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0 Introduction 
0.1 Foreword 
0.1.1 Content, references 

These notes have been written for the course of multivariate geostatistics given at the Centre of 

Géostatistique of Fontainebleau, within the CFSG (Cycle of Formation Spécialisée en 

Géostatistique) since 2001 and for the winter “hivernal” professional training 2002. They present 

the basis of multivariate geostatistics (essentially the linear geostatistics, in the stationary and 

intrinsic cases). For further developments, see for instance Wackernagel (1993), Wackernagel 

(1995) and Chilès and Delfiner (1999), where a number of references can be found. 

The section on the simplification of cokriging is however largely original, as well as the last one, 

which treats the particular case of indicators and opens the door to non-linear geostatistics. 

0.1.2 Convenient abuses of language 

Some abuses of language are very convenient : 

Correlated variables and correlated Random Functions  

The regionalized variables under study, variables depending on location, will be represented as 

usual in geostatistics by (a model of) Random Function (RF in short). Although this distinction is 

fundamental, we will generally and conveniently speak of “variables”, even for the RF that 

represent these, when this does not make confusion. 

The explicit reference to RFs will however be made to underline a difference. For instance, 

uncorrelated RF will represent variables which are not correlated, not only at the same point, but 

also between different points, that is , variables “without spatial correlation” with each other. The 

word “theoretical” will refers also to the model of RF, for instance the theoretical variance in the 

stationary case (sill of variogram model, different from the experimental variance of samples). 

In the case of intrinsic RFs, we will speak abusively of variables without spatial correlation, when 

there is no correlation between the increments of the variables – more exactly, between the 

increments of the corresponding RFs… 

Identical structures, different structures 

When there is no confusion, two variables will be said to have the “same” structure, or 

“identical” structure, when their variograms, for instance, are the same, up to a multiplicative 

factor, i.e. when they are proportional to each other, like 4 sph (h/100) and 9 sph(h/100). 

Similarly the structures of the variables will be said to be different, when they are not 

proportional, for instance 4 sph(h/100) and 4 nugget(h) + 4 sph(h/100). 

Remarks on the word ``intrinsic'' 

Be careful to the meaning of the adjective « intrinsic », which means: “proper to the object itself, 

independent of external factors”. 

At its beginning, the variogram was also called the intrinsic function of dispersion, for unlike the 

covariance, it describes directly the spatial structure, independently of the means and of the 

problems posed by the estimation of these means. The model (or hypothesis) of intrinsic RF is 

precisely characterized by this sole variogram. 
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0.1.3 Notations and indices 

The number of variables and indices is a first difficulty when learning multivariate. To facilitate 

the approach, we have chosen to put in upper indices (not to be confused with a power) only 

indices representing components with different scales. For instance, the variogram of the first 

variable in a set of variables, Z1(x), may be written : 
1 1 2 2

1 11 11 11( ) ( ) ( ) ( )h or h b h b hγ γ γ γ= +  

where the upper index 1 refers for instance to a short ranged component, and the upper index 2 to 

a large ranged one. 

0.2 Why multivariate geostatistics? 

Multivariate geostatistics is essentially used to: 

- Highlight structural relations between variables; 

- Improve the estimation of one variable thanks to other variable(s), that can be sampled at the 

same points ( « isotopic » case) or not ( « heterotopic » case) ; 

- Improve the consistencies between the estimations of different variables ; 

- Simulate jointly several variables. 

0.3 Examples of covariables 

Here are some examples : 

- Elevations of geological horizons: 

top and bottom of a layer (ex: bedrock and overburden), as well as the corresponding 

thickness 

several layers 

elevation of a layer + data on dip 

elevation of a layer known at wells + seismic known at many points 

- grades in different metals, concentrations in different elements 

- thickness and metal accumulation of a 2D orebody, as well as their ratio, the 2D grade 

- different types of measure, errors 

- indicators for different lithofacies  

- etc. 
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1 Reminders on statistics of one variable 

In this chapter, we recall some basic notions on the correlation and on the regressions between 

two variables. 

1.1 Scatterplot between 2 variables 
The utility of the scatterplot cannot be exaggerated. It allows : 

- To distinguish different populations, to easily identify extreme values, or even some 
artefacts ; 

- To visualize the relation between variables. 

Beware however of variations in the number of samples throughout the scatterplot, which can 

make the readability and the interpretation of a scatterplot difficult (a logarithmic transformation, 

for instance, may facilitate the readability for skewly distributed variables). 

1.2 Distribution per class (conditional distributions) 
The scatterplot represents the empirical version of a bivariate statistical distribution. Similarly, 

the distribution of the values of a variable, say Z2, per class on Z1, is the empirical version of the 

distribution of Z2 knowing (conditional on) Z1 = z1. 

1.3 Mean per class (regression) 

The mean of Z2 per class on Z1 corresponds to the empirical version of the conditional 

expectation E[Z2|Z1] of Z2 on Z1. 

1.4 Coefficient of correlation 
Consider two variables Z1 and Z2 with : 

- means : 

 m1 = E[Z1] and m2 = E[Z2] 

- variances : 
2 2

1 1 1 1

2 2 2 2

1 1 1 1 1 1

var [( ) ]

( ) 2 ( ) ( )

Z E Z m

E Z E Z m m E Z m

σ = = −

= − + = −
 

and 
2

2σ = … 

- standard deviations : 

2

1 1σ σ=  and 
2σ  

- covariance : 

12 1 2 1 1 2 2

1 2 1 2

cov( , ) [( )( )]

... ( )

C Z Z E Z m Z m

E Z Z m m

= = − −
= = −

 

By definition, the coefficient of correlation is equal to:  
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12

1 2

Cρ
σ σ

=  

It satisfies: 1 1ρ− ≤ ≤ . (But inconsistencies may appear – a coefficient of correlation exceeding 

1, for instance– when both variables are not sampled together and when means, variances and 

covariance are not computed on the same samples.) 

The coefficient of correlation measures the linear dependency between variables. It is zero if the 

variables are independent, but can also be zero when they are dependent. It is highly sensitive to 

extreme values. 

1.5 Linear regressions between 2 variables 
Remember that the linear regression of Z2 on Z1 is the best linear estimator of Z2 from Z1 : 

*

2 1Z aZ b= +  

 (best in the sense of having no bias and a minimal variance of error). 

The committed error can be written: 

*

2 2 2 1R Z Z Z aZ b= − = − −  

The estimator is unbiased if the error has a zero mean, which gives b: 

( ) 2 1 2 10E R m am b b m am= − − = ⇔ = −  

so that, in term of centered variables, the estimator can be written : 

*

2 2 1 1( )Z m a Z m− = −  

In particular, this shows that the regression line goes through the means of the variable. 

The variance of the error can be developed: 

( ) ( ) ( ) ( )2

2 1 1 2

2 2 2

2 1 12

2 ,

2      

Var R Var Z a Var Z aCov Z Z

a aCσ σ
= + −
= + −

 

It is a function of a, and its minimum is obtained by setting to zero its derivative with respect to a. 

Hence the slope of the regression: 

( )
( )
1 2 12 2

2

1 1 1

,Cov Z Z C
a

Var Z

σρ
σ σ

= = =  

With reduced variables, the expression of the regression is easy to memorize : 

*

2 2 1 1

2 1

Z m Z mρ
σ σ
− −=  

Residual and known variable are not correlated: 

( ) ( ) 2

1 1 2 1 12 1, , 0Cov Z R Cov Z Z aZ b C aσ= − − = − =  

 (Since E(R) = 0, we have also: E(Z1R) = 0: Z1 and R are said to be “orthogonal”)  



 9  

Then it is possible to decompose Z2 into two uncorrelated variables: 

Z2 = a Z1 + b + R 

The square of the correlation gives the proportion of variance of one of the variables Z1 or Z2, 

that is explained by its linear dependency to the other variable. We have for instance: 

( )
( )

( )
( )

* 2 2
2 1 21

2

2 2 2

Var Z Var aZ b a

Var Z Var Z

σ ρ
σ

+
= = =  

The value of the correlation can be misleading. A correlation of 0.7, for instance, explains only 

49% of the variance, a correlation of 0.5, 25%, and a correlation of 0.1, only 1%. 

Beware: the linear regressions of Z2 on Z1 and of Z1 on Z2 are two different lines (slopes are not 

inverse of each other), that cross on the means: 

( )

( )

* 2
2 2 1 1

1

* 1
1 1 2 2

2

Z m Z m

Z m Z m

σρ
σ
σρ
σ

− = −

− = −
 

Note also that the regression lines do not represent the “principal directions” of the scatterplot, 

along which the variability is maximal or minimal. 

1.6 Remark 

The statistical tools, particularly the simple tools of visualization and exploration, like the 

scatterplot, are extremely useful. 

When dealing with regionalized variables, however, note that statistics such as probability 

distribution function, coefficient of correlation, regressions, are not “spatial” statistics: they do 

not depend on the locations of samples in space (permuting the values of variables between 2 

points does not change the correlation, for instance). 

Moreover, such statistics are not « intrinsic » to the variables, in the sense that they depend on the 

support (and on the domain) on which the variables are defined. For instance, the coefficient of 

correlation between two variables measures, in general, the linear dependency between the 

variables at the support used, not at a different support, which limits its meaning. 

Finally, note that the absence of correlation between variables at the same point x (for instance 

between the residual of a regression and the conditioning variable) does not imply the absence of 

“spatial” correlation, i.e. between different points x and y. 
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2 Structural multivariate tools 

2.1 Reminder: the monovariate case 

Consider a variable (represented by a RF) Z(x). In linear geostatistics, we consider only the 

moments of order 1 and 2 of the RF (so-called 2
nd
 order RF): 

m(x) =  E[Z(x)] mean at point x (generally called trend or drift when it depends on x) 

E[Z(x)Z(y)] noncentered covariance between Z(x) and Z(y) 

Cov[Z(x), Z(y)] =  E[Z(x)-m(x)][Z(y)-m(y)] = E[Z(x) Z(y)]-m(x) m(y) covariance (usual, 

centered) between Z(x) and Z(y). 

Then we make some hypotheses of stationarity, i.e. invariance under translation, allowing the 

inference of such moments from a unique realization. 

2.1.1 Model of 2
nd
 order stationary RF 

It is defined by: 

- a constant mean : E[Z(x)] = m 

- a covariance: Cov[Z(x), Z(x +h)] =  E[Z(x)-m][Z(x+h)-m] = C(h) function of the distance h 

between the points 

- a constant variance: var Z(x) = E{[Z(x)-m]2} = C(0) 

We have |C h( ) | ≤ C( )0 , hence : 

ρ( )h =C h( ) /C( )0 , correlogram, or correlation between Z(x) and Z(x+h). 

The covariance allows us to compute the variance of any linear combination : 

Z = ( )Z x Zα α α α
α α

λ λ=∑ ∑  

of Z(x) at any points: 

( )

( )

( )

( ) ,

0

E Z m

Var Z Cov Z Z

C x x

α
α

α β α β
α β

α β β α
α β

λ

λ λ

λ λ

=

=

= − ≥

∑

∑∑

∑∑

 

2.1.2 Model or intrinsic RF 

It is defined by increments ( ) ( )Z x h Z x+ − , having a zero expectation : 

E[Z(x+h)-Z(x)] = 0 

and a variance depending only on the distance h between the points: 

0.5 E{[Z(x+h)-Z(x)]
2
} = γ(h) (variogram) 

This makes possible the computation of the expectation and variance of any Authorized Linear 

Combination (ALC), i.e. of any combination : 
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( )Z x Zα α α α
α α

λ λ=∑ ∑  

satisfying to  0α
α

λ =∑ : 

0

( )

E Z

Var Z x x

α α
α

α α α β β α
α α β

λ

λ λ λ γ

  = 
 

  = − − 
 

∑

∑ ∑∑
 

A stationary RF is also intrinsic, and we have: 

γ(h) = C(0)-C(h) 

that is:  C(h) = C(0) - γ(h) 

The sill of the theoretical variogram coincides with the theoretical variance C(0), which 

represents, in the model, the variance of Z(x) in a large domain (it can be fairly different from the 

sample variance). 

However, conversely, an intrinsic RF is not necessarily stationary (variogram without a sill). 

In multivariate (linear) geostatistics, these different characteristics will be complemented by the 

“cross”-structures (variograms or covariances) between the variables, and possibly by relations 

between the means of the variables. 

2.2 The cross-covariance 
By definition, the cross-covariance between 2 RF Z1(x) and Z2(x) is: 

[ ]1 2( ), ( )Cov Z x Z y  

of any pair of points (x, y). 

It is important to clearly make a distinction between this and the covariance at the same point : 

[ ]1 2( ), ( )Cov Z x Z x  

If the cross-covariance is zero for all x and y, we will say that the RF are not correlated, or 

equivalently that the variables are not spatially correlated, a stronger property than the absence of 

correlation at the same point. 

In some cases (notably for indicators or in a non-stationary case), it is advantageous to consider 

the non-centered cross-covariance : 

[ ]1 2( ) ( )E Z x Z y  

2.3 Stationary cross-covariance 
In this case, the cross-covariance is invariant under translation, i.e. does not depend on the 

distance h between the points x and x+h. Hence: 

- stationary non-centered cross-covariance: 
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[ ]1 2 12( ) ( ) ( )E Z x Z x h K h+ =  

which can be estimated without bias from data Z1 and Z2 distant by h, 

- or stationary cross-covariance (usual, centered): 

[ ]1 2 12( ), ( ) ( )Cov Z x Z x h C h+ =  

the estimation of which is less easy. 

As a matter of fact, this can be written : 

[ ] [ ]1 1 2 2 1 2 1 2( ( ) [ ( )])( ( ) [ ( )]) ( ) ( ) [ ( )] [ ( )]E Z x E Z x Z x h E Z x h E Z x Z x h E Z x E Z x h− + − + = + − +
Its estimation from data necessitates the means 1[ ( )]E Z x  and 2[ ( )]E Z x h+  be known. If these are 

to be estimated, they will be (in the simplest cases) supposed stationary : 
1[ ( )]E Z x  = m1 and 

2[ ( )]E Z x h+  = m2 (see the stationary multivariate model further). Then one can use a common 

global estimation of m1 and m2 for all distances h (so-called ergodic covariance) or an estimation 

based on the pairs (Z1(x), Z2(x+h)) used for distance h (so-called non-ergodic covariance). In the 

first case, and even more in the second one, serious problems of bias appear (due to the difficulty 

of separating, within the variables, the respective parts of mean and of deviation to the mean). 

It is also possible to define the cross-correlation, or cross-correlogram : 

[ ] 12
12 1 2

1 2

( )
( ) ( ), ( )

C h
h corr Z x Z x hρ

σ σ
= + =  

which requires means and variances of Z1(x) and Z2(x+h). Here too, one can distinguish between 

ergodic and non-ergodic correlation: this last one (based on the means and standard deviations 

from pairs at distance h) ensures by construction the inequality 12| ( ) | 1hρ ≤ , but with even more 
serious problems of bias. 

The cross-covariance generalizes the simple covariance (take Z2(x) = Z1(x)). However it has no 

reason to be positive, maximal or minimal for h = 0, and is not necessarily even, since 

( )12 21( )C h C h= −  can be different from ( )21 12( )C h C h= − . In particular, it can show a correlation 

maximal for a non-zero distance vector, and for instance indicates a delay, between the variables, 

in this direction. For instance, the cross-covariance between a stationary RF Z1(x) and Z2(x) = 

Z1(x-t) is maximal for the distance equal to the delay between the variables : 

( )12 1 1 1( ) [ ( ), ( )]C h Cov Z x Z x h t C h t= + − = −  

2.4 The order-2 stationary multivariate model 

A set of RF (Z1(x), …, Zi(x), …, Zp(x)) is order-2 stationary if all 1
st
 and 2

nd
 order moments are 

invariant under translation : 

- constant means : 

E[Zi(x)] = mi 

- covariances depending only on the distance vector between points, for instance for centered 
covariances : 
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( ), ( ) ( )i j ijCov Z x Z x h C h + =   

This implies the order-2 stationarity of each RF (means and simple covariances ( ) ( )i iiC h C h=  for 

j = i), and must be complemented by stationarity of cross-covariances (i ≠ j). 

In such a model, any linear combination of the (Z1(x), …, Zi(x), …, Zp(x)), at any points: 

( )i i i i

i i

Z Z x Zα α α α
α α

λ λ= =∑∑ ∑∑  

has the mean and variance : 

( )

( )

( )

( ) ,

0

i i

i

i j i j

i j

i j ij

i j

E Z m

Var Z Cov Z Z

C x x

α
α

α β α β
α β

α β β α
α β

λ

λ λ

λ λ

=

=

= − ≥

∑∑

∑∑∑∑

∑∑∑∑

 

Note that the variance uses jointly the simple and cross-covariances of the variables. 

2.4.1 Exercise: differentiate 

Let Z(x) be a differentiable stationary RF with covariance C(h). 

Show that the cross-covariance between Z and Z’ is odd, equal to 0 for h = 0: 

' '( ), ( ) ( )Cov Z x Z x h C h + =   

and that the covariance of Z’(x) can be written: 

' '( ), ( ) "( )Cov Z x Z x h C h + = −   

2.5 Cross-variogram 

2.5.1 Definition 

Let Z1(x) and Z2(x) be 2 intrinsic RF (increments 1 1( ) ( )Z x h Z x+ −  and 
2 2( ) ( )Z x h Z x+ −  with a 

zero expectation and a stationary semi-variance, equal to the variogram of each variable). The 

cross-variogram is defined as the semi-covariance of increments between x and x+h, supposed to 

be stationary (invariant under translation): 

 [ ][ ]12 1 1 2 2

1
( ) ( ) ( ) ( ) ( )

2
h E Z x h Z x Z x h Z xγ = + − + −  

Its estimation requires knowing both variables at pairs of points distant by h (up to the usual 

tolerance). 

It follows that: 

12

1 2

( )

( ) ( )

h

h h

γ
γ γ

 

represents the correlation between increments of both variables. 
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On the other hand, the ratio : 

12

1

( )

( )

h

h

γ
γ

 

represents the slope of the linear regression : 

 [ 2 2( ) ( )Z x h Z x+ − ]* = a [ 1 1( ) ( )Z x h Z x+ − ]  

of 2 2( ) ( )Z x h Z x+ −  knowing 1 1( ) ( )Z x h Z x+ − . 

The cross-variogram generalizes the simple variogram (take Z2(x) = Z1(x)), but can present much 

more various shapes. It can be negative (e.g. substitution of a metal or element by another one). It 

is 0 for h = 0, and is symmetrical: 

12

12 12

(0) 0

( ) ( )h h

γ
γ γ

=
= −

 

2.5.2 Relation between cross-variogram and cross-covariance 

In the stationary multivariate RF model, we have : 

12 12
12 12

( ) ( )
( ) (0)

2

K h K h
h Kγ + −= −  

that is: 

12 12
12 12

( ) ( )
( ) (0)

2

C h C h
h Cγ + −= −  

In other words, the cross-variogram sees only the even part of the covariance : 

12 12 12 12
12

( ) ( ) ( ) ( )
( )

2 2

C h C h C h C h
C h

+ − − −= +  

 = even part        + odd part 

The cross-covariance is a more powerful tool than the cross-variogram. However it requires 

stronger hypotheses. 

Note finally : 

Sill of the cross-variogram: [ ]12 12 1 2( ) (0) ( ), ( )C Cov Z x Z xγ ∞ = =  

12 12( ) 0       ( ) 0   C h h h hγ≡ ∀ ⇒ ≡ ∀  
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2.6 Intrinsic multivariate model 

This section is more difficult. We will begin by a general definition of the model, then we will 

finish by examining the usual simple characterization of the model, which is limited to the 

symmetrical case. 

2.6.1 Definition 

Generally speaking, a set of RF (Z1(x), …, Zi(x), …, Zp(x)) can be said to be intrinsic if all 

increments of the RF have a zero expectation and if all their order-2 moments (simple and cross) 

are invariant under translation (stationary). We then must have : 

[ ]( ) ( ) 0i iE Z x h Z x+ − =  for all h and i 

and [ ( ) ( ), ( ') ( )]i i j jCov Z x h Z x Z x l h Z x l+ − + + − +      [1] 

that is {[ ( ) ( )][ ( ') ( )]}i i j jE Z x h Z x Z x l h Z x l+ − + + − +  

depending only on h, h’, and l, not on x. 

In particular, we have : 

- for l = 0, h = h’, i = j, the variogram:  

 [ ]( )21
( ) ( ) ( ) ( )

2
i ii i ih h E Z x h Z xγ γ= = + −  

so that each RF separately is intrinsic ; 

- for l = 0, h = h’, i ≠ j, the cross-variogram: 

 [ ]1
( ) ( ) ( ) ( ) ( )

2
ij i i j jh E Z x h Z x Z x h Z xγ  = + − + −   

However, in general simple and cross-variograms do not suffice to compute quantities like [1]. 

For instance, a stationary multivariate RF model is also a multivariate intrinsic model, and [1], 

which is equal to : 

( ' ) ( ) ( ') ( )ij ij ij ijC l h h C l C l h C l h+ − + − + − −  

can be written in function of ( )ij hγ , if ( )ijC h  is even: 

( ') ( ) ( ' ) ( )ij ij ij ijl h l h l h h lγ γ γ γ+ + − − + − −  

but cannot, in general, if ( )ijC h  is not even. 

2.6.2 Variance of Authorized Linear Combinations 

Similarly, only under some conditions do simple and cross-variograms allow us to compute the 

variance of multivariate ALC (Authorized Linear Combinations), i.e. the combinations : 

i i

i

Z Zα α
α

λ=∑∑   
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satisfying the conditions: 

0    i iα
α

λ = ∀∑  

(By the way, this implies E(Z)=0. Note also that each variable needs not be considered in each of 

points xα : suffices to take iαλ  = 0). 

As a matter of fact, let us write, introducing an arbitrary point 
0x : 

( )0i i i i i

i i

Z Z Z Zα α α α
α α

λ λ= = −∑∑ ∑∑  

hence: 

[ ] 0, 0
( )i j i i j j

i j

Var Z Cov Z Z Z Zα β α β
α β

λ λ= − −∑∑∑∑     [2] 

which outputs the terms : 

0, 0
( )i i j jCov Z Z Z Zα β

− −  

But we have: 

[( )( )]i i j jE Z Z Z Zβ α β α− − = 0 0 0 0[( ) ( )][( ) ( )]i i i i j j j jE Z Z Z Z Z Z Z Zβ α β α− − − − − −  

i.e.  

0, 0,0 0 0 0
2 2 2 ( ) ( )ij ij ij i i j j i i j jCov Z Z Z Z Cov Z Z Z Zα βα β αβ β α
γ γ γ= + − − − − − −  

else : 

0, 0,0 0 0 0
( ) ( ) 2 2 2i i j j i i j j ij ij ijCov Z Z Z Z Cov Z Z Z Zα ββ α αβ α β

γ γ γ− − + − − = + −  

If the 
0, 0

( )i j i i j jCov Z Z Z Zα β α β
λ λ − −  do not change when permuting i and j, or when permuting α 

and β, we will have: 

[ ] ( )i j ij

i j

Var Z x xα β β α
α β

λ λ γ= − −∑∑∑∑  

 (same formula as in the stationary case, replacing ijC  by ijγ− ) 

This is the case notably : 

- if i ikα αλ λ=  (weights being similar for all variables) so that: i j i jα β β α
λ λ λ λ=  

- or if 
0, 0,0 0

( ) ( )i i j j i i j jCov Z Z Z Z Cov Z Z Z Zα ββ α
− − = − −      [3] 

(then being equal to 
0 0ij ij ijαβ α β

γ γ γ+ − ). 

In the general case, it is only under this symmetry relation between any points, that simple and 

cross-variograms allow to compute the variance of a ALC. 
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2.6.3 Remark: the symmetry relation 

This symmetry relation on 3 points is equivalent to the following symmetry relation on 4 points : 

[ ( ) ( ), ( ') ( )]i i j jCov Z x h Z x Z x l h Z x l+ − + + − +  

= [ ( ) ( ), ( ') ( )]j j i iCov Z x h Z x Z x l h Z x l+ − + + − +      [4] 

These covariances, which characterize the multivariate intrinsic model, are then equal to : 

[ ( ) ( ), ( ') ( ) ( ) ( )]i i j j j jCov Z x h Z x Z x l h Z x Z x Z x l+ − + + − + − +  

= [ ( ) ( ), ( ') ( )]i i j jCov Z x h Z x Z x l h Z x+ − + + −   

- [ ( ) ( ), ( ) ( )]i i j jCov Z x h Z x Z x l Z x+ − + −  

that is:  ( ') ( ) ( ' ) ( )ij ij ij ijl h l h l h h lγ γ γ γ+ + − − + − −  

As seen before, such a symmetry relation is necessarily satisfied by a stationary multivariate 

model when cross-covariances are even, not when they are not symmetrical. The cross-variogram 
is unable to account for a dissymmetry in the cross-structure. 

We will retain that simple and cross-variograms describe a multivariate intrinsic model only in 

the symmetrical case, hence the following characterization. (In the more general non-stationary 

case, another tool is required, the generalized cross-covariance, difficult to capture, and outside of 

the present course.) 

2.6.4 Characterization of the intrinsic model in the symmetrical case 

Let (Z1(x), …, Zi(x), …, Zp(x)) be a set of intrinsic RF, satisfying the symmetry relations [3] or 

[4] for all points. This model is entirely characterized by : 

- expectations of increments equal to 0: 

[ ]( ) ( ) 0i iE Z x h Z x+ − =  

- simple variograms: 

[ ]( )21
( ) ( ) ( ) ( )

2
i ii i ih h E Z x h Z xγ γ= = + −  

- cross-variograms: 

 [ ]1
( ) ( ) ( ) ( ) ( )

2
ij i i j jh E Z x h Z x Z x h Z xγ  = + − + −   

Simple and cross-variograms then allow to compute the variance of any Authorized Linear 

Combination, according to [2]. 
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2.7 The pseudo cross-variogram 

Definition: 

[ ]212 2 1

1
( ) ( ) ( )

2
h E Z x h Z xψ = + −  

It can be computed between variables known at different points (unlike 
12 ( )hγ ). 

However it requires: 

- that the difference between variables makes sense (units in particular), for instance a single 

variable but measured in different conditions ; 

- that 
2 1( ) ( )Z x Z x−  (or more exactly the expectation of its square) is stationary, for : 

[ ]212 2 1

1
(0) ( ) ( )

2
E Z x Z xψ = −  

does not depend on x. 

It is possible to have : 12 12( ) ( )h hψ ψ≠ − , its even part being related to the cross-variogram : 

[ ]212 12
2 1 12

( ) ( ) 1
( ) ( ) ( )

2 2

h h
E Z x Z x h

ψ ψ γ+ − = − +  

In the stationary case, we have : 

[ ]12 1 2 12

1
( ) (0) (0) ( )

2
h K K K hψ = + −  

where [ ]12 1 2( ) ( ) ( )K h E Z x Z x h= +  is the non-centered cross-covariance. 

Remark : the pseudo cross-variogram, through not symmetrical in general, does not correspond to 
the generalized cross-covariance evoked at the end of section 2.6.3 (Künsch and al. 1997).  

2.8 Exercise: compute a bivariate structure 

Let Z1 and Z2 the grades in two metals (in %), every meter along a hole: 

Z1   Z2 

0 0 

1 0 

0 0 

0 1 

0 1 

0 0 

0 0 

1 0 
0 1 

0 1 
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Mean, mean square, variance, standard deviation, for each variable, correlation coefficient? 

Compute and plot, up to h = 4: 

- the simple variogram for each variable; 

- the cross-variogram; 

- the “non-centered” covariance for each variable; 

- the covariance for each variable. 

Compute and plot, from h = - 4 up to h = 4: 

- the non-centered cross-covariance; 

- the cross-covariance; 

- the cross-correlation. 

How are the cross-structures modified when the last value of Z2  is equal to 3 instead of 1 ? when 

it is unknown? 

Remark : in the heterotopic case (variables known at possibly different points), inconsistencies 

may appear between experimental simple and cross-structures, when these are computed on 

different sets of points. 

2.9 Support 
The formula of regularization and variances in the monovariate case can be generalized to the 

multivariate case, using the cross-covariances and cross-variograms (stationary and intrinsic 

cases, respectively). 

2.9.1 Regularization 

Cross-covariance regularized on support v : 

( )

, 2

1
( ) ( ), ( ) ( )

,

h

ij v i j h ij

v v

ij h

C h Cov Z v Z v C x y dxdy
v

C v v

 = = − 

=

∫ ∫
 

Cross-variogram regularized on support v : 

, ( ) ( , ) ( , )ij v ij h ijh v v v vγ γ γ= −  

2.9.2 Co-dispersion 

Dispersion variance of v within V : 

[ ]( ) ( ) ( , ) ( , )i i i iVar Z v Z V V V v vγ γ− = −  

v  describing uniformly the different volumes with support v that partition the domain V (i.e. 

( , )iC v v  for a large domain in the stationary case). 

Dispersion covariance of v within V : 

( ) ( ), ( ) ( ) ( , ) ( , )i i j j i j i jCov Z v Z V Z v Z V V V v vγ γ − − = −   
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(i.e. ( , )i jC v v  for a large domain in the stationary case). 

Correlation of v within V : 

( , ) ( , )
( | )

( , ) ( , ) ( , ) ( , )

i j i j

i j

i i j j

V V v v
v V

V V v v V V v v

γ γ
ρ

γ γ γ γ
−

=
− −

 

(i.e. 
( , )

( , ) ( , )

i j

i j

C v v

C v v C v v
 for a large domain in the stationary case). 

The linear regression : 

[ ]*

( ) ( ) ( ) ( )j j i iZ v Z V a Z v Z V − = −   

of ( )jZ v  on ( )iZ v , for v describing V, has the slope : 

( , ) ( , )

( , ) ( , )

i j i j

i i

V V v v

V V v v

γ γ
γ γ

−
−

 

(i.e. 
( , )

( , )

i j

i

C v v

C v v
 for a large domain in the stationary case). 

2.9.3 Exercise : correlation at different supports 

Consider a lead-zinc-silver deposit, where the quasi-punctual sample grades Z1(x), Z2(x) and 

Z3(x) have the means : 

m1 = 13.2 (%) 

m2 = 10.3 (%) 

m3 = 3.72 oz/ton (1 once per ton ≈ 30 g/t) 

and the simple and cross-structures (where Pep is the nugget, or pepitic, variogram function with 

sill 1, and Sph the spherical variogram function with sill and ranges equal to 1) : 

1

2

3

12

13

23

( ) 11 ( ) 39 ( / 60)

( ) 9 ( ) 15 ( / 60)

( ) 1.1 ( ) 1.8 ( / 60)

( )                 14.5 ( / 60)

( )                 5 ( / 60)

( )                 3.8 ( / 60)

h Pep h Sph h

h Pep h Sph h

h Pep h Sph h

h Sph h

h Sph h

h Sph h

γ
γ
γ
γ
γ
γ

= +
= +
= +
=
=
=

 

(after P. Dowd, cited in Mining geostatistics, Journel and Huijbregts, Academic Press, 1978) 

What are the values, in the model, of the correlation coefficients between the different sample 

grades ? (The domain is supposed large compared to the range.) 

What are approximately the values of the coefficients of correlation between the different grades 

for small blocks ? (small compared to the range) 
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2.10 Structure of linear combinations of the variables  

Knowing simple and cross covariances or variograms makes it possible to compute the simple 

structure of a new variable obtained by combining linearly the variables, or the cross-structure 

between such combinations. 

Example : 

Consider: 2 1( ) ( ) ( )H x Z x Z x= −  the thickness of a layer, between top Z2 and bottom Z1 (with 

mean 2 1Hm m m= −  in the stationary case). 

The structure of H can be written, in covariance: 

2 1 2 1

1 2 12 12

( ) [ ( ), ( )] [ ( ) ( ), ( ) ( )]

( ) ( ) ( ) ( )

HC h Cov H x H x h Cov Z x Z x Z x h Z x h

C h C h C h C h

= + = − + − +
= + − − −

 

or in variogram: 

[ ]2

1 2 12

1
( ) ( ) ( )

2

( ) ( ) 2 ( )

H h E H x h H x

h h h

γ

γ γ γ

= + −

= + −
 

The cross-structure between H and Z1 , for instance, is : 

1 12 1[ ( ), ( )] ( ) ( )Cov H x Z x h C h C h+ = − −  

that is, in variogram: 

12 1( ) ( )h hγ γ−  

 

Other example : 

Let 1 2( ) ( ) ( )Z x m Z x Z x= + + . We have: 

1 2Zm m m m= + +  

1 2 12 12( ) ( ) ( ) ( ) ( )ZC h C h C h C h C h= + + + −  

1 2 12( ) ( ) ( ) 2 ( )Z h h h hγ γ γ γ= + +  

If Z1 and Z2 have a zero mean and are not correlated with each other, we have: 

Zm m=  

1 2( ) ( ) ( )ZC h C h C h= +  

1 2( ) ( ) ( )Z h h hγ γ γ= +  

Inversely, in a monovariate case, a nested structure (superimposition of several structural 

components, corresponding for instance to different scales) can be interpreted as a decomposition 

of the variable itself into components at different scales. This example is the seed of the linear 

model of coregionalization studied further. 
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2.11 Closing relation 
Consider the following closing relation (sum of variables constant) : 

( ) ( ) 1i

i

Z x Z x= =∑  

with: 

1i

i

m =∑  

Cross Zi(x) with the constant Z(x). With covariances, we obtain : 

( ) ( )ij i

j i

C h C h
≠

= −∑  

which is negative for h = 0  (minus the variance Ci(0)). With variograms : 

( ) ( ) 0ij i

j i

h hγ γ
≠

= − ≤∑
 

So the closing relation is responsible for necessary negative values in at least some of the cross 

covariances or variograms. 
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3 Some common models  

The cross-structures are able to present much more various shapes than the simple structures, that 

they generalize (for instance, linear combinations of basic structures with positive or negative 

coefficients will represent cross-structures in the linear model of coregionalization). However the 

cross-structures between variables are not independent of (and must not be modelled 

independently of) the simple structures of these variables. 

As a matter of fact, we have seen that the variances of  linear combinations could be developed in 

function of simple and cross covariances in the stationary case, and (under some conditions) in 

function of simple and cross variograms in the intrinsic case. As such variances must be positive 

or null, cross- structures must be modelled jointly with simple structures, using an authorized 

multivariate model. Here are some current models. Some other models will be described in the 

Section 5 on the simplification of cokriging. 

3.1 The model of intrinsic correlation  

3.1.1 Definition 

This is the simplest of all models : all structures, simple or cross, are the same (proportional) : 

( ) ( )     ,ij ijh b h i jγ γ= ∀  

which is convenient to write matricially : 

( ( )) ( ) ( )ij ijh b hγ γ=  

that is : 

 

11 12 1 11 12 1

21 22 2 21 22 2

1 2 1 2

( ) ( ) ( )

( ) ( ) ( )
( )

( ) ( ) ( )

p p

p p

p p pp p p pp

h h h b b b

h h h b b b
h

h h h b b b

γ γ γ
γ γ γ

γ

γ γ γ

   
   
   =
   
   
      

L L

L L

L L O M L L O M

L L

 

It follows immediately that the correlation between increments is constant (independent of h): 

( )

( ) ( )

ij ij

i j ii jj

h b

h h b b

γ
γ γ

=  

In this model the correlation between ( )iZ v  and ( )jZ v  within a domain V (section 2.9.2) is : 

( | )
ij

ij

ii jj

b
v V

b b
ρ =  constant 

It is said to be « intrinsic » for it does not depend on the support v, nor on the domain V (hence 

the name of the model). 

In the stationary case, we can write : 

( ) ( )ij ijC h b C h=  
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or more conveniently (which will be supposed from now on): 

( ) ( )ij ijC h b hρ=  

with (0) 1ρ =  (by the way, note that in this model the cross-covariances are necessarily even).  

3.1.2 Matrix of coefficients 

We have (stationary case): 

 (0) cov[ ( ), ( )]ij ij i jb C Z x Z x= =  

and  (0) var[ ( )]ii ii ib C Z x= =  

so that the matrix of sills (symmetrical since ij jib b= ): 

 ( )
11 12 1

21 22 2

1 2

p

p

ij

p p pp

b b b

b b b
b

b b b

 
 
 =
 
 
  

L

L

L L O M

L

 

represents, in the model, the variances-covariances matrix of the variables at the same point (like 

in the monovariate case, the sills of the model can differ from the experimental variances-

covariances). 

Such a matrix cannot be arbitrary : it must be (semi-) positive definite, which means that the 

variances of any linear combination of the variables at the same point is positive, possibly zero : 

 

var( ( )) [ ( ), ( )]

0

i i i j i j

i ij

i j ij

ij

Z x Cov Z x Z x

b

λ λ λ

λ λ

=

= ≥

∑ ∑

∑
 

Remark : in the purely intrinsic case, (bij) must also be semi-positive definite. As a matter of fact, 

2 (bij) ( )hγ  represents the variances-covariances matrix of the increments Zi(x+h)- Zi(x)) 

between two points, hence: 

 

var( [ ( ) ( )]) 2 ( )

2( ) ( ) 0

i i i i j ij

i ij

i j ij

ij

Z x h Z x h

b h

λ λ λ γ

λ λ γ

+ − =

= ≥

∑ ∑

∑
 

Come back to the stationary case, easier to present. The matrix (bij) being (semi-) positive 

definite, we have necessarily : 

 var[ ( )] 0ii ib Z x= ≥ for all i  

and 
2
0ii jj ijb b b− ≥  for all pair (i, j) 
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which corresponds (if their variances are not zero) to a correlation coefficient 
ij

ij

ii jj

b

b b
ρ =  

between the variables Zi(x) and Zj(x) that lies between–1 and +1 as it must be. 

These conditions, which must necessarily be satisfied for all i and j, are however not sufficient to 

ensure the positive definiteness of the matrix (bij) with more than two variables. This property 

will be automatically ensured if it is possible to associate to the matrix a factorization of the 

variables. 

3.1.3 Factorization 

First let us give two properties, elementary though important, of the model of intrinsic 

correlation : 

- It is easy to see that the intrinsic correlation between variables can be extended to variables 

formed by linear combinations  : in effect, simple and cross variograms of all linear combinations 

are proportional to ( )hγ . 

- On the other hand : 

(0) 0    0    ( ) 0ij ij ijC b C h= ⇒ = ⇒ =   

So, in the model of intrinsic correlation, the absence of correlation between two variables (or two 

linear combinations) at the same point implies the absence of spatial correlation. 

Suppose now that the matrix (bij) can be associated with a factorization of the variables, i.e. a 

decomposition of the variables Zi(x) into « factors » ( )qY x  not correlated with each other at the 

same point, for instance in the stationary case, and with [ ( )] 0qE Y x = : 

( ) ( )i iq q i

q

Z x a Y x m= +∑  

and suppose that conversely the ( )qY x  can be expressed as a function of the Zi(x). Such a 

decomposition guarantees the positive definiteness of the matrix (bij) : in effect, any linear 

combination of the Zi(x) at the same point x is also a linear combination of the uncorrelated 

( )qY x , and so has a variance positive or null : 

2

var ( ) var( ) 0i i i iq q

i q i

Z x a Yλ λ   = ≥   
   
∑ ∑ ∑  

Developing variances and covariances of the variables gives the following relation (if the ( )qY x  

share the same variogram ( )hγ , including sill or vertical scale): 

ij iq jq

q

b a a=∑  

In the model of intrinsic correlation, such factors ( )qY x , being not correlated at the same point, 

are moreover not spatially correlated with each other. So any statistical factorization (by 

successive residuals, or principal components for instance) gives a spatial factorization of the 

model. The number of useful factors is in general equal to the number of variables (but can be 
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lower when variables are linked). Though they depend on the chosen method for factorization, 

these factors are objective, in the sense that their values at a point x can be determined when the 

values of the Zi at this point are known. 

Finally, the model of intrinsic correlation is entirely specified by its basic structure ( )hγ , which 

must be authorized, and by the variances-covariances matrix (bij), which must be (semi-) positive 

definite, which is ensured when a factorization can be made. Thus the variables can be interpreted 

as linear combinations of factors having the same variogram and being without correlation with 

each other. In practice, once the basic structure is chosen, it is possible to call for an automatic 

fitting procedure that will give the ijb  and iqa . 

3.1.4 Examples 

a) Consider two variables Z1 and Z2 with structures : 

γ1(h)  = 100 sph(h/20) 

γ2(h)  = 25 sph(h/20) 

γ12(h) = -40 sph(h/20) 

This is a model of intrinsic correlation, for we can write ( ) ( )ij ijh b hγ γ=  with: 

- the basic structure γ(h)  = sph(h/20)  

- the variances-covariance matrix : ( ) 100 40

40 25
ijb

− 
=  − 

  

This matrix is positive definite for it corresponds to two variables with positive variances and 

having a correlation –0.8. But this can also be seen by producing a possible factorization of the 

model. Let us write for instance, with Y1 and Y2 with unit variances and uncorrelated (leaving the 

means aside), first: 

Z1 = 10 Y1  

then: 

Z2 = -4Y1 + 3 Y2  

(here Y1 is but the variable Z1 reduced, and 3Y2 represents the residual of the linear regression of 

Z2 knowing Z1 or Y1). Hence inversely the factors: 

Y1 = 0.1 Z1  

Y2 = (4/30) Z1 + (1/3) Z2  

b) similarly the model for three variables ( ) ( )ij ijh b hγ γ=  with γ(h)  = sph(h/20) and 

( )
100 40 30

40 25 6

-30 6 17

ijb

− − 
 = − 
 
 

 is also a model of intrinsic correlation. 
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The matrix is positive definite, for it is possible to factorize the model. For instance, introduce 

Y1, Y2, and Y3, with unit variances and uncorrelated. To honour successively b11, b12, b22, b13, b23, 

b33, we can write: 

Z1 = 10 Y1  

Z2 = -4Y1 + 3 Y2  

Z3 = -3Y1 - 2 Y2 + 2 Y3 

 Then the factors are conversely given by: 

Y1 = 0.1 Z1  

Y2 = (4/30) Z1 + (1/3) Z2  

Y3 = (17/60) Z1 + (1/3) Z2 + (1/2) Z3 

As an exercise, produce other possible factorizations: for instance by the same method of 

successive residuals, but taking the variables in a different order; by analysis in principal 

components; or else by analysis in principal components on normalized variables. 

 (One could check that if we had b33 = 13, two factors would suffice to ensure positive 

definiteness, attesting a linear relation between the three variables; but with b33 = 10, 

factorization is not possible: the model is not authorized, although all correlation coefficients lie 

between –1 and +1.) 

c) Suppose that, within model (b), a nugget component is added to the simple variogram of the 3rd 

variable. Then only the two variables Z1 and Z2 remain intrinsically correlated. 

3.1.5 Exercise : examples of models of intrinsic correlation  

Are the following models, models of intrinsic correlation? 

γ1(h)  = 64 sph(h/20) 

γ2(h)  = 64 sph(h/20) 

γ12(h) = 38.4 sph(h/20) 

 

γ1(h)  = 36 pep(h) + 64 sph(h/20) 

γ2(h)  = 36 pep(h) + 64 sph(h/20) 

γ12(h) = 38.4 sph(h/20) 

 

γ1(h)  = 36 pep(h) + 64 sph(h/20) 

γ2(h)  = 36 pep(h) + 64 sph(h/20) 

γ12(h) = 21.6 pep(h) + 38.4 sph(h/20) 

 

γ1(h)  = 36 pep(h) + 64 sph(h/20) 

γ2(h)  = 36 pep(h) + 64 sph(h/20) 
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γ12(h) = 18 pep(h) + 38.4 sph(h/20) 

 

γ1(h)  = 64 sph(h/20) 

γ2(h)  = 16 sph(h/20) 

γ12(h) = 38.4 sph(h/20) 

3.2 The linear model of coregionalization 

In this model, all simple and cross structures are linear combinations of the same basic structural 

components, and this can be interpreted by a decomposition of the variables themselves into 

linear combinations  of corresponding components. This can be seen as a generalization to the 

multivariate case, of the nested structure for one variable. 

3.2.1 Nested structure for one variable: the linear model of regionalization 

Consider the example (see section 2.9.3) of lead grade Z(x), with mean 13.2 (%) and with a 

variogram made of 2 nested structural components, one being a nugget of 11, the other being 

spherical with sill 39 and range 60 : 

( ) 11 ( ) 39 ( / 60)h Pep h Sph hγ = +  

that is: 1 1 2 2( ) ( ) ( )h b h b hγ γ γ= +  

This variable can be interpreted as the sum of two components Z1(x) and Z2(x) not 

correlated with each other, with zero means and having respectively the structures 
1 1( ) 11 ( )b h Pep hγ =  and 2 2 ( ) 39 ( / 60)b h Sph hγ = : 

1 2( ) ( ) ( )Z x Z x Z x m= + +  

It is often convenient to used normalized components (variance 1), here Y
1
(x) and Y

2
(x), with 

respective variograms 1( ) ( )h Pep hγ =  and 2 ( ) ( / 60)h Sph hγ = , hence finally: 

1 2( ) 3.32 ( ) 6.24 ( ) 13.2Z x Y x Y x= + +  

that is: 1 1 2 2( )  ( )  ( )Z x a Y x a Y x m= + +  

with 1 1 11 3.32a b= = =  and 2 2 39 6.24a b= = =  (beware : exponents are indices, not 

powers). 

More generally, a variable with nested structure : 

( ) ( )k k

k

h b hγ γ=∑  

can be interpreted as a decomposition : 

( ) ( )k

k

Z x Z h m= +∑  

or else, using normalized components: 
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( ) ( )k k

k

Z x a Y h m= +∑   

with ( )2k kb a=  (factors are supposed here to have a mean of 0, or a mean of increments of 0, the 

mean m disappearing in the purely intrinsic case, i.e. not stationary). 

3.2.2 Multivariate case: the linear model of coregionalization 

Decomposition of structures 

To introduce the notations, start from the example of the two variables that are the grades in lead 

and zinc : 

1

2

12

( ) 11 ( ) 39 ( / 60)

( ) 9 ( ) 15 ( / 60)

( )                 14.5 ( / 60)

h Pep h Sph h

h Pep h Sph h

h Sph h

γ
γ
γ

= +
= +
=

 

which can be noted: 

1 1 2 2

1 11 11

1 1 2 2

2 22 22

1 1 2 2

12 12 12

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

h b h b h

h b h b h

h b h b h

γ γ γ
γ γ γ
γ γ γ

= +

= +

= +

 

that is, matricially : 

 1 1 2 2[ ( )] [ ] ( ) [ ] ( )ij ij ijh b h b hγ γ γ= +  

with 1( ) ( )h Pep hγ = , 2 ( ) ( / 60)h Sph hγ = , and matrices ( )1 1
11 0

0 9
ijb b

 
= =  

 
 and 

( )2 2
39 14.5

14.5 15
ijb b

 
= =  

 
. 

With the three variables, lead-zinc-silver, we will have : 

1

2

3

12

13

23

( ) 11 ( ) 39 ( / 60)

( ) 9 ( ) 15 ( / 60)

( ) 1.1 ( ) 1.8 ( / 60)

( )                 14.5 ( / 60)

( )                 5 ( / 60)

( )                 3.8 ( / 60)

h Pep h Sph h

h Pep h Sph h

h Pep h Sph h

h Sph h

h Sph h

h Sph h

γ
γ
γ
γ
γ
γ

= +
= +
= +
=
=
=

 

now with ( )1 1

11 0 0

0 9 0

0 0 1.1

ijb b

 
 = =  
 
 

 and ( )2 2

39 14.5 5

14.5 15 3.8

5 3.8 1.8

ijb b

 
 = =  
 
 

 

Generally, a linear model of coregionalization can be written: 

- in term of variograms: 
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( ) ( )k k

ij ij

k

h b hγ γ=∑  

that is, matricially: 

[ ( )] [ ] ( )k k

ij ij

k

h b hγ γ=∑  

- or in covariances, when stationary:  

( ) ( )

( ) ( )

k k

ij ij

k

k k

ij ij

k

C h b C h

C h b hρ

=

=

∑

∑
 

with  

(0) 1kρ =  

where the ( )k hγ  represent for instance basic structures with different scales (hence 
1( ) ( )h Pep hγ = , 2 ( ) ( / 60)h Sph hγ = , …, but taking related structures, like adding 

Pep(h)+Sph(h/60) to the two previous structures, will be avoided). 

Note that in such a linear model of coregionalization, the cross-covariances are necessarily even. 

Decomposition of the variables into different scales 

In such a model, the variables can be split in the following way (for instance, in the stationary 

case, with mi , mean of Zi and factors with mean 0): 

( ) ( )k

i i i

k

Z x Z x m= +∑  

The components with scale k, ( )k

iZ x , having the same structure proportional to ( )k hγ  or ( )k hρ , 

are intrinsically correlated, and ( )k

ijb  represents their variances-covariances matrix. Each matrix 

( )k k

ijb b=  must then be positive definite. In particular, we must have : 

k k k

ij ii jjb b b≤  

So a structural component (nugget, small ranged, or even long ranged) cannot be present in a 

cross-structure without being present in each of the two corresponding simple structures. 

However, a component can be present in two simple structures (or only one of these) without 

being present in the corresponding cross-structure. 

The cross-variogram, which is a linear combination, with positive or negative coefficients, of the 

basic structures, lies necessarily within the envelop : 

( ) ( ) ( )k k k k k k

ii jj ij ii jj

k k

b b h h b b hγ γ γ− ≤ ≤∑ ∑  

Factorization of each scale 
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Going further, it is possible to factorize the intrinsically correlated components for each scale k 

(see section 3.1.3). Then we obtain the following decomposition into factors : 

( ) ( )k k

i iq q i

k q

Z x a Y x m= +∑∑  

where the ( )k

qY x  with same k share the structure ( )k hγ  and with k k k

ij iq jq

q

b a a=∑ . Such a 

decomposition guarantees the (semi-) positive definiteness of the matrices k

ijb .  

In practice, once the basic structures are chosen, it is possible and very convenient to call for an 

automatic procedure that will be give the k

ijb  and 
k

iqa . 

3.2.3 Example 

Consider the following linear model of coregionalization: 

1 2 3

11

2 3

12

1 2 3

22

2

13

2

23

1 2

33

( ) 25 ( ) 100 ( ) 16 ( )

( ) 40 ( ) 12 ( )

( ) 16 ( ) 25 ( ) 13 ( )

( ) 30 ( )

( ) 6 ( )

( ) 9 ( ) 17 ( )

h h h h

h h h

h h h h

h h

h h

h h h

γ γ γ γ
γ γ γ
γ γ γ γ
γ γ
γ γ
γ γ γ

= + +
= − +
= + +
= −
=
= +

 

that is, matricially: 

11 12 13

12 22 23

13 23 33

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

h h h

h h h

h h h

γ γ γ
γ γ γ
γ γ γ

 
 
 
 
 

 

=

25 0 0

0 16 0

0 0 9

 
 
 
 
 

1( )hγ  + 

100 40 30

40 25 6

-30 6 17

− − 
 − 
 
 

2 ( )hγ  + 

16 12 0

12 13 0

0 0 0

 
 
 
 
 

 3( )hγ  

where 1( )hγ  = Pep(h), 2 ( )hγ  = Sph(h/20), and 3 ( )hγ  is large ranged (or even intrinsic, linear for 

instance). This is an authorized model, for we can write for instance (up to the means):  

 

1 2 3

1 1 1 1

1 2 2 3 3

2 2 1 2 1 2

1 2 2 2

3 3 1 2 3

5 10 4

4 4 3 3 2

3 3 2 3

Z Y Y Y

Z Y Y Y Y Y

Z Y Y Y Y

= + +
= − + + +
= − − +

 

where the 1

qY  have the structure 
1( )hγ  = Pep(h), the 2

qY  the structure 
2 ( )hγ  = Sph(h/20), and the 

3

qY  the large ranged structure. In this example, 3 factors are required to factorize each of the first 

two components, but 2 suffice for the third one (which is not present in Z3). 

Exercise: propose other possible factorizations of this model. 
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As a general rule, it is possible to factorize a linear model of coregionalization by taking a 

number of factors equal, at maximum, to the number of variables times the number of 

components. 

3.2.4 Exercise : examples of linear models of coregionalization 

Are the following models (authorized) linear models of coregionalization? 

γ1(h)  = 16 sph(h/20) + 4 sph(h/100)  

γ2(h)  = 25 sph(h/20) 

γ12(h) = 12 sph(h/20) 

 

γ1(h)  =  4 sph(h/100) 

γ2(h)  = 25 sph(h/20) 

γ12(h) = 12 sph(h/20) 

 

γ1(h)  =  4 sph(h/20) 

γ2(h)  = 25 sph(h/20) 

γ12(h) = 12 sph(h/20) 

 

γ1(h)  = 16 sph(h/20) + 4 sph(h/100)  

γ2(h)  = 25 sph(h/20) + 9 sph(h/100)  

γ12(h) = 12 sph(h/20) - 3 sph(h/100)  

3.3 Exercise : model for error 

Let Z1(x) (mean m1, covariance C1(h), variogram γ1(h)) known at some points and : 

Z2(x) = Z1(x) + R(x) 

a measure of Z1(x) (possibly at different points), affected by an error R(x) with no spatial 

correlation with Z1(x) and being pure nugget. 

Show the following relations: 

Means : 

 m2 = m1 + mR 

Variogram of Z2 : 

 γ2(h) = γ1(h) + var(R) Pep(h) 

Cross-variogram of Z1 and Z2 : 

 γ12(h) = γ1(h) 

Pseudo cross-variogram of Z1 and Z2 : 
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 12 ( )hψ  = γ1(h) + 0.5 E[R2] 

3.4 Exercise : multi-support 

One single variable, but studied simultaneously on different supports, can be considered as a 

particular multivariate case. Although linear geostatistics can theoretically make the structural 

link between the supports, it is often more convenient to use the following approximate model 

(« discrete » or « discretized » model). 

One chooses a reference support (say, a block v), with known variogram ( )v hγ , supposing that: 

- a larger support can be considered as a support multiple of v (classical formula of 
regularization); 

- the domain itself is partitioned (“discretized”) into units of support v; 

- a support finer than v (for instance, quasi-punctual x) is localized randomly, uniformly and 
independently in its support v (then let us denote it by x ). 

Show (in the stationary case) that the linear regression of ( )Z x , knowing its block Z(v), 

coincides with Z(v) (this would not be the case for a point x fixed in v), hence: 

[ ( ) | ( )] ( )E Z x Z v Z v=  

We have the decomposition: 

( ) ( ) [ ( ) ( )]Z x Z v Z x Z v= + −  

Using for instance the hypothesis that, conditionally on its block Z(v), ( )Z x  is independent of all 

other blocks or point samples, show that we have (with x v∈ , hy v∈ , and hv  denoting v 

translated by h): 

- point-block cross-structure: 

1
{[ ( ) ( )][ ( ) ( )]}

2
hE Z y Z x Z v Z v− −  = ( )v hγ  

- discretized point structure: 

2 21 1
{[ ( ) ( )] } {[( ( ) ( )) ( ( ) ( )) ( ( ) ( ))] }

2 2
h hE Z y Z x E Z y Z v Z v Z v Z v Z x− = − + − + −   

= ( )v hγ  + var[ ( ) ( )]Z x Z v−   

(included h = 0, for x y v≠ ∈ ) 

So the model is defined solely by the variogram for the reference support ( )v hγ  and by 

var[ ( ) ( )]Z x Z v− . Note the analogy with the previous exercise: the term ( ) ( )Z x Z v−  is but the 

estimation error of Z(v) by ( )Z x . 
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4 Cokriging  
4.1 Generalities on the cokriging of one or several variables 

To simplify the writing, and without loss of generality, we will consider the case of 2 variables 

1( )Z x  and 2 ( )Z x , informed respectively on two sets of points 1S  and 2S , either identical 

(isotopic case) or not (heterotopic case). Cokriging allows us to account for information on both 

variables by estimating at best, linearly on 1Z  and 2Z  data : either 1 0( )Z x , or 2 0( )Z x , or each of 

these two variables, or these variables regularized, or else a linear combination like 

2 0 1 0( ) ( )Z x Z x− . Cokriging ensures the consistency between estimations : 

2 0 1 0 2 0 1 0[ ( ) ( )] ( ) ( )CK CK CKZ x Z x Z x Z x− = −  

which is not the case of kriging in general (see exercises 4.2.1, 4.2.2 and 4.3.1). 

In the following we will begin by developing calculus considering the estimation of a target 

variable denoted 0( )Z x  (which can be 1 0( )Z x , 2 0( )Z x , or for instance 2 0 1 0( ) ( )Z x Z x− …) in the 

most general way. Let us consider an estimator made by a linear combination of the data: 

( )
1 2

*

0 1 1 2 2 0( ) ( )
S S

Z x Z x Z xα α α αλ λ λ= + +∑ ∑  

which corresponds to the estimation error : 

1 2

*

0 0 0 1 1 2 2 0( ) ( )
S S

Z Z Z Z x Z xα α α αε λ λ λ= − = − − −∑ ∑  

We will then look for the weights such that the estimation error is an authorized linear 

combination (which allows to compute its mean and variance), has a zero expectation (unbiased 

estimator) and finally has a minimal variance (optimality). In terms of covariance, and with 

shortened notations, the variance to be minimized can be written : 

( ) ( ) ( )

( )

( )

( )

1 2

1 2

1 1

2 2

0 0 1 0 1 2 0 2

1 2 1 2

1 1 1 1

2 2 2 2

( ) , 2 , 2 ,

2 ,

,

,

S S

S S

S S

S S

Var C Z Z C Z Z C Z Z

C Z Z

C Z Z

C Z Z

α α α α

α β α β

α β α β

α β α β

ε λ λ

λ λ

λ λ

λ λ

= − −

+

+

+

∑ ∑

∑∑

∑∑

∑∑

 

Clearly, if 0( )Z x  is present in the data, the cokriging of 0( )Z x , best linear estimator, coincides 

with itself: like kriging, cokriging is an exact interpolator. 

4.2 Simple cokriging (or cokriging with known means) 

We consider here the stationary case. In this case there is no condition to impose to be able to 

compute mean and variance of the estimation error. The non-bias can be written: 

1 2

1 1 2 2 0( ) 0
S S

E m m mα αε λ λ λ= − − − =∑ ∑  
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hence : 

1 2

0 1 1 2 2

S S

m m mα αλ λ λ= − −∑ ∑  

which amounts to considering the centered variables: 

( )
1 2

*

0 0 1 1 1 2 2 2[ ( ) ] [ ( ) ]
S S

Z x m Z x m Z x mα α α αλ λ− = − + −∑ ∑  

To minimize the variance of the error, we set its derivative to zero with respect to the weight of 

each data. Each data gives an equation, making the linear system: 

 (system of simple cokriging) 

( ) ( ) ( )

( ) ( ) ( )
1 2

1 2

1 1 1 2 1 2 0 1 1

1 1 2 2 2 2 0 2 2

, , ,

, , ,

S S

S S

C Z Z C Z Z C Z Z x S

C Z Z C Z Z C Z Z x S

β α β β α β α α
β β

β β α β α β α α
β β

λ λ

λ λ
∈ ∈

∈ ∈

 + = ∀ ∈



+ = ∀ ∈


∑ ∑

∑ ∑
 

that is, matricially : 

11 12 011

2 0212 22

t

C C C

CC C

λ
λ

    
 × =   
         

 

covariance  covariance 

between data  target-data 

Solving the system leads to the optimal weights 
1αλ  and 

2αλ (weights of simple cokriging). 

The variance of the error (cokriging variance) can then be written: 

( ) ( ) ( )
1 2

2

0 0 1 0 1 2 0 2var( ) , , ,CKS

S S

C Z Z C Z Z C Z Zα α α ασ ε λ λ= = − −∑ ∑  

that is, matricially : 

( ) 0112

0 0

2 02

var( ) ,

t

CKS

C
C Z Z

C

λ
σ ε

λ
  

= = −   
      

 

4.2.1 Exercise: consistency between kriged values 

Let Z1 and Z2 be two variables with simple and cross variograms 1( )hγ , 2 ( )hγ  and 12 ( )hγ , 

known at the same points. Show that, if 2 ( )hγ  and 12 ( )hγ  are proportional to 1( )hγ , the kriging 

of the difference between the two variables is equal to the difference between their kriging 

(which is not the case in general). 
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4.2.2 Exercise: consistency between cokriged values 

Show that the cokriging of 
2 0 1 0( ) ( )Z x Z x−  (or more generally of a linear combination of 

1 0( )Z x  

and 
2 0( )Z x ) is equal to the difference between the cokriging of 

1 0( )Z x  and 
2 0( )Z x . 

(Use the linearity of cokriging weights as a function of the second member of the cokriging 

system.) 

4.2.3 Exercise: simple cokriging  

Let Z1 and Z2 be stationary with means m1 and m2. We know Z1(A) and Z2(B) at two points A 

and B. Simple cokriging of Z1(O) at point O ? 

4.3 Ordinary cokriging (or cokriging with unknown means) 

Consider the stationary case. We are able to compute the mean and variance of the estimation 

error. However, the means are supposed unknown here. Then we will specify the variable to be 

estimated, for instance 1 0( )Z x  (the general case will be examined in the exercise 4.3.1). The non-

bias can then be written: 

1 2

1 1 2 2 0( ) 1 0
S S

E m mα αε λ λ λ
 

= − − − = 
 
∑ ∑  

To be satisfied whatever the values of m1 and m2 (and supposing these are not linked), we impose 

the following conditions: 

0 0λ =   which definitely disappears from the equations 

1

1 1
S

αλ =∑  (sum of weights for the target variable) 

2

2 0
S

αλ =∑  (sum of weights for the complementary variable, or accordingly for each of 

the complementary variables) 

We then look for the estimator: 

( )1

1 2

*

0 1 1 2 2( ) ( )
S S

Z x Z x Z xα α α αλ λ= +∑ ∑  

for which the estimation variance is minimum, given the two above conditions. This leads to the 

following linear system of equations, where 1µ  and 2µ  are the Lagrange parameters introduced 
to satisfy these conditions : 

 (system of ordinary cokriging) 
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( ) ( ) ( )

( ) ( ) ( )
1 2

1 2

1

2

11 1 1 2 1 2 1 0 1

21 1 2 2 2 2 2 0 2

1

2

, , ,

, , ,

1

0

S S

S S

S

S

x SC Z Z C Z Z C Z Z

x SC Z Z C Z Z C Z Z

αβ α β β α β α
β β

αβ β α β α β α
β β

α
α

α
α

λ λ µ

λ λ µ

λ

λ

∈ ∈

∈ ∈

∈

∈

∀ ∈ + + =

 ∀ ∈+ + =



=

 =


∑ ∑

∑ ∑

∑

∑

 

that is, matricially: 

11 12 1 01

22 2 0212

1

2

1 0

0 1

11 0 0 0

00 1 0 0

t

C C C

C CC

λ
λ
µ
µ

     
     
     × =     
     
         

 

The variance of the error (cokriging variance) can be written: 

( ) ( ) ( )
1 2

2

0 0 1 0 1 2 0 2 1var( ) , , ,CKO

S S

C Z Z C Z Z C Z Zα α α ασ ε λ λ µ= = − − −∑ ∑  

that is, matricially: 

( )

1 01

2 2 02

0 0

1

2

var( ) ,
1

0

t

CKO

C

C
C Z Z

λ
λ

σ ε
µ
µ

   
   
   = = −    
   
      

 

When cross-covariances are even, it can be checked that, thanks to the conditions on the weights 

(and unlike simple cokriging), the system can be written nearly identically in variogram (suffices 

to change each covariance term, simple or cross, by the opposite of corresponding variogram : the 

system is then identical, but with changed signs for Lagrange parameters). In fact, as will now be 

seen, ordinary cokriging then coincides with an intrinsic cokriging. 

4.3.1 Exercise: consistency between cokriged values 

Suppose we want to estimate, by ordinary cokriging, a linear combination of 1 0( )Z x  and 2 0( )Z x , 

for instance 2 0 1 0( ) ( )Z x Z x− , from data on 1( )Z x  and 2 ( )Z x .  

- Which are the non-bias conditions to be introduced? 

- Establish the cokriging system. 

- Check that the cokriging of 2 0 1 0( ) ( )Z x Z x−  is the difference between the cokriging of 2 0( )Z x  

and 1 0( )Z x . 
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-  

4.4 Intrinsic cokriging  
As a matter of fact, in the intrinsic case, the conditions : 

1 2

1 21,   0
S S

α αλ λ= =∑ ∑  

are precisely those for which the estimation error : 

( ) ( )
( )

1

1 2

*

1 0 0

1 0 1 1 2 2  ( ) ( )
S S

Z x Z x

Z x Z x Z xα α α α

ε

λ λ

= −

= − −∑ ∑  

is an authorized linear combination. Its mean is zero (this ensures no-bias). Its variance can be 

developed using the simple and cross variograms, and leads to a cokriging system identical to the 

previous one, but written in variograms (signs being changed for Lagrange parameters). 

4.5 Cokriging with unknown, but linked, means 

Cokriging will change if the means, supposed to be unknown, are linked. Take the example of 

two variables with means that are unknown but equal: m1 = m2. 

The non-bias: 

1 2

1 1 2 0( ) 1 0
S S

E m α αε λ λ λ
 

= − − − = 
 
∑ ∑  

must be respected whatever the mean, so we have: 

1 2

0

1 2

0

1
S S

α α

λ
λ λ
=

+ =∑ ∑  

Show that this leads to the following cokriging system : 

( ) ( ) ( )

( ) ( ) ( )
1 2

1 2

1 2

11 1 1 2 1 2 0 1

21 1 2 2 2 2 0 2

1 2

, , ,

, , ,

1

S S

S S

S S

x SC Z Z C Z Z C Z Z

x SC Z Z C Z Z C Z Z

αβ α β β α β α
β β

αβ β α β α β α
β β

α α
α α

λ λ µ

λ λ µ

λ λ

∈ ∈

∈ ∈

∈ ∈

∀ ∈ + + =

 ∀ ∈+ + =

 + =




∑ ∑

∑ ∑

∑ ∑
 

4.5.1 Exercise: filtering errors 

We consider here the model of error seen in exercise 3.3. 

Errors are supposed to be systematic E[R]≠0 and the means are supposed unknown: kriging and 

kriging system of Z1(x0) ?  
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Errors are supposed to be non-systematic E[R]=0 and m1 unknown: kriging and kriging system of 

Z1(x0) ?  

4.6 Remarks 

4.6.1 Cokriging variance  

Adding data from Z2, to estimate the variable Z1, can only increase the precision : the cokriging 

variance can only be less or equal to the kriging variance from the same Z1 data (as a matter of 

fact, kriging amounts to giving a weight of zero, generally not optimal, to Z2 data). 

4.6.2 Cokriging weights 

Beware to the amplitude of weights : the weights of the target variable Z1 have no unit, but those 

of a co-variable Z2 are in (unit Z1 /unit Z2)  

In ordinary cokriging, the weights of a co-variable Z2 sum to 0. The negative weights, if 

associated to high Z2 values, can easily make negative the estimation of a positive Z1 variable. 
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5 Simplification of cokriging 

Cokriging is a heavy operation when the number of variables, or of sampled points, is high. 

Hence the interest of using models allowing simplifications, when this is compatible with the 

structure and the localization of data. 

5.1 Preliminary remarks 

5.1.1 Consistency of the estimations 

As it has been seen, cokriging ensures the consistency between the estimations of different 

variables (the cokriging of a linear combination being the linear combination of the cokrigings). 

Thus the cokriging of 2Z  - 1Z  (from data on 1Z  and 2Z  for instance) is equal to the difference 

between the cokrigings of 
2Z  and 1Z . 

On the other hand, the cokriging of a quantity being the best linear combination of the data, it is 

possible to replace these data by any equivalent (generating the same space) family of linear 

combinations. Thus it is theoretically equivalent to make a cokriging (of 1Z , 2Z  or Z = 2Z  - 1Z , 

etc) from equivalent data on 
1Z  and 2Z , on Z1 and Z, on Z2 and Z, or else on Z and 1Z + 2Z . In 

practice some choices can be preferable for the simplifications they bring to cokriging. 

5.1.2 Redundant data 

Let us first examine redundancy in a very simple example of kriging. 

The simple kriging of Z(x) from duplicated values at point x+h (two data values equal to Z(x+h)) 

can be written : 

( ) ( ) ' ( ) (1 ')KZ x Z x h Z x h mλ λ λ λ= + + + + − −  

The kriging system is made out of two equations identical to: 

(0) ' (0) ( )C C C hλ λ+ =  

hence: 

( )
'

(0)

C h

C
λ λ+ =  

The duplicates being consistent (same value), the kriging is perfectly determined: 

( ) ( ') ( ) (1 ')KZ x Z x h mλ λ λ λ= + + + − −  

and coincides with the kriging from only one of these data values (in case of inconsistency - two 

different values at the same data point – kriging would not be defined). 

In practice however, redundancies will be avoided, for the solution of the kriging system is 

theoretically not unique (indetermination) and can happen to be unstable. 

It is the same for cokriging. One will avoid for instance to simultaneously use as data the values 

of Z1, Z2, and of Z = Z2 - Z1 at the same point. Similarly, when having p variables with constant 

sum, known at the same points, only p-1 will be retained. In theory, cokriging will not depend on 

the choice of the selected variables, but some choices may bring simplification to cokriging – 

which is useful in practice – and then be more judicious. 
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5.2 Variables without spatial correlation  
Let us consider a set of variables: 

1 2, ,..., pZ Z Z  

without spatial correlation: 

( ) ( ), ( ) 0    ij i jC h Cov Z x Z x h h = + = ∀   

or 

( ) 0    ij h hγ = ∀  

Then (simple or ordinary) cokriging of one of the variables, for instance Z1, is reduced to its own 

kriging: 

0 0( ) ( )CK K

i iZ x Z x=  

One can check that the kriging weights are the solution of the cokriging system. However this 

supposes that the data (possibly heterotopic) are made of the values of these variables. Moreover 

the simplification disappears if the means are unknown but linked. See the following exercises 

for these exceptions. 

5.2.1 Exercise: composite variable 

Let Z1(x) and Z2(x) be two variables without spatial correlation, and Z(x) = Z2(x) - Z1(x). 

We know Z(A) and Z2(B). 

Simple cokriging of Z1(O)?  

Ordinary cokriging of Z1(O)? 

5.2.2 Exercise: linked means (or linked drifts) 

Let Z1(x) and Z2(x) be two variables without spatial correlation, but having the same unknown 

mean m. 

We know Z1(A) and Z2(B). 

Cokriging of Z1(O)?  

5.3 Factorized model of « isofactorial » type 

In these models, it is possible to go from the variables 1 2, ,..., pZ Z Z  to “factors” Y
k
 without 

spatial correlation, and inversely: 

( ) ( )

( ) ( )

k k

i i

i

k k

i i

k

Y x e Z x

Z x a Y x

=

=

∑

∑
 

the number of the kY  not exceeding that of the iZ . 

We have: 
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( ) ( )k k k

ij i j

k

h a a hγ γ=∑  

If the structure of data locations allows it (for instance in the isotopic case, where the Zi, hence 

the Yk, are known at the same points), we are back to the previous case of variables without 

spatial correlation (the Yk), from where the cokriging of the Zi : can be deduced by linear 

combination: 

[ ( )] [ ( )]CK k k K

i i

k

Z x a Y x=∑  

Isofactorial models are very much used in non-linear geostatistics (disjunctive kriging). 

5.3.1 Search of factors 

It is important to note that the factors coming from a statistical method of factorization (principal 

components, for instance), uncorrelated at the same point x, have a priori no reason to be spatially 

uncorrelated. Moreover any multivariate coregionalization model cannot necessarily be 

decomposed into factors with no spatial correlation. However it is possible to determine a family 

of factors with no correlation at distance 0 (i.e. at same point) as well as at another previously 

chosen distance, say h0 : this is what Desbarats and Dimitrakopoulos (2000) propose, referring to 

Switzer and Green (1984), by searching the factors explaining a spatial continuity (correlogram) 

less and less marked for this distance (« min/max autocorrelation factors »). After this, whether 

the spatial correlation between factors can be neglected at other distances must be checked. This 

method is attractive when the number of variables is high, for it allows us to retain the best 

spatially structured factors, by opposition to the quasi-nugget factors (note that the best structured 

factors do not necessarily explain the most of statistical variability, which is an essential 

difference with the principal components). 

5.4 Self-krigeable variables  
5.4.1 Preliminary exercise: screen effect in cokriging 

Simple cokriging of Z1(x) knowing Z1(x+h) and Z2(x+h)? 

Condition for the weight of Z2 to be zero? 

5.4.2 Self-krigeability  

Let Z1(x), …, Zi(x), …, Zp(x) be a set of variables. One variable, for instance Z1, is said to be 

self-krigeable if, in the isotopic case, its cokriging coincides with its own kriging. 

A condition for this is that its cross-structure with the other variables is identical (more exactly, 

proportional) to its own structure: 

1 1( ) ( )jC h C h≡  

or 

1 1( ) ( )j h hγ γ≡  

for all j. (From the preliminary exercise, one can show that this is a necessary and sufficient 

condition in the stationary case with known means; the intrinsic case is more complex.) 
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Suppose that there are two self-krigeable variables, for instance Z1 and Z2. Then: 

- either they have the same structure, in which case they are intrinsically correlated as well as 

their linear combinations (see section 3.1.3) : 

1 12 2( ) ( ) ( )h h hγ γ γ≡ ≡  

- or they have different structures, in which case they are spatially uncorrelated: 

12 ( ) 0    h hγ = ∀  

It can be deduced more generally that the self-krigeable variables (or linear combinations of 

these) can be dispatched into groups, without spatial correlation between groups, each group 

being made up of intrinsically correlated variables with a different structure. (Mathematically: 

self-krigeable RFs belong to orthogonal subspaces, each of these being characterized by its own 

structure.) 

Two cases are particularly interesting: 

- it is possible to go, by linear transformation, from the set of original variables to new 
variables, spatially uncorrelated and with structures generally different from each other: those 

are the factorized models seen above; 

- all variables (as well as their linear combinations ) are self-krigeable and belong to the same 
group: this is the model of intrinsic correlation seen above, characterized by identical simple 

and cross structures. 

5.5 Model with residual between 2 variables  

This model (sometimes called Markov model) is a bivariate factorized model, where one variable 

is self-krigeable. 

5.5.1 Characterization 

Consider two variables Z1(x) and Z2(x) with a cross-structure identical to the simple structure of 

one of these, say Z1(x): 

12 1( )  ( )C h a C h=  

or: 

12 1( )  ( )h a hγ γ=  

(In other words, Z1(x) is self-krigeable.) Then the residual of the linear regression of Z2(x) on 

Z1(x):  

2 1( ) ( )  ( )R x Z x a Z x b= − −  

(by construction with mean zero and uncorrelated to Z1(x) at same point) has no spatial 

correlation with Z1(x): 

[ ]1 12 1( ), ( ) ( ) ( ) 0Cov Z x R x h C h aC h+ = − =  

The model can then be factorized with factors Z1(x) and R(x): 
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2 1

2

2 1

( )  ( ) ( )

( ) ( ) ( )R

Z x a Z x b R x

h a h hγ γ γ
= + +

= +
 

Note that knowing only the structure of the variable Z1(x) gives no information on the residual 

structure. (Moreover, in principle, nothing prevents the structure of the residual from being more 

continuous than that of Z1.) 

Remark: in the pure intrinsic case (variogram but no stationary covariance), we must think in 

increments: b disappears, and the increments R(x+h)-R(x) = [Z2(x+h) - Z2(x)] - a [Z1(x+h) - 

Z1(x)] are uncorrelated to [Z1(x+h) - Z1(x)]. 

5.5.2 Simplification of cokriging 

Suppose that Z2(x) is known on the same set (isotopic case), or on a subset, of the datapoints of 

Z1(x). Then knowing Z1 and Z2 on their sets of points is equivalent to knowing Z1 and R on the 

same sets, respectively. Thanks to the factorization, we then have: 

1 1

2 1 

CK K

CK K K

Z Z

Z a Z b R

 =


= + +
 

This can be simple cokriging (from simple krigings of Z1 and of R), or ordinary cokriging. 

Replacing R by its definition, one can check that, in the ordinary cokriging of Z2, the sum of 

weights for Z2 is 1, and the sum of weights for Z1, 0. 

5.5.3 Kriging of residual or collocated cokriging 

Consider the heterotopic case where Z1(x) is densely known, i.e. known at any desired point. 

Since kriging (or cokriging) is an exact interpolator, its value at a point x0 coincides with the true 

value Z1(x0). The cokriging of Z2(x0) corresponds to the estimation obtained by kriging the 

residual of Z2(x0) on Z1(x0), which can be written : 

[ ]
2 0 1 0 0

1 0 2 1

2 1 0 1

( )  ( ) ( )

 ( )

( ) 1

CK KZ x a Z x b R x

a Z x b Z aZ b

Z a Z x Z b

α α α
α

α α α α α
α α α

λ

λ λ λ

= + +
= + + − −

   = + − + −   
   

∑

∑ ∑ ∑

 

This is a collocated cokriging, for it makes use of Z1 only at x0 and where Z2 is known : the other 
points where Z1 is available receive a zero weight and do not appear. 

This can be a simple cokriging (corresponding to simple kriging of the residual), or an ordinary 

cokriging (corresponding to the ordinary cokriging of the residual, with the condition 1αλ =∑  

which filters b out). 

5.5.4 Exercise : « dislocated cokriging » 

Consider, in the stationary case, a model with residual, say: 

Z2(x) = Z1(x) +R(x) 
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where R(x) is spatially uncorrelated with Z1(x) and has a nugget structure. For instance Z2(x) can 

represent a measure of Z1(x) spoiled with an error R(x) (see exercise 3.3). This is a model with 

residual with γ12(h) = γ1(h) and γ2(h)  = γ1(h) + γR(h).  

Consider an arbitrary heterotopic configuration, where Z1 and Z2 are known at possibly different 

points. 

Show that : 

- the simple cokriging of Z1(x0) depends on Z2(x) only at points where Z1(x) is unknown (it is a 
dislocated cokriging, opposite collocated cokriging) ; 

- the simple cokriging of Z2(x0), where it is unknown, depends on Z2(x) also only at points 
where Z1(x) is unknown. 

5.5.5 Exercise: Model with residual and intrinsic correlation  

Let Z1(x) and Z2(x) be two variables with Z1(x) self-krigeable. In other words, we are in a model 

with residual. 

Show that the variables are intrinsically correlated if and only if the structure of the residual is 

identical to this of Z1.  

Z1, Z2, or any linear combination, is then self-krigeable. 

5.5.6 Exercise: Examples of models with residual 

Are those models with residuals? Decomposition of the variables? Structure of the residual? 

γ1(h)  = 16 sph(h/20) 

γ2(h)  = 25 sph(h/20) + 25 sph(h/100)  

γ12(h) = 16 sph(h/20) 

 

γ1(h)  = 16 sph(h/20) + 16 sph(h/100)  

γ2(h)  = 25 sph(h/20) + 25 sph(h/100)  

γ12(h) = 16 sph(h/20) 

 

γ1(h)  = 16 sph(h/20) + 16 sph(h/100)  

γ2(h)  = 25 sph(h/20) 

γ12(h) = 16 sph(h/20) 

 

5.5.7 Passage to a model with drift  

Consider a model with residual, and suppose, like for the kriging of the residual, that Z2 is 

densely known. Suppose moreover that Z1 and R are, not only spatially uncorrelated, but 

independent RFs. By conditioning the model on the values z1 of Z1, this variable gets 

deterministic and we have: 
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[ ]2 1 2( )  z ( ) ( ) ( ) ( )Z x a x b R x E Z x R x= + + = +  

which allows us to consider 1 z ( )a x b+  as the drift of Z2(x) : 

[ ]2 1( )  z ( )E Z x a x b= +  

defined externally from z1(x). 

Be careful: z1 being deterministic, the (usual, centered) covariance to be used for Z2 is now this of 

the residual: 

2 2 2 1 2 1[ ( ), ( )] {[ ( )  z ( ) ][ ( )  z ( ) ]}

cov[ ( ), ( )]

Cov Z x Z x h E Z x a x b Z x h a x h b

R x R x h

+ = − − + − + −
= +

 

5.5.8 Kriging with external drift  

Consider the expression of the cokriging estimator, but now with z1 deterministic. This does not 

change the estimation obtained by kriging the residual. If b is unknown, the estimation gets rid of 

it by introducing the condition 1αλ =∑  (ordinary kriging). Now if both a and b are unknown, 

the estimation can be achieved by imposing the conditions : 

1 10
1  and  z zα α α

α α
λ λ= =∑ ∑  

This is the kriging with external drift. One can show that the weights are the solution of the 

following linear system: 

 (system of kriging with external drift) 

( ) ( )0 1 1 0

1 10

, ,

1

xCov R R z Cov R R

z z

αβ α β α α
β

α
α

α α
α

λ µ µ

λ

λ

∀ + + =



 =



=


∑

∑

∑

 

that is, matricially: 

011

0

1 101

1

1 0 0 1

0 0
t

CC z

zz

λ
µ
µ

    
    × =    
         

 

The kriging variance can be written: 

( ) ( )2

0 0 0 0 1 10var( ) , ,KDE Cov R R Cov R R zα α
α

σ ε λ µ µ= = − − −∑  

that is, matricially: 
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( )
01

2

0 0 0

1 10

var( ) , 1

t

KDE

C

Cov R R

z

λ
σ ε µ

µ

  
  = = −   
     

 

5.5.9 Remarks on the kriging of residual and on the kriging with external drift 

- The variable Z1, known everywhere, hence not to be estimated, does not really require any 

hypothesis of stationarity. 

- The basic hypothesis is the spatial uncorrelation, or even the independence, between the dense 

variable and the residual of the target variable on this.  

- The estimation depends on the structure of the residual only. The direct determination of this 

structure is however a problem in external drift (the increments of the residual, and so its 

variogram, depend a priori on a, considered as unknown); cross-validation can then be used to 

estimate or refine this structure. 

It is possible to extend the methods of kriging of the residual and of kriging with external drift to 

several conditioning variables. Then the structure to be used is this of the residual of the linear 

regression, at the same point, of the target variable on the conditioning variables. This residual is 

supposed to be spatially uncorrelated to the conditioning variables. 
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6 Kriging analysis 

Kriging analysis allows us, within a linear model of regionalization or coregionalization, to filter 

or to map one or several components. 

6.1 Stationary case with one variable 
Consider a variable Z(x) with mean m and with structure: 

1 1 2 2 3 3( ) ( ) ( ) ( )h b h b h b hγ γ γ γ= + +  

where the structural components ( )k hγ  describe for instance different scales. This model can be 

interpreted as a decomposition of the variable itself into components at different scales (chosen 

with means 0): 

1 2( ) ( ) ( )Z x Z x Z x m= + + +L  

We have: 

( ), ( ) ( ), ( )k k kCov Z x Z x h Cov Z x Z x h   + = +     

which allows us to cokrige each 0( )
kZ x  from the sole data ( )Z Z xα α=  on Z. 

If the mean m is known, this will be a simple cokriging: 

( )( ) ( )0

CKS
kZ x Z mα α

α
λ= −∑  

As an exercise, one can develop the system (identical to the kriging system of ( )0Z x , but 

changing the right hand side according to the component kZ  to be estimated). 

When the mean is unknown, be careful to ensure non-bias. Hence for instance the estimation of 
3

0( )Z x : 

3

0

3

0

( )

( ) 0 0  0

CK

Z x Z

Z Z

E m

α α

α α

α α

λ

ε λ

ε λ λ

  = 

= −

= − = ⇒ =

∑
∑
∑ ∑

 

and this of 3

0[ ( ) ]Z x m+ : 

( )

3

0

3

0

( )

( )

( ) 0 1 0  1

CK

Z x m Z

Z x m Z

E m

α α

α α

α α

λ

ε λ

ε λ λ

 + = 

= + −

= + − = ⇒ =

∑
∑
∑ ∑

 

We have the consistency: 

( )3 3

0 0

CKCK
KZ m Z m + = +   
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as well as globally: 

( ) ( ) ( )1 2 3

0 0 0 0

CK CK CKK KZ Z Z Z m= + + +  

due to the linearity of the weights with respect to the second member of the system, which 

changes with the quantity to be estimated. 

Be careful: while the hidden factors kZ  (depending on the structural decomposition, unknown 

and non objective) are not spatially correlated, their estimations, since they are made from the 

same data, are correlated. 

6.2 Intrinsic case with one variable 
The intrinsic case is more complex. Consider for instance a variable with structure: 

1 1 2 2 3 3( ) ( ) ( ) ( )h b h b h b hγ γ γ γ= + +  

This can be interpreted as the sum of 3 intrinsic components without spatial correlation : 

1 2 3( ) ( ) ( ) ( )Z x Z x Z x Z x= + +  

Suppose that we want to estimate 3

0( )Z x . The error can be written: 

3 3 1 2 3 3 3 1 2

0 0 0( )kZ Z Z Z Z Z Z Z Z Zα α α α α α α α α α α αε λ λ λ λ λ= − = − + + = − − −∑ ∑ ∑ ∑ ∑  

For this to be an authorized linear combination, αλ∑  should be at the same time equal to 1 and 

to 0, which is impossible. This leads us to consider only one purely intrinsic component (say Z
3
), 

the others (Z
1
 and Z

2
) being stationary with mean zero. We then have, for instance:  

2

0( )

( ) 0  0

CK

Z x Z

E

α α

α

λ

ε λ

  = 

= ⇒ =
∑
∑

 

or 

3

0( )

( ) 0  1

CK

Z x Z

E

α α

α

λ

ε λ

  = 

= ⇒ =
∑
∑

 

Note the similarity between the estimation of the intrinsic component Z
3
 in this frame, and the 

estimation of (Z
3
+m) in the stationary case with unknown mean: 

1 2 3( ) ( ) ( ) ( )Z x Z x Z x Z x= + +  +m  

6.3 Multivariable case 

The multivariate case is similar: 

( ) ( )k k

ij ij

k

h b hγ γ=∑  

In the stationary case for instance, this can be interpreted as : 
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( ) ( )

( )

k

i i i

k

k k

iq q i

k q

Z x Z x m

a Y x m

= +

= +

∑

∑∑
 

Kriging analysis consists of extracting, by cokriging, the k

iZ  (non objective, given by the 

structural decomposition) or the k

qY  (depending moreover on the method chosen to factorize the 

components k

iZ  at scale k). 
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7 Synthesis and other remarks 

7.1 Multivariate models 

We have seen: 

- the model of intrinsic correlation, where all structures are identical ; 

- the linear model of coregionalization, where all structures are linear combinations of a given 
number of basic structures; 

- the factorized models, essentially the particular case of the model with residual, where the 
factors consist of the self-krigeable variable and the residual (this model, which leads to the 

estimation by kriging the residual and by kriging with external drift, can represent notably a 

model for errors or a multi-support model). 

It is possible to complement such models, or to imagine many more, according to the situation, 

for instance : 

- models including delays between some components ; 

- models made from convolutions (regularizations) or from derivatives ; 

- models of indicators resulting from thresholding a RF; 

- etc. 

7.2 Simulation 

The models presented here are particularly suited to simulations in the (multi-)gaussian case (i.e. 

any linear combination is gaussian), the absence of correlation being then equivalent to 

independence: 

- the simulation of p intrinsically correlated variables can be obtained from independent 
simulations of the factors resulting from an arbitrary factorization (in number p, in general); 

- the linear model of coregionalization, for p variables in function of k basic structures, can be 
simulated also from independent simulations of factors (in number kp, in general) ; 

- the factorized model with p variables can be simulated from independent simulations of each 
factor (in number p in general, that is, two in the bivariate model with residual), each factor 

possibly having however a nested structure. 

7.3 Simplification of cokriging 

If one of the variables, say Z1(x), has a cross-structure with each other variable that is identical to 

its own structure, then it is self-krigeable : its cokriging coincides with its own kriging, in the 

isotopic case, but also in the heterotopic case if Z1 is known at all sampled points. 

When the number of variables is two and in such a configuration, it can be advantageous to 

replace Z2(x) by the residual R(x) of its linear regression on the self-krigeable variable Z1(x) at 

the same point, this residual being not spatially correlated with Z1(x). This is the model with 

residual, where cokriging can be obtained by kriging the factors Z1(x) and R(x), at least if Z1(x) is 

known at every sampled point. 
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All these remarks apply in particular to the model of intrinsic correlation : the cokriging of Z1 is 

identical to its kriging, supposing that Z1 is known at every data point. 

Lastly, more generally in the factorized models, cokriging can be reduced to kriging each factor, 

providing that the data can be expressed into values taken individually by these factors (this is 

notably so in the isotopic case). 

7.4 Cokriging neighbourhood 
In the monovariate case, the choice of the cokriging neighbourhood (by this we mean the 

neighbouring data that will be retained, for instance the N nearest data per angular sector) 

depends on : 

- the location (number, distribution, in particular geographic density) of the data ; 

- the structure of the variable; 

- the limit distance of the assumed hypothesis of stationarity (on the variable or its increments). 

Different parameters can help for this choice : kriging variance (for the precision), weight of the 

mean in simple kriging (to see notably the influence of the mean in ordinary kriging), slope of the 

linear regression true value on estimated value in ordinary kriging (to get closer to conditional 

unbiasness where this slope is 1). 

The same considerations can be also applied in multivariate, but the situation can be far more 

complex. 

Note that the cokriging of a variable is sure to be at least as precise as its own kriging, if the 

cokriging neighbourhood includes the kriging neighbourhood (which is not guaranteed in 

practice, in particular because of the number of data), and if the mono- and multi-variate models 

are consistent. 

To ensure consistency between the cokriged values of the different variables, it is necessary to 

take a neighbourhood identical for the estimation of each variable. In the isotopic case, this 

suggests choosing the neighbourhood according to the variable that requires the largest 

neighbourhood (while a smaller neighbourhood could be sufficient for the other variables). 

The heterotopic case is far more difficult than the isotopic case, for besides the geographical 

location of the values for each variable, their mutual arrangement has its role (through the 

model). 

For instance, when estimating a variable Z1 from data on this variable and from a densely known 

other variable Z2, a collocated neighbourhood consists of retaining a neighbourhood that 

includes, in addition to the data on Z1, those on Z2 at target point and at points where Z1 is 

informed, but not those on Z2 at other places. Such a neighbourhood is optimal in the model with 

residual where the cross-structure between Z1 and Z2 is identical to the structure of Z2 : in effect, 

cokriging is collocated in this model, and this is also the model for kriging with external drift. 

However such a neighbourhood can lead to a substantial loss of information in other cases. 

For instance, if, in an arbitrary heterotopic stationary case, the cross-structure between Z1 and Z2 

is identical to this of Z1 with a nugget residual from Z2(x) on Z1(x), simple cokriging of Z1 at an 

unsampled point makes use of Z2 only where Z1 is unknown: the neighbourhood is dislocated, in 

opposition to the previous collocated neighbourhood which would then ignore the second 

variable Z2, except at target point if available. 
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7.5 Uses of cokriging 
Cokriging allows us to improve the consistency between the estimations of different variables. 

In the isotopic case, it can improve the estimation of a variable, if its simple structure contrasts 

with its cross-structures with the other variables. 

In the heterotopic case, cokriging allows us in particular, to account for an auxiliary variable that 

is better sampled : in the case of a densely sampled auxiliary variable and of the model with 

residual, notably, cokriging is collocated and coincides with kriging the residual, and kriging with 

external drift can also be used. 

Cokriging also permits us to extract structural components (kriging analysis). 

Lastly, it can be used to condition a multivariate Gaussian simulation. 
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8 Indicators  
In this section, we will look at the tools of linear geostatistics when applied to the case of 

indicators. We will consider successively: 

- the case of one indicator; 

- the case of an indicator and another variable; 

- the case of several indicators; 

and will present, in this last case, some basic models and the cokriging of indicators. 

8.1 Indicator of a set 
8.1.1 Indicator variable of a set 

The presence or the absence of a set A (a geological facie for instance) at a point x can be coded 

by the 0/1 « indicator » variable : 

1 ( )A x =
{ }
{ }
1

0

si x A

si x A

∈

∉
 

Since a point belongs necessarily, either to A, or to its complement Ac , their indicators are 

respectively 1 and 0 or else 0 and 1. We have then: 

1 ( ) 1 ( ) 1cA A
x x+ =  

and 1 ( )1 ( )cA A
x x  = 0 

Note the following properties : 

1 ( )1 ( )A Ax y  is 1 if both x and y belong to A, 0 otherwise. 

21 ( ) [1 ( ) ]A Ax x=  

Mean of an indicator at different points : 

1
1 ( )A i

i

x
N
∑  = proportion of points xi that belong to A. 

1
1 ( )A

V
x dx

V ∫
 = proportion of points of V that belong to A. 

8.1.2 Random model  

The set A is now considered as a random set (a set whose shape and location are random). Its 

indicator variable is represented by a 0/1 Random Function. This indicator satisfies: 

[1 ( )] ( )AE x P x A= ∈ , say 
Ap independent of x, if this probability is stationary (i.e. 

invariant under translation)  

[1 ( )] 1c AA
E x p= −  

var[1 ( )] (1 ) var[1 ( )] 0.25cA A A A
x p p x= − = ≤  
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Non-centered covariance of (the indicator of) A : 

[1 ( )1 ( )] ( , )A AE x x h P x A x h A+ = ∈ + ∈ , say ( )AK h  if stationary 

Centered covariance: 

cov[1 ( ),1 ( )] ( )A A Ax x h C h+ =  if stationary 

Variogram : 

[ ]21 1
([1 ( ) 1 ( )] ) ( , ) ( , )

2 2
A AE x h x P x A x h A P x A x h A+ − = ∈ + ∉ + ∉ + ∈   

that is : ( , )P x A x h A∈ + ∉ ( ) ( ) 0.5cA A
h hγ γ= = ≤   

in the stationary case. (As its variance is bounded, an indicator which satisfies the intrinsic 

hypothesis, having then stationary increments, is necessarily stationary.) 

Note that the variograms of a set and of its complement are the same. On the other hand, a set and 

its complementary do not have necessarily the same connectivity (think to a set made of disjoint 

– hence disconnected – lenses, surrounded by the complementary set: this being connected, as it 

is possible to go from one point to another one without getting off the set). It follows that a 

variogram is not capable of characterizing the connectivity of a set. 

We have : 

( )
( | ) A

A

K h
P x h A x A

p
+ ∈ ∈ =  

( )
( | ) A

A

h
P x h A x A

p

γ+ ∉ ∈ =  

The variogram of a random set cannot be arbitrary. In particular we have necessarily: 

|1 ( ) 1 ( ) | |1 ( ) 1 ( ) | |1 ( ) 1 ( ) |A A A A A Az x z y y x− ≤ − + −  

hence: 2 2 20.5 [1 ( ) 1 ( )] 0.5 [1 ( ) 1 ( )] 0.5 [1 ( ) 1 ( )]A A A A A AE z x E z y E y x− ≤ − + −  

and so the triangular inequality: 

 ( ') ( ) ( ')A A Ah h h hγ γ γ+ ≤ +  

It follows that: 

 (2 ) 2 ( )A Ah hγ γ≤  

hence a behaviour at the origin: 

( ) | | 1A h h αγ α ≤�  

α is related to the irregularity of the frontiers of A. It is equal to 1, its maximum (variogram being 
linear at short distances), for a set with regular contours. A parabolic behaviour (in h

2
) at short 

distance is then not admissible. 
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8.1.3 Kriging of an indicator 

Let us code the data ,..., ,...x A x Aα β∈ ∉  by the indicators 1 ( )A xα , equal to 0 or 1. 

The conditional probability 0( | ,..., ,...)P x A x A x Aα β∈ ∈ ∉  is in general not accessible. Then one 

can use a kriging of the indicator, for instance a simple kriging : 

0

1 1

[1 ( )] 1 ( ) 1
n n

K

A A Ax x pα α α
α α

λ λ
= =

 = + − 
 

∑ ∑  

which has the meaning of a probability, but can be out of [0, 1], which requires a post-processing. 

8.2 Case of an indicator and of another variable 
8.2.1 General case 

Consider a set A represented by its indicator 1 ( )A x , and a variable Z(x). Then it is possible to 

compute and compare the means [ ( ) | ]E Z x x A∈  and [ ( ) | ]cE Z x x A∈  of Z(x) on A and on its 

complementary A
c
 respectively. 

Let us look at the interpretation of the cross-structures in this case: 

The non-centered cross-covariance: 

[1 ( ) ( )] [ ( ) | ] ( )AE x Z x h E Z x h x A P x A+ = + ∈ ∈  

gives, up to the factor ( )P x A∈ , the mean of Z at distance h of a point x of A. The ratio between 

the cross-variogram and the simple variogram of A provides the mean deviation of Z between a 

pair of points distant of h across the frontier: 

, ( )
[ ( ) ( ) | , ]

( )

A Z

A

h
E Z x h Z x x h A x A

h

γ
γ

= + − + ∈ ∉  

(assuming this quantity is symmetrical in h). 

Of course, it is possible to compare the spatial variability (variogram) of Z(x) computed, on the 

whole domain, on A (the points x and x+h within A), on its complementary, or across A and Ac. 

If one is interested in the behaviour of Z(x) within A, it is also possible to consider the new 

variable (restraining Z(x) to A) ( )1 ( )AZ x x , equal to Z(x) within A and to 0 outside. This will be 

the following case. 

8.2.2 Indicator and variable being simultaneously zero 

Here we consider a set A represented by its indicator 1 ( )A x , and a variable Z(x) equal to 0 

outside A. We then have the relation: 

Z(x) = ( )1 ( )AZ x x  

The ratio between the non-centered cross-covariance and the non-centered covariance of A : 

[1 ( ) ( )]
[ ( ) | , ]

[1 ( )1 ( )]

A

A A

E x Z x h
E Z x h x A x h A

E x x h

+ = + ∈ + ∈
+
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is equal to the mean of Z within the intersection between the set A and its translation by h. The 

ratio between the cross-variogram and the simple variogram of A can then be written (again 

assuming symmetry): 

, ( )
[ ( ) | , ]

( )

A Z

A

h
E Z x h x h A x A

h

γ
γ

= + + ∈ ∉  

Its evolution in function of h measures the effect of the borders of A on Z. It is constant when 

there is no border effect. This is, in particular, the case when Z(x) can be considered as resulting 

from the restriction to A of a variable independent of A (its variographic structure is then 

accessible from the sole data of Z(x) in A). 

8.2.3 Service variables 

By service variables, we mean a pair of additive variables (then suited to linear estimation), the 

ratio of which is a variable of interest which is not additive, typically in mining: 

T(x), represents the ore, 

Q(x), the metal, 

with ratio 
( )

( )
( )

Q x
Z x

T x
=  equal to the grade in metal. 

This is the classical case of a stratiform or vein-type orebody studied in 2D with: 

T(x) thickness of the layer at 2D point x, 

Q(x) metal accumulation on the thickness of the layer, 

with ratio equal to the grade of the thickness. 

Consider a block defined by the support v of its 2D size. By definition, its mean grade Z(v), ratio 

between metal and ore, is: 

 

1
( ) ( )

( )
1( ) ( )

v v

v
v

Q x dx Q x dx
v

Z v
T x dx T x dx

v

= =
∫ ∫

∫ ∫
  

that is, the ratio between regularized Q and T : 

  
( )

( )
( )

Q v
Z v

T v
=   

or else: 
1 ( )

( ) ( )
1

( )v

v

T x
Z v Z x dx

v
T y dy

v

 
 
 =
 
 
 

∫
∫

 

So the mean grade is not the direct mean of grades, but the mean of grades weighted by 

thicknesses. 
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Similarly, one can deduce an estimation of the grade (at a point or on a block) from a linear 

estimation of the service variables thickness and accumulation (for instance by kriging, or better, 

cokriging). 

Due to the relation Q(x)=Z(x)T(x), the 3 variables are not independent and can present various 

relations, so it is instructive to examine their scatterplots. In particular: 

Z(x) can be negatively correlated to T(x), notably if T(x) and Q(x) are independent; 

Z(x) can, on average, increase with T(x) (positive correlation), then Q(x) also; 

Z(x) can be uncorrelated to or independent of T(x), for instance if Q(x) varies 

proportionally to T(x). 

The structural relations, also, can be various. In particular the observation of a cross-structure 

between T and Q being proportional to the simple structure of T corresponds to a model with 

residual with T being self-krigeable: 

 Q(x) = aT(x) + b + R(x) 

This can be notably the case when, on average, the metal varies linearly with the ore : 

 E[Q(x)|T(x)] = aT(x) + b (proportional T(x) if b = 0) 

that is: 

 E[Z(x)|T(x)] = a + b/T(x) (constant if b = 0) 

Yet another example of service variables is given by the recoverable reserves at cut-off grade z, 

that is (denoting by Z(x) a 3D grade): 

- the ore, given by the indicator ( )1 Z x z≥ (equal to 0 or 1), this indicator regularized (for 

instance, the proportion of ore on the height of benches), or ( )1 Z v z≥  for a selection support v; 

- the metal, given by ( )( )1 Z x zZ x ≥  (equal to 0 or Z(x)), this metal regularized (for instance on 

the height of benches), or ( )( )1 Z v zZ v ≥ , 

the ratio between these two service variables (or their estimations) representing the corresponding 

recoverable grade. We are here in the case of an indicator and of another variable (the metal) 

being simultaneously zero.  

Considering several possible cut-offs, as well as a change of support (going from samples at 

quasi-punctual support x to a selection block v) is part of non-linear geostatistics. 
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8.3 Indicators of several sets 
Clearly distinguish: 

- independent random sets, then: 

( , ) ( ) ( )P x A x B P x A P x B∈ ∈ = ∈ ∈  

- disjoint sets A B∩ = ∅ , then:  

1 ( )1 ( ) 0A Bx x =  and so: ( , ) 0P x A x B∈ ∈ =  

- nested sets 
2 1A A⊂ : 

2 1
1 ( ) 1 ( )A Ax x≤  

8.3.1 Cross-variography 

non-centered cross-covariance: 

 [1 ( )1 ( )] ( , )A BE x x h P x A x h B+ = ∈ + ∈  that is ( )ABK h if stationary 

cross-covariance : 

( ) ( )AB AB A BC h K h p p= −  

cross-variogram: 

1
( ) [1 ( ) 1 ( )][1 ( ) 1 ( )]

2
AB A A B Bh E x h x x h xγ = + − + −  

8.3.2 Independent sets 

Then we have ( ) 0ABC h =  and ( ) 0AB hγ = . 

8.3.3 Disjoint sets 

We then have (in the symmetric case) : 

1
( ) [1 ( ) 1 ( )][1 ( ) 1 ( )]

2

( , )

AB A A B Bh E x h x x h x

P x A x h B

γ = + − + −

= − ∈ + ∈
 

( )
( | )AB

A

h
P x h B x A

p

γ− = + ∈ ∈   

( )
( | , )

( )

AB

A

h
P x h B x A x h A

h

γ
γ

− = + ∈ ∈ + ∉  

This last ratio is constant when no border effects A-> B (i.e. from A to B). 

Moreover, if the disjoint sets (say A, B and C) make a partition, their indicators are linked by the 

closeness relation : 



 60  

1 ( ) 1 ( ) 1 ( ) 1A B Cx x x+ + =  

hence the relations previously mentioned on this subject, for instance : 

( ) ( ) ( )AB AC AC h C h C h+ = −  negative at h = 0 

and  ( ) ( ) ( ) 0AB AC Ah h hγ γ γ+ = − ≤  

8.3.4 Nested sets 

Consider for instance: 

 
2 1 0A A A⊂ ⊂  

The ratio between non-centered cross-covariance of two sets and non-centered covariance of the 

larger set is: 

1 2

1 1

1 2
2 1 1

1 1

[1 ( )1 ( )] ( , )
( | , )

[1 ( )1 ( )] ( , )

A A

A A

E x x h P x A x h A
P x h A x A x h A

E x x h P x A x h A

+ ∈ + ∈= = + ∈ ∈ + ∈
+ ∈ + ∈

 

it is constant when no border effect from A2 to A1. 

We have, for the cross-variogram (symmetrical case) : 

1 2 1 1 2 2

1 2

1
( ) [1 ( ) 1 ( )][1 ( ) 1 ( )]

2

( , )

A A A A A Ah E x h x x h x

P x A x h A

γ = + − + −

= ∉ + ∈
 

1 2

1

2 1

( )
( | )

1

A A

A

h
P x h A x A

p

γ
= + ∈ ∉

−
 

1 2

1

2 1 1

( )
( | , )

( )

A A

A

h
P x h A x A x h A

h

γ
γ

= + ∈ ∉ + ∈  

This last ratio is constant when there is no border effect from A2 to A1. 

8.3.5 Remark : relation between disjoint sets and nested sets 

The case of nested sets can be transported to this of disjoint sets, posing for instance : 

 

2

1 2

0 1 2

C A

B A A

A A A A

=
= −

= − −
 

In theory, the families of the indicators of the disjoint sets and of the nested sets are equivalent. In 

particular, the absence of border effects from A2 to A1 (nested sets) corresponds to the absence of 

border effects from A to B (disjoint sets). 

Inversely, it is interesting to cumulate disjoint sets into nested sets only when these sets can be 

ordered (for instance geological facies with decreasing granulometry). 
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8.3.6 Cokriging of indicators 

The indicators of disjoint or nested sets are not independent. In general cokriging allows one to 

improve the consistency between the estimations of the different indicators (however, similarly to 

kriging, the cokriging of an indicator can get out of [0,1]). 

8.4 Some basic models 

Three types of basic models are illustrated at the end of the document (figures kindly provided by 

Hélène Beucher, showing images and variographic figures in the two axes, output from Isatis 

software). Each case corresponds to 3 disjoint facies, colored in grey (G), yellow (J) and red (R), 

in proportion nearly equal in the three models, but different from one facies to another. 

8.4.1 Model without border effect 

More precisely, this is a model without border effect when going out of grey. Going out of grey, 

one finds yellow or red according to a probability independent of the distance. Hence for instance 

a cross-variogram between red and grey proportional to the variogram of grey. 

This model has been constructed in the following way : 

(1) set the whole space in red ; 

(2) generate the yellow facies; 

(3) superimpose independently the grey facies; 

 (it would be possible to continue to superimpose sequentially other independent sets). 

Because of the hierarchy of the construction, this model is suited to a description by cumulating 

facies into nested sets, here: [red] ⊂ [red + yellow] ⊂[red + yellow + grey]. 

Consider then a model without border effect when going up into the nested sets 
0 1 2 ...A A A⊃ ⊃  

We then have for instance : 

21 2

1 1

2 1 1

( )
( | , )

( )

AA A

A A

ph
P x h A x A x h A

h p

γ
γ

= + ∈ ∉ + ∈ =  

One can show that the indicators can be factorized from the residuals of indicators : 

1

1

1

1 ( )
( ) 1

A

A

x
H x

p
= −  

…, 1

1

1

1 ( )1 ( )
( )

ii

i i

AA

i

A A

xx
H x

p p

+

+

+ = − , … 

In the isotopic case, it is sufficient to krige these residuals to deduce the cokriging of all 

indicators. 
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8.4.2 Mosaic model with independent valuations 

Such a model can be built from a stationary partition of space into tiles (in the figure: a Voronoi 

partition, given by the zones of influence of Poisson points). Each tile is given a facies A, B or C 

(here grey, yellow or red), according to an a priori probability pA, pB or pC, independently of the 

other tiles. (On the figure, all initial tiles cannot be distinguished: in particular, the large areas in 

grey are made of several tiles, each set – by pure randomness – in grey.) 

Denoting: 

( )hρ = P(x and x+h belong to the same tile) 

we have: 

2
( ) ( , ) ( ) [1 ( )]A A AK h P x A x h A p h p hρ ρ= ∈ + ∈ = + −  

( ) ( , ) [1 ( )]AB A BK h P x A x h B p p hρ= ∈ + ∈ = −  

( ) (1 )[1 ( )]A A Ah p p hγ ρ= − −  

( ) [1 ( )]AB A Bh p p hγ ρ= − −  

All simple and cross-variograms are identical. There is no border effect between facies. 

The mosaic model with independent valuations corresponds precisely to the case where cokriging 

does not bring any improvement to kriging, at least in an isotopic case. As a matter of fact, the 

indicators are intrinsically correlated, hence cokriging coincides with kriging : 

0 0[1 ( )] [1 ( )]CK K

A Ax x=  

In other words, to estimate the indicator 01 ( )A x , only the 1 ( )A xα  matter, not the 1 ( )B xα , which is 

intuitive from the construction of the model. 

8.4.3 Model of diffusive type 

This corresponds to a gaussian RF thresholded into grey, yellow and red : one crosses yellow to 

go from grey to red. Hence the existence of border effects: when going out from grey, for 

instance, the probability to have red increases with the distance. The facies are naturally ordered, 

and such a model is very much used in the oil industry to describe facies with increasing or 

decreasing granulometry (for instance decreasing from sand – in red – to shale – in grey – passing 

through silt – yellow). Because of this order, it is interesting to cumulate the facies (nested facies 

in the sense of increasing or decreasing granulometry). 

The simple and cross-structures of the indicators are not simple models : they are a function of 

the simple structure of the gaussian RF and of the thresholds (see course on simulations). In 

practice, the fitting of such structures of facies indicators requires one to search for the structure 

of the hidden gaussian variable. This model is very widely used in simulation (rather than in 

estimation by cokriging), the facies being then directly obtained by thresholding the simulated 

gaussian variables. 
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8.4.4 Towards non-linear geostatistics 

Applying thresholds to a RF leads to nested sets (for instance, the sets of points where the RF 

exceeds the values 0, 1, 2, 3…), the values taken by a discrete or discretized RF making a 

partition of space into disjoint sets (for instance, the sets of points where the RF is respectively 

equal to 0, 1, 2, 3…). The cokriging of indicators, then called disjunctive kriging, allows one to 

estimate any function of the RF. 

This simplifies into kriging of indicators in the case of the mosaic model with independent 

valuations (characterized by an absence of destructuration of the nested sets when the cut-off 

varies). 

Disjunctive kriging is essentially used within the frame of isofactorial models, where it is 

obtained by kriging separately the factors : 

- residuals of indicators in the hierarchical models without border effects when going up (or 
down) in the levels; 

- other families of factors in the models of diffusive type (Hermite polynomials in the 
anamorphosed gaussian case, Laguerre polynomials for gamma distributions, etc.). 

See course on non-linear geostatistics. 
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10 Index 
(referring to sections) 

border (effects) 8.2.2, 8.3.3, 8.3.4, 8.4 

closeness relation 2.11, 5.2.1, 8.3.3 

cokriging 4 

 collocated5.5.3, 7.4 

 dislocated5.5.4, 7.4 

 of indicators 8.3.6, 8.4 

 intrinsic 4.4 

 ordinary4.3 

 simple 4.2 

 (simplification of) 5 

(variance of) 4.6.1, 7.4 

 (weight of) 4, 6 

consistency between estimations 0.2, 4.2.1, 4.2.2, 4.3.1, 5.1.1, 7.5 

correlation 

 between increments 2.5.1, 3.1.1 

 (coefficient of) 1.4, 1.5, 2.9.2, 2.9.3, 3.1.1, 3.1.2 

 intrinsic 3.1, 4.4, 5.4.2, 5.5.5, 8.4.2 

 spatial 0.1.2.1, 1.6, 2.3, 5.2 

 statistical 0.1.2.1, 1.6 

correlogram 2.1.1, 5.3.1 

covariance 2.1 

 cross 2.2, 2.3 

  odd 2.3, 2.4.1, 2.5.2 

  even 2.5.2, 2.6.1, 3.1.1, 3.2.2.1 

 non-centered 2.1 

 stationary 2.1.1 

 statistical 1.4 

delay 2.3, 7.1 

derivative 2.4.1, 7.1 

error (measurement) 3.3, 3.4, 4.5.1, 5.5.4 
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factor/factorization 3.1.3, 3.1.4, 3.2.2.3, 3.2.3, 5.3, 5.4.2, 7.2, 8.4.1, 8.4.4 

heterotopy 0.2, 2.8, 5.2.1, 5.5.2, 5.5.3, 5.5.4, 5.5.7, 7.3, 7.4, 7.5 

indicators 8 

intrinsic 0.1.2.3, 1.6, 2.1.2, 2.6 

 see also correlation 

isotopy 0.2, 5.3, 5.4.2, 5.5.2, 7.3, 7.4, 7.5 

kriging 

 disjunctive 8.4.4 

 with external drift 5.5.8, 5.5.9, 7.5 

 of indicators 8.1.3, 8.4.2 

kriging analysis 6 

linear combination  

 authorized 2.1.2, 2.6.2 

at different points 2.1.1, 2.4 

of variables 2.10, 3.1.3, 5.1, 5.2.1, 5.3 

means (linked) 4.5, 5.2.2 

model  

 diffusive 8.4.3, 8.4.4 

linear of coregionalization 3.2 

 mosaic 8.4.2, 8.4.4 

 see also: intrinsic, intrinsic correlation, stationary, residual, factors 

nested (structures) 0.1.3, 2.10, 3.2.1 

orthogonality 1.5 

redundancy 5.1.2 

regression 1.3 

 linear1.5, 2.5.1, 2.9.2, 5.5.1, 7.4 

residual 5.5, 7.4, 7.5, 8.2.3 

 of indicators 8.4.1, 8.4.4 

regularization 2.9.1, 7.1, 8.2.3 

scatter plot 1.1 

screen effect 5.4.1 

self-krigeability 5.4 

simulation 0.2, 7.2, 7.5, 8.4.3 
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stationarity 2.1.1, 2.4 

support 1.6, 2.9, 3.4 

 see also regularization 

symmetry (of structure) 2.5.1, 2.6.2, 2.6.3 

see also even/odd cross-covariance 

thresholding 7.1, 8.4.3, 8.4.4 

variogram 2.1.2 

 of indicators 8.1.2 

variogram (cross-) 2.5 

 of indicators 8.3.1-4 

 (pseudo) 2.7, 3.3 

neighbourhood 7.4 
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