = Var Z(x)-¥ (v,v) , we can compute the value of the change of support

coefficient r which corresponds to the known variance of blocks (see figure 10-8). Note
0<sr=s1.

Var Z(x)

Var Z(v)

Figure 10-8
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Now that 7 is known, so is the block anamorphosis function ¢,, and hence the block
distribution. Since Y, is a standard normal variate (density g and cumulative distribution
G), we can easily estimate any function of Z(v), or equivalently any function of Y,,. As:

Zy) = D) )=z <« Y, =2y
with z = @) (y), we see that for example:
F2) = E[lzp<: 1 = P(2(0)<2z)

=E[ly<, 1 =P® <y = GO

So we can estimate the global recoverable reserves of a deposit when selecting blocks at
s cut—off z. The ore tonnage and quantity of metal are given by:

TWz) = E[ 1zp)=: 1 = 1 - G®)
0/2) = E[Z0) 1 70221

=E [ (I)(v) (YV) 1 Y,zy]

| 20 00 @
We can calculate Qu(z) using Hermite polynomials:

0, @) = L(%qsnrnﬂn(y»g(y)dy

=St | H0)s) &
0 y
As in 5-2, we can show that this is equal to:

1
¢ [ 1-G@)] - 21: o - H, 1 () 80

10.6 Exercises :

Here are some simple exercises. In these Z(x) is a stationary variable with mean m
and with covariance C(h). So its variance is C(0), and its variogram is:

v(h) = C(0) - C(h).
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Exercise 1 :

Let Z(v) be the average for a block v :
1
Zv) = — J Z(x) dx
Vv Jv

Let xp be a fixed point inside v. Its value is Z(xp).
a) Suppose that we know Z(xp) and want to estimate Z(v) by kriging:
~ First, by ordinary kriging (unknown mean).
- Second, by simple kriging (known mean).
Give the estimator in both cases and calculate the kriging weight of the mean m.

b) Now suppose we know Z(v) and want to estimate Z(xy) as before using ordinary kriging
and simple kriging. Give the two estimators and the kriging weight of the mean.

c) This time, repeat the first question (a) for a point x located at random inside v.
d).Repeat the second question (b) for a point x located at random inside v.

Show that when a sample Z(x) is taken at random inside the block v the kriged estimator
of its value, given the block grade, is equal to the block grade.

Does this result satisfy with Cartier’s relation ?

E[Z®) | Z0) ] = 2()

Exercise 2 :

Now we use the gaussian change of support model. As before v denotes the block
and x denotes a point taken at random inside v.

Zy) = D) [V ]

Z®) = ¢ [ Y ]

The pair (Y;, Y(x)) is bivariate normal with a correlation coefficient equal to the change
of support coefficient . By construction this model satisfies Cartier’s relation.

a) Suppose that we know the value of Z(x). Express the expected value of Z(v) given Z(x)
in terms of Hermite polynomials:

E[Zpy) | Z() ]

r= Hint : As Y, and Y{x) are standard bivariate normal with correlation coefficient r, we
know that:
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E[H, ()| Y) 1 = 7" Ha [YR) ]
b) Asin (a) we know Z(x). We want to estimate 1 Z(v)<z given Z(x) usingits expected value:

E[lzp<: 1 Z0)]1 = PIZ0) <z | Z® ]

Show that this can be expressed simply in terms of the cumulative normal distribution
G®).

= Hint : Since Y, and Y(x) are standard bivariate normal with correlation coefficient r,
the distribution of Y, knowing Y{(x) = y(x) is normal with mean 1y and variance I-r2. So
we can write it as:

Y, = nx) + y1-2 U

where U is a standard normal variate.

¢) Now suppose we know Z(v). Estimate 1 Z@W<z -
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11. Local Estimation

In the previous chapter we have seen how the global estimation of distributions can be
performed using the gaussian discrete model. We will now see how this model makes the local
estimation possible, whether by DK or by conditional expectation.

11.1 A Point - Block Model:

Suppose that we have a certain number of point samples Z(x) and that we want to
estimate a function of the average grade of a particular block Z(v). For example the
function could be an indicator:

1Z(v)< z

In the first half of this book, we were looking for models that linked the values observed
at different points (i.e. a point - point model). We now need a model linking the point
values with those of blocks. This problem is theoretically very complex, and so we need
to. make some simplifying assumptions. The procedure used is described below for the
gaussian case but it can be extended to others (e.g. gamma, ....).

a) The region is divided into blocks v; whose size is equal to the support v. For example,
in mining these blocks are the mining selection units.

Remark: Here, the block size and the position of the blocks are fixed (or nearly fixed). A high
grade area of limited size that would be found during mining may therefore be included in a
single block, or split into two or more blocks. In reality it is also possible for the geometry of

- mining blocks to differ from block to block, and to depend on the location of the ore found
during mining. This case is called “adaptative” geometry. There are no models for predicting
directly recoverable reserves in this case, so a simulation must be used.

b) We assume that the position of a sample inside a block is random, and consequently
“forget” its exact position.

¢) We assume that given the grade Z(v;) of the block v; containing a particular sample x;,
the sample grade Z(x;) is independent of all the other grades, blocks or points.
G

Now we are going to see what can be said about the different covariances. To start
with our point support variable Z(x) has a variogram y(h) (or a covariance C(h)) that is
assumed to be known. From linear geostatistics, we know that the covariance between two
blocks v; andv;, denoted by C(v;, vj), is the mean value of C(k) when one end of the vector
h sweeps over v; while the other end independently sweeps over v; . So we can evaluate
the covariance between any two blocks.

Similarly we can calculate the covariance between a pointx; and a block v;. So now

we letx; be a point chosen atrandom in v;. Clearly the covariance betweenx; and v; written
as C(x;, v)) is just the covariance between v; and v;, that is C(v;, vj).
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In the same way, if x; and x; are points chosen at random in their respective blocks
then the covariance C(x;, x;) equals C(v;, vj) too. Note thatif v; = v; = v this covariance
C(v,v) which is equal to the variance of the blocks also represents the covariance between
two samples chosen at random in a block. In constrast to this, the covariance between a
sample and itself (even if the sample is selected at random) is always equal to C(0), that
is, the variance of the samples.

Except for this last remark, we see that the point - point and point - block covariances
built up in this model by “discretizing” the blocks are just equal to the block - block
covariance which is considered as known.

11.2 The Discrete ssian Model (2

We associate the corresponding gaussian value Y;, with each block grade Z(v;), inthe

same way that we associated a gaussian equivalent Y(x;) with each sample grade Z(x;). In
the previous chapter we saw that if we know the coefficients of the Hermite polynomials
&, for the point anamorphosis, we can deduce those for the block anamorphosis ¢ :
they are just ¢, r" . The change of support coefficient r was calculated so that the block
variance corresponds to the correct value.

In order to link the different blocks and samples we are now going to assume that
any set of point gaussian equivalents Y(x;) , Y(x)) , ... and of block gaussian equivalents
Yy, , Yy, , ... is multivariate normal. As these gaussian equivalents have zero mean and

unit variance, the model is fully determined once we know the covariance between them.
We now work this out.

Let @y, be the covariance (or the correlation) between Y,, and Y,,. As the

corresponding raw variables Z(v;) and Z(v;) have ¢, r" as the coefficients of their
anamorphosis, we can check that:

Cosv) = 2 9™ (eny ) [11-1]

1

In practice, this equation is inverted to give us the covariance gy, ,; once we know C(v;, vj)
and ¢, and r.

Now let g, ,, be the covariance (or the correlation) between the gaussian equivalent
Y(x;) and Y, . This time, the coefficients of the anamorphosis for Z(x;) are ¢,,, while those
for Z(v;) are ¢, r™*. As before we can show that:

Clx;,vy) = Z ¢% " ( oy v )
1
Now since C(x;,v;) is equal to C(v;v;) we obtain:

C(Vi, Vj) = Z ¢121 rt ( Ox; v; )n
1
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By comparing this equation with [11-1], we can deduce the relation between point-block
gaussian covariance and the block-block one:

Oxv; = T Quy; [11-2]
That is, one is obtained from the other by multiplying by r.

Lastly, we can also show that the covariance @ 5, 5, between Yy, and Yy, satisfies:
Csx) = 2, ¢% (0xx)"
1

So:
Civ) = D #% (Ouy )*
1

Similarly, by comparison with [11-1], @y, , is obtained from g y, 5, by multiplying by r%

Qxixj = rzgvivj [11—3]

Thus the discrete gaussian model is fully determined once we know the change of
support coefficient r and the covariance between the block gaussian equivalents @ y; ;-

In practice we proceed as follows. We regularize the covariance C(h) of the raw
variable Z(x) to get C(v;v;) for the different possible distances between v; and v; . We can

then obtain the values of gy,,, for these distances by inverting the formula given above.
These values are then fitted into a covariance model. Once we know this covariance, the

change of support coefficient and the Hermite polynomial coefficients, the discrete
gaussian model is fully specified.

So it is a simple, neat and yet mathematically consistent model. Moreover it turns
out to be very useful in practice in non linear geostatistics. In the following chapters we
shall see how it can be used for local estimation using bigaussian DK or multinormal
conditional expectation. Moreover, it can also be used for non conditional simulations
and, thanks to the valuable properties of the multinormal distribution, conditional
simulations.

Exercise:

Although it was not used explicitely the way we built the model, the hypothesis (c) of 11.1
is satisfied in the gaussian discrete model. More exactly it is satisfied through the relations
between the covariances of the gaussian equivalents, as we will see in a particular case.

Let us take two blocks v; and v; and a sample x; inside v;. Let Z(v;), Z(v;) and Z(x;) be the
corresponding grades and Y, Y,, et Y{x;) their gaussian equivalents. We will now show

that, knowing the grade of its block, the grade of the sample x; is independent of the other
block, or equivalently, that, knowing Y,,, Y(x) is independent ofY,, .
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a) Show that Y(x;) can be written as:
Yx) = rY, + J1-72 U

with U; standard normal variate independent of Y,,, and that in particular, knowing

Yy, = Vv, Y(x;) is equal to:
Yx) = ry, + V1-2 Uy

Hint: Look at exercise 2 of 5.8 and use the fact that Y,, and Y(x;) are a standard normal
pair with correlation r.

b) By the same way show that Y,, can be written as:

Yv,- = Qv Y, + \/1“Qv.-v,-2 U,

with U, standard normal variate independent of Y,,, and that in particular, knowing

Yy, = Yv» Yy isequalto:

YV,' = Qv,- Vi }’v,- + \\/ 1 —QV,' ij U2

c) From the previous relations deduce that the covariance between Y(x;) et Y,, equals:

Cov (Yx)), Yy) = E Yx) ) = royy + \/1"'2 ﬁ—Qvi v,-2 E(U, Uy)

but that, conditionally to Y,, = y,,, the covariance between Y(x;) and Y,, is reduced
to:

-2 [1-0y. E(UL U5)

d) From the formula [11-2] the covariance between Y(x;) and Y,, in the discrete gaussian

model equals 7 @y, ;- Deduce:
EU, U3) =0

Conditionally to Y,,, the covariance between Y(x;) and Y,, is then zero, so that these
normal variables are independent as expected.

11.3 Disjunctive Krigin

In the discrete gaussian model, the multivariate distributions of the gaussian
variables Yy, , Y, , ... Y(x;) , Y(xj) , ... are multivariate normal. In particular, the
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bivariate distributions are bivariate normal. This allows us to use disjunctive kriging. The
problem is to use the appropriate covariance models.

Suppose that we want to estimate the indicator functions 1 Zw)<z forablockv given
the neighbouring data Z(x,). This comes back to estimating lY(v)< y given Y{xy), where

Zv) = ®(y) (V) and z = Pp)(y). Now 1yv <y is a function of Y, and it can be expanded
in terms of Hermite polynomials H, (Y;). This was given in 5-2:

_ 1
ly., = Go) + ; 7= He1 0) 80) Ha [%y ]

In order to estimate this by disjunctive kriging, we have to krige each H, (Y;) given Hy(Yo)
using simple kriging. That is:

[ 1y.<, 1PX = G) + }1:—}; w1 ©) 80) [ Hn (V) 1

We need to krige each of the Hy (1)) only once to obtain the DK estimator of any function
of Y, or of Z(v) that we want to estimate.

The kriging of H, (Y,) with a known mean (equal to zero) can be written as:

[ Hyn (Yv)]K = z Ana Hyp (Ya)

but it is more difficult to write the corresponding system. To start with, we write it in general
form:

Z g Cov [ Hy (Yo), H, (Yp)] = Cov [ H, (Yo), H, (1))]
B

Then we note that as the distributions are bivariate normal,

Cov [ Hy (Ya), Hn (Yp)] = [Cov (Yo ,Yp)I"
and

Cov [ Hy (Yo), Hp (¥)] = [Cov (Yo , V)"
So the kriging system is:

> A [Cov (Yo, YpI" = [Cov (Yo, V)I" for all o
B

As we are using the discrete gaussian model we know that:

Cov (Y,Y,) =rCov (Y, ,Yy)
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= T Qu,v
and:

Cov (Yo, Yp) = 1 Cov (Yy, , Yy

=7 Ova vp
except for a = §:
Cov (Yo, Yy) = Var Y, = 1
So the system turns out to be:

Ana + Z Anp rzn(Qvav,s)n = 7" (Ovev)" for all o

a=f

As n increases, the structure of the H,, tends to pure nugget; the kriging weights tend to
0 and so [H, (Y,)]X tends to its mean (zero) rapidly. Consequently only a few kriging
systems have to be solved in practice.

X X X
V.
]
X X
4
X X X
Figure 11-1

In mining for example, we do not try to estimate the recoverable reserves for each
small block, e.g. 1 Z()=z - We are satisfied with estimating the reserves corresponding to

the N small blocks v; inside a panel V which is the same size as the sample grid. Figure
11-1. The ore tonnage recovered at a cutoff grade of z is then equal to the number of
blocks above the cutoff:

Z 1Z(v,')z'z
i
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It is more convenient to express this as a proportion of the total:
L > 1
AT z Z(y)=z
N 4
The quantity of metal contained in this is just:

1
N ; Z(vy) 1Z(vi)Zz

It is not necessary to estimate Hj, (Yy) for each small block in order to get the DK
estimator of this. As we saw earlier in chapter 8:

1 1 1
— : = 1-G(y)- — H,_ — H, (Y,.
by 2 Lzesed 0)- 2 77 He1 ) 80) L7 3 Ha ()]
So we need krige only -1%,— z H, (Y,) directly. The kriging system is then:
i

1
Ina + 2 Ang " (Qravp) " =% 2 r (Ovev)" for all «

B=a i

Note: The right hand side is the mean of the n* power ofg,_,, for all the small blocks v;,
and not the n™ power of the mean of the gy, v, !

11.4 Conditional Expectation

As all the multivariate distributions considered in the discrete gaussian model are
normal, this model can also be used for the conditional expectation estimator. Given the
Y(to) = Yo the variable ¥; is normal. Its mean is the simple kriging of y,:

(YV)K = Z Aa Ya

and its variance is the kriging variance of y,:
ok
A similar reasoning to the one in chapter 7-2, gives us:
[1z6)<d® = [ 1y = E [1y<y | Y02) = ya ...]

=P, <y| Yxs) = ya ...)

- G(Y’%Kla}’a )
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where CE denotes the conditional expectation. This estimator has one important
advantage compared to the disjunctive kriging one: it is an increasing function of z and
varies from 0 to I. To obtain it we only need to solve the kriging system for Y, given the
Yo

> 4% Cov (Yo, Yp) = Cov (Yo, 1)) for all o
B

Using the discrete gaussian model this becomes:

Ag + Z lﬁrzg,,avp = Qu,v for all «

B=a

In DK we were able to estimate the recoverable reserves inside a panel. If we now
want to do that, in principle, we need to do the estimation block by block, that is

-;7 [ ; ]-Z(v,-)zz]CE = —117 > (1 zwy=z]E = '%,' > [1Y,,,.2y]CE

This means solving the kriging system for each of the N small blocks. However, as the
information used, the Y, are the same for all of the small blocks v; inside the panel, the
matrix on the left hand side is always the same. So we need to invert the matrix only once.

11,5 Uniform Conditioning using a Normal Variate

In the previous estimator, each of the N blocks Y;, inside a panel was conditioned

by its kriged value with weights Ao which vary from block to block. We can simplify this
procedure by conditioning each of these blocks with a single linear combination

Z A, Y, . For example, this combination could be the kriged value of _I%I: Z Y,,. Using

the discrete gaussian model we can calculate the required covariances, and hence the
expression for the estimators. This is one type of “uniform conditioning” [i.e. the

conditioning is done by a single variable, which is here Z Ag Y

There are other ways of uniform conditioning. We could, for example, estimate the
recoverable reserves of choosing one block v at random inside V. In that case the

conditioning is done by the kriged value of Y}, . This second type of uniform conditioning

requires stronger hypotheses than the first one because the assumption made until now
concerned only points and blocks: now it has to be extended to panels as well.

As computers have become more powerful these types of uniform conditioning are
no longer as valuable a simplication of the conditional expectation as they were at one
time. The choice nowadays is between conditional expectation and disjunctive kriging. In
practice, these two estimators are approximatively equivalent. The conditional
expectation, which is based on an assumption of multivariate normality as opposed to
bivariate normality for disjunctive kriging, has the advantage of giving results that are
completely consistent. However, if we do not make the assumption of normality, there is
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no convenient way of handling the multivariate distributions needed to evaluate the
conditional expectation. The strong point of disjunctive kriging is precisely that it can be
used for bivariate distributions other than the normal (e.g. gamma, negative binomial, with
orthogonal indicator residuals, corresponding to the mosaic model, ...). For example, we
can construct a discrete gamma model in just the same way as we did for the discrete
gaussian model.
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12. Problems with Stationarity

When a change of support has to be taken into account, the direct estimation using
gaussian DK or conditional expectation requires a strict hypothesis of stationarity. When this
is too strong, the special methods presented in this chapter can be used: uniform conditioning
by an imposed value, changing of support at sample poins.

12.1 Disjunctive Kriging an nditional E ion

The problems with stationarity mentioned earlier in connexion with point estimation
also arise for estimates that require a change of support. Except for the lognormal case
a non-bias condition could not solve the problems for the Conditional Expectation. It
cannot solve it either when a change of support is involved.

Let us now consider DK. For example, in the gaussian case, when we want to estimate
a point function:

FIY®] = fo + 2 Hy [YO)]
1
we have to krige the Hermite polynomials H, [Y(x)] given the H, [Y(x,)] for the sample
points:
[Hn (Y(x»]K = Z Aa Hy [Y(xg)]

As H, [Y(x)] and the H, [Y{x,,)] have the same mean locally (as Y(x) and Y{x,) ... have the
same distribution) then it is possible to impose a local unbiasedness condition:

> dpe =1
a

This operation is rather inconvenient because it leads to convergence problems and to a
non optimal estimator. Nevertheless it allows us to lessen the impact of the stationarity
hypothesis.

Things are very different when a change of support is involved. Now we want to
estimate:

finl =fo + an H, (Y,)
1

This means kriging H, (Y;,) given the corresponding point support polynomials:

[H, (Yv)]K = Z Ana Hy [Y(x0)]

But this time H, (Y,) and the H, [Y(x,)] do not have the same mean locally, for there is
no reason for the point support variables Y{x) to have locally the same distribution as the
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block variable Y,. Only the raw variables Z(v) and Z(xy) have the same mean. Imposing
an unbiasedness condition Z e = 1 on the kriging system for H, (Y,) would be

meaningless. Worse, this unjustified action would unfortunately cause some of the
estimators to diverge (instead of converging).

So for both gaussian DK and conditional expectation we cannot do without the
hypothesis of stationarity when we want to estimate a function of Z(v) such as 1 Z()<z -

12.2 Using Uniform Conditioning to Im Val

There is one way to overcome this problem of stationarity if we are prepared to group
the estimators for all the blocks inside a panel (there must be at least several dozen blocks).
This is often the case in mining geostatistics; see fig 10-3. If the data in the neighbourhood
of a particular panel V are too widely spaced, then using methods based on strict
stationarity is likely to provide estimates that are too far from the neighbouring values.
This happens when the recoverable reserves are being estimated, in particular for the
quantity of metal at zero cutoff:

1
N 21: Z(v;) 1Z(v,-)20

This is equal to the average grade of all the blocks v; inside V; that is:

5 % 20 = 20)

In linear geostatistics we normally prefer to use ordinary kriging rather than simple kriging
in cases like this. We can wonder whether it would not be possible to base the estimates
of the recoverable reserves on the (ordinary) kriged grade of the panel, so that the reserves
corresponding to a zero cutoff would equal this value.

Before doing this we must return to the discrete gaussian model. In this, the point
values have an anamorphosis function ®:

Z(x) = % ¢n Hy [Y0)]

and the block values have a different one ®g):

Zy) = Z ¢n " Hy [Y)]
0

where r is the correlation between Y, and Y(x) with x chosen at random in v. It is
determined from the variance of Z(v):

Var Zy) = > ¢3r™
1
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If we make the fairly strong assumption that this model holds for the panel as well
as the blocks, then we have:

V) = % ¢n ()" Hy [Yv] [12-1]

where the correlation 7’ between Yy, and Y{x) is obtained from:

Var Z(v) = ; (@) ')

So we multiply the point coefficient ¢, by ()" But this is just the same as multiplying
the block coefficients ¢, r" by R" = (r’/r)". The coefficient R which is less than 1.0 is the

correlation between Yy and Y, for a random y inside V.

So we change from a block to a panel in the same way as from a point support to
a block. Just as we obtained:

E [Z(ZC.) ‘ Zw)] = % ¢n E [Hn(Y().C.)) | Y] = Z ¢ " Hy, X)) = Z(©v)
0
so we can obtain:
BIZQ) | 20 = 5 00 OF Bl () | YA = 3 0" @) mo) = zm)
0

In other words, if we know the panel grade V' we also know the mean of the block grades
inside the panel. It is exactly the same value. But if we know the panel grade V' we can

deduce the estimate of any function of Z(v) (and hence of Y, ) from it. In effect, if we
assume, as usual, that the bivariate distribution of ¥} and Y, is normal then we know that
given that ¥y = yy, the variable Y} has a normal distribution:

- with mean Ryy and
— variance 1-R2.
So we can see that:

E[f(Yy) | ZW) =zV)] = EIfYY | Yv = w]

Il

ff(RyV + V1-R? U) g(U) du

In particular we get the following equations for the recoverable reserves.

— ore tonnage at a cutoff grade z = ®p) (¥):

E [lzws: | ZO = E [1y,2, | W

—_ 1—G( y—R)’V )

J1-R?
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— corresponding quantity of metal:

E [Z0) 1zgy=z | ZO)] = E [¢v (V) 1y2y | W

As the block anamorphosis function is determined by its coefficients ¢, 7", we can write,
as we did in chapter 6.4:

®, v 1y.., = % gn Hy [Y3)

where here g, = > ¢ ¥ Uz (y) . So we obtain the expression for the estimated metal
0
quantity:

> an R Hy [YV]
0

To summarize, if we know the panel grade Z(V) then we can deduce the recoverable
reserves from it. Then the metal at a zero cutoff grade (i.e. the grade without any selection),
Z(v) will be estimated to be equal to Z(V). In practice we do not know the true value Z(V),
so we can think of substituting its estimate Z(V)?X obtained by ordinary kriging. In this
type of uniform conditioning, where this value is being imposed on the panel, it is
important that Yi- should be determined so as to satisfy the formula corresponding to 12-1:

ZV)oK = % ¢n (') Hy [Y3]

even if this results in a distribution for the values of Y} that is not a standard normal
distribution. This relation effectively guarantees the underlying quality of the method; that
is, it ensures that the estimate of Z(v):

E(Z0) | Z0PK = 3 ¢ur (5)" Hy T
0

equals Z(V)9K.

This method should not be confused with the other types of uniform conditioning
described earlier. Compared to them, this one has clear advantages when there are
problems with stationarity, even if it is not strictly rigourous.

12.3 Changing of mple Poin

In this section we are going to consider a method that is generally referred to as
“service variables with a change of support”. Readers will know that “service variables”
are additive variables that are convenient to use and that can be estimated using linear
combinations in order to obtain estimates of other (non additive) variables. For example,
the accumulation and the thickness of a vein can be used in 2-D to estimate the ore grade;
similarly the ore tonnage and metal quantity to estimate grade; or the indicator functions
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for a range of cutoffs in order to estimate the metal quantity and the grade recovered at
these cutoffs. We have already seen that indicator cokriging (or disjunctive kriging, as it
is also called) can be used in conjunction with non-bias conditions provided that there is
no change of support involved.

The idea of this method is simple enough. It is like estimating a variable by using
indirect measures. For example, in uranium mines, the U grade of blocks is often estimated

from radiometric measurements. To be more precise the U grade U(v) = -‘17 J Ux) dx
1 4

is estimated from point radiometric measures Ra(xy). These are transformed into U
grades through a regression:

E [Ux) | Ra(x)]
which is a:function of Ra(x), say U[Ra (x)]. Then we assume that U(x) and U[Ra (x)] are
equivalent! in order to obtain U(v) by estimating -%)— L U[Ra(x)] dx fromthe U[Ra(xo)]
(for example by kriging). Setting up the regression and then using it at the sample points
presupposes stationarity. But then the kriging can be carried out with a non-bias

condition. This avoids the attraction towards the (global) mean that occurs in simple
kriging when the sample spacing is too wide.

Now suppose we want to estimate a quantity such as 1 Z()=- from point samples

Z(xy). For each data poinf xo, we shall calculate the expected value of 1 Z(v)=z» Where vy
denotes the block containing xo. That is, we shall evaluate:

E [1z4y2: | Z(xa)]

Using the gaussian change of support model, this becomes:

E(lyz | Yol =1-G x-__l_l%l)

—

because given Y(xo) = Yo, Yy, has a normal distribution with mean ry, and variance

J1-72. Then we obtain the estimate of 1 Z(v)=- that we are looking for by kriging:

&

-r Y(x)
Elzn=:| Z0) = 1-G (X-—’——)
W)=z (———1 2
where x denotes a point in v, with the point values:

E[lzpy=: | Z6a)] = 1-G (Y_"_g_%z@)

1 This leads to problems when evaluating the estimation variance.
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This leads us to estimating a variable at one point given the values of the same variable
at the sample points. So we can use a non-bias condition in the kriging system.

The problem that arises then is to estimate several indicator functions, or several
functions of Z(v), simultaneously. Instead of making a separate kriging for each of them,
we can co-estimate them by using (in the gaussian model) the Hermite polynomials. In this
case all the functions of Z(v) to be estimated, which are functions of the corresponding
gaussian variable Y;,, have to be expanded in terms of Hermite polynomials:

y) = % fn Hy ()

We obtain the required estimates of E[f(Y;) | Y(x)] by kriging each of the
E[Hu(Y,) | Y&)] = r" H, [Y(x)] using the values E[HA(Y,,) | Y(xa)] = r" Hn [Y(xo)]-
This just leads back to kriging the point Hermite polynomials which can be done using

a non-bias condition (though this presents the convergence problems mentioned in
chapter 9.3).
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Conclusion

This text presents two principal methods for estimating functions of a variable Z(x)
that has been sampled. These are disjunctive kriging (or cokriging indicators) and the
conditional expectation. A method of estimation is designed to work well provided that
certain hypotheses are respected (or if one prefers, within a particular model). So the
conditional mean can be used within a multivariate normal model (that is, if the
multivariate distributions are normal). Isofactorial disjunctive kriging requires a model
with isofactorial bivariate distributions: bivariate normal, or gamma, or with orthogonal
indicator residuals, ... In the mosaic model, indicator cokriging is equivalent to kriging
each indicator separately, with the same kriging weights for each indicator. So this is a very
simple algorithm. Using it when the model is not suitable, however, (e.g. if the indicator
variograms are not all the same) may be foolhardy.

Another very important point to note when one wants to estimate functions such as
indicators is to take account of the change of support. The estimates of 1 Zw=> and

1 Zw)=z » €an be quite different either globally (i.e. on average over the whole region) or
locally, particularly if these is a nugget effect or a micro-structure (with a short range).

The methods described allow us to estimate functions of the variable, and so they
can also be used to estimate the variable itself Z(x), or the regularized variable Z(v), Z(V)
etc... If this is the only objective we have to choose whether to use a linear estimator, i.e.

a linear combination of the data Z A% Z(x,) such as kriging, or a non linear estimator

such as disjunctive kriging or conditional expectation. Although kriging is, in theory, less
efficient, it requires only the variogram model (or the covariance). As it requires less
stringent hypotheses, it is more robust in practice. Conversely, as the underlying
hypotheses for the more elaborate and theoretically better methods are stricter, there is
less chance of their being satisfied. This is why kriging is used most often when we want
to estimate only the variable itself.

One exception to this rule is lognormal kriging which is routinely used for estimating
the in situ reserves in the South African gold mines. The term lognormal kriging covers
several different lognormal estimators, each based on different assumptions concerning
the lognormality, which vary depending upon whether a non-bias condition is used or not,
and upon whether there is a change of support. The conditional expectation estimator of
a lognormal variable falls into this family.
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