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0. INTRODUCTION

In the seventies, in order to make predictions for future selective mining, geostatistics
had to deal with the problem of estimating reserves above cut-off grades. Since then
practitioners have used techniques based on, for example, multigaussian distributions,
disjunctive kriging (cokriging of indicators), or more simply kriging of indicators. The
indicators above a threshold define the ore at this cut~off or, in a non mining context,
define the geometric set of values above the cut-off.

During the past decade the interest in geometric problems has increased, m particular
for simulations. So we have seen the development of techniques for simulating random

functions Z(x) from indicators I[Z{x) < z] at different thresholds z, or conversely,

techniques for simulating sequential geological facies obtained by thresholding a
multigaussian random function.

In many such cases several thresholds and indicators corresponding to different

random sets related to the variable under study have to be handled simultaneously.
These sets depend on each other and their mutual arrangement is an important

structural characteristic of the variable. In this paper we propose simple tools to

describe this arrangement.

1. SOME THEORY

Thresholding a Random Function (RF) gives Random Sets (RS), the structure of which
is related to the structure of the RE Here we will only characterize structures from
pairs of points (%, x+h). The RF Z(x} is supposed to have stationary bivariate
distributions (Z(x), Z(x+ h)) with covariance ¢ (k). The cut—off z divides the space
into the RS of points with value =z and its complementary set. The indicator
I[Z(x) = z] (equal to 1 on the first set, 0 on the other) has the mean E (I[Z(x) = z])
= PlZ{x) = z] = T(z).

Hs covariance okh) = Cov {H[Z(x) = z}, I[Z(x.+ B =z}

PZ(x) = 2, Z(x + k) = z] - T(z)?
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and its variogram v{h) = 05 B{IZ(x) = z] -I[Z{x + h) = 2z} }?

=05(P{IZx) =z} = N[Zx + k) = 2] })
ie. O5(PIZx) <z, Zx+ h) 2zl + PlZx) 2z, Z(x + h) < z])

are functions of the bivariate distribution (Z(x), Z(x+1h)). Thus, it is possible to
explicitly compute the structure of this indicator under the hypothesis of a-given
bivariate distribution (such as bigaussian}. Note that the indicator I[Z7{(x) = z] andits

complement J[Z(x) < z] = 1-J[Z{x) = z] have the same variogram and covariance,

Generally the siructure of the indicator /{Z(x) = 2} changes when the cut—off z varies:

apart from the variance which acts as a multiplicative factor, the shape changes as we
will see in examples. Recall {e.g. Matheron 1982) that summing the indicator
variograms for all cut—offs gives the order 1 variogram of Z(x)

E {Z(x + h)-Z()|

[ F

[tz -

The cross covariance between indicators at cut—offs z and 7’ is

o, (h)

Tov(IZx) = z], I[Z(x + h) = 2'])

il

PlZ(x) z 2, Zix + h}y = 2'] - T(z) T(Z"

It is not necessarily symmetric in h. Knowing these covariances for all cut—offs is
equivalent to knowing the bivariate distributions (Z(x), Z{x+h)) for all distances h.
Summing these covariances gives the covariance of Z(x)

JIJZ 2Ry dz d2' = o (h)
Uniike the covariance, the cross variogram mixes the cases +h and -h
Yor(h) = 0.5 E[I{Z(x + ) = 2)- I{Z(x) éz)j[[(Z(x + Ry = 2 -IZ@) = )]
or,if z = 2’ 05(P[Z{x) < z,Z(x + hy 2 ') + P[Z(x) = 2, Z(x + k) < z])}

We will see (next section) that the way the RS are arranged for two cut-offs z < 2/
can be conveniently described using the conditional probabilities

Plex+h)yz=2 | Zx+h)y 2z Zix) <z] denoted Pp[—==7 | —=7]

PlZx+hy <z | Zx+ h) <2, Z{x}y = 2] denoted P [-><z | =< 2]
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The first one is the probability that, going froma pointx withvalue <zioa pointx+h
with value = 7z, the second value is = z. In other words, it is the probability with
which, getting into the domain of values = z one meetsa value = z”. The second one
is the probability with which, geiting into the values <z’ one meets value <z, The
first probability describes the “border effects” within the domain = z, the second one
the border effects within the domain < z

Tn practice, such probabilities can be computed from pairs (Z{x), Z{x+ h}} of poinis
separated by h. They are expected to be equal for +h and -h only if the distibutions
of pairs are symmetric in h. This will be supposed here from now on. Then the cross
variogram can be written (z = z')

vopo(hy = PlZ&) = 2, Z{x + h) < 2]
whereas the simple one becomes
yihy = PlZ(x) = 2. Z(x + k) < Z]

We then get (z < 2') Ppimzz | ===y M/ vd)

Y z’(h} / yz'(’%)

-ph E"‘B’(Zi _”)'<Z,}

So comparing the cross variogram between two indicators to their simple variograms
gives our conditional probabilities directly. All these results are not original, butseem
to have been insufficiently exploited for structural analysis as well as for the choice of
estimation or simulation technigues. We will now see what these probabilities
physically mean, then how they can be used.

2. SOME TYPES OF ARRANGEMENTS

Some schematic figures will help in understanding. In cach case the RF 7Z{x} takes
values 1, 2. 3, 4 with given probabilities (the names : mosaic, residual, and diffusion
wiil be justified in section 4. ).

In the mosaic model (Figure 1), the space is divided into compartments. Fach
compartment is given one of the four values, according to their probabilities, and
independently from the other compartments. So, when going from a point x with value
1to a point x-+ hwith value = 1, this point takes any of the other values 2,3, 4 without
preference. Going into the domain C2 of points = 2, the probability to reach a value
= 3 does not depend on h either. In the same way, going into the domain <3, the
probability to reach a value < 2 does not depend on h. To sum up, probabilities such
as P, [-»= 3| —= 2]and Py [»< 2 | — < 3]are constant in h.

In a diffusion-type model (Figure 2), when leaving the domain of points 1, we meet
first values 2. When leaving the 2’s, there is a transition to 1 or 3, depending on whether
we are going upwards or downwards. Probabilities like Py [==3] —=2or
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Py [+ < 2 | —< 3] are not constant. They start at 0 (no contact between 1 and 3)
and then increase with h.

2 2 1
3 3
] 2
4
5 1
2 2
! 3
4 N\ ! )
11 3 A
2
2
1

Figure 1 : a mosaic model
1 with geomeirically simple tifes

It is possible to imagine less strict transitions, Figure 3. Imagine that the values = 3
are anywhere within the domain C2 of points = 2, but are rarer within the borders
of this domain. Leaving the 1’s, we will meet, not always but still preferentially, values
2. The probability P, {—== 3 | — = 2] increases with the first distances h, but starts

from a positive value, expressing a possible contact between values 1 and values = 3.

Imagine now — mode! with indicator residisals, Figure 4 - that within the domain C2
of values = 2, the values = 3 are randomly distributed no matter the proximity of the
frontier of C2. There are no border effects within C2: leaving the 1's, we meet values
2 or = 3 without any preference: P, [—== 3 | —= 2] is independent of h. There is

no longer any tendency to transit at value 2 when going from the 1’s domain to the
= 2 values. Similarly, the values 4 being distributed randomly and without border
effects within the domain = 3, there is no tendency to transit through 3 when entering
the = 2. IHowever there is a hierarchy in this model, and what happens when entering
the domain of values < a cut-off is not the same as when entering the domain = a
cut—off. Here, leaving C3, the probability P, [->< 2 | —< 3] to reach a value 1

depends on h: it is small for small h (because the frontiers of C3 are more in contact
with values 2), and increases afterwards.

Many other arrangements may be thought of, e.g. that the values 4 are distributed
randomly and without any border effects within the domain C3, but that these values
= 3 themselves avoid the borders of C2. Or that C3 is preferentially located on the
right parts of C2, etc. Here we will only consider the simple types.
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Figure 2 : Diffusion-type model

igure 4 ;: Indicator residual model
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In short, and in term of indicator variograms :

If the cross variograms of indicators y, (%) are proportional to the variograms of the

lower threshold indicator y,{(h), it is the indicator residual model. The sets of points
= the different thresholds are nesting without border effects one within the other.

Tf the cross variograms are proportional to the variograms of the farger cut-off, itis
also an indicator residual model. but in the other direction ("decreasing” instead of
“increasing”). Now it is the sets with values lower than the different cut-offs which are
nesting one within the other without border effects.

If the ratios y,,(h)/y{h) are constant in h whatever the thresholds z and z°, we have
the mosaic model. There is no bosder effect whether increasing or decreasing.

Lastly, if the ratios y,,{(h)/yA{h) increase with h, there are border effects, increasing
and decreasing, like in the diffusion-type models.

However, when the cut-offs z and 2’ correspond o close probabilities, their cross and
simple variograms are of course close 0 each other, even in a diffusion-type model.
Moreover for quite distinct cut-offs, there are in practice always border etfects, more
or less well marked. Taking them into account is a matter of appreciation and the above
indications have to be moderated. The best is to look at real examples.

3. REAL EXAMPLES

Example 1

These data are herring acoustic densities, which were provided by X. Foote and L
Rottingen (Laboratory of Marine Research, Bergen, Norway). Petitgas (1591} has
made a geostatistical study of them. Each value is in fact the regularized density over
a 1 nautical mile segment along parallel transects. In the units that were used, 37%
of the 986 values exceed 102=100, 12% 10°=1000, and 3% 10*= 10000

The fluctuations that can be seen on the variograms of the corresponding indicators

12, 13, 14 show that the structures are not well known: Figure 5. distances in nautical

miles. However there is a clear destructuration of the simple variograms when the -
threshold increases. The cross variogram between two indicators, e.g. 12 and I3, looks

like 12, although it is not similar. The ratio between these two (the probability to

exceed 1000 when entering the > 100 domain) shows a rapid increase, which indicates

small border effects within this domain. Petitgas chose to neglect these effects and used

an indicator residual model to obtain a disjunctive kriging map (see next section).

In comparison, the ratio of the cross variogram between 12 and 13 on the variogram
of 13 (the probability to be lower than 100 when entering the <1000 domain) shows
much more important border effects, which conforms to the increasing model with
indicator residuals.
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Pigure 5 : thresholds 107 10, 10* on fish densities.
From top to bottom:
- variograms of indicators;

- cross variograms of indicators;

- conditional probabilities upwards: Py, [—= 107 | == 1079, ...

- conditional probabilities downwards: Fy [ < 102 | =< 107, ..
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Figure 6 : camulated rock facies: ABC, AB, A.
From top to bottoim:
— variograms of indicators;

— cross variograms of indicators;
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Example 2

These rock facies data were provided by the Direction Production & Developpement
- Total. They correspond to increasing granulometries: shales (denoted D), shaly
sandstones C, sandstones B, sandstones A, and appear in a fluvio-deltaic
sedimentation with probabilities 77%, 6%, 10%, 1% (cemulated: 100%, 23%, 17%,
7%). The data are known along wells, along which the variograms of the cumulated
indicators A, AB, ABC are calculated. They show beautiful structures (Figure 6).

The cross variogram AB-ABC is very close to the simple variograms of AB and ABC.
This is because AB and ABC corresponds to close probabilities (17 and 23%). The
facies C being little represented, the conditional probability to reach AB when
entering ABC, or to leave ABC when leaving AB, increases rapidly with the distance.
The cross variograms A-AB and A-ABC are more regular at the origin than the
corresponding simple ones. The conditional probabilities increase regularly with the
distance, showing well marked border effects within the domains AB and BCD. The
facies B is a transition between A and CD. These data have been maodelled by a
diffusion-type model (thresholded gaussian model, see further).

4, USING THE RESULTS : THE CHOICE OF TECHNIQUES

We have seen the descriptive tools that are the variograms of indicators, simple and
cross, as well as the conditional probabilities. Let us now fook at the estimation or
simulation, according the different types encountered in 2. (see Rivoirard 1990 for
more details on estimation). Of course the indicators are not independent: if Z(x) = 3,
then Z(x) = 2. The dependence between I[Z(x) = 2] and J[Z(x) = 3] also holds

between neighboring points xand x+ h, as generally Z(x+ h)haslesschance tobe =3
if Z(x) is itself < 2.

The mosaic model with independent values

We have already seen how to build this model from a mosaic (random partition of the
space). Let o(h) be the probability for two points h apart, x and x+h, to belong to

the same compartment. If x and x+h belong to the same compartment, then
Z(x)=Z(x+h). If not, Z(x) and Z(x+ h) are independent. So, whatever the functions
fand g, we have

E[ fZ(x)) g(Zx + hY)] = EIRZ()) g(Z&)] o) + EIRZ) Elg(@)] (1-oh))
hence a covariance
Cov [f (Y&x), g (Y(x + h))] = Cov [f (Y(x)), g (YeN] ¢ (W)

which is proportional to o(k). Thus the simple (take f=g) or cross covariances
between any two functions of Z(x) are proportional to g(f) (to 1-p(h) for
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variograms). In particular this is so for the indicators, which are intrinsically correlated
(Matheron 1965).

The consequence for the estimation is the following. Cokriging the indicators is
reduced to their separate kriging, with weights that are the same for all indicators.
Moreover, as any function f of Z{x) (taking the values f; >, ... when Z{x) = 1,2, ..))
can be written as a linear combination of the indicators

flz@l =h 1(2k) = 1) + o HZ() = 2) + ...
the resulting estimation of f{£{x)] , i.e. its disjunctive kriging, is nothing but its kriging.

To sum up this is the model in which the separate kriging of indicators, as
recommended by Journel (1982), finds its theoretical justification. Basically the
reason for any indicator to be estimated separately comes from the elementary
property: knowing [(Z(x) = 2), no matter the exact value of Z(x) when one wants to

estimate /(Z(x + k) = 2).

The model with erthegonal indicator residuals

Its construction comes directly from the properties seen in section 2. Starting from
independent RS A, Ay, Az, Ay, weput Z(x) = 1 if x € Ay; Z(x) = 2 if x & A; and
xEA; Zxy =3 x €A . x L Avandx EA3: Z(x) =4 if x €4, x & A
and x & A;. The indicator

KZx) =+ 1) = f} Ix €AY = KZk) = j) Ix & A)

depends only on the A; up to j. Geologically this process makes one think of successive
and partial erosions. After each of them the eroded parts are filled in with a material,
the value of which is smaller and smaller (other hierarchical values can of course be
imagined).

For the estimation, the indicators can be factorized with the residuals of the regressions
between successive indicators (hence the name): Rivoirard 1989, These residuals need
only to be kriged to cbtain the cokriging of the indicators and then the disjunctive
kriging of any function of Z(x}. In this hierarchical model, the estimation of
I{Z{x) = j) depends only on the indicators for cut—offs < j (the cot—offs higher in
the hicrarchy).

The way to build the model is similar to the technique proposed by Alabert (1987) to
sequentially simulate the indicators /[Z(x) < z] corresponding to a thresholded RF
Z(x). Alabert simulates each indicator using the values of this indicator, either known
at the data points, or deduced at points from previously simulated indicators (if
Z{x) <1, then Z(x) < 2 for this point x). Although the order of the sequence is important
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and may generate bias, Alabert has no direct criteria for choosing this order. As a
matter of fact, a sequential simulation of indicators [[Z{(x) < z] inthe order z;, z;,.

. Zi, corresponds to a building from independent RS Ay, Ay, ... with
2y =z, ) = 1(Z(x) 2z, ) Hx & Ap)
or HZkx) <z ) = KZx) <z, ) Hx & A)

according to whether z; is larger orsmallerthan z;, . It is an indicator residual model
with a particular hierarchy. We expect, for p <q, to have a cross variogram between
{(Z(x) < z; ) and J(Z(x) < z; ) proportional to the variogram of KZx)y <z, ).
This gives a criterion to choose such a sequential processing of indicators.

Remark : Even with a continuous distribution, the indicator residual model is
theoretically made of compartments with constant values. Then it is also a mosaic
madel (in the distinction made by Matheron 1989, page 309), but where the value of
a compartment is not independent of its size, nor of the neighboring compartments.

The diffusion—type models

In probability, physics. or earth science, diffusion processes correspond to phenomena
with gradual variations. There is a transition through neighboring values (but this may
be rapid, in particular for some ranges of values). In these models the RS obtained
by thresholding are closely linked. Whereas estimating an indicator uses only the
values of this indicator at the data points in the mosaic model, and in the residual
model it uses also the values of the hierarchically higher indicators, here it depends
on the values for all indicators.

In the _multigéussian model for instance, the most common diffusion model, the
estimation of J{Z(x) < z) depends on the kriging of the variable Z{x) itself, then on

all the indicators at the data points. The fact that we know the multivariate and then
the conditional distributions, and that the residuals of the regressions are independent
from the conditioning values, makes this model suited for estimation, simulation, and
above all for conditional simufation. As the variable under study is rarely normal, this
is usually considered, for this model, as being transformed from a normal variable.
Thresholding a gaussian RF is a particutar transformation.

Besides the gaussian model, there are other diffusion models, based on a given
statistical distribution (e.g. gamma, Hu 1988), or built on empirical distributions
(Matheron 1984, Lajaunie et Lantuéjoul 1989). These models are suited, with the
flexibility of an additional transformation, to various distributions (discrete, or with
large peaks). As multivariate and conditional distributions are not workable, the
estimation is performed through the disjunctive kriging technique (which needs only
bivariate hypotheses and is also available in the gaussian case).

Remark: It is possible to imagine models with border effects which are not strictly
diffusive (transition by neighboring values). Example: a mosaic where the value is the
average, within each compartment, of a given RE
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5, CONCLUSION

Looking at the cross as well as simple variograms of indicators is a convenient way to
study the arrangement between the RS obtained by thresholding a RF with stationary
and symmeiric bivariate distributions. The conditional probabilities that can be
deduced can help choosing a mosaic model without border effects, an indicator
residual model {no border effects upwards or downwards), or a diffusion-type model
(border effects upwards and downwards).

These are simple models, and more sophisticated ones may be needed sometimes. For
instance a geological environment resulting from combined diffusion and erosion
{mized diffusion—residual models). Ora sedimentary process where the granulometry
gradually decreases, but sometimes increases by jumps (there is no symmetry inh
vertically). _
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