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GEOSTATISTICS FOR SKEW DISTRIBUTIONS

INTRODUCTION

The presence of a small percentage of high grades usually linked with
a short-range structure makes it difficult to estimate skewly
distributed grades, since all differences or errors that occur are
magnified. Sometimes new geostatistical models are needed but the
general concepts remain the same. Above all, difficulties do arise
when using classical tools. This requires great care.

This course is designed for practioners who are already familiar with
basic geostatistics. These lecture notes merely provide an overview
of each topic.



SERVICE VARIABLES

1.WIDTH AND ACCUMULATION (2D)

The mean grade of a mineralized layer, defined as the ratio metal/ore
is the average of the grades weighted by the width. This is why we
need to use the two service variables: width and accumulation. These
can be averaged directly to give the mean width and the mean
accumulation. The ratlio of these two is the mean grade.

when the mineralization is present within formations whose limits
(Z(x) = z,) are unknown, it is convenient to represent the presence
or absence of the mineralization at & peint x using the indicator
function:

1 if 2(x) » z4 (1)

1 >
2(x)>z, t} otherwise

The mean grade of the mineralization in a block V is the mean of the
grades Z(x) weighted by this indicator. So it is the ratio of the
mean value of the metal:

Z{x) 1Z(x)>zo = Metal (2)
and that of the ore:
1 = Qre (3)

Z{X) 320

Please note that the proportion of ore within the block V is just:

JV1Z(X))deX (4)

<] -

3.FSTIMATION OF THE SERVICE VARIABLES
The service variable representing the ore is normally much more
structured than the other service variable {the metal). When these
two variables are kriged separately, each of the samples has
different weights for each estimator. For instance a rich sample may
have a large weight for one variable and a small one for the other,
causing the ratio - the estimated grade - to be unrealistic. A more
consistent relationship bétween the estimates of the ore, metal and
grade can be obtained by cokriging the service variables.



Quite often the cross-variogram between the ore tonnage T(x} and the
metal quantity Q(x) has the same shape as the ore variogram (which is
the more regular of the two) up to a multiplicative factor p. This
means that the metal Q(x) can be written as:

Q(x) = pT(x) + R(x) + constant (5)

where R(x) is uncorrelated with the metal T(x+h} for all h. In the
stationary case p is the slope of the linear regression of Q(x) on
T(x), and R(x) is the residual. Kriging T{(x) and R(x) separately is
then equivalent to cokriging them, and so we get the cokriged value
of Q(x) from Eq(b).



SELECTION ON GRADE ESTIMATES -

Selection on grade estimates is likely to reflect the qualities of
grade sampling and estimation.

%
- Let ZV denote the real grade of the selection block v, and let Zv be
the estimator of Zv' For example, it could be

- the mean of the samples inside v:
r Z(Xi)/n

- a weighted average of both inside and outside samples (e.g.
the kriged estimate):

v

r Ai Z(xi) with [Ai = 1002

: - *
1. THE BIAS E{Zv Zv )

" The bias igs the mean difference between the true and estimated values
taken ogver all blocks without any selection. Samples may not
represent the extracted volume because
- part of this volume is waste and has not been sampled (e.g.
the fill, or the footwall and the hanging wall of a vein),
- of sample bias (poor recovery of cuttings with, for example,
loss of fine particles which are often rich in metal},
- of bias in chemical analyses.

~ It should be noted that a significant difference on average between
Zv and Z * after selection does not imply the existence of such a
blas.

From now on, we suppose that there is no overall bias, that is:

E(Zv - Zv*) =0 (6)

. - % *
2. CONDITTONAL BIAS E(Zv ZV !Zv )

This occurs when the blocks estimated at. 2_* = z, in fact have a
different average grade: E(Z *|Z * = z). In this case the blocks
above the cutoff grade z _ have an average grade of E(Z 12.* % z),
which is different from %heir estimated mean. Then the conditiofial

bias :

- % x
E(Zv ZV !Zv )

*
is responsible for a bias on the selected grade:E(Zv - Zv lZv* 2 zc).



This is the mean of the conditional bias for the selected blocks.
Suppose that the regression E(ZVIZV*) is linear:

*Yy ¥ — ™
E(ZVIZV ) m } o (Zv ) {(7)
g a *
v v
= = *
where n E(ZV) E(ZV } (8)
2 =
02, Var(Zv)
2 % =
a? Var{Zv*)
- i *
n correlation (zvfzv )
Consequently,
*Yy - e -
E(ZVIZv ) m P (Zv* m) (9)

where the slope of the regression p is given by

p=p cv/cv* = Cov(ZV,Zv*)/Var(ZV*) (9b)

Remark: When there is no conditional bias, the regression is of
course linear with a slope of 1. So a value of p different to
1.0 implies a conditional bias. Hence the importance, when
kriging, of this parameter which can be calculated from the
covariance function.

From Eq (9}, we can see that

t; — = * t? -
f{zvlzv zc) m ) FE(ZV IZV zc) m] (10)
it e e
actual grade increase grade increase expected

from the selection

1f p < 1, the recovered grade is always less than the predicted. The
estimator Z * overestimates the selected grade. This is commonly the
situation when Z * is the average of samples inside v since it is
more variable than Zv:

ozv* > UZV == pP=p cv/Uv* 1.0 (11}

Note that a partial but unbiased recovery of samples makes o2 *
increase and hence p decrease. This highlights the importance of the
sampling quality.

If p > 1, the recovered grade is always above the estimated one, and
thus underestimated. This underestimation can lead to wrongly
deciding that the deposit is uneconomic.



Particular Cases:

(i) Simple Kriging (i.e. kriging with a known mean)

(ii)

From the equations p is egual to 1. So, if the regression is
linear, there is no conditional bias.

Ordinary Kriging (i.e. Kriging with an unknown mean)

Here the known mean replaced by its locally estimated value. If
this is imprecise {because the kriging neighbourhood is too
small} and if the weight of the mean 1s not negligible, then p<1
and the recoverable reserves are overestimated.

Important Remark

A cutoff z, applied on the estimated grades Z_* guarantees that
the expectséd grade E(ZV!ZV*) will be above E(¥VIZ *ﬁzc) = h{z ),
but not that it will exceed z . This shows how ilYusory a cutoff
is when applied to a conditiofially biased estimate. To obtain a
correct selection at the cutoff z _ the cutoff should be made on

E(Zvizv*} which is Zv* corrected for the conditional bias.

We now assume that there is no conditional bias.

J.CRE-WASTE ERRORS
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When Zv is unknown, selecting on the estimated grade Zv* leads to:

- taking poor blocks that have been estimated rich

- leaving rich blocks that have been estimated poor

These classification errors correspond to the vertical dispersion of
the scatter diagram around the bisectrice: Var(Zv - ZV*IZV*).



Remark: Let T denote the selected tonnage, i.e. the proportion of
selected blocks. These contain less metal than the really
richest T% of the blocks since some of the really rich blocks
have heen effectively replaced by poorer ones. This 1s called
the information effect.

4.THE ESTIMATION VARIANCE: Var(zv - ZV*)

We can write 2 - Z * as
v v

_ -
Z Z, [z

v - E(3 12,01 + [E(2,12,%) - 2 %] (12)

v

where the second term [E(Z 11 *) - 2 *], as a function of 2% is
uncorrelated with the first term.

Consequently,
- *
Var(Zv ZV ) |
o - * * - *
var[z - E(Z 12 *)] + Var[E(Z |2 *) - Z *] {(13)

The estimation variance 1is the sum of two terms. The second term
corresponds to the conditional bias; while the first corresponds to
the vertical dispersion of the scatter diagram around the regression
(ore/waste errors, after correction of the conditional bias).

S0 minimizing the estimation varilance 1is a compromise between
minimizing the difference between the predicted and the recovered,
and minimizing the orefwaste errors.



GRADE/TONNAGE CURVES

SUPPORT AND INFORMATION EFFECTS

1.GRADE TONNAGE CURVES

Let us consider a deposit, or part of one, which has a constant
density and contains a total tonnage T, at a mean grade of m. Clearly
it contains Tgm tons of metal.

We now suppose that it is divided into n small blocks v. with a
constant size v. Each of these blocks contains a tonnage fb/n. Let
its grade be Z(vi), Then its metal content is Tﬂz(vi)/n.

Clearly

m = 2(v;)/n (13)

Freﬁuency

Block Grade
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Selection at the Cutoff z:

The number of blocks selected at thls cutoff can be expressed in
terms of the indicator function for blocks. It is

L 1Z(vi))z

Similarly the tonnage selected is just the proportion of blocks above
the cutoff, up to a multiplicative factor T;. So it is

T{z) = 1/n L 1 (14)

Z({vi)zz

Tiz)

100,

~

The selected metal is the sum of the metal contained in these blocks.
That is,

Q(z) = 1/n1t Z{vi)1 (15)

Z{vi)2z

Q(z)
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Hence the selected grade is

Q(z) L Z{v.) %, . (16)
m(z} = = 1 Z{vi)zz
T(z) E1Mvm;z
F.3
m(z)
m
Z >

For convenience, we define a conventional profit function:

I

B{z) = Q(z) - 2T(z) (17

L(2vi) - 2) Y904y

n

flere z is the grade above which the metal in the block pays for its
extraction and treatment. When these costs increase (relative to the
metal price) z increases and so B(z) decreases. It can be proved that

the curve B{z) is convex.

B(z)

¥
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Up to now we have expressed th curves Q, T, Q/T and B as functions of
z. But they can also be rewritten as functions of T. For example the
curve Q(T) increases {i.e. the quantity of metal recovered increases
with increasing ore tonnage) and is concave (i.e. the additional tons
selected are poorer and poorer}.

QUT)

Remark Let F(z) denote the cumulative distribution function of the
block grades; then F(z) = P{Z(v) < z). It is easy to see that

T(z) = E(1Z(v)zz) = I TZ?Z F{dz) = 1 - F(z) (18)
Q(z) = E(Z(V)1Z(v))z) = j Z‘Z?z F(dz} (19)
m{z) = E(Z(v}|Z{v)2z) (20)

2.SUPPORT EFFECT

How do these curves vary with changing support? We now divide the
deposit into big blocks V., each with grade Z(V.). These big blocks
are subdivided into smaller ones v. Clearly big ﬂlocks are less often
very rich or very poor. So their grades are less dispersed than the
smaller ones. See Figure.



- 13 -

Fa

-Ffe7uency

‘_Lacge.S%pPOPT 14

Small Sup,oor'f o

Grrade

For a given cutoff z, we have
- for the small blocks: Tv(z) =1- Fv(z), 2,(2z), m,(z) and B, (z).
- for the big blocks: Tv(z) =1 - FV(Z), Qv(z), mv(z) and Bv(z).

As their grades are more dispersed, the small blocks generally give a
higher mean grade after selection than the big ones:

mv(z) > mv(z)

and conversely the ‘remaining small blocks have a lower mean grade
than the remaining big ones.

For high cutoffs the proportion of selected blocks and the selected
metal tends to be higher for small blocks. Similarly for low cutoffs
the proportion of blocks left in place is generally higher for small
blocks.
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Although the small blocks left in place have a poorer grade than the
remaining big blocks, they often represent a larger quantity of
metal.

The Conventional Prefit Function B{z)

It can be proved that Bv(z) is greater than Bv(z) for any z.

B(=z)
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Instead of using the same cutoff for both large and small blocks, we
fix the total ore tonnage T to be selected (say to take the richest
50% of the deposit). Then the small blocks will necessarily be richer
than  the big ones - both in metal and in grade.

QT
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3. THE INFORMATION EFFECT

Let us suppose that the deposit is still divided into the big blocks
V. but their grades Z(V.) are not known. We only have estimates of
these, z (Vi). Assume that these are conditionally unbiased:

E(Z(V)|2 (V) = 2 (V) (21)

We now can be sure that the grade of the blocks selected as being
above the cutoff will be equal to the predicted grade. Conversely, if
the conditional bias is not small, thée cutoff grade tends to be
illusory. For high cutoffs the grade of the selected blocks may even
turn out to be below the cutoff!

As E(Z(V) 2 (V) = 2 (V) and Z(V) - 2%(V) = 2(V) - E(Z(V)|Z (V)) are
uncorrelated, it follows that

Var(z(V)) = Var(z (V)) + Var(z(v) - 2 (V) (22)

Consequently the estimated grades are necessarily less dispersed
(i.e. smoother) than the real ones. (A non-smoothing estimator is
always conditionally biased). So these estimated grades are less
often very rich or very poorer than are the real ones. Applying a
cutoff to them leads a selected grade which is generally smaller, and
so is the conventional profit function. This is to be expected. As
the selection is made on big blocks, the profit is maximal with
perfect information (i.e. when the real values are known).

When we try to select the richest T% of the blocks without their
actual grades, some low grade blocks are selected in place of higher
grade ones. This results in a decrease in the metal Q(T) and the
selected grade Q(T)/T.

4. TOWARDS RECOVERABLE RESERVES:

The simplest case of a selection is when the deposit is divided into
small blocks each of size v and the selection is made by comparing
the cutoff grade either with (1) the actual block grade (this is the
ideal case of perfect information), or {(2) its estimated grade
obtained from the most detailed information that will be available
{(e.g. blast hole grades).

In this case the selection is free (from,constraints) in the sense
that each block is selected or rejected independently of its location
and of neighbouring blocks. 1In principle, knowing the distributions
of the real and the estimated grades would allow us to deduce the ore
tonnage, the metal content, the grade and the conventional profit
function - in other words, the recoverable reserves. But how can we
know the distributions at the exploration stage when we only have
sample grades at our disposal?
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Firstly, these grades are measured on a very small support. Their
distribution has riot the same characteristics as the selection
blocks. It is generally more “selective® in the sense that it
suggests better results for the possible selection than is possible
for the blocks.

Secondly, these samples are representative of the drillholes,
galleries, etc but not the whole deposit. Their experimental
distribution might be signicantly different from the true
distribution of the samples that would compose the whole deposit. In
particular, the experimental sample mean will not be equal to the
mean for the whole deposit. It would be interesting to have a
confidence interval to see how different is it likely to be.

Let us assume that the samples are punctual (i.e. point sample) and
that their distribution is known. Let F(z) denote the cumulative
distribution function and let m be the mean and y{h) the variogram.
Modelling the distribution Fv(Z) of the selection block grades Z({v)
would give us the recoverable reserves for the case where the
information is perfect. But we have only the mean m and the variance
of this distribution: Var{Z{(v)} = Var(z(x} - y(v,v). So a change of
support model will be required. See the following section for this.

Tn addition to this, we still have to take acount of the information
effect which requires knowing the conditional bias and the
distribution of the final estimator.
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CHANGE OF SUPPORT MODELS

1. AFFINE CORRECTION

In this we obtain an estimate of the selection block distribution by

“shrinking" the sample distribution around its mean until it has the

correct variance. To be more precise, let o?2_ be the variance of the
. v

selection blocks. Then we have

02 = Var(z(v)) = Var(z(x)) - Y{v,v)
= g2 - Y{v,v) (23)
The basic assumption is that the wvariable (Z(v) - m) has the same

distributicn as ov/o (Z(x) - m). The affinity ratio is then cv/o.

Fr‘e?uen(;y
=%
/
/ )
,;’ \ 7z (x)
Z(U’) %
&
! \
& LY
f Y
7 \\
z \
7 ~
m 7

G-rade

Selecting the richest T% of the deposit would give the recoverable
grade:

m(T) for the samples

mV(T) for the selection blocks
where

mv(T) - m = uvlo (m(T) - m) (24)
For the metal, .
QV(T) = Uvjo o(T)Y + (1 - ovlo)mT (25)

It is a very simple model but rather an imprecise one.
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{i) Normal Distribution

Let X be a standard normal variate. Its probability density function
g(x) is

g(x) = 1/{20 exp(-x2/2) (26)
Its cumulative distribution function G(x) is

G(x) = J“ g(t)}dt = Pr (X ¢ x) (27}

It can be proved that if X is a standard normal variate,
E(exp(rX)} = exp(-A2/2) (283

Let Y be normally distributed with mean p and variance o2. Then
the random variable

X=1(Y - u)o (29)
is a standard normal variate and we can write

Y =u+ oX (30)

(ii) Bivariate Normal Distributions

Let the random variables X and Y have a bivariate normal distribution
with a coefficient of correlation p. Then any linear combination of X
and Y is also normally distributed. Moreover X and Y are independent
iff p = 0.

We now assume that X and Y are standard normal variates (mean O,
variance 1). Then so is the random variable U

U= (Y - pX)/T{T = p2) (31)

Moreover it 1s uncorrelated with X and hence independent.
Consequently the conditional distribution of Y given X = x can be
written as

(YIX = x) = px + {(T-p2T U ] (32)

and so E(Y]¥X) = pX {(33)
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(iii) Lognormal Variables
Suppose that Z is lognormally distributed; then 1ln Z is normally
distributed with mean p and variance o2. So we can write

In 2 = p + oY (34)

where Y is a standard normal! variate. The mean and variance of the
distribution are

‘m = E(Z) = expl{y + 02/2) (35)
Var(Z) = m2 [exp(o2) - 1] (38)
One particularly convenient way of writing this variable is

Z =m [expl(oY - 02/2)] (37)

If we write the cutoff grade.zC as

Z, =M exp(cyc - 02f2) (318)

then 2 2 z implies Y » y_ and conversely. We obtain the follewing
expressions for the recovery functions.

T = E(1Z;gc) = Pr{i % zc) = Pr(Y }’Yc) =1 - G(yc) {39)
On integrating
Q= E(Z1Z$zc) = mf{1 - G(yC - o)} (40)

Remark on the lognormal transformation: The corresponding normal and
lognormal variates, Y and Z respectively have the same value of
the cumulative distribution function.

Cumvulative | Freguency

1.0

Standard Lojnor‘maf
Norme /! Oistribufion
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{i) Samples: let Z{x) and Y(x) be the lognormal and standard normal
variables for the samples.

(ii)Selection Blocks: Suppose that the block grades ZI(v) are
lognormally distributed. Then

Z(v) = m exP[chv - czv/2] {41)

where m is the mean of both the sample and block distributions, and
where the logarithmic variance is

ozv = In[1 + vax(2{v))/m2] (42}
The variance of Z(v) is computed from the formula

Var{zZ(v)) = var(2(x)} - y(v,v) (43)
{iii) Recoverable Reserves

From Eq 38 we can see that

YC = {02V12 + ln(zc/m)]/ov (44)
Hence

T=1- G(yc) {45)

Q =mun(1 - Gly, - a}) (46)

4 GAUSSIAN DISCRETIZED MODEL

(i} The Gaussian Anamorphosis for the Samples

This is just a generalization of the lognormal transformation. We no
longer assume that Z is lognormally distributed but merely that there
is not a big spike of identical values (e.g. at the origin.}

Cumulotive | Freguency
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The experimental histogram of the sample values z is known. Each of
these z values can be associated with a value of the standard normal
variate y (that is we can write z = @(y)) in such a way that

Pr(z < z) = Pr(Y < y) (47)

So if we know the cumulative distribution function of Z, then the
anamorphosis function @ is defined and conversely.

Given the anamorphosis function @ it is easy to calculate the tonnage
and the metal content above a certain cutoff:

T = Pr(Z 2 zc) = Pr{yY 2 yc) = 1 - G(yc) (48)
Q = E(Z1z>zc) = f B{y)gly) dy (49)
yC

{ii} Change of Support

The distribution of 2Z(v) will be defined via 1its gaussian
anamorphosis function:
Z{v) = ﬂv(Yv) (50)

where YV is as usual a standard normal variate.

How can we find out what the function ®_ is? If x is randomly and
uniformly located anywhere inside the block v, then

E(Z{x)|Z(v)) = Z(v) {(51)
Here

E[@(YK)IBV(YV)] = Bv(yv} (52)
or ‘

B,(Y,) = E(B(Y,) 1Y) (53)

Now @ is fully determined if we know the bivariate distribution of
(YX,Y }. We now make the hypothesis that this is bivariate gaussian.
If%the correlation coefficient is r, then

(YXIYV =y)=ry +{(1 -r2) U (54)
where U is a standard normal variate. So wé have
mv(y) = [ plry + wf (T - £2)]g(u)du {55)

This can be written as mIIy).
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In this model r characterizes the support v:

Var(z(x)) = Var[E{Z(x)|2(v))] + E(Var(zZ(x)){Z(v))
= Var(Z{v)} + E(Var[O(YX}lYV) (56)
The lower the correlation between Y_  and Y , the 1larger is

E(Var(@(Yx)in) and the smaller Var(Z(v)f5= Var[@;in)].

In practice r is calculated to respect the known value of Var{Z{(v)}.

1\

Yor Z{x)

Vor Ziv)

L 1o

Remarks: The lognormal model is just one particular case of the
gaussian discrete model since if @ is exponential, so is @_.
Secondly, as r decreases toward 0 (i.e. for larger blocks with a
small dispersion variance), Z(v) converges toward a gaussian
(normally distributed) variable. This is in agreement with the
law of large numbers.
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ON ANAMORPHOSIS TECHNIQUES q]

The term "anamorphosis" refers to transformations carried out on the
grades (e.g. to make them normally distributed). It can be very
helpful during structural analysis and/or when making estimates. But
although anamorphosing the grades is often useful, it can sometimes
be risky.

1 THE GRADE VARIOGRAM IS NQT ALWAYS ENOUGH TO DESCRIBE THE STRUCTURE

what is Structure?

Basically structure is the set of special spatial relationships that
exist between grades Z(x). The most common geostatistical teol used
for studying structure is the grade variogram, which is defined as

y(h) = 0.5 var{Z(x + h} - Z(x)} (57}

For the distance h the experimental or raw variogram is computed
from all the pairs of grades (Z(x+h),Z(x)) which are h apart.
Although it is extremely useful, it may turn out to be too poor for
déscribing some phenomena or for use in types of estimation.

Example

Deposits made up of distinct mineralized formations surrounded by
waste, where the mining method will follow the outlines of the
mineralized zones even though these are unknown at the time when the
estimates must be made. In these cases it may be helpful tc use
indicator functions to describe the geometry of the mineralization:

1Z(x)>0 = 1'if Z{x) is mineralized

0 otherwise (58)

This alsc allows us to estimate the proportion of the volume that is
mineralized. Although this variable does not describe all the
variability found in the grades, it obviously characterizes an
important aspect of it.

2. INDICATOR FUNCTIONS AND FACTORS: FITTING BIVARIATE DISTRIBUTIONS

Using a single indicator function when studying deposits with no
clearly defined geologlcal cutoff is clearly unsatisfactory. However
the cross-structures between all possible indicator functions (i.e.

the direct and cross-covariances) provide a rich source of
information, which is, in fact, exactly equivalent to knowing the
pivariate distributions of (Z(x),Z(x+h)). This can be used to
estimate the grades themselves, or to estimate functions of them. In
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particular, the local recoverable reserves (ore and metal) can be
estimated if a suitable change of support formula is available. The
problem is to fit a coherent model to the experimental bivariate
distribution {(in the same way that we must use only authorized
variogram models to fit experimental variograms).

The estimation method using indicator cokriging which is called
disjunctive kriging, is considerably simplified when an isofactorial
model can be fitted to the bivariate distributions. The problem
reduces to kriging each of the factors separately. These factors
which are functions of the grades, correspond to a rich modelization
of the structure which is needed for the subsequent estimation.

3. MULTTLOGNORMAL DISTRIBUTION

Ancther example of an anamorphosis is the lcgnormal transformation
when it converts the raw grades into a normal distribution. This
makes it possible to use estimation methods like lognormal kriging
or other lognormal estimators. Theoretically these are powerful
methods but they are based on the very strong assumption that the
distribution is multivariate normal after transformation. As it 1is
difficult to test this assumption, these methods can only be judged
a posteriori by the results that they produce.

The assumptions in +the preceding approach imply that the raw
variogram is less structured than that of the transformed grades.
This can often be observed in practice. It shows another possible
application for anamorphosis: finding a more continuous variogram
which is better known than the raw one and so can be taken as being
more reliable than it for understanding the structure (e.g. the
anisotropies).

Note that variograms are obtained from the bivariate distributions.
Consequently if the raw variogram is poorly known then so are the
bivariate distributions. This means that hypotheses concerning these
laws remain just that - untestable hypotheses.

an equally unverifiable hypothesis would then be required to
estimate the raw variogram model from that.for the anamorphosed data
which could be:
- logarithms
- translated logarithms (which reduces the differences
between large values without unduly increasing the dispersion
among small ones. This has not the same purpose as fitting a
three parameter lognormal to obtain a normal distribution)
- indicator functions for a suitable geological cutoff
- truncated grades
- cutting the high values
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When using linear estimators of the grades, it would be risky to use
the weighting factors obtained from the kriging of more continuous
anamorphosed data. The resulting smoothing would be insufficient and
it would give each sample too big a weight within its neighbourhood.
This would lead to overestimating the areas around rich samples, and
consequently, to a dangerous bias if used for selecting mining
blocks.
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CONFIDENCE INTERVALS ON THE GLOBAL MEAN GRADE

{after J. Rivoirard and C. Lajaunie)

Wwhen dealing with skewly distributed grades, the mean grade of
samples on a grid may turn out to be different from the true mean
grade of the deposit. Considering how uncertain a single estimated
value is, it is often more meaningful to have a confidence interval
for the mean grade. This i1s a rather difficult problem. We will only
treat it briefly here.

1. SICHEL'S METHOD

Firstly we mention the method proposed by Sichel under
hypothesis of independence and lognormality. An estimator for the
mean grade and the associated confidence interval are given in
Sichel (1966, the March issue of SATMM).

2. SETTING THE PROBLEM

A fundamental problem in finding a confidence interval for the
mean is in defining it. This can best be seen from an illustration.
We will consider a deposit V, divided into n equal panels. Please
note that we will NOT use the usual geostatistical formalism of a
random function, but we will consider that the grade z(x) at a fixed
point x is fixed and not random (as in the third part of 'Estimer et
choisir", Matheron 1978). TLet m be the average grade of this
deposit:

m = z(V) = 1/V -J z(x) dx {58)
Sy
In one of the panels, we choose a point and we subsequently

take this to be the origin of a regular grid whose size is set equal
to that of the panels. See the figure below.
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Let w denote the support consisting of these n regularly spaced
points. Clearly the mean grade of w is just the mean of the n point
values:

z{w) = [ z(xi)/n (60)

Let us now consider the origin of the grid as being randomly
located (with a uniform distribution) within its panel. Let w be the
randomized support w. Then z{w) is a random variable that takes a
different value each time the origin of the grid is changed. It can
be taken as the estimator m* of m. If the distribution of m* was
known, then we could easily obtain probability intervals for the
variable z(w). For example, if z(w) were lognormally distributed
with mean m and logarithmic variance o_?, then the 95% probability
- . W
interval for z(w)} would be given by:

Pr{m exp{-1.96 o " ow2/2) ¢ z{w) ¢ m exp(1.%6 o, " cw2/2))
= 0.95 (671)
But this is not what we are looking for. We want a confidence

interval for m. At this stage two approaches for confidence
intervals can be taken from the statistical literature.

3. A FIRST APPROACH

Let us suppose that we know the distribution of m* not just for
the one real value of m, but for all "possible® wvalues. We could
then compute probability intervals for z(®w) for each value of m. See
the figure below.

k4

I
|
l
i
b

|

l

|

I
a

In this first approach the confidence intérval for the mean m
is obtained by reading the diagram horizontally: Ja,b]. This
confidence interval is then defined as the set of all values m such
that m* belongs to the probability interval associated with m. (Of
course since m is not a random variable this interval is not a
probability interval for m given the value of m*}.
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" If we suppose -that, for all possible m, m* is lognormally
distributed, with a logarithmic variance GWZ independent from mn,
then we have:

it

m* a'exp(1.96 o, - 0, 2/2)) (62)

mx b exp(-1.96 ow,:.ow2/2) (63)

and, for the 95% confidence interval Ja,b] is
]éﬁixp(~1.96 o, + cw2/2), ﬁﬁgxp(1.96 o, * °w2/2)] (64)

There is still the problem of obtaining o 2 in practice. But,
in this approach, we are making an hypothesis (cw2 independent from
m) that cannot be tested, even if we suppose we know every point
grade throughout the deposit. So we go on to the second approach.

2. SECOND APPROACH

In this approach (see for instance: Rohatgi, "An introduction
to probability theory and mathematical statistics", Wiley, 1976),
there is no need to imagine different values for m, which is
conceptually more satisfactory. Briefly a confidence interval is
defined as a random interval which is a function of the random
variable z(w) and which contains the true value m with a minimum
given probability.

Theoretically, it is possible to verify this result by taking
all possible origins of grid. consequently this type of confidence
interval can be said to have an objective Significance. Moreover the
hypothesis that the confidence interval is built on can
theoretically be tested in the same way.

Before going into the hypotheées to be made, let us look at the
-information that is (or can be hoped to be) available in practice
from a single grid w of samples:

the histogram of these point values

their mean valuedz(w)

i ; 2 2
their variance o %lw
- their variogram v _(h)
Note: the variance of the samples 02xiw- is egual to the mean
variogram .over w: xw(w,w).

This variogram +_(h) (even if known) cannot reasonably be
considered as equal to the unknown point variogram on V i.e. vy(h).
But it is often reasonable to suppose (the first hypothesis!) that
it only differs fom it by a multiplicative factor. As +vy(h) 1is
" theoretically the mean value of yw(h) when w is randomized { at
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least for h that are multiples of the lag), it gives

y({h) E(c?2 )
. xjw (65)

¥, ¢h) L

X|w

We know that we can calculate variances once the variogram is
known. Let w be a random grid and let x be a point in w chosen at
random; then

E(z(x) ) = z{u) (66)
On writinq*ﬁ%_fa} [ | %o

Var(z{x)) = Var[E(z(x)|¥)] + Elvar(z(x)|w)] (67)
where Var(z(x)) = y(v,v} , (68}
and E[Var(z(x}l§?3 = E(olew} = E[yw(w,w}} = y{wW,w) (69)
we obtain -

Var{z(w)) = vy(v,v) - vy(w,w} (70)

From (65) and (70) we deduce:

Var{z{w)) cawa

]

= YW(V;V) - Yw(w,w) = constant (71)

2
Elo x|w

Here we have to make the crucial hypothesis, and we will choose
the lognormal case. We assume that the distributions are
approximately lognormal; that is,

z{(x)|w (sample values for each grid w) is lognormal

with mean z(w) and with logarithmic variance o?
independent of w,

z(w) is lognormal with mean m and with logarithmic variance UWZ
Of course this implies that the experimental distribution of samples
can already be considered as lognormal (the other hypothesis being
not testable unless every point grade of the deposit is known).
Consequently, we can write

z(W) = m exp{owyw - ow2/2] (72)

where Y, is a standard normal variate. Then it follows that
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Var{z(w)) = m? Eexp(GWZ) - 1] (73)
E{z{w)2) = m? exP(uwz) (74)
szlw = sz [exp(a?) - 1] {75)
E{sztg) = m2 exp(o 2) [exp(o?) ~ 1] (76)

Thus
Var(z(u))o? [expla, 2} - 1]2.2
x| = w w = constant (77}
) exp(cwz)

W

2
E(o xlw

This gives ow2 = - 1nf1 - constant/zw2] (78)
Then for instance
Pr(-1.96 € Yo < 1.96) = 95% {79)
gives

Pr{m exp(-1.3%6 oy " cw2/2) 4 ZH {m exp(1.96 o - ow2[2))

Px(zE exp{~-1.96 o, * 5W2/2} <m g zE exp(1.96 g, + cw2/2))

= 95% (80)

The random interval given below is then a 95% confidence interval:

1 ZE exp(-1.96 o, t UWZ/Z), z, exp(1.96 o, * ow2/2) ]



